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Abstract: Hedging down-and-out puts (and up-and-out calls), where the maximum payoff is reached
just before a barrier is hit that would render the claim worthless afterwards, is challenging. All
hedging methods potentially lead to large errors when the underlying is already close to the barrier
and the hedge portfolio can only be adjusted in discrete time intervals. In this paper, we analyze this
hedging situation, especially the case of overnight trading gaps. We show how a position in a short-
term vanilla call option can be used for efficient hedging. Using a mean-variance hedging approach,
we calculate optimal hedge ratios for both the underlying and call options as hedge instruments. We
derive semi-analytical formulas for optimal hedge ratios in a Black–Scholes setting for continuous
trading (as a benchmark) and in the case of trading gaps. For more complex models, we show in a
numerical study that the semi-analytical formulas can be used as a sufficient approximation, even
when stochastic volatility and jumps are present.

Keywords: exotic option; down-and-out put; time-discrete hedging; mean-variance hedging; Black–
Scholes model; jump diffusion

1. Introduction

This paper analyzes time-discrete hedging of European down-and-out put options near
the barrier in the case of overnight trading gaps. Such barrier options are not only traded over-
the-counter, but are also embedded in certain types of retail derivatives, for example, bonus
certificates (Baule and Tallau 2011; Baule and Shkel 2021; Hernández et al. 2008), bonus
certificates plus (Hernández and Liu 2014), flex bonus certificates (Hernández et al. 2014)
or (multi) barrier reverse convertibles (Wallmeier and Diethelm 2009). In these markets,
banks act as market makers and continuously quote prices for their issued products during
trading hours. Adequate hedging procedures that can also take overnight trading gaps into
account are therefore highly relevant.

The payoff of down-and-out put options is discontinuous at the barrier, which make
the use of a classical delta hedging problematic when the underlying level approaches the
barrier. This is why some approaches suggest hedging exotic options by using a static
portfolio of vanilla options that replicates the exotic payoff at maturity and is zero in case
of a barrier hit.1 However, to set up a perfect static hedge, a continuum of vanilla options
would be required. Engelmann et al. (2006) show with empirical data that certain static
hedge strategies for down-and-out puts outperform a delta hedge in a local volatility model,
while others are worse. Tompkins (2002) shows in a simulation study that neither dynamic
hedging nor static hedging leads to satisfactory results for up-and-out calls and that the
variability of hedging error is even higher for the static approach than delta hedging. It is
also possible to try combining static and dynamic hedging (İlhan and Sircar 2006; İlhan et al.
2008; Leung and Lorig 2015). Maruhn and Sachs (2009) developed static superreplication
hedging techniques that are robust regarding the underlying model parameters. The biggest
challenge, however, is the need to simultaneously unwind the entire hedge portfolio when
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the barrier is breached. Even robust techniques may lead to very high hedging errors when
this is not possible, for example, in the case of trading gaps Maruhn et al. (2011).

Another strand of literature considers delta hedging for more complex models.
An and Suo (2009) compare the performance of delta-hedging up-and-out calls on FX
rates for several underlying processes, featuring stochastic volatility and jumps. However,
they consider hedging errors as averages over the whole lifespan of many up-and-out calls.
In this paper, we focus on the hedging situation close to the barrier. One might argue that
the problems of a classical delta hedge can be diminished when the hedging frequency is
increased near the barrier. However, this is only possible when the underlying is traded
continuously. On real equity markets, trading hours are restricted, and the barrier can be
breached over night, when there is no chance to take action.2 Furthermore, stock prices may
be subject to discontinuous jumps, even during regular trading hours, e.g., (Ait-Sahalia
and Jacod 2009; Cont and Tankov 2004; Cont 2001; Kou 2007). We therefore consider both
regular overnight jumps and stochastic jumps in our analysis.

Even for vanilla options, a classical delta hedge, based on the derivative of the contin-
gent claim value with respect to the underlying price, may lead to considerable hedging
errors when hedging is performed in discrete time intervals. Therefore, recent research has
focused on methods to calculate a minimum variance delta for vanilla options that takes a
discrete hedging period into account (Alexander et al. 2012; Hull and White 2017; Vähämaa
2004). Nian et al. (2018) use a market-data-driven approach, applying kernel functions
to determine a delta that minimizes a quadratic empirical loss function in discrete time.
However, market data of options are needed for this approach, which is not attainable for
exotic options. Schweizer (2001) and Pham (2000) have proposed mean-variance hedging,
using self-financing strategies that minimize the mean squared error (MSE) between the
contingent claim at maturity and the terminal hedge portfolio value. We also use a mean-
variance hedging strategy, but minimize the MSE for a short period (one day) rather than
until maturity. We thus focus on the most crucial hedging situation, when the underlying
is already close to the barrier and a knock out event is likely to occur.

Similar to our approach, Bemporad et al. (2010, 2014) use a stochastic model predictive
control technique to minimize the variance of the hedging portfolio at a discrete future
point in time. Bemporad et al. (2011) and Graf Plessen et al. (2019) include the squared
expected hedging error in addition to the hedging variance in their optimization. As a
major extension, we analyze the situation of trading gaps. In general, hedging errors can be
computed using Monte Carlo simulation techniques. We consider (i) a geometric Brownian
motion for the underlying, (ii) a jump diffusion process, and (iii) a model with stochastic
volatility and jumps. Beyond simulation techniques, we additionally derive semi-analytical
formulas in the Black–Scholes case.

We add to the literature on hedging barrier options by analyzing the most difficult
situation of down-and-out puts close to the barrier in the presence of overnight trading
gaps. As our main contribution, we show that the existence of trading gaps has a significant
impact on mean-variance optimal hedge ratios compared to discrete hedging in continuous
time. Furthermore, we introduce the idea of using opposite vanilla options to dynamically
hedge barrier options (i.e., vanilla calls to hedge down-and-out puts).3 In a Black–Scholes
framework (with and without trading gaps), we develop semi-analytical formulas for
mean-variance optimal hedge ratios. A numerical analysis shows that mean-variance
hedging leads to much smaller root mean squared errors (RMSE) and value-at-risk figures
than classical delta hedging or static hedging. Hedging errors can become quite small
when continuous trading is possible. However, when trading gaps are considered, hedging
errors are much larger close to the barrier for all strategies. Using short-term vanilla call
options as hedge instruments instead of the underlying can further significantly reduce
RMSE. If it is possible to find a vanilla call that expires exactly after the trading gap, RMSE
and value-at-risk can be reduced to almost zero.

Interestingly, these results also hold in more complex models, beyond geometric
Brownian motion. Actually, there are virtually no differences between the results of a
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model with jumps and the Black–Scholes case.4 This finding raises the question of whether
the comparably simple semi-analytical formulas can yield reasonable results in more
complicated situations. Indeed, such an approach—assuming geometric Brownian motion
although the actual process is different—leads to fairly small hedging errors, despite the not
correctly specified model. Therefore, practitioners might use the semi-analytical approach
even when the underlying process is more complex than a geometric Brownian motion.

The remainder of this paper is structured as follows: Section 2 describes the hedging
problem and our approach for down-and-out puts and provides a total of seven different
hedging strategies. These include no hedging, time-continuous Black–Scholes delta hedg-
ing, one static approach as well as mean-variance delta hedging using the underlying or
vanilla calls with different maturities. Section 3 shows the results of a numerical analysis
of hedging errors using the aforementioned strategies in the Black–Scholes model. Semi-
analytical formulas for the mean-variance optimal hedge ratios for the Black–Scholes model
are derived. We distinguish between continuous trading and overnight gap risk during
the hedge period in order to see the effect of including trading gaps on hedging errors. In
Section 4, we extend the underlying model and allow for jumps and stochastic volatility.
After presenting the similar results in the jump-diffusion case, we calculate hedging errors
when the semi-analytical formulas are applied in a model with stochastic volatility and
jumps. Section 5 gives a short conclusion.

2. The Hedging Problem
2.1. Mean-Variance Hedging

We consider a European down-and-out put (dop) with strike price K, a barrier B that
is continuously monitored during trading hours and maturity T. The underlying level at
time t is denoted St. The payoff at maturity is given by

max(K− ST , 0)1{St≥B, ∀t∈[0,T]} , (1)

which means that the difference K − ST is only paid when both the underlying price is
below the strike K at maturity and the barrier B has never been hit during the lifetime of
the dop.

The main hedging difficulties arise from the discontinuity of the payoff at the barrier:
the maximum payoff is reached just before the barrier and then drops to zero (see Figure 1,
dotted black line). As the barrier hit probability increases when the underlying level
approaches the barrier from above, the value of the down-and-out put before maturity
decreases and reaches zero at the barrier (Figure 1, black line). Near the barrier, the
likelihood of a barrier hit causes the time value to be negative and counteract the inner
value K − St. Accordingly, the derivative of the value with respect to the underlying
level—delta—is positive and very high just above the barrier. Delta becomes negative for
higher underlying levels, similar to a vanilla put option, and is bounded from below by −1.
Of course, delta is zero below the barrier. Delta is thus also discontinuous at the barrier
(Figure 1, dashed black line).

In theory, hedging options with Black–Scholes delta leads to a perfect hedge when
all corresponding assumptions are met. Hedging in such a way would also minimize the
variance of the hedging portfolio (Bakshi et al. 1997). However, in reality, trading is only
possible at discrete times and thus price changes are discrete, too. This is especially true
when the exchange closes over night or at weekends. When the barrier is hit at the next
trading instance, the down-and-out put is worthless. However, the hedger is still long
in the underlying and faces corresponding losses. Consequently, the Black–Scholes delta
might lead to large hedging errors. We therefore build a hedge portfolio consisting of δS

MSE
positions of the underlying that minimizes the squared hedging error for a discrete hedging
period ∆t,

δS
MSE = arg min

δ

E[( f∆t − f0er∆t)︸ ︷︷ ︸
=:∆ f∆t

−δ (S∆t − S0er∆t)︸ ︷︷ ︸
=:∆S∆t

|F0]
2, (2)
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where ft denotes the price of the dop at time t.5 Without loss of generality, we set t ≡ 0. F0
is the information set at time zero. This approach is similar to the minimization of quadratic
hedging errors, i.e., mean-variance hedging in incomplete markets, which was introduced
by Föllmer and Sondermann (1986).6
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Figure 1. Value, Black–Scholes delta and payoff of a down-and-out put with strike price K = 100 and
barrier B = 80, 20 days before maturity. Additionally, payoffs of 1, 2 and 5 vanilla call options with
strike equal to the barrier of down-and-out put are shown.

Equation (2) explicitly refers to the underlying itself as the hedging instrument. How-
ever, there might be other liquidly traded instruments that are better suited. In particular,
short-termed vanilla call options with a strike identical to the barrier of the down-and-out
put option could be superior, as illustrated in Figure 1. For a vanilla call that matures at
the end of the hedging period ∆t, its payoff below the barrier is zero, inducing a perfect
hedge below the barrier. The steep positive slope of the down-and-out put above the
barrier can be closely approximated by an appropriate number of vanilla calls. In practice,
however, it is not always possible to find a vanilla call option that expires exactly at time
∆t. Nonetheless, vanilla calls with short maturities promise to be a better alternative to the
underlying as the hedging instrument. We therefore extend the minimization problem (2)
to call options with maturity Tcall :

δCTcall
MSE = arg min

δ

E[∆ f∆t − δ∆CTcall
∆t |F0]

2, (3)

where ∆CTcall
∆t describes the price difference from t = 0 to t = ∆t of the corresponding

vanilla call option.
According to Föllmer and Schweizer (1988, p. 151 ff.), using linear regression, the

solution of (2) and (3) is given by

δH
MSE =

Cov(∆ f∆t, ∆H∆t)

Var(∆H∆t)
=

Cov( f∆t, H∆t)

Var(H∆t)
, (4)

with the hedge instrument H ∈ {S, CTcall}. Moreover, the hedging error is zero in expecta-
tion. In Section 3, we show how this representation can be used to derive semi-analytical
formulas in a Black–Scholes setting.
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2.2. Hedging Situation and Strategies

In our numerical analysis, we consider a down-and-out put with strike K = 100
and barrier B = 80. As the delta near the barrier increases when maturity comes closer,
we choose a fairly small remaining lifetime of T = 20 days. For the hedging period, we
set ∆t = 1 day, as it is common practice to adjust the hedging portfolio on a daily basis.
A Monte Carlo simulation is used to generate prices of the underlying in t + ∆t similar
to Bemporad et al. (2014). In a first setting (Section 3), we consider the Black–Scholes
model, assuming that the underlying follows a geometric Brownian motion. In a second
setting (Section 4), we additionally consider stochastic volatility and especially jumps
in the underlying process, because jump events may have a significant impact on the
hedge variance.

For both settings, we analyze two different situations regarding the trading of the
underlying: First, trading continues throughout the hedging period, and the barrier can
be breached at any time between t = 0 and t = ∆t. Second, there is no actual trading
between t = 0 and t = ∆t, and whether the barrier is breached or not depends solely on the
underlying level at time ∆t. The second situation mimics the overnight gap risk between
two trading days. While the usual overnight gap is shorter than one day, it is longer at
weekends. One day is therefore a good proxy for an average trading gap.

As we are interested in the hedging performance near the barrier, we consider under-
lying levels St between 80 and 82. For higher prices, it is less likely that a barrier event
occurs within ∆t. Hence, standard hedging procedures may be applied in these cases. We
investigate a total of seven different hedging strategies:

1. Standard delta hedging with the underlying model;
2. Static hedging with the strike spread approach of Carr and Chou (1997);
3. Mean-variance hedging with δS

MSE obtained by (2) using the underlying;

4. Mean-variance hedging with δCTcall
MSE obtained by (3) using vanilla call options with the

following maturities:

(a) 1 day (best case, when available);
(b) 5 days (normal case, weekly options are available for major stock indices);
(c) 20 days (worst case, time to maturity identical to dop).

5. No hedging.

In Section 3, we show that hedging errors for the standard delta and static strike
spread approach are nearly identical in our setting. That is why the latter is omitted in
Section 4. We further only consider call options as hedge instruments that expire in one or
five trading days in Section 4.2.

3. Hedging under Geometric Brownian Motion
3.1. Model and Parameters

In this section, we assume that the stock price follows a geometric Brownian motion,
as in Black and Scholes (1973) and Merton (1973). The risk-neutral price dynamics of the
underlying are given by

dSt

St
= rdt + σBSdWt, (5)

where W is a Wiener process, r is the risk-free rate, and σBS is the volatility.
A major advantage of the Black–Scholes model is the availability of closed-form

solutions for both vanilla European options and down-and-out put options. The price of a
vanilla European call can be calculated as

CTcall
0,BS = S0N(d1)− Ke−rTcall N(d2), (6)
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where

d1 =
log(S0/K) + (r + σ2

BS/2)Tcall

σBS
√

Tcall
,

d2 = d1 − σBS
√

Tcall .

The price of a down-and-out put option is given by the Reiner and Rubinstein (1991) for-
mula:

f BS
0 (S0) =− S0N(−x1) + Ke−rT N(−x1 + σBS

√
T)

+ S0N(−x2)− Ke−rT N(−x2 + σBS)
√

T

− S0(B/S0)
2(µ+1)N(y1) + Ke−rT(B/S0)

2µN(y1 − σBS
√

T)

+ S0(B/S0)
2(µ+1)N(y2)− Ke−rT(B/S0)

2µN(y2 − σBS
√

T)

+ K
(
(B/S0)

µ+λN(z) + (B/S0)
µ−λN(z− 2λσBS

√
T)
)

, (7)

where

x1 =
log(S0/K)

σBS
√

T
+ (1 + µ)σBS

√
T y1 =

log(B2/(S0K))
σBS
√

T
+ (1 + µ)σBS

√
T

x2 =
log(S0/B)

σBS
√

T
+ (1 + µ)σBS

√
T y2 =

log(B/S0)

σBS
√

T
+ (1 + µ)σBS

√
T

µ =
r− σ2

BS/2
σ2

BS
λ =

√
µ2 +

2r
σ2

BS
z =

log(B/S0)

σBS
√

T
+ λσBS

√
T.

We fix the risk-free rate at r = 0.01 and the volatility at σBS = 0.2.

3.2. Continuous Trading

To see what effect overnight gap risk may have on hedging performance, we first
consider the standard case when trading continues throughout the one-day hedging period.
To apply the mean-variance hedge Equation (4), we need the Black–Scholes price of the
dop and the hedge instrument at time t = ∆t. For an underlying price S∆t, we can apply
Formula (7); however, we must consider the possibility that a barrier crossing took place
between t = 0 and t = ∆t. Given S0 and S∆t, the probability that no barrier crossing occurs
can be calculated via Brownian bridge calculus (e.g., Glasserman 2004) as

1− π(S∆t) = 1− exp

(
−2 log(S0/B) · log(S∆t/B)

σ2
BS ∆t

)
. (8)

The conditional expectation of the dop price at time t = ∆t, given S∆t, but with the
information set F0 (without knowing the underlying path between t = 0 and t = ∆t), is
then given by

E( f BS
∆t (S∆t)|F0) = (1− π(S∆t)) · f BS

∆t (S∆t). (9)

To solve δMSE from Equation (4) semi-analytically, we write it in integral form:

δH
MSE =

E( f∆t · H∆t|F0)− E( f∆t|F0) · E(H∆t|F0)

E((H∆t)2|F0)− E(H∆t|F0)2 . (10)

Defining the log returns of the underlying as rS := log(S∆t/S0) and expressing them
in terms of standard normal variates z via rS(z) = (r− σ2

BS/2)∆t + σBS
√

∆t z, we obtain

E( f BS
∆t · H∆t|F0) =

∫ ∞

y∗
(1− π(S0 · erS(z))) f BS

∆t (S0erS(z)) H∆t(S0erS(z)) φ(z)dz, (11)



J. Risk Financial Manag. 2022, 15, 29 7 of 20

where φ(·) represents the normal density and the lower bound y∗ is

y∗ =
log B/St − (r− σ2

BS/2)∆t

σBS
√

∆t
. (12)

The other integrals are calculated analogously, also mean and root mean squared hedg-
ing errors.7

Figure 2 shows the hedge ratios and absolute and relative root mean squared error
(RMSE) for the seven hedging strategies, dependent on the current price of the underlying
for a discrete one-day hedge of a down-and-out put with barrier B = 80, strike price
K = 100 and 20 days to maturity. The hedge ratio of a classical Black–Scholes delta hedge
reaches a value of about 2.5 near the barrier. In contrast, hedge ratios for all mean-variance
approaches become smaller and tend to zero when the price of the underlying approaches
the barrier from above. The reason is that the probability of a barrier crossing becomes
very high close to the barrier, and a high delta would lead to a large hedging error in the
event of a barrier break. Figure 3 visualizes the barrier-hit probabilities, dependent on the
underlying price. This probability also explains why the mean-variance deltas and the
Black–Scholes delta converge for higher underlying prices, where barrier breaks are very
unlikely within the hedging period. Looking at absolute RMSEs, the Black–Scholes delta
and the static approach are virtually identical and lead to the highest errors of all strategies,
with a maximum of 2.45 at S0 = 80.01. When the probability of hitting the barrier within
the hedging period is very high, even the no-hedging strategy results in smaller errors than
a standard delta hedge (at underlying prices of 80.50 and below). The best hedging results
can be achieved by the mean-variance strategies with a hedging error of 0.30 at S0 = 80.01.
As all mean-variance deltas are very small, the main driver of the hedging error is now
the rare event when the dop is not knocked out. While using the 1-day vanilla call results
in the best performance, the differences to the other mean-variance strategies are not as
large. As long as the barrier-hit probability exceeds 20% (at underlying levels below 81.50),
all mean-variance strategies outperform the standard delta and the static hedge. Relative
RMSEs explode close to the barrier and take values of up to 100 for the standard delta and
static hedge and values of 12 for the other strategies. However, since the RMSE is scaled by
the price of the down-and-out put, which tends to zero as the underlying price reaches the
barrier, these values are of little relevance here.

To provide further insight into the distribution of the hedging error and the risks
involved, Figure 4 shows the relative hedge error distribution for an initial underlying level
0.5% above the barrier (S0 = 80.40). The figure furthermore depicts the relative 95% value
at risk (VaR) for a long and a short hedge, respectively, depending on the initial underlying
level S0. The standard delta hedge and the static hedge result in a very fat-tailed and fairly
symmetric error distribution. In contrast, the no-hedging distribution is positively skewed.
This is because the hedge error is bounded by 100% in the case of a barrier event and
unbounded otherwise. All mean-variance strategies except for the 1-day vanilla call are
more leptocurtic; however, they lead to less extreme hedge error in all cases. The error
distribution with the 1-day call has both a high concentration around zero as well as the
least amount of extreme errors.

Regarding relative VaR, it is important to distinguish whether a long or a short dop is
hedged. The reason is the different source of high errors. If a long position is hedged, high
errors occur when the barrier is hit during the hedging period. In this case, no hedging
actually yields the best result, as the maximum loss is the value of the dop (100%). The
Black–Scholes delta and the static hedge yield extreme relative VaRs of more than 10,000%
and are therefore not shown in Figure 4. Compared to these extreme values, all MSE
strategies yield significant improvements. Interestingly, for underlying prices of 80.5 and
below, the hedge with the underlying outperforms the hedges with the vanilla calls. In
contrast, in the more relevant case for practice where a short position is hedged, high errors
occur when the barrier is not hit. Here, the MSE hedges with vanilla calls result in best
performances. However, differences between the MSE strategies are small unless the hedge
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is initiated only a few cents away from the barrier. As before, Black–Scholes delta and static
hedging VaRs are extreme and therefore not plotted.

To sum up, all mean-variance strategies significantly outperform the Black–Scholes
delta and static hedging when a dop is discretely hedged in continuous time. Comparing
different mean-variance strategies, using call options as a hedge instrument instead of the
underlying can further improve hedging performance, with shorter call option maturities
to be preferred.
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Figure 2. Black–Scholes model with discrete hedging in continuous time: deltas, absolute and
relative root mean squared hedging errors. Hedging object is a down-and-out put with K = 100,
B = 80, and T = 20 days; the hedging period is ∆t = 1 day. The hedging strategies are: standard
Black–Scholes delta (delta.model), MSE delta using the underlying (delta.mse), MSE delta using
vanilla calls with time to maturity of 1 (C.T = 1), 5 (C.T = 5), and 20 (C.T = 20) days, strike-spread
static hedging (str.static), and no hedging (unhedged).
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Figure 3. Probability of barrier crossing between t = 0 and t = 1 day. The barrier is at B = 80. The
graphs show the probabilities dependent on the underlying price for continuous trading (solid lines)
and with overnight trading gap (dashed lines); in the Black–Scholes model with geometric Brownian
motion (black lines) and in the Merton model with jump diffusion (grey lines).

3.3. Overnight Trading Gaps

We now turn to the case, where there is no trading and thus no barrier observation
during the hedging period. This is the situation when the hedger sets up the hedging
portfolio before the exchange closes and the next chance to react will be on the following
business day. We assume the overnight trading gap to be one calendar day, which is larger
than the actual closing period between two regular days but smaller than the weekend
closing period.

For valuation purposes, we assume continuous trading after the overnight gap at t = ∆t.
We can thus proceed almost analogously to the continuous case to calculate semi-analytical
solutions for δminRMSE in a world with overnight gap risk.8 However, we cannot use the
Reiner and Rubinstein (1991) formula to calculate the dop value at t = 0 immediately before
the exchange closes, because this formula assumes a continuously monitored barrier—also
during the overnight gap between t = 0 and t = ∆t. This assumption would lead to an
overestimation of knock outs: If the underlying price is extremely close to the barrier, the
knock-out probability would tend to one under continuous trading. However, when the
underlying closes one cent above the barrier, it has a fair chance of jumping over night to a
level high above the barrier which makes a breach less likely. Figure 3 shows the probability
of barrier crossings between t = 0 and t = ∆t with respect to S0. An overnight gap reduces
the knock-out probability and thus increases the value of the down-and-out put. In order to
get a fair price for the down-and-out put, we use the approach of Baule et al. (forthcoming),
discounting the expected value of the dop at the beginning of the next trading day.

Figure 5 summarizes the results for hedge ratios and absolute and relative RMSEs for
the different strategies in the case of a trading gap within the one-day hedging period. The
main difference to the continuous world from the previous section is that now hedge ratios
of the mean-variance strategies do not tend to zero near the barrier. This is because now the
down-and-out put value in t = 0 is significantly higher than in a continuous setting because
barrier-hit probabilities are much lower (about 50% compared to almost 100%; see Figure 3).
The mean-variance delta using the underlying is still smaller than the Black–Scholes delta
and has its minimum at 1.24 compared to the Black–Scholes delta of 2.45 at an underlying
price of 80.01. δC1day

MSE for call options that mature at the end of the hedging period of one
day is almost identical to the Black–Scholes delta. This is also plausible, because the most
problematic scenario when S∆t is below B yields a hedging error of zero, since both the call
option and the down-and-out put have no payoff. For S∆t > B, the option delta is exactly
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one and thus yields the same precision as the Black–Scholes delta for the “good” case of no
barrier break event. δC5days

MSE and δC20days

MSE are somehow larger, because deltas of these options
are less than one, so more options are needed to eliminate the same amount of price risk.
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Figure 4. Black–Scholes model with discrete hedging in continuous time: hedge error densities
and value-at-risk for long and short hedges. The densities are calculated for an underlying price
0.5% above the barrier. Relative VaR figures refer to the 95% confidence level. Hedging object is a
down-and-out put with K = 100, B = 80, and T = 20 days; the hedging period is ∆t = 1 day. The
hedging strategies are standard Black–Scholes delta (delta.model), MSE delta using the underlying
(delta.mse), MSE delta using vanilla calls with time to maturity of 1 (C.T = 1), 5 (C.T = 5), and 20
(C.T = 20) days, strike-spread static hedging (str.static), and no hedging (unhedged).

Using mean-variance hedging with the underlying instead of the standard delta or
the static approach cuts RMSE nearly by half close to the barrier, while the advantage
diminishes at higher prices. Using the 1-day vanilla call is by far the best strategy in terms
of RMSE. While it yields the same result far from the barrier as Black–Scholes delta or static
hedging, the error close to the barrier is very low compared to the alternatives (only 0.05,
which is a 96% RMSE reduction). The longer termed vanilla calls still lead to improved
performances near the barrier. Interestingly, even absolute RMSEs for the 1-day call are
smaller than in the world without gap risk. The reason for this is that on average the value
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of a dop in t = 0 in the gap-risk world is higher than in the continuous world as barrier
hits are less likely (see Figure 3). Deltas are thus higher, resulting in smaller hedging errors
when no barrier event occurs. Finally, it is never advisable to completely forgo hedging, as
no hedging results in the highest RMSE even close to the barrier, which is another difference
to the continuous case.
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Figure 5. Black–Scholes model with overnight trading gap: deltas, absolute and relative root
mean squared hedging errors. Hedging object is a down-and-out put with K = 100, B = 80, and
T = 20 days; the hedging period is ∆t = 1 day. The hedging strategies are standard Black–Scholes
delta (delta.model), MSE delta using the underlying (delta.mse), MSE delta using vanilla calls with
time to maturity of 1 (C.T = 1), 5 (C.T = 5), and 20 (C.T = 20) days, strike-spread static hedging
(str.static), and no hedging (unhedged).

Regarding relative RMSEs, errors increase for all strategies at underlying prices closer
to the barrier. An exception is the 1-day call, which always yields a relative RMSE of only
5%, regardless of S0. Because of higher dop values near the barrier, relative RMSE values
tend to be smaller with trading gaps than with continuous trading.

Analogously to Figure 4, Figure 6 shows the distribution of relative hedging errors for
a hedge initiated at S0 = 80.40 as well as relative VaR values for long and short hedging. In
general, distributions tend to be more skewed than in the continuous world. Regarding
the modal values, there is a clear shift depending on the hedging strategy. Whereas no
hedging results in a negative mode, the mode of the 1-day call strategy is nearly zero, while
the 5-day and the 20-day calls yield positive modes. In addition, the distributions of the
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no-hedging, the Black–Scholes delta, and the static-hedging strategies have fat tails and are
heavily skewed to the right.
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Figure 6. Black–Scholes model with overnight trading gap: hedge error densities and value-at-
risk for long and short hedges. The densities are calculated for an underlying price 0.5% above the
barrier. Relative VaR figures refer to the 95% confidence level. Hedging object is a down-and-out put
with K = 100, B = 80, and T = 20 days; the hedging period is ∆t = 1 day. The hedging strategies
are standard Black–Scholes delta (delta.model), MSE delta using the underlying (delta.mse), MSE
delta using vanilla calls with time to maturity of 1 (C.T = 1), 5 (C.T = 5), and 20 (C.T = 20) days,
strike-spread static hedging (str.static), and no hedging (unhedged).

Relative VaR for a long hedge is bounded above by 100% (for the no-hedging strategy).
All other strategies yield fairly similar results; only the 1-day call leads to a significant
VaR advantage.

As expected, short hedging is more associated with larger VaR values than long
hedging. Additionally, the differences between hedging strategies are more severe for short
positions close to the barrier. At S0 = 80.01, the mean-variance hedge with the underlying
reduces VaR already from 2.95 to 1.34. With vanilla options, the 5-days call can again halve
this figure to 0.73, and the 1-day call reduces VaR to only 0.06.

3.4. Other Parameters

The price of a down-and-out put is higher near the barrier for a shorter time to maturity
and also when the difference between strike and barrier is larger. For this reason, we rerun
our calculations for a time to maturity of five days (instead of 20 days) and with a strike
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of 160 (strike-barrier ratio of 2 compared to 1.25 for a strike of 100). While absolute hedge
ratios and RMSEs increase, the relative RMSEs and relative densities and VaR figures
are similar and have the same magnitudes. Relative hedge errors are also consistent for
different levels of volatility. Hence, results are robust for different parameters and do not
depend on the actual values considered for our in-depth analysis. Furthermore, since
there was almost no difference between the Black–Scholes delta and the strike-spread static
hedge, we skip the latter one in all further investigations.

4. Robustness for Other Underlying Processes
4.1. Jump-Diffusion Model

It is widely accepted that the Black–Scholes model with log-normal underlying returns
cannot accurately describe the empirically observed distribution (Cont 2001; Kou 2007).
Most crucial for the performance of hedging approaches is the continuity of the process. In
this section, we therefore allow stock prices to jump, applying the model of Merton (1976).
Within this, the underlying follows a jump-diffusion process as follows:

dSt

St
= (r− λJµJ)dt + σJDdWt + JtdNt, (13)

where r is the risk free rate, σJD is the volatility conditional on no jumps, Wt is a Wiener
process, and Nt is a Poisson counting process with intensity λJ . Jt describes i.i.d. ran-

dom jumps with distribution log(1 + Jt) ∼ N(log(1 + µJ −
σ2

J
2 ), σ2

J ), with two additional
parameters µJ , σJ .

A closed-form solution is only available for vanilla European options, while exotic
options, such as the down-and-out put, must be evaluated numerically. A European call
option can be calculated as a weighted sum of BS calls as follows:

CTcall
0,JD =

∞

∑
i=0

exp(−(1 + µJ)λJ)((1 + µJ)λJ)
i

i!
CTcall

0,BSi
, (14)

where each BS call CT
0,BSi

is conditioned on the arrival of exactly i jumps. It is valuated
with an adjusted risk-free rate r̃ := r− λJµJ + i log(1 + µJ)/Tcall and an adjusted volatility

σ̃BS :=
√

σ2
JD + iσ2

JD/Tcall . The weights are given by the probability that a Poisson random

variable with parameter λJ(1 + µJ) takes value i.
For better comparability, we let the total variance of returns in the jump-diffusion

setting equal the variance in the Black–Scholes setting. This is achieved by (Matsuda 2004)

σ2
JD = σ2

BS − λJµ
2
J − λJσ

2
J . (15)

We use λJ = 0.9658, µJ = −0.0184 and σJ = 0.0677 as in Hu and Liu (forthcoming)
to get realistic jump parameters. With σBS = 0.2 from the previous section, we obtain
σJD ≈ 0.1877.

We simulate Si
∆t for i = 1, . . . , N = 100,000. To calculate the dop value at t = ∆t in each

path i, f i,JD
∆t , we use pre-processed values with a different Monte-Carlo simulation. This

simulation draws 1,000,000 paths with 20 equidistant steps until the maturity of the dop
for a grid of predefined underlying prices S∆t. Since barrier crossings can occur between
two time steps of each path, we calculate intra-step barrier-hit probabilities πk

j according
to (8) as

πk
j =


1 if min{Sk

j−1, Sk
j } ≤ B

exp
(
−2 log(Sk

j−1/B)·log(Sk
j /B)

σ2
BS ∆t

)
otherwise

, (16)

where Sk
j is the underlying price at time step j in path k. The probability that the barrier is

not breached within the whole path is therefore ∏20
j=1(1− πk

j ). Multiplying this probability
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with the corresponding dop payoff, averaging over all paths and discounting with the
risk-free rate yields the dop value—conditional on an underlying value S∆t, and given
that the barrier has not been hit before t = ∆t. For variance reduction, we apply antithetic
variates and Richardson extrapolation.

However, given the information set F0 in the continuous case at the time of hedging,
we must also take into account that barrier crossings can occur between t = 0 and t = ∆t.
To this end, we simulate eight time steps in this time interval for each path i and calcu-
late ∏8

j=1(1− πi
j) as the probability that the barrier is not breached, where πi

j is defined
analogously to (16). We then multiply this probability with the conditional dop value to
obtain an expected value f i,JD

∆t within path i, for a simulated underlying price Si
∆t. Finally,

applying Formula (4) to these simulated values yields the mean-variance hedge ratios.
Figure 7 summarizes the results for hedge ratios and RMSEs for discrete hedging of

a dop in continuous time in the jump diffusion model. The results are almost identical
to those in the Black–Scholes model (Figure 2). We therefore refrain from including an
additional figure for hedging error densities and value-at-risk values. Our analysis shows
that the mean-variance strategies can also be applied when the underlying price may jump.

In addition, in the presence of trading gaps, the results hardly differ from those in
the Black–Scholes environment (Figures 5 and 6) and are thus not shown here. Appar-
ently, the inclusion of discontinuous jumps has no significant effect on the performance
improvements of the mean-variance strategies.
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Figure 7. Jump diffusion model with discrete hedging in continuous time: deltas, absolute and
relative root mean squared hedging errors. Hedging object is a down-and-out put with K = 100,
B = 80, and T = 20 days; the hedging period is ∆t = 1 day. The hedging strategies are standard
(model-implied) delta (delta.model), MSE delta using the underlying (delta.mse), MSE delta using
vanilla calls with time to maturity of 1 (C.T = 1), 5 (C.T = 5), and 20 (C.T = 20) days, and no
hedging (unhedged).
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4.2. Simple Formulas in a Complex Model

The finding that jumps have little impact on the hedging performance opens the door
for a potential simplification of hedging approaches when the underlying process is more
complicated than a geometric Brownian motion. Within a simple Black–Scholes world, we
can easily calculate hedge ratios with the semi-analytical formulas from Section 3. In the
following, we analyze the performance of hedges calculated with this simple model, but in
cases when the actual process is different. That is, we use the wrong model for hedging
and hope that this misspecification has little impact on the results.

In addition to jumps, we also incorporate stochastic volatility into the “real” model
and apply the stochastic-volatility jump-diffusion model (SVJ) by Bates (1996). This model
can also account for both volatility clustering and the leverage effect (Cont 2001). It assumes
the following process:

dSt

St
= (r− λSVJµSVJ)dt +

√
vtdW1

t + JtdNt,

dvt = κ(θ − vt)dt + η
√

vtdW2
t , (17)

where λSVJ , µSVJ , Jt, and Nt are defined analogously to the jump-diffusion model. The
variance vt of St is stochastic and mean-reverting to θ with speed κ and is exposed to
stochastic variations according to a second Wiener process W2

t , scaled by the volatility η.
The two Wiener processes W1

t and W2
t are correlated with correlation coefficient ρ. Prices

for European vanilla call options can be calculated semi-analytically via the characteristic
function of the underlying St as described in Bakshi and Madan (2000) and Schoutens
(2003). We use the characteristic function of Schoutens et al. (2004) to calculate call option
prices in the SVJ model.

Again, we calibrate the different models by their total variance for comparison. Ac-
cording to Bollerslev and Zhou (2002) (adding the jump variance because of independency),
this can be achieved by

σ2
BS · T =

(1− exp(−κT))v0

κ
+ θT − θ(1− exp(−κT))

κ
+ λSVJσ

2
SVJ T + λSVJµ

2
SVJ T. (18)

As realistic parameters, we choose λSVJ = 0.9658, µSVJ = −0.0184, σSVJ = 0.0677,
κ = 5.9859, and η = 0.5423, as in Hu and Liu (forthcoming). We then select v0 = 0.182, and
with σBS = 0.2 we obtain θ = 0.21522 using Equation (18).

As we are most interested in the case with overnight trading gaps, we focus on this
situation in the following. We further only consider call options that expire in one or five
trading days.

We simulate 100,000 prices Si
∆t from t = 0 to t = ∆t with Equation (17) and use an

additional (pre-processing) Monte Carlo simulation with 100,000 replications and 20 time
steps to evaluate the dop value f i,SVJ

∆t at time t = ∆t, depending on the underlying price
S∆t. With an overnight trading gap, no barrier-hit event can occur between t = 0 and
t = ∆t, thus, f SVJ

0 equals the discounted value of the expectation of f i,SVJ
∆t . Again, we apply

antithetic variates and Richardson extrapolation for variance reduction. With this dop price
f i,SVJ
∆t , we calculate a Black–Scholes implied volatility. This volatility is plugged into the

mean-variance hedging Formula (10).
Table 1 shows the resulting deltas and hedging errors (RMSE), together with the

corresponding values under the true model specification. While the approximate values
under Black–Scholes assumptions have slightly higher hedging errors, they are very close
together. Hence, the semi-analytical Black–Scholes formulas can be used as a very good
approximation, even when stochastic volatility and jumps are present.

The table also reports variance reductions over classical delta hedging, defined as the
percentage reduction in variance (compared to the “true” delta hedge in the SVJ model).
Differences between the true model and the Black–Scholes approximation are small for all
mean-variance strategies and below 1% when call options are used.
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Table 2 reports the corresponding value-at-risk figures for a long hedge and a short
hedge. Again, the values for the approximate solution are close to the true solution. An
exception is the hedge strategy with the 1-day vanilla call. Here, the slightly higher hedge
ratio calculated by the Black–Scholes approximation can lead to different results in the tails
(captured by the 95% VaR). When the issuer is short the dop, they lose money when the
underlying price rises. In this case, however, a higher hedge ratio is advantageous. On the
other hand, a lower hedge ratio is preferred by issuers when they hedge a long position.
Hence, the Black–Scholes approximation yields better VaR figures than the true model
for a short position and poorer figures for a long position. This effect only occurs for the
1-day call option, as its value is exactly zero below the barrier and therefore not affected by
possible downward jumps.

Table 1. SVJ model with overnight trading gap: deltas, absolute root mean squared hedging error,
and variance reduction. Hedging object is a down-and-out put with K = 100, B = 80, and T = 20
days; the hedging period is ∆t = 1 day. The different strategies are model delta, MSE delta using the
underlying and MSE delta using vanilla calls with time to maturity of 1 or 5 days, and no hedging. For
each strategy, hedges are calculated with the correctly specified model (SVJ) and as an approximation
with the semi-analytical formulas in the Black–Scholes model (BS).

Hedge: Standard MSE None

Underlying Underlying Call (1 day) Call (5 days)

S0 SVJ BS SVJ BS SVJ BS SVJ BS

Panel A: Deltas

80.01 3.69 3.72 1.68 1.89 3.28 3.67 3.58 3.94 0
80.40 3.21 3.39 2.10 2.33 3.16 3.33 3.80 4.01 0
80.80 2.89 3.15 2.38 2.60 3.00 3.09 3.76 3.86 0
81.80 2.26 2.59 2.38 2.52 2.52 2.57 3.03 3.01 0

Panel B: RMSEs

80.01 2.15 2.17 1.00 1.02 0.38 0.44 0.70 0.72 1.87
80.40 1.41 1.54 0.93 0.96 0.40 0.42 0.68 0.69 2.20
80.80 0.95 1.10 0.81 0.84 0.43 0.44 0.67 0.67 2.41
81.80 0.64 0.66 0.63 0.65 0.50 0.51 0.70 0.70 2.39

Panel C: Variance Reduction

80.01 0 −0.02 0.78 0.78 0.97 0.96 0.89 0.89 0.24
80.40 0 −0.20 0.56 0.54 0.92 0.91 0.77 0.76 −1.43
80.80 0 −0.33 0.26 0.21 0.79 0.79 0.50 0.50 −5.43
81.80 0 −0.07 0.03 −0.02 0.38 0.38 −0.18 −0.18 −12.85

In summary, the application of the semi-analytical Black–Scholes formulas is a very
good approximation for calculating the true hedge ratios of the mean-variance strategies.
The intuition behind this result is that over a small time period of ∆t, the processes are
fairly similar. It is therefore possible to avoid time-consuming Monte Carlo simulations.
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Table 2. SVJ model with overnight trading gap: 95% value at risk. Hedging object is a down-and-
out put with K = 100, B = 80, and T = 20 days; the hedging period is ∆t = 1 day. The different
strategies are model delta, MSE delta using the underlying and MSE delta using vanilla calls with
time to maturity of 1 or 5 days, and no hedging. For each strategy, hedges are calculated with the
correctly specified model (SVJ) and as an approximation with the semi-analytical formulas in the
Black–Scholes model (BS).

Hedge: Standard MSE None

Underlying Underlying Call (1 day) Call (5 days)

S0 SVJ BS SVJ BS SVJ BS SVJ BS

Panel A: Value at risk long hedge

80.01 1.72 1.76 1.19 1.18 0.08 0.36 0.90 0.88 1.32
80.40 0.86 1.06 1.09 1.00 0.15 0.29 0.83 0.79 2.04
80.80 0.56 0.72 0.88 0.72 0.24 0.32 0.81 0.78 2.91
81.80 0.80 0.56 0.68 0.57 0.58 0.50 1.08 1.09 4.32

Panel B: Value at risk short hedge

80.01 4.19 4.23 1.80 1.78 0.37 0.17 1.04 1.08 4.02
80.40 2.77 3.04 1.48 1.49 0.44 0.34 0.94 0.96 4.33
80.80 1.45 1.84 1.06 1.06 0.51 0.46 0.86 0.84 4.33
81.80 0.72 0.60 0.66 0.61 0.64 0.62 0.85 0.85 3.69

5. Conclusions

We implemented a mean-variance method for time-discrete hedging of down-and-out
puts near the barrier with particular emphasis on trading gaps. As an alternative to the
underlying as a hedge instrument, we suggest the use of short-term vanilla call options. To
compare the results between continuous trading and trading gaps, we also implemented
all strategies in a time-continuous Black–Scholes setting. While mean-variance optimal
hedge ratios tend to zero when continuous trading is possible, this is not the case when
trading gaps are considered. This is because of different barrier-hit probabilities, which
shift from almost 100% to roughly 50% close to the barrier. Relative hedging errors can be
reduced by half for mean-variance hedging with the underlying instead of a Black–Scholes
standard delta hedge. Using short-term vanilla call options with a strike equal to the barrier
of the dop can further improve hedging efficiency. When the maturity of the call equals the
one-day hedging period, RMSE reduction amounts to more than 90%. These results are
robust for different strike-barrier ratios, dop maturities, and volatility levels. In addition,
including random jumps or stochastic volatility of the underlying yields approximately the
same results.

We provided semi-analytical formulas for MSE hedge ratios in a Black–Scholes setting
for both continuous trading and trading gaps. For more complicated models, Monte Carlo
simulations are theoretically required. However, we showed in a numerical study that
the semi-analytical formulas for the Black–Scholes setting can be used as a very good
approximation even when the true process includes stochastic volatility and jumps. Thus,
no time-consuming simulations have to be conducted to acquire mean-variance optimal
hedge ratios.

As up-and-out calls share the same complexity and discontinuity at the barrier, short-
term vanilla put options can reduce hedging errors in the same manner as vanilla calls for
down-and-out puts. We focused on one-step hedging of down-and-out puts near the barrier
in this paper. For future research and in order to develop a feasible long-term strategy for
the whole lifespan of a down-and-out put, a promising approach would be a static-dynamic
hedging strategy similar to İlhan and Sircar (2006), but substituting the underlying with a
short-term vanilla call option as a dynamic instrument when the underlying is close to the
barrier and trading gaps must be considered.
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Notes
1 See Derman et al. (1995) and Carr and Chou (1997) for the first approaches to static hedging in the Black-Scholes model and

Nalholm and Poulsen (2006b) for a unification and extension to general asset dynamics.
2 The overnight gap risk has been studied in the case of leverage certificates by Entrop et al. (2009) and Baller et al. (2016). In

contrast to the down-and-out puts we consider in this paper, leverage certificates feature embedded up-and-out puts with
continuous payoffs, which are much easier to hedge.

3 Cont et al. (2005) used a vanilla put in addition to the underlying to hedge a barrier put.
4 Practitioners often use a local-volatility model to price barrier options. However, for hedging purposes, a local-volatility model

has been found to perform worse in some cases (e.g., Dumas et al. (1998); Hagan et al. (2002)). Additionally, Baule and Shkel
(2021) showed empirically that issuers in the German market for bonus certificates (where down-and-out puts are embedded)
prefer models with stochastic volatility, whereas local-volatility is not likely to be used. Since jumps are more important in the
case of overnight trading gaps, we additionally used a model with jumps. To be consistent with the literature (e.g., An and Suo
(2009) and Jessen and Poulsen (2013)), we applied the SVJ model with stochastic volatility and jumps. Since the hedging results
for the overnight gap period with this model are not substantially different from the Black-Scholes results, this is a good reason to
believe that the results with a local-volatility model would also be very similar.

5 Theoretically, (2) has to be evaluated under the physical measure. However, as we only consider a small time period ∆t, the drift
term has a negligible impact on hedging errors compared to the stochastic part. This is why we follow Nalholm and Poulsen
(2006a) and evaluate (2) under the risk-neutral measure.

6 See Schweizer (2001) or Pham (2000) for an overview of quadratic hedging techniques.
7 Note that for the underlying, the integrals are directly given by E(S∆t) = S0er∆t and Var(S∆t) = S2

0e(2r+σ2
BS)∆t − 1.

8 The only difference to the integrals is that the probability of a barrier hit during ∆t is now zero. Thus, setting π(·) ≡ 1 in
Equation (11) before calculating (10) yields the mean-squared-optimal hedge ratio when overnight trading gaps are involved.
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