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Abstract: In a peer-to-peer complex environment, information is permanently diffused. Such an
environment can be modeled as a graph, where there are flows of information. The interest of such
modeling is that (1) one can describe the exchanges through time from an initial state of the network,
(2) the description can be used through the fit of a real-world case and to perform further forecasts,
and (3) it can be used to trace information through time. In this paper, we review the methodology
for describing diffusion processes on a network in the context of exchange of information in a crypto
(Bitcoin) peer-to-peer network. Necessary definitions are posed, and the diffusion equation is derived
by considering two different types of Laplacian operators. Equilibrium conditions are discussed, and
analytical solutions are derived, particularly in the context of a directed graph, which constitutes the
main innovation of this paper. Further innovations follow as the inclusion of boundary conditions,
as well as the implementation of delay in the diffusion equation, followed by a discussion when
doing approximations useful for the implementation. Numerous numerical simulations additionally
illustrate the theory developed all along the paper. Specifically, we validated, through simple
examples, the derived analytic solutions, and implemented them in more sophisticated graphs, e.g.,
the ring graph, particularly important in crypto peer-to-peer networks. As a conclusion for this
article, we further developed a theory useful for fitting purposes in order to gain more information
on its diffusivity, and through a modeling which the scientific community is aware of.

Keywords: blockchain; bitcoin; peer-to-peer; diffusion theory; matrix theory; graph theory; partial
differential equations

1. Introduction

This document aims at describing the diffusion of information in the peer-to-peer (P2P)
network related to a crypto, for instance Bitcoin, through a fundamental diffusion approach.
The information could be anything, but the object of communication between agents (i.e.,
miners and users), and, to add context, it could be the hash calculation. This designates the
processes which calculate hashes for mining blocks, given relevant remaining transactions
to hash. More specifically, miners have the purpose of hash transactions within a list of
transactions—the memory pool—which appear in the next block in the blockchain Lipton
and Treccani (2021). Each transaction circulates from node to node in the memory pool
used for remembering all new transactions, and miners receiving new transaction lists,
supposing no double spending, start to generate hashes to create the new block. To this
extent, the hash calculation starts as long as miners receive the list of transactions, thus the
hash calculation can be seen as the information of transactions diffusing along the network
(see Shahsavari et al. (2017) for a more theoretical discussion). The more a miner receives
transactions to be mined, the more he/she is likely to calculate hashes, i.e., the stronger
the hash calculation. On the contrary, if there is a low amount of information, i.e., not so
many transactions to hash, then the lower the amount of transactions are to be hashed,
and the lower the hash calculation. Conversely, if the hash calculation is high, this means
that the miner has likely received a long list of transactions ready to be hashed. The hash
calculation is intimately linked to the hash rate, so we will name this type of diffusion:
diffusion of hash rate. In another more economical context, the diffused information could
simply be Bitcoin cash flows.
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This is true only if all miners have equal power of computing hashes, which we know
is not realistic. This is not an issue: the diffusion model should depend on each node, and
we will need to incorporate a rate of creation of hashes to assign to each node. In essence,
not only do we have a diffusion of hash rate, but also the creation of hashes, increasing the
hash rate for each miner. Being able to derive the hash rate with respect to time and node is
being able to predict such an evolution for all nodes, at a given time and context, which is
one main motivation for this approach.

A simple but fundamental physics model of diffusion is given by the famous diffusion
equation,

∂h
∂t

= D∆h + Γ, (1)

where h is the hash rate (or more generally, a ‘rate’ of information), t is the time variable, D
is the diffusion coefficient throughout the network, and Γ is the local hash creation rate. The
operator ∆ is called the Laplacian operator. One may think we could handle this approach
and solve the equation for h. However, what do spatial coordinates represent? It seems
that the majority of physics fields where this equation applies contains spatial coordinates,
which are real numbers with respect to a pre-defined coordinate system. This is not the
case for a proper network.

This means we need to handle the diffusion theory on a graph. There have already
been established approaches somehow related to the diffusion description on a graph, with
many applications (e.g., Bondy and Murty 2007; Pacreau et al. 2021; Thanou et al. 2017;
Viriyasitavat and Hoonsopon 2019). We discuss some of the approaches for modeling
diffusion on a network.

The paper An et al. (2021) specifies an optimality approach for minimizing the maxi-
mum regret due to decision taken in an uncertainty environment, and specifically calculates
the maximal regret through a linear program. This program has the advantage of consider-
ing the connectivity of the network, and the evolution of the information diffusion should
be a relevant complement to describe the structure of the network. The paper Mikhaylov
(2021) defends Hayek’s theory of private money, which, once applied to a state, should
avoid a significant amount of private money within the population of this state and reduce
the inequalities by means of further regulations through central banks digital currencies
(CBDC). This imposes a certain structure in the network of exchanges: the current Bitcoin
P2P network is distributed, and the application of this theory would make it change into a
more centralized network. The diffusion properties may significantly change from one type
to the other (see Section 7 for numerical illustrations), and our approach applies to both
different types. The authors in the paper Hollanders et al. (2014) model a P2P network as a
bipartite graph, where one family is the set of files, and the other is the set of peers. This
way of modeling allows to find an ‘S’ shape in the dynamic of the information diffusion,
and such a shape is a strong expectation of the social networks community. The equations
guiding the evolution are through the susceptible/infectious (SI) equations. There are
underlying assumptions, such as the strong one: the constancy of population. The paper
Manini and Gribaudo (2008) engages a probabilistic approach of diffusion of files into a P2P
network. In Musa et al. (2018), the diffusion methodologies applied to a P2P network are
explicitly reviewed. If not based on the SI approach, the models are essentially probabilistic.
Finally, the authors in Li et al. (2019) see the blockchain as a kind of Markov chain.

Interestingly, all the mentioned approaches overall focus on probabilistic modeling
for the diffusion processes on a graph. This present study proposes to focus on the more
fundamental aspects of the diffusion behavior, mainly governed by an equation of the style
of Equation (1). It is worth stressing that the operator Γ is very general, and can be the
source of randomness through, for instance, non-linearities, bringing chaos into the system.
However, one possibly can also include probability in Γ, which would make the present
study very general. More conceptually, Γ can gather any network specificity, such as its
consensus, since it is related to sources of information.
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However, some definitions already introduced in some of the previous studies, and
including the Laplacian operator, may need to be further discussed, especially from a more
intuitive and fundamental view of sharing information between two vertices of a graph.
This is especially true when the graph is directed. Thus, in the context of diffusion on
a P2P network, we need, for deriving the appropriate diffusion equation, to introduce
the derivative and the integration on a graph, for a function f defined on each node x at
a given time t. The Laplacian operator will follow. One understands that deriving the
appropriate diffusion equation is a task in itself. Then, once derived, we need to solve the
equation, which represents another task. In addition, we will see that there are different
possible Laplacian operators for a diffusion theory (at least two), and we will focus on them
separately. We will need some linear algebra tools to do it, as a graph is equivalent to its
adjacency matrix, and, conversely, any matrix gives a (weighted) graph.

We now discuss the two hypotheses made (and mitigated) in this study. The first one
is that graphs are undirectional. This is a strong assumption, as it means that once a vertex
agent receives information that it did not previously have, then it will give back part of it
to the source. Although this might be convenient in the context of bitcoin exchange (Alice
sends some bitcoins to Bob, but also to herself, i.e., she generates new addresses she owns
to send part of the total amount of bitcoins), a piece of information, whatever its type, has
no reason to come back to its source. Considering that a directed graph is essential if we
need to describe the interactions within a P2P network, this is what we do in this paper,
and this constitutes the main innovation of the present study.

Another hypothesis is made in this modeling: when a vertex agent receives a piece of
information, he/she immediately treats it and diffuses it to its neighbors. In other words,
the response to the information reception is immediate. This is also a strong assumption,
as, for instance, cash flows are performed in a delayed manner. Thus, Alice sends some
bitcoins to Bob, but Bob does not immediately send a part (or more) of it to Charlie. In fact,
the immediate response is the straightforward consequence of the structure of the diffusion
equation, whose solutions are a differentiable function of time. It turns out that one way to
make a non-differentiable solution at some given times is to introduce time dependency in
the Laplacian operator, and the Heaviside function (whose value is 0 below a given time,
and 1 above it) is a relevant candidate for differentiability breaking at selected points in
time. Introducing Heaviside functions in the Laplacian operator is a much easier task in
the context of graph modeling, for the reason that there are no discontinuity issues for the
variable x, usually continuous, and here being discrete (and representing the node index).
We engage this point of view at the end of the study.

The rest of this paper is depicted as follows. Section 2 is an introduction to the
modeling, with many fundamental definitions which will imply the Laplacian ones, as
well as the diffusion theory. Section 3 derives and solves the diffusion equation defined on
an undirected graph. It is worth pointing out that the two previous sections are strongly
inspired from Chung et al. (2007). The rest of this paper constitutes the main innovations.
Section 4 introduces two different types of equilibrium notion, the standard one (t→ ∞)
and the blockchain one (t = 10 min for Bitcoin), as well as some conceptual links between
both. Section 5 shows the implementation of the derived solution in Section 3. Section 6 is an
important generalization of the approach done thus far: it introduces the diffusion equation
and its resolution in a directed graph, very important properties of the P2P network as
already discussed above. Section 7 shows numerical illustrations of the previous section for
several famous networks (including the Erdos–Reyni network, or the binary tree). Section 8
is the direct implication of the previous directed graph case when there are boundary
conditions, typically certain vertices constantly sending information to the rest of the
network. Finally, Section 9 includes delay in the response of nodes when they receive
information. The last section concludes the study.
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2. Modelling the P2P Network
2.1. Introduction to Graph Theory

Let G = (E, V) be a graph, that is a set of nodes E and a set of hedges V, composed
of pairs of nodes in E. Thus, if x ∈ V, i.e., x is a node of G, and y ∈ E is another node of
G; if (x, y) ∈ V, we say that the nodes x and y are connected in G. We suppose that G is
connected (that is, there exists a connection between any two nodes of G), unoriented (x
to y or y to x is the same) and unweighted (all the paths are equally effective); this last
hypothesis may be relaxed in the future. An example of such a graph is shown in Figure 1.

1

2

3

4

5

6

7

8

9

Figure 1. Illustration of a graph. The balls are nodes, which are connected by edges, the segments.
Here, nodes have between one and four neighbors. In particular, node 6 diffuses information (e.g.,
list of transactions) to its neighbors, i.e., nodes 3, 5, and 7.

There is a matrix equivalence for such a graph. Node 1 is connected to nodes 2 and 3,
in Figure 1, but not to any other node. We can represent the graph G by a matrix A, which
is named the adjacency matrix. If we arbitrarily label nodes with numbers, the adjacency
matrix for the graph G in Figure 1 is given by

A =



0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 1 0 1 1 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 1 0 1 0 1 0 0
0 0 0 0 0 1 0 1 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0


. (2)

The first row corresponds to the connections of node 1. Node 1 is connected to nodes
2 and 3 only, so columns 2 and 3 for the first row prints 1; otherwise, it prints 0, and so on.
The diagonal (from top left to bottom right) of this matrix is composed of zeroes. It actually
turns out the this matrix is symmetric (i.e., with respect to its diagonal). In this example, E
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is isomorphic to {1, 2, . . . , 9}—we will identify both sets if there is no ambiguity—and the
element aij of A is 1 if (i, j) ∈ V for (i, j) ∈ E2.

Studying the matrix A or the graph G is therefore equivalent, and the P2P network
could indeed be represented this way. In addition, in Figure 1, node 6 spreads the informa-
tion of new transactions to nodes 3, 5, and 7. Node 6 starts to hash first, and then nodes
3, 5, and 7 start once they receive the information: the ‘hash rate’ propagates. Here, node
6 firstly computes hashes (purple), and secondly nodes 3, 5, and 7 compute hashes (they
become purple). This approach generalizes to all the nodes that create hashes, i.e., diffuses
list of transactions to other nodes as well as starting to compute hashes, and therefore will
make its neighbors compute hashes.

The arising question is, how is the diffusive process of such hash information, i.e., can
we describe it and thus allow a prediction? The answer is yes.

2.2. Derivative

We need to introduce the derivative and the integration properly before doing anything
else. It is worth noting that significant effort has been made to get closer to the notations
involved in the differential calculus. From now on, the sequence of this paper will be
mathematical, unless specified otherwise. The diffusive quantity of interest, here the hash
rate, is given by the function f , function of nodes x ∈ V and time t ∈ R+.

In the following, we focus on a graph G = (E, V) with associated adjacency matrix
A = (aij)1≤i,j≤n (n ∈ N∗\{1} nodes). The graph G is connected, unoriented and un-
weighted so that the matrix A is symmetrical, and its elements are in {0, 1}. We finally call
N (x) the set of all neighbors of x ∈ V, and we write dAx = CardN (x) the degree of x, i.e.,
number of neighbors of x, and we call Vol(G) = ∑x∈V dAx the volume of the graph G. We
write x ∈ V or x ∈ G equivalently in the sequence.

Definition 1 (Derivative). Let f be a function of E×R+ in R.1 The directional derivative of f
from z ∈ G to y ∈ G is given by

∂z f (y) = ( f (y)− f (z)) ayz. (3)

The operator ∂z is a linear map of f , for any z ∈ G.

Figure 2 represents the derivative. The rest of the definitions depend on this, so it is
important to well understand this last one.

y

z

Figure 2. The directional derivative of f from z to y. This actually represents the (finite) variation of
f for the information going from node z to node y. It is positive if y gets more information than z,
and negative otherwise. This concept makes sense only if y and z are neighbors; hence, the presence
of ayz ∈ {0, 1} in the definition.
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Definition 2 (Gradient). Let f : E×R+ → R. The gradient of f at y ∈ G is the vector given by 2

∇y f = (∂z f (y))z∈N (y) =


∂1 f (y)
∂2 f (y)

...
∂dAy f (y)

. (4)

The gradient at a node is the collection of directional derivatives toward this node.

Definition 3 (Laplacians). Let f : E×R+ → R. The normalized Laplacian of f from x ∈ G to
y ∈ G is given by

∆x f (y) =
1

dAy ∑
z∈N (x)

∂z∂z f (y), (5)

while the non-normalized Laplacian of f from x ∈ G to y ∈ G is given by

Lx f (y) = ∑
z∈N (x)

∂z∂z f (y). (6)

The global normalized Laplacian of f at x is given by

∆ f (x) =
1

dAx ∑
z∈G

∂z∂z f (x), (7)

while the global non-normalized Laplacian of f at x is given by

L f (x) = ∑
z∈G

∂z∂z f (x). (8)

L f (or ∆ f ) is said to be the Laplacian of f .

The Laplacian ∆ of f is the average of the second directional derivative of f at node x,
while the Laplacian L of f is the average of the second directional derivative of f at node x.
We then could define the following operator:

Definition 4 (Divergence). Let x ∈ G and fz : E× R+ → R, z ∈ N (x) be dAx functions.
Define the vectorial function f = ( fz)z∈N (x). The divergence of f at x ∈ G is given by

∇x · f = ∑
z∈N (x)

fz(z), (9)

or
∇x · f =

1
dAx ∑

z∈N (x)
fz(z), (10)

depending on whether we choose L or ∆.

This is the sum (or average) value of f for a given node, the average being taken at
each of the considered node’s neighbors.

Proposition 1 (Div of grad is Laplacian). For any x ∈ G, we have

∇x · ∇x f = Lx f or ∆x f , (11)

depending on whether we choose Lx or ∆x for the definition of the divergence.
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Proof. Note that, for all y, z ∈ G, we have

∂z∂z f (y) = ∂z(( f (y)− f (z)) ayz)

= (∂z f (y)− ∂z f (z)) ayz

=
(
( f (y)− f (z)) ayz − 0

)
ayz

= ( f (y)− f (z)) a2
yz.

Since a2
yz = ayz ∈ {0, 1}, we therefore have that ∂z∂z f (y) = ∂z f (y). It turns out that

∇x · ∇x f = ∆x f , or ∇ · ∇ = ∆.

Thus, we note that ∂z∂z = ∂z, and it turns out that ∆ f (x) = ∆x f (x), for any x ∈ G. A
straightforward but essential property for the Laplacian is depicted as follows.

Proposition 2. Let f : E×R+ → R. The Laplacians of f at x ∈ G satisfy the following property:

L f (x) = dAx f (x)− ∑
z∈N (x)

f (z), (12)

∆ f (x) = f (x)− 1
dAx ∑

z∈N (x)
f (z). (13)

Thus, the Laplacian of f at x is the value of f at x, minus the average value of f taken
by all its neighbors.

Proof. From the definition, and since axz = 1 if and only if z ∈ N (x), we have

∆ f (x) =
1

dAx ∑
z∈N (x)

∂z∂z f (x) =
1

dAx

 ∑
z∈N (x)

f (x)− ∑
z∈N (x)

f (z)

,

which implies the results.

This actually allows to introduce the Laplacian matrix.

Definition 5 (Laplacian matrix). The non-normalized Laplacian matrix is given by

L = D − A, (14)

where A is the adjacency matrix, and D = diag (dAx, dAy, . . .) is the diagonal matrix of degrees.
The Laplacian matrix is given by

∆ = D−1L = 1−D−1 A, (15)

where 1 is the identity matrix.

Contrary to any other field in mathematics, there are no criteria of derivability. The
function just needs to be defined at the two considered points.

2.3. Integration

After having defined the derivatives, we have to define the integration.

Definition 6. Let f , h : E→ R. We introduce the map scalar product of f by h on any sub-graph
g ⊆ G of G, as follows:

〈 f , h〉g = ∑
x∈g

f (x) h(x). (16)

The following proposition is straightforward, but fundamental.
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Proposition 3 (Scalar product). The map 〈·, ·〉g : f , h 7→ 〈 f , h〉g is a bilinear form from E2 to R,
for any g ⊆ G. This justifies its name scalar product. Thus, the family (G, 〈·, ·〉) is said to be a
Euclidean graph.

In the following, the graph G is always considered a Euclidean graph.

Definition 7 (Integration). Let f : E→ R. We introduce the integration of f on any sub-graph
g ⊆ G of G, as follows: ∫

g
f dA = 〈 f , dA〉 = ∑

x∈g
f (x) dAx. (17)

dA is a measure on G by 〈·, ·〉.

Here again, the function, to be integrable in g, just needs to be defined on g. The
previous and following properties are still satisfied for a function f : E×R+ → R.

The above definition actually is consistent with integration by parts.

Proposition 4 (Integration by parts). Let f , h : E→ R. We have∫
N (x)

h ∆x f dA =
∫
N (x)

∆xh f dA, (18)

∫
G

h ∆ f dA =
∫

G
∆h f dA. (19)

Proof. We calculate∫
N (x)

h ∆x f dA = ∑
y∈N (x)

h(y)∆x f (y)dAy = ∑
y∈N (x)

∑
z∈N (x)

h(y) ( f (y)− f (z))

=
1
2 ∑

y∈N (x)
∑

z∈N (x)
h(y) ( f (y)− f (z)) +

1
2 ∑

y∈N (x)
∑

z∈N (x)
h(z) ( f (z)− f (y))

=
1
2 ∑

y∈N (x)
∑

z∈N (x)
(h(y)− h(z)) ( f (y)− f (z))

= ∑
y∈N (x)

∑
z∈N (x)

(h(y)− h(z)) f (y) = ∑
y∈N (x)

∆xh(y) f (y)dAy

=
∫
N (x)

∆xh f dA.

Equation (18) is proven. In addition, we have∫
G

h ∆ f dA = ∑
x∈G

h(x)∆ f (x)dAx

= ∑
x∈G

∑
y∈G

h(x) ( f (x)− f (y)) axy

=
1
2 ∑

x∈G
∑

y∈G
(h(x)− h(y)) ( f (x)− f (y)) axy,

which aims at proving Equation (19) as was previously done.

We now have all the tools to develop the diffusion theory on a network, which is the
object of the next session.
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3. The Diffusion Equation
3.1. Derivation of the Equation

In order to derive the diffusion equation, we need the following essential proposition.
In the sequence, we call f : E×R+ → R the number of hashes produced per miner, as a
function of nodes and time.

Proposition 5. The density of the current of hashes from at x ∈ G at time t is given by the
following law of diffusion:

j(t, x) = −D∇x f (t, ·), (20)

where D > 0 is the diffusion coefficient of information.

We indeed assume that D is constant and is a network characteristic. Despite the
fact that this law is very intuitive and is a typical Fick law (the information goes toward
where there is not any information yet and hence the negative sign), further developments
need to be made to rigorously justify this equation in the context of the network. Let us
write j(t, x) = (jz(t, x))z∈N (x) the vector j at x and t. Thus, jz(t, x) represents the flow of
information from z to x.

Here is the first important result of the paper.

Theorem 1. Let f : E × R+ → R represent the information function. If D is the diffusion
coefficient and Γ : E×R+ → R the creation function of the information, the following diffusion
equation holds for any x ∈ V and t ∈ R+:

∂ f
∂t

(t, x) = −D L f (t, x) + Γ(t, x) (21)

Separately, the following diffusion equation also is valid

∂ f
∂t

(t, x) = −D ∆ f (t, x) + Γ(t, x) (22)

As long as one remembers that it is local, these equations can simply be written as

∂ f
∂t

= −D L f + Γ,
∂ f
∂t

= −D ∆ f + Γ.

The minus sign is actually a necessity for the system to be described as diffusive, and
not an explosive one, contrary to standard math and physics systems.

Proof. On the one hand, let δN be the quantity of hashes produced during the infinitesimal
variation of time dt, at node x ∈ G. The hash rate is the flux of rates given by φ = δN/dt,
and the number of such hashes produced per neighbors, for node x ∈ G, from time t and
t + dt, is f (t + dt, x)− f (t, x) = δN/dAx. It turns out that

δN =
∂ f
∂t

(t, x)dt dAx.

On the other hand, node x (i) receives the diffused information from its neighbor,
implying δNenter hashes, and (ii) can create (or destruct) information, implying δNcreate
hashes. We therefore must have the following conservation of information:

δN = δNentering + δNcreate. (23)

On point (i), the quantity of information entering into node x is provided from all its
neighbors, and thus δNentering = ∑

z∈N (x)
jz(t, x)dt. On point (ii), we introduce the creation



J. Risk Financial Manag. 2022, 15, 47 10 of 45

rate per node Γ(t, x) at node x and time t, which is the rate per node per second hashes are
calculated. We therefore have δNcreate = Γ(t, x)dt dAx.

Bearing all the above in mind, Equation (23) becomes

∂ f
∂t

(t, x)dt dAx = ∑
z∈N (x)

jz(t, x)dt + Γ(t, x)dt dAx,

Equivalently,
∂ f
∂t

(t, x) =
1

dAx ∑
z∈N (x)

jz(t, x) + Γ(t, x),

or
∂ f
∂t

(t, x) = ∇x · j(t, x) + Γ(t, x).

According to Proposition 5, we have ∇x · j(t, x) = −D ∆ f (t, x) or L∆ f (t, x), which
does conclude the proof.

3.2. Laplacian Matrix: Eigenvalues/Eigenvectors
3.2.1. Quick reminder: Eigenvalues/Eigenvectors

Let G = (E, V) be a graph, with n ∈ N nodes and the adjacency matrix A, and
F : En → En. We say that λ ∈ C is an eigenvalue of F if the function F − λId (Id is the
identity map) is not injective, which means that there exists a vector V ∈ Rn, named
eigenvector, such that F(V) = λV, or component-wise F(V(x)) = λV(x) for x ∈ G. The
function F has n eigenvalues, which we write λ1, λ2, . . ., λn, the index being chosen such
that |λ1| ≥ |λ2| ≥ . . . ≥ |λn| ≥ 0. To each eigenvalue λi, we associate its eigenvector Vi,
for all {1, 2, . . . , n}.

Separately, the function F can be seen as a matrix M, and the above equation is thus
written as MV = λV, or component-wise MV(x) = λV(x). We adapt to the matrix
viewpoint in the following. If M is symmetric, then it is diagonalizable and (Vi)i∈{1,2,...,n}
is an orthonormal basis of Rn, that is

〈Vi, Vj〉G = ∑
x∈G

Vi(x)Vj(x) = δij, (24)

where δij is the Kronecker symbol.

3.2.2. Laplacian: Eigenvalues/Eigenvectors

The above applies to the Laplacian matrix (see Definition 5). For instance, the non-
normalized Laplacian matrix for Figure 1 writes as

L =



1 −1 −1 0 0 0 0 0 0
−1 1 −1 0 0 0 0 0 0
−1 −1 1 −1 −1 −1 0 0 0
0 0 −1 1 0 0 0 0 0
0 0 −1 0 1 −1 0 0 0
0 0 −1 0 −1 1 −1 0 0
0 0 0 0 0 −1 1 −1 −1
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 0 1


. (25)

The matrix L is symmetric and positive (semi-)definite. We write (µi)i∈{1,2,...,n} the
eigenvalues of the matrix L such that µ1 ≥ µ2 ≥ . . . ≥ µn ≥ 0 with the associated
eigenvalues (vi)i∈{1,2,...,n}, forming an orthonormal basis of Rn. The normalized Laplacian
matrix writes
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∆ =



1 −1/2 −1/2 0 0 0 0 0 0
−1/2 1 −1/2 0 0 0 0 0 0
−1/5 −1/5 1 −1/5 −1/5 −1/5 0 0 0

0 0 −1 1 0 0 0 0 0
0 0 −1/2 0 1 −1/2 0 0 0
0 0 −1/3 0 −1/3 1 −1/3 0 0
0 0 0 0 0 −1/3 1 −1/3 −1/3
0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 −1 0 1


. (26)

The matrix ∆ is only positive semi-definite.
In the sequence, we focus our attention on the matrix ∆̃ = D1/2 ∆D−1/2. This matrix

is positive semi-definite, but also, since ∆̃ = D1/2D−1 LD−1/2 = D−1/2 LD−1/2, it is
symmetric. As an example, we have

∆̃ =



1 −1/
√

2 −1/
√

10 0 0 0 0 0 0
−1/
√

2 1 −1/
√

10 0 0 0 0 0 0
−1/
√

10 −1/
√

10 1 −1/
√

5 −1/
√

10 −1/
√

15 0 0 0
0 0 −1/

√
5 1 0 0 0 0 0

0 0 −1/
√

10 0 1 −1/
√

6 0 0 0
0 0 −1/

√
15 0 −1/

√
6 1 −1/3 0 0

0 0 0 0 0 −1/3 1 −1/
√

3 −/
√

3
0 0 0 0 0 0 −1/

√
3 1 0

0 0 0 0 0 0 −1/
√

3 0 1


. (27)

We write (λi)i∈{1,2,...,n} the eigenvalues of the matrix ∆̃ such that λ1 ≥ λ2 ≥ . . . ≥
λn ≥ 0 with the associated eigenvalues (Vi)i∈{1,2,...,n}, forming an orthonormal basis of Rn.
The graph G is fully connected; therefore λn = 0.

It is interesting to further develop the eigenvector Vn associated with the eigenvalue
λn = 0. Set vn as the eigenvector of L associated with the eigenvalue λn = µn = 0 (same
common eigenvalue between L and ∆̃). In addition, we have Lvn = 0; hence, Dvn = Avn,
which implies that vn = e/

√
n with the appropriate normalization.

Actually, we easily can establish that

∆̃D1/2 vn = λnD−1D1/2 vn = 0 = λnD1/2 vn.

It turns out that Vn = D1/2 vn, and with the appropriate normalization, we finally have

Vn(x) =

√
dAx

Vol(G)
. (28)

Two additional points to bear in mind are that ∆̃ is equivalent to ∆ by construction;
therefore, both matrices have the same eigenvalues. Finally, since ∆̃ = D−1/2 LD−1/2, then,
according to Sylvester’s inertia theorem, ∆̃ and L, and thus ∆, have the same number of
negative, zero, and positive eigenvalues. Further developments can be done here.

3.3. Resolution of the Equation

We need the following lemma

Lemma 1. The operator L is self-adjoint, in the sense that

〈h, Lx f 〉N (x) = 〈Lxh, f 〉N (x), (29)
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〈h, L f 〉G = 〈Lh, f 〉G. (30)

In addition, the operator ∆̃ also is self-adjoint

〈h, ∆̃x f 〉N (x) = 〈∆̃xh, f 〉N (x), (31)

〈h, ∆̃ f 〉G = 〈∆̃h, f 〉G. (32)

Proof. The first two equations have proofs very similar to the one for Proposition 4. We
thus focus on ∆̃x and ∆̃.

First we note, for any x ∈ G, that

∆̃ f (x) = f (x)− 1√
dAx ∑

z∈N (x)

f (z)√
dAz

=
1√
dAx ∑

z∈N (x)

(
f (x)√
dAx

− f (z)√
dAz

)
.

It turns out that

∆̃x f (y) =
1√
dAy ∑

z∈N (x)

(
f (y)√
dAy

− f (z)√
dAz

)
ayz, ∀y ∈ G.

Bearing this in mind, we calculate

〈h, ∆̃x f 〉N (x) = ∑
y∈N (x)

h(y) ∆̃x f (y) = ∑
y∈N (x)

h(y)
1√
dAy ∑

z∈N (x)

(
f (y)√
dAy

− f (z)√
dAz

)
ayz

= ∑
y∈N (x)

∑
z∈N (x)

h(y)√
dAy

(
f (y)√
dAy

− f (z)√
dAz

)
ayz

=
1
2 ∑

y∈N (x)
∑

z∈N (x)

h(y)√
dAy

(
f (y)√
dAy

− f (z)√
dAz

)
ayz

+
1
2 ∑

y∈N (x)
∑

z∈N (x)

h(z)√
dAz

(
f (z)√
dAz
− f (y)√

dAy

)
azy

=
1
2 ∑

y∈N (x)
∑

z∈N (x)

((
h(y)√

dAy
− h(z)√

dAz

)
ayz ×

(
f (y)√
dAy

− f (z)√
dAz

)
ayz

)

= ∑
y∈N (x)

∑
z∈N (x)

(
h(y)√

dAy
− h(z)√

dAz

)
ayz

f (y)√
dAy

= ∑
y∈N (x)

∆̃xh(y) f (y) = 〈∆̃xh, f 〉N (x).

Equation (31) is proven. For Equation (32), we have

〈h, ∆̃ f 〉G = ∑
x∈G

h(x) ∆̃ f (x) = ∑
x∈G

h(x)
1√
dAx ∑

y∈G

(
f (x)√
dAx

− f (y)√
dAy

)
axy

=
1
2 ∑

x∈G
∑

y∈G

((
h(x)√
dAx

− h(y)√
dAy

)
axy ×

(
f (x)√
dAx

− f (y)√
dAy

)
axy

)
,

which aims at proving the result, as previously done.

Here is the second important result of the paper. We have the following analytical
expression for the hash rate per node.
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Theorem 2. The solution for the diffusion Equation (21) is given by

f (t, x) =
n

∑
i=1

(
CL

i e−Dµit +
∫ t

0
e−Dµi(t−τ)〈Γ(τ, ·), vi〉G dτ

)
vi(x) (33)

with (CL
1 , CL

2 , . . . , CL
n ) ∈ Rn.

The solution for the diffusion Equation (22) is given by

f (t, x) =
1√
dAx

n

∑
i=1

(
C∆̃

i e−Dλit +
∫ t

0
e−Dλi(t−τ)〈D1/2 Γ(τ, ·), Vi〉G dτ

)
Vi(x) (34)

with (C∆̃
1 , C∆̃

2 , . . . , C∆̃
n ) ∈ Rn.

It is worth pointing out that these analytical solutions easily are implementable in a
computer.

Proof. We first focus on the solution for Equation (21). We decompose f (t, x) into the basis
(vi)i∈{1,2,...,n} of Rn made of eigenvectors of the matrix L.

f (t, x) =
n

∑
i=1

αi(t) vi(x), (35)

where, for all i ∈ {1, 2, . . . , n}, we have

αi(t) = 〈 f , vi〉G.

We have
〈 f , Lvi〉G = µi〈 f , vi〉G = µi αi(t).

Using Lemma 1, we have

µi αi(t) = 〈L f , vi〉G = 〈L f , vi〉G,

and using Equation (21), we have

−D µi αi(t) =
〈

∂ f
∂t

(t, ·), vi

〉
G
− 〈 Γ(t, ·), vi〉G.

Implementing Equation (35), we have

−D µi αi(t) =
d
dt

n

∑
j=1

αj(t)〈vj, vi〉G − 〈Γ(t, ·), vi〉G.

⇐⇒ D µi αi(t) = −
d
dt

n

∑
j=1

αj(t) δij + 〈Γ(t, ·), vi〉G

= −dαi(t)
dt

+ 〈Γ(t, ·), vi〉G.

⇐⇒ dαi(t)
dt

= −D µi αi(t) + 〈Γ(t, ·), vi〉G.

We can easily solve this differential equation, and we have

αi(t) = αi(0) e−Dµit +
∫ t

0
e−Dµi(t−τ)〈Γ(τ, ·), vi〉G dτ.

We obtain the final result by placing the previous equation to Equation (35).
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We now focus on the solution for Equation (22). We decompose (D1/2 f )(t, x) into the
basis (Vi)i∈{1,2,...,n} of Rn made of eigenvectors of the matrix ∆̃. The rest of the calculation
remains exactly the same as below, with the additional trick ∆̃D1/2 = D1/2∆.

We note that CL
i = C∆̃

i /
√

dAx, for any i ∈ J1, nK and x ∈ G. It turns out that if Γ = 0,
using L or ∆ leads to the exact same result.

Corollary 1. The solution for the diffusion Equation (21) is written as

f (t, x) = 〈 f (0, ·),U L(t, x, ·)〉G +
∫ t

0
〈Γ(t− τ, ·),U L(τ, x, ·)〉G dτ (36)

f (t, x) = 〈 f (0, ·),U ∆̃(t, x, ·)〉G +
∫ t

0
〈Γ(t− τ, ·),U ∆̃(τ, x, ·)〉G dτ (37)

where U L : R+ × E2 → R is the diffusion propagator for the matrix L, and is such that

U L(t, x, y) =
n

∑
i=1

e−Dµit vi(x) vi(y), ∀(t, x, y) ∈ R+ × E2. (38)

We also have

U ∆̃(t, x, y) =

√
dAy
dAx

n

∑
i=1

e−Dλit Vi(x)Vi(y), ∀(t, x, y) ∈ R+ × E2. (39)

The advantage of this last expression is the explicit dependency of f with respect to
the initial condition on all the nodes of G, i.e., with f (0, y) for all y ∈ G.

Proof. We derive the expression for the matrix ∆̃. From the general solution expression,
we have

f (0, x) =
1√
dAx

n

∑
j=1

Cj Vj(x).

Therefore, we have

Ci = 〈Vi,
√

dA f (0, ·)〉G = ∑
y∈G

Vi(y)
√

dAy f (0, y).

Implementing into the main solution expression, we have

f (t, x) =
1√
dAx

n

∑
i=1

(
∑

y∈G
Vi(y)

√
dAy f (0, y) e−Dλit

+
∫ t

0
∑

y∈G

√
dAyVi(y)Γ(τ, y) e−Dλi(t−τ) dτ

)
Vi(x).

Some re-ordering leads to

f (t, x) = ∑
y∈G

√
dAy
dAx

n

∑
i=1

Vi(x)Vi(y) f (0, y) e−Dλit

+
∫ t

0
∑

y∈G

√
dAy
dAx

n

∑
i=1

Vi(x)Vi(y)Γ(τ, y) e−Dλi(t−τ) dτ.

This explicitly is what we are looking for. A variable change will lead to the result.
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Remark 1. We have

U ∆̃(0, x, y) =

√
dAy
dAx

n

∑
i=1

Vi(x)Vi(y) =

√
dAy
dAx

δxy = δxy,

where δxy = 1 if x = y and 0 otherwise: the same for matrix L. We also have

lim
t→+∞

U ∆̃(t, x, y) =

√
dAy
dAx

Vn(x)Vn(y) =

√
dAy
dAx

√
dAx

Vol(G)

√
dAy

Vol(G)
=

dAy
Vol(G)

,

in which case lim
t→+∞

U ∆̃(t, x, y) does not depend on x. We also found an interesting interpretation

for the eigenvector Vn. Indeed, we have

lim
t→+∞

U ∆̃(t, x, y) = V2
n (y).

Therefore, V2
n (y) represents the propagation of information due to the diffusion, to node y.

The next two sections deal with further developments on the implications of the facts
established above. This also holds for the operator L.

4. Standard Equilibrium and Blockchain Equilibrium

The equilibrium is an important aspect of the current paper. We identified two types of
equilibrium, which we further develop here. The zero eigenvalue as well as its eigenvector
will play an important role, as we are going to see.

4.1. Standard Equilibrium
4.1.1. Integrable Creation Destruction Function

The standard equilibrium corresponds to the steady state, i.e., when t → +∞. It is
expected to have permanent exchanges between nodes at the same rate, which is exactly
equivalent to the fact that each node keeps having the same quantity of information, i.e.,
the same quantity of hash generation.

More specifically, we have the following proposition.

Theorem 3 (Standard Equilibrium Framework). Let f be solution of the diffusion Equation (1).
We assume that t 7→ Γ(t, y) is integrable on R+ for any y ∈ G, and∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ ∼

(t→+∞)
γi(y), with 0 ≤ γi(y) < +∞, ∀y ∈ G. (40)

Then the standard equilibrium state corresponds to:

lim
t→+∞

f (t, x) =
1

Vol(G) ∑
y∈G

dAy
(

f (0, y) +
∫ +∞

0
Γ(τ, y)dτ

)
. (41)

We have a similar result by considering the matrix L.

Proof. From the expression

U (t, x, y) =

√
dAy
dAx

n

∑
i=1

e−Dλit Vi(x)Vi(y),
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we see that all the terms cancel since λ1 ≥ λ2 ≥ . . . ≥ λn−1 > λn = 0, except the last
one. Thus

lim
t→+∞

U (t, x, y) =

√
dAy
dAx

Vn(x)Vn(y) =
dAy

Vol(G)
.

This does not depend on x. We then start from the following equation

f (t, x) = ∑
y∈G

√
dAy
dAx

n

∑
i=1

Vi(x)Vi(y) f (0, y) e−Dλit

+
∫ t

0
∑

y∈G

√
dAy
dAx

n

∑
i=1

Vi(x)Vi(y)Γ(τ, y) e−Dλi(t−τ) dτ.

Hence,

lim
t→+∞

f (t, x) =
1

Vol(G) ∑
y∈G

dAy f (0, y)

+ ∑
y∈G

√
dAy
dAx

[
n

∑
i=1

Vi(x)Vi(y)
(

lim
t→+∞

∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ

)]
.

The previous equation is the most general one. We come to the factor between
parenthesis. The previous equation is then

lim
t→+∞

f (t, x) =
1

Vol(G) ∑
y∈G

dAy f (0, y) + ∑
y∈G

√
dAy
dAx

[
n

∑
i=1

Vi(x)Vi(y) γi(y)

]
.

We now focus on the Equations (40). We will prove that γi(y) = 0, for all i ∈ {1, . . . , n− 1}
and y ∈ G, which will prove Equation (41). A variable change gives∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ =

∫ t

0
Γ(t− τ, y) e−Dλiτ dτ.

Bearing this in mind, for i = n, we have∫ t

0
Γ(τ, y)dτ ∼

(t→+∞)
γn(y),

that is ∫ +∞

0
Γ(τ, y)dτ = γn(y) < +∞.

Hence |Γ(τ, y)| ≤ C(y) < +∞ with C function from G to R, and lim
τ→+∞

Γ(τ, y) = 0, for

any y ∈ G. It turns out that for any i ∈ {1, 2, . . . , n− 1}, we have

∀ε > 0 ∃τ̃ > 0 ∀τ > τ̃ |Γ(τ, y)| < ε
Dλi

C(y) + 1
, ∀y ∈ G.

Hence, for any i ∈ {1, 2, . . . , n− 1} and t > τ, we have∣∣∣∣∫ t

τ̃
Γ(τ, y) e−Dλi(t−τ) dτ

∣∣∣∣ < ∫ t

τ̃
|Γ(τ, y)| e−Dλi(t−τ) dτ < ε

1− e−Dλi(t−τ̃)

C(y) + 1
.

Hence∣∣∣∣∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ −

∫ τ̃

0
Γ(τ, y) e−Dλi(t−τ) dτ

∣∣∣∣ < ε
1− e−Dλi(t−τ̃)

C(y) + 1
.
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By a variable change and using triangular inequality, we have∣∣∣∣∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ

∣∣∣∣ < ∣∣∣∣∫ t

t−τ̃
Γ(t− τ, y) e−Dλiτ dτ

∣∣∣∣+ ε
1− e−Dλi(t−τ̃)

C(y) + 1
.

In other words, we have∣∣∣∣∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ

∣∣∣∣ < C(y)
e−Dλit − e−Dλi(t−τ̃)

Dλi
+ ε

1− e−Dλi(t−τ̃)

C(y) + 1
.

Suppose now that t ∈ R∗+ is such that

t = max
(
− 1

Dλi
ln
(

ε
Dλi

C(y) + 1

)
, τ

)
.

Then we have ∣∣∣∣∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ

∣∣∣∣ < ε.

Therefore,

lim
t→+∞

∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ = γi(y) = 0,

which concludes the proof.

For example, set Γ(t, x) = P(t) eαt, where P is a polynomial and α ∈ R with some
restrictions that we need to discover.

Let n ∈ N. A quick calculation allows to establish that

∫
τn eaτ dτ =



n

∑
j=0

(−1)n−j
(

1
a

)n−j+1 n!
j!

τn−j eaτ + Cte if a 6= 0

τn+1

n + 1
+ Cte otherwise

If we set Γ(τ, x) = τn eατ , then we deduce that

e−Dλit
∫ t

0
τn e(Dλi+α)τ dτ =



n

∑
j=0

(−1)n−j
(

1
Dλi + α

)n−j+1 n!
j!

tn−j eαt if α 6= −Dλi

e−Dλit tn+1

n + 1
otherwise

We deduce that, for γi(y) to be finite, we need to have α ∈ R∗−, while n ∈ N without
restriction, and the degree of P is in N. However, if α = 0, then we necessarily need to have
n = 0. The less negligible function Γ is thus Γ(t, x) = P(0), which is the only form giving a
nonzero γi(y) = 0.

Remark 2. Equation (40) is actually close to the one found by applying the mean value theorem,
provided Γ(·, y) is continuous for any y ∈ G: there exists ai ∈ [0, t] such that∫ t

0
Γ(τ, y) eDλiτ dτ =

Γ(ai, y)
Dλi

(eDλit − 1), ∀y ∈ G. (42)

Thus, γi(y) = Γ(ai, y)/Dλi, with a ∈ R∗+.

Remark 3. General function theory might be interesting if one decides to break the assumption
that Γ(·, y) is continuous.
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4.1.2. Continuous-by-Parts Creation Destruction Function

If we require the solution f to be continuous at all times, then, according to the
diffusion equation, Γ must be at least continuous by parts. In this case, the function Γ(·, x) is
continuous by parts, for any x ∈ E, i.e., there are some points on the time axis R+ where the
function Γ(·, x) is not continuous (discontinuity of first kind). In this case, for any x ∈ G,
the function Γ(·, x) still is integrable on R+.

4.2. Blockchain Equilibrium (Approximation)

In fact, we have to consider that time is discretized, i.e., subdivided into interval of time
which are of length 10 min approximately. Ten minutes is the average time needed for a
miner to mine a new block in the Bitoin blockchain Lipton and Treccani (2021), and this
could be changed to 15 s for the Ethereum blockchain. We will go to deeper detail to this
point in the future, but approximately every 10 min, the blockchain equilibrium equation is
satisfied. The following are functions of interest:

• rb—b-block reward;
• c—cost per hash, supposed to be constant;
• Pt—price of one Bitcoin, in USD, at time t;
• fi—fee for transaction i ∈ I, where I is the set of all transactions that will be stacked

into block b;
• Nb—number of hashes in the network, for block b.

From these five variables, we can easily compute the revenues Rb for block b, as follows.

Rb =

(
rb + ∑

i∈I
fi

)
PT . (43)

We can compose the costs, more precisely the expected costs Cb, for block b, as well:

Cb = c Nb. (44)

We have the blockchain equilibrium equation:

Rb = Cb ⇔
(

rb + ∑
i∈I

fi

)
PT = c Nb. (45)

Thus, Nb is connected to f (t, x), which gives the cost for forming a block. We can, in
fact, make the assumption that the circulation of transaction lists within miners is very fast:
it takes approximately 1 millisecond for the nodes to receive the transaction list from an
original list. It is relevant to assume that the diffusion happens very fast once one miner
has a transaction list to be sent, and that the diffusion coefficient D is very high. This is the
blockchain equilibrium approximation: Dλn−1t� 1, for any time t.

In other words, Dλn−1t is so high that e−Dλit ∼
(Dλn−1t→+∞)

0, for any i ∈ {1, 2, . . . , n− 1}.

Only the term corresponding to λn = 0 survives.

Proposition 6 (Blockchain Equilibirum Approximation). Let f be solution of the diffusion
Equation (1). We focus on t ∈ [0, T], where T is set to be 10 min. Then the blockchain equilibrium
state corresponds to

f (T, x) ∼
(Dλn−1t→+∞)

1
Vol(G) ∑

y∈G
dAy

(
f (0, y) +

∫ T

0
Γ(τ, y)dτ

)
. (46)

We have a similar result by considering the matrix L.

It turns out that f (T, x), which does not depend on x, is the same for all the nodes.
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Proof. We have

e−Dλiτ ∼
(Dλn−1t→+∞)

{
0 if i ∈ {1, 2, . . . , n− 1}
1 if i = n

and

∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ ∼

(Dλn−1t→+∞)

 0 if i ∈ {1, 2, . . . , n− 1}∫ +∞

0
Γ(τ, y)dτ if i = n

We deduce the equation from

f (t, x) = ∑
y∈G

√
dAy
dAx

n

∑
i=1

Vi(x)Vi(y) f (0, y) e−Dλit

+ ∑
y∈G

√
dAy
dAx

[
n

∑
i=1

Vi(x)Vi(y)
(∫ t

0
Γ(τ, y) e−Dλi(t−τ) dτ

)]
,

which concludes the proof.

Thus, f (T, x) is to be associated to Nb. Finally, in essence, the standard equilibrium
and blockchain equilibrium give the same results. In the following, ‘ f (T, ·)’ refers to the
function at the equilibrium state.

5. Undirected Graph: Case Studies
5.1. 2 Nodes

As a quick application, suppose E = {x, y}, only two nodes, and V = {(x, y)}, one
connection. Suppose Γ = 0, f (0, x) = f0 ∈ R+, f (0, y) = 0. We have V1(x)2 + V1(y)2 = 1,
λ2 = 0, and

f (t, x) = f0 U (t, x, x) = f0 V1(x)2 e−Dλ1t + f0 V2(x)2,

f (t, y) = f0 U (t, y, x) = f0 V1(x)V1(y) e−Dλ1t + f0 V2(x)V2(y).

We can calculate the eigenvalues and eigenvectors for the network. The non-normalized
Laplacian matrix is given by

L =

(
1 −1
−1 1

)
and the Laplacian matrix by ∆ = ∆̃ = L. The eigenvalues are λ = 2 and λ2 = 0, and the
eigenvectors are V1 = t(1/

√
2 − 1/

√
2) and V2 = t(1/

√
2 1/

√
2). We finally obtain

f (t, x) =
f0

2

(
1 + e−2Dt

)
f (t, y) =

f0

2

(
1− e−2Dt

)
See Figure 3 for a plot of these two solutions.
The equilibrium is therefore given by

f (T, x) = f (T, y) = f0/2.

Finally, due to the diffusion effect, both nodes share the same information at
the equilibrium.
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Figure 3. Illustration of the diffusion information for 2 nodes. The initial conditions are Γ = 0,
f (0, x) = f0 ∈ R+, and f (0, y) = 0. We set D = 1/2, and f0 = 2. Blue is for f (t, x), while red is for
f (t, y).

5.2. 3 Nodes

We set that E = {1, 2, 3} and V = {(1, 2), (2, 3)}. The non-normalized Laplacian of
such a matrix is

L =

 1 −1 0
−1 2 −1
0 −1 1


and is

∆̃ = D−1/2 LD−1/2 =

 1 −1/
√

2 0
−1/
√

2 2 −1/
√

2
0 −1/

√
2 1

.

The eigenvalues of ∆̃ are the roots of the polynomial (1−X)
[
(1− X)2 − (1− X)/2− 1/2

]
,

that is λ1 = 2, λ2 = 1, and λ3 = 0. The eigenvectors are V1 = t(1/2 − 1/
√

2 1/2),
V2 = t(1/

√
2 0 − 1/

√
2), and V3 = t(1/2 1/

√
2 1/2).

We set Γ = 0. In order to be very explicit, the propagators are written as, for x = 1,

U (t, 1, 1) =
1
4
+

1
2

e−Dt +
1
4

e−2Dt

U (t, 1, 2) =
1
2
− 1

2
e−2Dt

U (t, 1, 3) =
1
4
− 1

2
e−Dt +

1
4

e−2Dt
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for x = 2 

U (t, 2, 1) =
1
4
− 1

4
e−2Dt

U (t, 2, 2) =
1
2
+

1
2

e−2Dt

U (t, 2, 3) =
1
4
− 1

4
e−2Dt

and for x = 3 

U (t, 1, 1) =
1
4
− 1

2
e−Dt +

1
4

e−2Dt

U (t, 1, 2) =
1
2
− 1

2
e−2Dt

U (t, 1, 3) =
1
4
+

1
2

e−Dt +
1
4

e−2Dt

Therefore, we have

f (t, 1) = f (0, 1)
(

1
4
+

1
4

e−Dt +
1
4

e−2Dt
)

+ f (0, 2)
(

1
2
− 1

2
e−2Dt

)

+ f (0, 3)
(

1
4
− 1

4
e−Dt +

1
4

e−2Dt
)

f (t, 2) = f (0, 1)
(

1
4
− 1

4
e−2Dt

)

+ f (0, 2)
(

1
2
+

1
2

e−2Dt
)

+ f (0, 3)
(

1
4
− 1

4
e−2Dt

)

f (t, 3) = f (0, 1)
(

1
4
− 1

4
e−Dt +

1
4

e−2Dt
)

+ f (0, 2)
(

1
2
− 1

2
e−2Dt

)

+ f (0, 3)
(

1
4
+

1
4

e−Dt +
1
4

e−2Dt
)

Figure 4 plots the evolution of the three functions.
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Figure 4. Illustration of the diffusion information for 3 nodes. Node 2 is connected to nodes 1 and 3,
but nodes 1 and 3 are not connected. The initial conditions are Γ = 0, f (0, 1) = 1, f (0, 2) = 2 and
f (0, 3) = 0. We set D = 1. Blue is for f (t, 1), red is for f (t, 2), and yellow is for f (t, 3).

The equilibrium state corresponds to the following expressions.

f (T, 1) = f (T, 2) = f (T, 3) =
1
4

f (0, 1) +
1
2

f (0, 2) +
1
4

f (0, 3).

We are now going to propose the solutions for specific P2P networks. It is worth
stressing that implementation of the above in a prototype is in progress.

6. Generalization to Directed Graphs

This section focuses on the generalization of what has been seen so far, but applied
to a directed graph. Concretely, information between different layers of the whole Bitcoin
network is directed. A very simple example is that the users layer is sending information
to the P2P network as transaction lists, and they do not expect any information back to
them since they are not miners. The diffusion is thus directed. This breaks the symmetry of
the adjacency matrix, which is not diagonalizable anymore. Thus, we could handle a more
general framework to perform the diffusion. So far, we may handle with straight numerical
solutions for the implementation, but we are going to see that we can derive an analytical
solution base on the singular value decomposition (SVD).

Definition 8 (SVD). Let A ∈ Mn,m(R) be a matrix of size n× m, with n, m ∈ N∗. Then, A
admits the following decomposition:

A = U Σ tV, (47)

where U and V are orthogonal square matrices of size n and m, respectively, and Σ ∈ Mn,m(R) is
a 0 matrix, except its diagonal elements, which are non-negative numbers.
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If m > n, we have

Σ =


σ1 0 0 . . . 0 0 . . . 0
0 σ2 0 . . . 0 0 . . . 0
0 0 σ3 . . . 0 0 . . . 0
...

...
...

. . .
...

...
. . .

...
0 0 0 . . . σn 0 . . . 0

.

If Σ is a diagonal matrix Σ = diag(σ1, . . . , σn). The numbers σ1 ≥ . . . ≥ σn ≥ 0 are the
singular values of A. The columns of matrices U and V are the singular vectors of A.

6.1. Matrix Exponential and Adjoint of the Laplacian Operator

As a reminder, we need the following three definitions.

Definition 9 (Exponential of Matrix). Let A ∈ Mn(R) for n ∈ N∗. The exponential of the
matrix A is given by

exp(A) =
+∞

∑
k=0

Ak

k!
. (48)

We write eA for exp(A).

Definition 10 (Hyperbolic Cosine and Sine of Matrix). Let A ∈ Mn(R) for n ∈ N∗. The
hyperbolic cosine of the matrix A is given by

ch(A) =
1
2
(eA + e−A). (49)

The hyperbolic sine of the matrix M is given by

sh(A) =
1
2
(eA − e−A). (50)

It turns out that

ch(A) =
+∞

∑
k=0

A2k

(2k)!
,

sh(A) =
+∞

∑
k=0

A2k+1

(2k + 1)!
.

Definition 11. Let T be a (linear) operator and g ⊆ G be a subgraph. The adjoint operator tT of
T is such that

〈h, T f 〉g = 〈tTh, f 〉g, (51)

for any f , g : G → R. The adjoint operator is the transposed of the associated matrix.

6.2. Solution for the Directed Diffusion Involving the Operator L
6.2.1. Intuition

In case of the directed network, the diffusion also is oriented. To gain intuition,
suppose there are two nodes x and y, so that x is connected to y, but not the converse. In
this case, the adjacency matrix writes

A =

(
0 1
0 0

)
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so that the non-normalized Laplacian matrix is

L =

(
1 −1
0 0

)
.

In addition, the node x loses information, while y gains the same amount of infor-
mation that x loses. Therefore, at any time t ∈ R+, the conservation of total information
is satisfied:

f (t, x) + f (t, y) = f (0, x) + f (0, y) = Cte.

Since x loses information but in a diffusive effect such that the more information it
has, the more it gives, we must have

∂ f
∂t

(t, x) = −D f (t, x).

Solving this equation leads to

f (t, x) = f (0, x) e−D t,

so that

Cte − f (t, y) = (Cte − f (0, y)) e−D t =⇒ f (t, y) = Cte(1− e−D t) + f (0, y) e−D t.

This is the solution of the differential equation:

∂ f
∂t

(t, y) = D f (t, x).

Introducing the vector F(t) = t( f (t, x) f (t, y)), we thus obtain the following system
of differential equations:

dF
dt

(t) = −D tL F(t).

6.2.2. The Directed Diffusion Equation Involving L

Definition 12. Let f : E×R+ → R representing the information function for a graph with n
nodes. If D is the diffusion coefficient and Γ : E×R+ → R the creation function of the information,
the following directed diffusion equation holds, for any t ∈ R+:

∂ f
∂t

(t, x) = −D tL f (t, x) + Γ(t, x) (52)

We have the same Equation (21) if and only if L = tL, that is, if and only if A
is symmetrical.

6.2.3. Solution Involving L

From Equation (12), we can use the Cauchy theorem to obtain the following solution.

Theorem 4 (Application of the Cauchy Theorem). The solution of the related Cauchy problem
associated with Equation (12) is given by

f (t, x) = e−D t L t f (0, x) +
∫ t

0
e−D t L (t−τ) Γ(τ, x)dτ. (53)

This expression is straightforwardly implementable in a computer. As a tip, we would
rather use the following equation:

f (t + ∆t, x) = e−D t L ∆t f (t, x) +
∫ t+∆t

t
e−D t L (t−τ) Γ(τ, x)dτ. (54)



J. Risk Financial Manag. 2022, 15, 47 25 of 45

The advantage of this equation is to force step-by-step dependency of configuration
at time t − ∆t, for any time t, for the increment ∆t > 0. See Section 8.3 for a practical
implementation from this equation.

6.2.4. Analytical Solution Involving L

The reader may find it useful to derive an analytical solution based on SVD.

Theorem 5. Let L = uS tv be the SVD of L (here S is indeed square), and let (ui)i∈{1,2,...,n} and
(vi)i∈{1,2,...,n} be the columns of the matrices u and v, respectively. The solution for the directed
diffusion Equation (52) is given by

f (t, x) = tαu(t) · u(x) = tαv(t) · v(x), (55)

where

(
αu(t)
αv(t)

)
=

(
ch(D tv u S t) −sh(D tv u S t) tvu

−sh(D S tv u t) tuv ch(D S tv u t)

)
·
(

αu(0)
αv(0)

)
+
∫ t

0

(
ch(D tv u S (t− τ)) −sh(D tv u S (t− τ)) tvu

−sh(D S tv u (t− τ)) tuv ch(D S tv u (t− τ))

)
·
(
〈Γ(τ, ·), U·〉G
〈Γ(τ, ·), V·〉G

)
dτ

with αu(0), αv(0) ∈ Rn, and

〈Γ(τ, ·), u·〉G =

〈Γ(τ, ·), u1〉G
...

〈Γ(τ, ·), un〉G

,

〈Γ(τ, ·), v·〉G =

〈Γ(τ, ·), v1〉G
...

〈Γ(τ, ·), vn〉G

.

Proof. From the SVD L = u S tv, we deduce that L tL = uS tS tu and tL L = v tS S tv. This
means that u and v are the matrices of eigenvectors of the symmetric matrices L tL and
tL L, respectively, which thus are diagonalizable matrices. Therefore the columns of u and
v form an orthonormal basis of Rn. We can decompose the function f on those two bases:

f (t, x) =
n

∑
i=1

αu
i (t) ui(x) =

n

∑
i=1

αv
i (t) vi(x).

Set i ∈ {1, 2, . . . , n}. On the one hand, we have

〈 f (t, ·), Lvi〉G = 〈tL f (t, ·), vi〉G

The left-hand-side gives

〈 f (t, ·), Lvi〉G = 〈 f (t, ·), siui〉G = si αu
i (t).

The right-hand-side gives, after some calculations

D 〈tL f (t, ·), vi〉G = − d
dt
〈 f (t, ·), vi〉G + 〈Γ(t, ·), vi〉G.

This leads to
dαv

i
dt

(t) = −D si αu
i (t) + 〈Γ(t, ·), vi〉G.
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On the other hand, we have

〈 f (t, ·), tLui〉G = 〈L f (t, ·), ui〉G.

The left-hand-side gives

〈 f (t, ·), tLui〉G = 〈 f (t, ·), sivi〉G = si αv
i (t).

The right-hand-side gives

〈L f (t, ·), ui〉G = 〈tL f (t, ·), ui〉G + 〈(L− tL) f (t, ·), ui〉G.

There is the supplement term 〈(L− tL) f (t, ·), ui〉G. We calculate it below.
We have

〈(L− tL) f (t, ·), ui〉G =

〈
n

∑
j=1

αv
j (t) (L− tL) vj, ui

〉
G

=
n

∑
j=1

αv
j (t)〈(L− tL) vj, ui〉G.

Let S̃ = tv L u = (s̃ij)1≤i,j≤n. Some calculations lead to

〈(L− tL) vj, ui〉G = tvj(L− tL)ui = s̃ji − si δij.

Finally, we obtain

dαu
i

dt
(t) = −

n

∑
j=1

Dαv
j (t)s̃ji + 〈Γ(t, ·), ui〉G.

The system to solve is, therefore,
dαu

i
dt

(t) = −
n

∑
j=1

Dαv
j (t)s̃ji + 〈Γ(t, ·), ui〉G

dαv
i

dt
(t) = −D si αu

i (t) + 〈Γ(t, ·), vi〉G

We are now facing a system of differential equations, first order, non-homogeneous, with
constant coefficients. In fact, we can solve this system of equations using a matrix approach.

First, we note that
S S̃ = (S tvu)2 , S̃ S = (tvuS)2.

Next, we set

M =

(
0 S̃
S 0

)
∈ M2n(R),

also

γ(t) =
(
〈Γ(t, ·), u·〉G
〈Γ(t, ·), v·〉G,

)
and

α(t) =
(

αu(t)
αv(t)

)
=



αu
1 (t)

αu
2 (t)
...

αu
n(t)

αv
1(t)

αv
2(t)
...

αv
n(t)


.
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The system of differential equations then becomes

dα

dt
(t) = −DMα(t) + γ(t).

The Cauchy theorem leads to

α(t) = e−DMt α(0) +
∫ t

0
e−DM(t−τ) γ(τ)dτ (56)

We can go further. We are calculating the powers of the matrixM, as follows. In fact,
we can prove by mathematical induction that

M2n =

(
(S̃S)n 0

0 (SS̃)n

)
∀n ∈ N, and M2n+1 =

(
0 (S̃S)nS̃

(SS̃)nS 0

)
∀n ∈ N.

Therefore

e−DMt =
+∞

∑
l=0

(−Dt)l

l!
Ml =

+∞

∑
l=0

(−Dt)2l

(2l)!
M2l +

+∞

∑
l=0

(−Dt)2l+1

(2l + 1)!
M2l+1

=


+∞

∑
l=0

(−Dt)2l

(2l)!
(S̃S)l

(
+∞

∑
l=0

(−Dt)2l+1

(2l + 1)!
(S̃S)l

)
S̃(

+∞

∑
l=0

(−Dt)2l+1

(2l + 1)!
(SS̃)l

)
S

+∞

∑
l=0

(−Dt)2l

(2l)!
(SS̃)l



=


+∞

∑
l=0

(−Dt)2l

(2l)!
(tvuS)2l

(
+∞

∑
l=0

(−Dt)2l+1

(2l + 1)!
(tvuS)2l

)
S̃(

+∞

∑
l=0

(−Dt)2l+1

(2l + 1)!
(S tvu)2l

)
S

+∞

∑
l=0

(−Dt)2l

(2l)!
(S tvu)2l



=


+∞

∑
l=0

(−Dt)2l

(2l)!
(tvuS)2l

(
+∞

∑
l=0

(−Dt)2l+1

(2l + 1)!
(tvuS)2l+1

)
tvu(

+∞

∑
l=0

(−Dt)2l+1

(2l + 1)!
(S tvu)2l+1

)
tuv

+∞

∑
l=0

(−Dt)2l

(2l)!
(S tvu)2l

,

which we can write as

e−DMt =

(
ch(−D tv u S t) sh(−D tv u S t) tvu

sh(−D S tv u t) tuv ch(−D S tv u t)

)
.

This achieves the proof.

As a simple verification, what does this theorem become if we set L to be symmetric?
We would then have si = µi, for any i ∈ {1, . . . , n}, and u = v, so that tvu = tuv = Id and
αu = αv. In addition Σ̃ would be diagonal and s̃ii = µi, i.e., S̃ = S . Then

ch(D tvuS t) =

ch(Dµ1t) 0
. . .

0 ch(Dµnt)


and, if Γ = 0, we have

αi(t) = ch(Dµit)αi(0)− sh(Dµit)αi(0) = e−Dµitαi(0).

This conforms to the previous theorem’s relevance and truth.
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6.3. Solution for the Directed Diffusion Involving the Operator ∆
6.3.1. The Directed Diffusion Equation Involving ∆

Definition 13. Let f : E×R+ → R represent the information function for a graph with n nodes.
If D is the diffusion coefficient and Γ : E×R+ → R the creation function of the information, the
following directed diffusion equation holds for any t ∈ R+:

∂ f
∂t

(t, x) = −D t∆ f (t, x) + Γ(t, x) (57)

We have the same Equation (22) if and only if ∆ = t∆, that is if and only if A
is symmetrical.

6.3.2. Solution Involving ∆

Theorem 6 (Application of the Cauchy Theorem). The solution of the related Cauchy problem
associated with Equation (13) is given by

f (t, x) = e−D t∆ t f (0, x) +
∫ t

0
e−D t∆ (t−τ) Γ(τ, x)dτ. (58)

This expression is straightforwardly implementable in a computer.

6.3.3. Analytical Solution Involving ∆

Similarly, we can prove the following theorem.

Theorem 7. Let ∆̃ = U ΣtV be the SVD of ∆̃ (here Σ is indeed square), and let (Ui)i∈{1,2,...,n} and
(Vi)i∈{1,2,...,n} be the columns of the matrices U and V, respectively. The solution for the directed
diffusion Equation (57) is given by

f (t, x) =
1√
dAx

tβu(t) ·U(x) =
1√
dAx

tβv(t) ·V(x), (59)

where

(
βu(t)
βv(t)

)
=

(
ch(D tV U S t) −sh(D tV U S t) tVU

−sh(D S tV U t) tUV ch(D S tV U t)

)
·
(

βu(0)
βv(0)

)
+
∫ t

0

(
ch(D tV U S (t− τ)) −sh(D tV U S (t− τ)) tVU

−sh(D S tV U (t− τ)) tUV ch(D S tV U (t− τ))

)
·
(
〈D1/2 Γ(τ, ·), U·〉G
〈D1/2 Γ(τ, ·), V·〉G

)
dτ

with βu(0), βv(0) ∈ Rn, and

〈D1/2 Γ(τ, ·), U·〉G =

〈D
1/2 Γ(τ, ·), U1〉G

...
〈D1/2 Γ(τ, ·), Un〉G

,

〈D1/2 Γ(τ, ·), V·〉G =

〈D
1/2 Γ(τ, ·), V1〉G

...
〈D1/2 Γ(τ, ·), Vn〉G

.

7. Directed Graph: Case Studies

This section shows simulations for important graphs.
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7.1. Erdos–Reyni

The Erdos–Reyni graph is uniformly random: fix the number of nodes and edges.
Then the connections are all random. Figure 5 shows a simulation.

Figure 5. Diffusion on a directed Erdos–Reyni graph.

There might be counter-intuitive facts, e.g., the node which has a high number of
neighbors is not necessarily the most influential in the network. The influence depends
on connectivity, but also on a given network configuration, as distribution of information
among all the nodes.

7.2. Binary Tree

The binary graph is the simplest hierarchical structure on graphs: every node has two
children. Figure 6 shows a simulation.

Figure 6. Diffusion on a directed binary tree.

In the standard configuration as in Figure 6, the information is circulating from parents
to children. We, however, observed (as in Mandala networks) the other possible direction.
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7.3. 4-Tree

Figure 7 shows a simulation.

Figure 7. Diffusion on a 4-tree.

7.4. Ring Graph

The ring graph is the simplest cycle on a network. Cycles are a very important aspect
of graphs: they allow to extract seasonality patterns for a given context. Figure 8 shows
a simulation.

Figure 8. Diffusion on a directed ring.

The most important characteristics we observe is the envelope: the cycle behaves
as two distinct sub-systems which interact continuously up to the dissipation level. One
sub-system gives the information to the other, which receives it, and vice versa.

8. Layers Constantly Giving Information
8.1. Motivations

This section deals with an important aspect of the Bitcoin network. There are different
families (layers) of nodes in this network. In fact, the P2P network is a subnetwork of
the whole system. There is, in addition, the layer of users which may send information
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(e.g., a transaction) to the miners so that they mine it. There also is the layer of exchanges,
which sends in the blockchain any information which may be about public key diffusion,
or even collects prices from different exchanges. In particular, an exchange needs to be
in the center of the whole network, communicating to nodes of all the layers by sending
and receiving all types of information. Such a complex system could in fact be simplified
and illustrated in Figure 9. If the related graph is directed, then the layers are said to be
directed, and the layer which receives information from others, and whose nodes exchange
information with each other, is named the main layer. A graph configuration where the
main layer is the layer of miners could represent all the list of transactions diffusion from
users to miners, and also between miners (see Figure 9), whereas if the main layer is the
layer of exchanges, the resulting diffusion model would describe all the interactions (i.e.,
emission/reception) of data from users, exchanges, and miners, the exchanges could have.
In particular, this graphical representation of an exchange should genuinely reveal, in a
clear way, the whole flow of information dealing with the exchange. The diffusion model,
for a given time condition, should predict the evolution of information propagation all
around the network. Modeling this is the object of the current section. Surprisingly, bearing
in mind the previous section, the result is simple.

Figure 9. Two directed layers, i.e., families of nodes. The red layer sends information toward the
green layer, while nodes of the last layer send information to each other. Thus, the green layer could
represent the layer of miners, while the red layer could represent the layer of exchanges. In such a
model, the miners are the main layer. We could easily change the configuration so that exchanges are
the main layer, and the following theory also applies.

8.2. Directed Diffusion with Boundary Conditions—Analytical Expression

Let S ⊂ G be the main layer (the green layer in Figure 9), and S̄ ⊂ G (the red layer
in Figure 9) such that S ∪ S̄ = G and S ∩ S̄ = ∅. We keep the notations in the previous
sections. The following theorem is the Theorem 5, with an additional boundary condition.
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Theorem 8. Suppose L is written as

L =

(
LS ∗
∗ LS̄

)
, (60)

where, in particular, LS is the Laplacian of the sub-graph S with singular vectors uS and vS.
Suppose f (t, x) = B(t, x), fixed and known, for any (t, x) ∈ R+ × S̄ (boundary condition).
Then, Theorem 5 applies to the sub-graph S, by replacing Γ(τ, ·), u·〉G with 〈Γ̃(τ, ·), uS

· 〉S, and
〈Γ(τ, ·), v·〉G with 〈Γ̃(τ, ·), vS

· 〉S, where

Γ̃(t, x) = Γ(t, x) + D ∑
y∈S̄

B(t, y) ayx (61)

Proof. Let µ̃1 ≥ . . . ≥ µ̃s−1 > µ̃s = 0 be the singular values for LS, and let uS and vS be
the singular vector matrices for LS. In fact, we set uS

i (x) = 0 if x /∈ S, idem for vS, for any
i ∈ {1, 2, . . . , n}, so that uS

i and vS
i are n-dimensional vectors.

Bearing in mind the proof for Theorem 5, we need to set

f|S(t, x) =
n

∑
i=1

au
i (t) uS

i (x) =
n

∑
i=1

av
i (t) vS

i (x), ∀(t, x) ∈ R+ × S.

On the one hand, we have

D µ̃j au
j (t) = D

〈
f|S(t, ·), µ̃j uS

j

〉
S
= D

〈
f|S(t, ·), LS vS

j

〉
S

= D
〈

f (t, ·), L vS
j

〉
G
− D

〈
f (t, ·), L vS

j

〉
S̄

=
〈

D tL f (t, ·), vS
j

〉
G
− D ∑

y∈S̄
f (t, y)

(
L vS

j

)
(y)

= − d
dt

av
j (t) +

〈
Γ(t, ·), vS

j

〉
G
− D ∑

x∈G
∑
y∈S̄

f (t, y)
(

vS
j (y)− vS

j (x)
)

ayx

= − d
dt

av
j (t) +

〈
Γ(t, ·), vS

j

〉
G
+ D ∑

x∈S
∑
y∈S̄

B(t, y) vS
j (x) ayx.

Thus

D µ̃j au
j (t) = −

d
dt

av
j (t) +

〈
Γ(t, ·) + D ∑

y∈S̄
B(t, y) ay ·, vS

j

〉
G

.

Identically, we have

D µ̃j av
j (t) = D

〈
f|S(t, ·), tLS uS

j

〉
S

= D
〈

tL f (t, ·), uS
j

〉
G
+ D

〈
(L− tL) f (t, ·), uS

j

〉
G
− D

〈
f (t, ·), tL uS

j

〉
S̄
.
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In particular, the last term is written as

−D
〈

f (t, ·), tL uS
j

〉
S̄
= −D ∑

y∈S̄
f (t, y) ∑

x∈G

(
uS

j (y)
tayx − uS

j (x)taxy

)
= −D ∑

x∈G
∑
y∈S̄

B(t, y)
(

uS
j (y)

tayx − uS
j (x) taxy

)
= D ∑

x∈S
∑
y∈S̄

B(t, y) uS
j (x) taxy

= D

〈
∑
y∈S̄

B(t, y) ay·, uS
j

〉
S

.

The same calculations performed as in the proof for Theorem 5 actually allow
to conclude.

Remark 4. When the exchanges constitute the main layer S, two other layers could be of interest,
the layers of users (customers) S̄1 and the layers of miners S̄2, so that the whole network G is such
that G = S ∪ S̄1 ∪ S̄2, and S ∩ S̄1 ∩ S̄2 = ∅. Setting S̄ = S̄1 ∪ S̄2, we deduce that Theorem 8
applies to the layer S of exchanges, and, considering the two distinct sources {customers, miners},
we specifically have

Γ̃(t, x) = Γ(t, x) + D ∑
y∈S̄1

B1(t, y) ayx + D ∑
y∈S̄2

B2(t, y) ayx. (62)

8.3. Directed Diffusion with Boundary Conditions—Practical Case

The previous section demonstrates that any boundary condition must be considered as
a constraint to the nodes whose neighbors are boundary nodes, multiplied by the diffusion
coefficient D. Figure 9 thus becomes the object of Figure 10.

Figure 10. Provided that the red-nodes layer plays the role of boundary condition layer in Figure 9,
the two directed layers network is mathematically equivalent to one unique network, whose node
neighbors with the boundary layer nodes have a reaction term Γ applied for the diffusion of informa-
tion.

Basically, each contrainst node has a stronger diffusive effect toward the rest of the
network. More specifically, since (supposing ∆t sufficiently small)∫ t+∆t

t
e−D t L (t−τ) Γ(τ, x)dτ = Γ(t, x)∆t + o(∆t). (63)

and from Equation (54), we can set

f (t + ∆t, x) = e−D t L ∆t f (t, x) + Γ(t, x)∆t + E(t, x), (64)
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where E(t, x) = o(∆t) is the error committed by the approximation. In practice, the
approximation is sufficiently good if ∆t ≤ 0.05 second such that we set ∆t = 0.05. Provided
that Γ is of class C∞, we indeed have an error of

E(t, x) =
∫ t+∆t

t
e−D t L (t−τ) Γ(τ, x)dτ − Γ(t, x)∆t

≤
∣∣∣∣∣+∞

∑
i=2

∆tn

n!
Γ(n−1)(t, x)

∣∣∣∣∣ ≤ +∞

∑
i=2

∆tn

n!

∣∣∣Γ(n−1)(t, x)
∣∣∣.

If the function Γ is sufficiently smooth, then

E(t, x) ≤
(

+∞

∑
i=2

∆tn

n!

)
sup
n∈N∗

(∣∣∣Γ(n)(t, x)
∣∣∣) = (e∆t − 1− ∆t) sup

n∈N∗

(∣∣∣Γ(n)(t, x)
∣∣∣).

In practice, we shall have sup
n∈N∗

(∣∣∣Γ(n)(t, x)
∣∣∣) ≤ 1 so that the error E never exceeds 2%

such that the equality E(t, x) = o(∆t) is justified, for any x.
Figure 11 plots a diffusion without the creation/destruction (Γ = 0) of a graph,

where the information is provided by node 1, and diffuses up to node 10 (without ever
reaching 11). Note that nodes 2 and 3 (respectively, 5, 6, and 7) play symmetrical roles and
have the same information amount through time.

Figure 11. The information diffuses from node 1 ( f (0, 1) = 1 while f (0, x) = 0 for any x 6= 1) to node
10. Here, Γ = 0 and D = 1.

We now add the constraint Γ such that

Γ(t, x) =



Γ(t− ∆t, x) +
r

∆t
if x = 2 and f (t, 2) ≤ 1

Γ(t− ∆t, x)− r′

∆t
if x = 10 and f (t, 10) ≥ 1

0 otherwise

In words, node 2 is constantly fed by external layers with a rate of r (creation) if it
does not have a sufficient resource, while node 10 is constantly feeding external layers
with a rate of r′ (destruction) if it does have too much of a resource. We choose rates
r = r′ = ∆t = 0.05.
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With a cubic spline smoothing, we may observe that sup
n∈N∗

(∣∣∣Γ(n)(t, x)
∣∣∣) ≤ 1 so that

E ≤ 0.2%.
Figure 12 shows the simulation.
It is interesting to note the literal change of behavior by applying such constraints.

Node 2 is submitted to permanent oscillations around 1 with a frequency-decreasing
transition regime, so node 10 once it reaches information higher than 1. The oscillations
induced at node 2 transfer visible oscillations to node 4, but the diffusion is not sufficiently
strong to see them.

We therefore increase the diffusion coefficient D from 1 to 5, then to 10, and Figure 13
shows the simulations.

Figure 12. The information diffuses from node 1 ( f (0, 1) = 1 while f (0, x) = 0 for any x 6= 1) to node
10 with additional creation (to node 2) and destruction (to node 10) added. Here D = 1.

Figure 13. The information diffuses from node 1 ( f (0, 1) = 1 while f (0, x) = 0 for any x 6= 1) to node
10 with additional creation (to node 2) and destruction (to node 10) added. Here D = 5 (left panel)
and D = 10 (right panel).
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For all intermediate nodes, oscillations of information are observed at a frequency
identical to the one imposed by node 2 reception. Concretely, it means that one node
providing constant information to the others without exceeding its resources is governing
the dynamics of the network. The shift of the minimum and maximum values at the
permanent regime is due to the delay to obtain the information, and the shift is higher if the
node is more distant from node 2.

In fact, the graph in Figures 12 and 13 behaves as a cycle: nodes 2 and 10 could be
connected to each other through an intermediate set of layers. This means that cycles are
maintaining oscillations through a permanent regime. These oscillations are importantly
induced by one parameter: the diffusion coefficient D, which therefore appears as a
bifurcation parameter (its value determines chaotic behavior in the network).

9. Delay in the Differential Equation

So far, there has been an immediate response from a stimulation of the network.
However, time lags are essential to consider since response to the information never is
automatic: there is a response time to understand the information and find an appropriate
answer, from the human as well as machine viewpoints. It is essential to find a way to
describe delay in the study.

Generally speaking, a delayed differential equation—an active topic of academic re-
search nowadays—for the above diffusion equation could be written as a delayed-response
diffusion equation:

∂ f
∂t

(t, x) = −D tL f (t− τ, x) + Γ(t, x), (65)

where τ ≥ 0 is the time lag for the answer of the system due to diffusion effects. Usually,
the function f (·, x), for any x ∈ G, is defined on [−τ,+∞[ and is given on [−τ, 0].

Although there are methods for solving such an equation, we may develop some
technics to make an easy implementation in the following. One trick is to make L time
dependent, as we are going to see.

9.1. Time Dependent Laplacian L(t)

The adjacency matrix may be time dependent, as nodes can change their configu-
ration through time. In the concern of expressing the time-dependent Laplacian matrix
L(t) = D(t)− A(t) with respect to A(t) exclusively, we note that

D(t) =
n

∑
i,j=1

Ei,i A(t) Ej,i,

and the Laplacian matrix is rewritten as L(t) =
n

∑
i,j=1

Ei,i A(t) Ej,i − A(t), which behaves as

a functional of the matrix A(t).
Bearing this in mind, a way to introduce delay in a graph system is to make connections

at a given time τ > 0. Without any loss of generality, we suppose that node rth, for a fixed
r ∈ J1, nK, is an isolated node at time t ∈ [0, τ[, then gets connected to, say, k ∈ J1, nK \ {r}
(from k to r) in the network, from time t = τ.

This makes the adjacency matrix A(t) time dependent, since

akr(t) =


0 if t ∈ [0, τ[

1 if t ∈ [τ,+∞[
= H(t− τ),

where H is the Heaviside distribution.
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Thus, we can prove that the rth diagonal element of L is lrr(t) = ∑n
i=1 ari = lrr(0) +

H(t− τ), while lkr(t) = −akr(t) = −H(t− τ). In this configuration, we therefore have

L(t) = L(0) +H(t)

where H(t) is zero everywhere, except at element (k, r), where it is equal to −H(t− τ),
and at its diagonal element (r, r), which is equal to H(t− τ). We actually can generalize
the above approach to the following proposition.

Proposition 7. If p ∈ N∗ nodes x1, x2, . . . , xp are connected to x11, . . . , x1q1 , . . ., and xp1, . . . , xpqp ,
respectively, at times τ11, . . . , τ1q1 , . . ., and τp1, . . . , τpqp , respectively, then

L(t) = L(0) +H(t), (66)

where H(t) is zero except element (xi, xi) which is ∑
qi
k=1 H(t− τik), for all i ∈ J1, pK, and either

element (xik, xi) if the connection is from xik to xi, or element (xi, xik) otherwise, whose value is
−H(t− τik), for all i ∈ J1, pK, k ∈ J1, qiK.

Thus, the matrix H behaves as a Laplacian matrix whose elements are either 0 or
Heaviside distributions.

The idea now is to find a solution with the Heaviside distribution as a kernel.

9.2. Definition Set for the Solution and Its Derivative

From the previous Section 9.1, the diffusion equation is written as

∂ f
∂t

(t, x) = −D t(L(0) +H(t)) f (t, x) + Γ(t, x).

It is worth stressing that the matrix H(t) is not defined at times when an evenness
occurs, which therefore implies that f is not derivable on those points. It turns out that f is
of class C almost everywhere (and not everywhere), provided that Γ is continuous almost
everywhere as well, but still is required to be continuous at all times. If the study starts
at t = 0 and there is no connection between distant nodes, then L(0) = 0Mn(R) and the
equation simplifies to

∂ f
∂t

(t, x) = −D tH(t) f (t, x) + Γ(t, x),

which has the usual form.

9.3. Simple Cases
9.3.1. Heaviside integration

Suppose we would like to calculate

I =
∫

H(t− τ) g(t)dt,

where g is a continuous and integrable function. Let

G(t) =
∫

g(t)dt,

up to a constant. Then

I =
∫

H(t− τ)dG(t).
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By integration by parts, we have

I = H(t− τ) G(t)−
∫

G(t)dH(t− τ)

= H(t− τ) G(t)−
∫

G(t) δ(t− τ)dt

= H(t− τ) G(t)−H(t− τ) G(τ),

true up to a constant Cte ∈ R, and we thus can write∫
H(t− τ) g(t)dt = H(t− τ) (G(t)− G(τ)) + Cte. (67)

9.3.2. Simple Case of Two Nodes

Suppose in E = {1, 2}, the network is composed of two nodes. Without creation/destruction,
suppose that node 1 sends information to node 2 from time τ > 0. The Laplacian matrix is
written as

L =

(
H(t− τ) −H(t− τ)

0 0

)
. (68)

This equation is just from the diffusion equations given by the system:
d f1

dt
(t) = −D H(t− τ) f1(t)

d f2

dt
(t) = D H(t− τ) f1(t)

According to Equation (67) with g = 1, the first equation gives

ln f1(t) = ln f1(τ)− D (t− τ)H(t− τ),

or
f1(t) = f1(τ) e−D (t−τ)H(t−τ).

Note that we can rewrite this function as

f1(t) = f1(τ) (1−H(t− τ)) + f1(τ) e−D (t−τ) H(t− τ)

= f1(τ)
(

1− (1− e−D (t−τ))H(t− τ)
)

.

Then putting this expression into the second equation and using the fact that
H(t− τ)2 = H(t− τ), we have

d f2

dt
(t) = D H(t− τ) e−D (t−τ).

Using again Equation (67) with g(t) = e−D (t−τ), we have

f2(t) = f2(τ) + f1(τ) (1− e−D (t−τ))H(t− τ).

This behavior is the one expected.
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9.3.3. Simple Case of Three Nodes

The case of three nodes E = {1, 2, 3}might be of particular interest as well. We could
break the symmetry by supposing that node 1 sends information to node 2 at rate α from
time τ > 0, and to node 3 at rate β from time τ′ ≥ τ. The Laplacian matrix is written as

L =

αH(t− τ) + βH(t− τ′) −αH(t− τ) −βH(t− τ′)
0 0 0
0 0 0

. (69)

This equation is just from the diffusion equations given by the system:

d f1

dt
(t) = −D (αH(t− τ) + βH(t− τ′)) f1(t)

d f2

dt
(t) = D αH(t− τ) f1(t)

d f3

dt
(t) = D βH(t− τ′) f1(t)

Again, according to Equation (67), the first equation gives

ln f1(t) = ln f1(τ)− D (t− τ) αH(t− τ)− D (t− τ′) βH(t− τ′),

or
f1(t) = f1(τ) e−D ((t−τ) αH(t−τ)+(t−τ′) βH(t−τ′)),

which we can rewrite, since f1(τ) = f1(0), as

f1(t) = f1(0)
(

1− (1− e−D α (t−τ))H(t− τ)
) (

1− (1− e−D β (t−τ′))H(t− τ′)
)

.

Deriving f2 is the most complex task here. First of all, we note that H(t− τ)H(t− τ′) =
H(t− τ′), and then we have

d f2

dt
(t) = D αH(t− τ) f1(0)

(
1− (1− e−D α (t−τ))H(t− τ)

)
×
(

1− (1− e−D β (t−τ′))H(t− τ′)
)

= D αH(t− τ) f1(0) e−D α (t−τ)

×
(

1− (1− e−D β (t−τ′))H(t− τ′)
)

= D α f1(0)
(

e−D α (t−τ) H(t− τ)

−(e−D α (t−τ) − e−D[α (t−τ)+β (t−τ′)])H(t− τ′)
)

= D α f1(0)
(

e−D α (t−τ) H(t− τ)

−e−D α (t−τ) H(t− τ′) + e−D[α (t−τ)+β (t−τ′)])H(t− τ′)
)

.

We deduce, from Equation (67), that

f2(t) =



f2(0) if t < τ

Cte
1 + f1(0)(1− e−D α (t−τ)) if τ ≤ t < τ′

Cte
2 + α

α+β f1(0)
(

e−D α (τ′−τ) − e−D[α (t−τ)+β (t−τ′)]
)

if τ′ ≤ t
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The continuity of the function f2 at times τ and τ′ allows to find an equation for Cte
1

and one for Cte
2 . We therefore derive the function f2 given by

f2(t) = f2(0) + f1(0)
([

1− e−D α (t−τ)
]

H(t− τ)

α

α + β

(
e−D α (τ′−τ) − e−D[α (t−τ)+β (t−τ′)]

)
H(t− τ′)

)
.

We now derive expression for f3. We find that

f ′3(t) = D β f1(0) e−D[α (t−τ)+β (t−τ′)] H(t− τ′).

The resolution leads to

f3(t) = f3(0) +
β

α + β
f1(0)

(
e−D α (τ′−τ) − e−D[α (t−τ)+β (t−τ′)]

)
H(t− τ′).

It is interesting to note that the symmetry is broken in the long-run

lim
t→+∞

f2(t) = f2(0) + f1(0)
(

1− β
α+β e−D α (τ′−τ)

)
,

lim
t→+∞

f3(t) = f3(0) + f1(0)
β

α+β e−D α (τ′−τ),

and, quite importantly, we can demonstrate that

f1(t) + f2(t) + f3(t) = f1(0) + f2(0) + f3(0), ∀t ∈ R+.

The conservation of information is held at all time.

9.4. Delay in the Differential Equation—Practical Case

We will need the following results, which generalize Definition 12 (specifically Equa-
tion (52)) and Theorem 4.

9.4.1. The Time-Dependent Directed Diffusion Equation Involving the Operator L(t)

Definition 14. Let f : E×R+ → R representing the information function for a graph with n
nodes. If D is the diffusion coefficient and Γ : E×R+ → R the creation function of the information,
with a time-dependent Laplacian operator L(t), the following directed di f f usion equation holds,
for any t ∈ R+:

∂ f
∂t

(t, x) = −D tL(t) f (t, x) + Γ(t, x) (70)

Here the main difference is that the Laplacian operator L is a function of time t.

9.4.2. Solution Involving L(t)

From Equation (12), we can use the Cauchy theorem to obtain the following solution.

Theorem 9 (Application of the Cauchy Theorem). The solution of the related Cauchy problem
associated with Equation (12) is given by

f (t, x) = e−D
∫ t

0 (
t L(s)ds) f (0, x) +

∫ t

0
e−D

∫ t
τ (

t L(s)ds) Γ(τ, x)dτ. (71)

As was done previously, we would rather use the following equation:

f (t + ∆t, x) = e−D
∫ t+∆t

t (t L(s)ds) f (t, x) +
∫ t+∆t

t
e−D

∫ t
τ (

t L(s)ds) Γ(τ, x)dτ
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which we can reduce again by noticing that
∫ t+∆t

t (tL(s)ds) = tL(t)∆t + o(∆t) and∫ t
τ (

tL(s)ds) = tL(τ)∆t + o(∆t) since t− τ ≤ ∆t, so that Equation (64) is also verified:

f (t + ∆t, x) = e−D t L(t)∆t f (t, x) + Γ(t, x)∆t + E(t, x). (72)

9.4.3. Practical Case—Committed Error

Here, the error E(t, x) committed due to the approximation being split into two terms,
and one has

E(t, x) = ED(t, x) + EΓ(t, x),

where
ED(t, x) = e−D

∫ t+∆t
t (t L(s)ds) f (t, x)− e−D t L(t)∆t f (t, x)

is the error due to the approximation at the diffusion term, and

EΓ(t, x) =
∫ t+∆t

t
e−D

∫ t
τ (

t L(s)ds) Γ(τ, x)dτ − Γ(t, x)∆t

is the error due to the approximation at the creation/destruction term. We derive an upper
bound for these two errors. Regarding the error on the diffusion term, we note that

∫ t+∆t

t
(tL(s)ds) =

+∞

∑
n=1

(∆t)n

n!
tL(n−1)(t),

so that

ED(t, x) =

[
exp

(
−D

+∞

∑
n=1

(∆t)n

n!
tL(n−1)(t)

)
− exp

(
−D tL(t)∆t

)]
f (t, x)

=

(
1− D ∆t tL(t) +

D
2
(∆t)2 tL′(t) +

D2

2
(∆t)2 (tL(t))2

)
f (t, x)

−
(

1− D ∆t tL(t) +
D2

2
(∆t)2 (tL(t))2

)
f (t, x) + o((∆t)2)

=
1
2
(D ∆t tL(t))2 f (t, x) + o((∆t)2).

This proves that ED(t, x) = o(∆t). Regarding the error on the creation/destruction
term, we introduce

γ(τ) = e−D
∫ t

τ (
t L(s)ds)

so that

EΓ(t, x) =
∫ t+∆t

t
γ(τ) Γ(τ, x)dτ − Γ(t, x)∆t.

We have
γ′(τ) = D tL(τ) γ(τ).
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Bearing all above in mind, we have

EΓ(t, x) =
+∞

∑
n=1

(∆t)n

n!
(γ(t) Γ(t, x)))(n−1) − Γ(t, x)∆t

= γ(t) Γ(t, x)∆t +
(∆t)2

2
(
γ′(t) Γ(t, x) + γ(t)Γ′(t, x)

)
− Γ(t, x)∆t + o((∆t)2)

=
(∆t)2

2
(
γ′(t) Γ(t, x) + γ(t)Γ′(t, x)

)
+ o((∆t)2)

=
(∆t)2

2
(

D tL(t) Γ(t, x) + Γ′(t, x)
)
+ o((∆t)2).

This proves that EΓ(t, x) = o(∆t). Finally, we have proven that the committed error is
such that E(t, x) = o(∆t). Thus, Equation (72) can be implemented by neglecting E(t, x) as
this represents a negligible error (see Section 8.3 for numbers).

9.4.4. Practical Case—Implementation
3-Node Case

We implement the model through Equation (72). We took a 3-node graphs as a first
step, and wanted to plot the solutions for the case depicted in Section 9.3.3. We set f1(0) = 1
and f2(0) = f3(0) = 3, with D = 3, and we set the adjacency matrix A as

A =

0 0.4 0.6
0 0 0
0 0 0

.

Figure 14 shows the information evolution per node (yellow is node 1; orange is node
2; and red is node 3).

Figure 14. A 3 node-graph. Node 1 gives information to node 2 (resp. 3) with rate 0.4 (resp. 0.6).
There is no delay, and D = 3.
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We compare these results with the ones obtained from adding delays: node 2 starts
receiving the information from time τ = 0.3 and node 3 from time τ′ = 0.9. The time-
dependent adjacency matrix becomes

A(t) =

0 0.4 H(t− 0.3) 0.6 H(t− 0.9)
0 0 0
0 0 0

.

Figure 15 plots the results.

Figure 15. Same structure as in Figure 14, but with a delay τ = 0.3 for node 2 and τ′ = 0.9 for node 3.

The results are showing expected behaviors, with another interesting aspect: if a node
takes too much delay to receive information, even if it has strong affinity, it will receive
much less than the expectations. This could modify the whole network configuration and
change its dynamical properties.

A last remark is about the obvious discontinuity of the derivative at times where nodes
start receiving the information.

Random Walk

Random walk is an important modelization of the propagation of information in a
network. It represents the abrupt movement of a bunch of bitcoins (resp. epidemia) among
different addresses (resp. people), and is a powerful tool for the traceability of sub-signals
of one signal.

From what we have seen above, we can confidently state that random walk actually is
a particular case of the above delayed differential equation theory. Indeed, a random walk
is obtained by taking the limit D → +∞, with delay times as a multiple of a fixed delay
τ > 0, marking the time step of the movement of information from node to node (creating
a discretization of time from a continuous time environment). It is worth pointing out that,
in this case, diffusion becomes propagation. Thus, more generally, on a network, it turns
out that a signal propagation is a particular diffusion of it, which is a non-trivial statement
(but the converse is incorrect, as the sub-signals are not modified in essence through their
propagation throughout the network).
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10. Conclusions

In this paper, we studied the process of diffusion on a network, undirected and
directed, with boundary conditions and response delays. More specifically, we introduced
some fundamental definitions in the context of a crypto’s P2P network, and then derived
the diffusion equation, with two different Laplacian operators. The main innovations
are the analytic solution derivation (by means of singular value decomposition), with or
without boundary conditions. We also have characterized delays into the response of
vertices.

It is worth pointing out that a tool, based on the evolution of information within
a real blockchain network, could be envisaged through this approach. For instance, a
visualization of any kind of exchange in the Bitcoin network could be implemented. The
tool can trace any piece of the exchange, from the past to the future, using the forecasting
ability, and this at any instant. The forecast, thus, can be updated by feeding the system with
all historical information up to the present. We also can imagine a parametrized machine
learning process which captures the historical configurations of the Bitcoin network, and
suggests likely ones in the future. Thus, the traceability of information is a starting point for
further transparency within all the agents, and implies the diminution of money-laundering
risk. Modeling the P2P network is useful for any exchange, not only for trading and forecast
purposes, but also for compliance duties.

Finally, it is worth stressing that the results developed in this paper are generalizable to
any kind of P2P network, except Section 4.2, which is Bitcoin specific, even if the approach
could be adapted. No matter what the underlying protocol is, we will systematically find
exchange of information between agents, nodes, and users. The structure of the network
as well as its underlying consensus mechanism (e.g., proof-of-work and proof-of-stake)
are additional data which the general diffusion equation on a directed graph, given by
Equation (52), can be a fitting model with parameter D, and, more importantly, with the
operator Γ, function of the consensus, as Γ is related to the source of information. One
could also make the model even more general by implementing a tensor D as a function of
the vertices and of the edges of the network. This is left for further studies.
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Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 We write f : E×R+ → R. The function has two variables, i.e., time and node, and takes real values.
2 numbers 1, 2, etc. designates the neighboring nodes of y.
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