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Abstract: In this paper, we study the skewness risk and its return predictability in the energy
market. Skewness risk is often used to measure the possibility of market crash. We study both
physical skewness (market skewness and cross-sectional average realized skewness) estimated from
underlying stock returns and risk-neutral skewness evaluated from the options market. We find
a significant positive relationship between one-month-ahead market return and average realized
skewness in the energy market. This unique feature should be noted by investors and carefully
considered by energy policymakers.

Keywords: realized skewness; nonparametric risk-neutral skewness; return predictability

JEL Classification: G12; G17

1. Introduction

The change in the energy market condition reflects economic shocks that are often
captured by the skewness of energy-related asset returns during times of massive oil
price movement. Skewness risk is often used to measure the possibility of a market
crash. Oil price fluctuations also often result from a demand shift in the sources of energy
that effectively influence the performance of energy stocks (Hamilton 1983; Van Hoang
et al. 2019; Gagnon and Power 2020). Studying the skewness or crash risk in predicting
future returns has been extensively explored at the individual and market level in the
existing literature. For example, skewness risk (both based on realized and risk-neutral
measures) predicts future equity and options returns (Amaya et al. 2015; Byun and Kim
2016; Da Fonseca and Xu 2017; Long et al. 2019; Atilgan et al. 2019).1 Although a large
volume of research has been carried out on studying skewness risk, there have been a
limited number of empirical investigations into the relationship between skewness risk
and energy-related equity returns; therefore, studying the crash risk in the energy market,
which captures the aggregate sensitivity of individual energy stocks returns concerning
their price changes over time, is our important current work.

This study examines skewness risk and its return predictability in the energy market
by creating its own energy market index (EMI), which tracks the Energy Select Sector
SPDR ETF (XLE). To date, the XLE is one of the largest energy ETFs, among others, and
also the first energy sector–concentrated ETF in the US. This is the first paper focusing
on the energy market to examine the predictability of both physical skewness (market
skewness and cross-sectional average realized skewness) estimated from energy stock
returns and risk-neutral skewness evaluated from the energy options. The study follows
theoretical frameworks by Goyal and Santa-Clara (2003) and Bali et al. (2005), to provide
empirical evidence that the cross-sectional average skewness helps to predict subsequent
(risk-adjusted) energy market returns. We further adapt the methodology from Ruan and
Zhang (2018, 2019) to study nonparametric risk-neutral skewness in the energy sector.
We find a significant positive relationship between one-month-ahead market return and
average realized skewness in the energy market. That is, a one-standard-deviation increase
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in the average skewness results, on average, in a 0.54% (=0.06 × 0.0903) increase in the
energy market excess return the next month.

Additionally, the results also hold with the inclusion of several economic control
variables. These include default spread, term spread, the average correlation across all
energy stocks, implied volatility of energy market index (XLE), and the variance risk
premium (VRP) that are known to help predict aggregate market returns. The predictability
of average energy stock skewness is further tested with the inclusion of an illiquidity
measure, and we find that consistent with the baseline regression, the effect of average
energy stock skewness remains significant and positive. In the case of using nonparametric
risk-neutral variance (NRNV) and skewness (NRNSk) in this study, however, we find an
insignificant relationship with the future energy market return.2

Our study contributes to the existing literature primarily by linking individual average
skewness to the energy market at the aggregate level. We present a unique relationship
between the skewness of individual energy stock returns (derived from the return of indi-
vidual distribution of the energy stocks) and expected energy market returns. Specifically,
we find the average realized skewness (of energy stocks) positively predicts subsequent
energy market returns. This outcome is contrary to that of Goyal and Santa-Clara (2003);
Bali et al. (2005) and Jondeau et al. (2019), who study the impact of the average skewness
risk in the overall stock market. These results, however, reflect those of Stilger et al. (2016)
and Mohrschladt and Schneider (2021), who also find a positive link between skewness risk
and future stock returns,3 though our empirical evidence primarily stems from average
realized skewness. The evidence from this study suggests that realized skewness is an
important driver of subsequent energy market returns, while skewness risk implied by
options is not. The findings of this study have a number of important implications for
future practice; therefore, investors in the energy market should be aware of this unique
feature and it should be carefully considered by energy policymakers. For example, market
participants should pay attention to the effect of the skewness of energy stock prices, as
the relationship between the skewness of energy return and equity premium from other
assets enables investors to form more diverse equity portfolios by using energy-related
assets to hedge against risks. Policymakers could make use of our findings when forming
effective hedging strategies to mitigate the impact of oil price shocks on energy-related
stocks. Potential policy implications could be motivating companies to efficiently manage
the usage of the main source of energy and to support alternative sources to effectively
hedge downside risk in energy stock prices. Thus, policymakers should develop a dynamic
policy system to handle the risk arising from the unsteady energy market.

The rest of the study is organized as follows. Section 2 provides a literature review.
Sections 3 and 4 describe the methodology and data. Section 5 provides the empirical
results. Section 6 concludes.

2. Literature Review

A large strand of the literature uses skewness risk to capture the possibility of market
crashes and relates this factor to future individual or market returns. The aspect of the
skewed distribution of underlying returns has received at least two competing views.
Bali et al. (2009); Huang et al. (2012) and Gennaioli et al. (2013) argue that preference
for higher skewness captures the gambling behavior of investors, while others, such as
Kelly and Jiang (2014); Bollerslev et al. (2015); Long et al. (2019) and Dertwinkel-Kalt
and Köster (2019) view it as a source of tail risk. Modeling such dynamics of irrational
randomness in stock prices dates back to Press (1967) and Merton (1976), who propose a
model for the distribution of changes in stock prices and derive an option pricing formula
for the more general case with the underlying security returns, respectively; however,
previous research exploring the relationship between skewness risk and energy market
returns is rather scarce.

In early years, Merton (1976) argued that the loss-aversion utility is frequently used
to express the role of unsystematic volatility and the role of idiosyncratic skewness. The
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author finds that in an economy with investors who are loss averse, only with regard to
the movements of individual stocks that they own, their stock returns tend to be high,
on average, excessively risky, and can observe large cross-sectional premiums by a com-
monly used multi-factor model. In recent years, Mitton and Vorkink (2007) show that
investors who favor positive skewness diversify their portfolio less to have more expo-
sure in underlying assets with positive unsystematic skewness. The study suggests, as a
result and at equilibrium, stocks with large unsystematic skewness often pay a reward.
Kumar (2009) finds that investors’ tendency to bet on a gamble and their investment de-
cisions are closely related. Boyer et al. (2009) find expected unsystematic skewness and
returns are negatively correlated.

Xing et al. (2010) and Yan (2011) find implied volatility smirk factors significantly
predict future stock returns. Chang et al. (2013) and Conrad et al. (2013) use higher
moments of market returns to see whether these factors explain the cross-sectional variation
in individual stock returns. Stilger et al. (2016) use risk-neutral skewness to predict the
future market return and equity returns. Bali et al. (2019) examine the relationship between
implied volatility, skewness, kurtosis, and ex-ante cross-sectional equity returns and find a
significant and positive predictive power from all three moments. Jondeau et al. (2019) use
realized skewness to predict the future market returns and equity returns. More recently,
Mohrschladt and Schneider (2021) find short-lived predictability of out-of-the-money
(OTM) based model-free option-implied skewness (MFIS) using common ordinary US
stocks for their sample period. The authors also find predictability of MFIS significantly
reverses when in-the-money (ITM) options are used instead.

Although a large volume of research has studied skewness risk, there have been a
limited number of empirical investigations into the relationship between skewness risk
and energy-related equity returns; therefore, studying the crash risk in the energy market,
which captures aggregate sensitivity of individual energy stock returns concerning their
price changes over time, is our important current work.

Another strand of literature studies the link between energy-related underlying or com-
modity return and the equity market. Studying these links dates back to Hamilton (1983)
and Gilbert and Mork (1984), who find that the economic recession is highly related to oil
price shocks.

The economic recession affects the overall equity market as a whole, which also
can be seen in the recent financial crisis periods, such as the 2000 dot-com bubble and
the 2008 financial crisis, respectively. Ciner (2013) examines the relationship between
changes in oil price and equity returns in the US, and finds significant time variation in
the link between oil and other equity prices. The author finds the impact of oil price
shocks that persist less than 12 months on stock returns is negative and significant. The
paper also observes a joint-movement of the stock market and oil prices. More recently,
Maghyereh et al. (2016) find that the bulk of interconnection is predominantly governed
by the transmission of information from the oil market to equity markets but not vice
versa. Van Hoang et al. (2019) and Chuliá et al. (2019) present the existence of a spillover
effect in the energy market in the US and Europe, respectively. Gagnon and Power (2020)
find skewness and tail risks are locally driven in Brent and WTI oil indexes and suggest
that these two indices can be used for hedging extreme risks during market disruptions.
Dutta et al. (2020) study how equity investors in clean energy markets can reduces their
downside risk. Specifically, the authors examine the roles of the commodity market
volatility indexes of crude oil, gold, and silver. The authors find that the volatility indexes
of these commodities provide effective hedging that reduce their downside risk. Dawar
et al. (2021) examine the relationship between crude oil and renewable energy stock prices
by employing a quantile-based regression approach. The authors suggest that clean energy
stock returns react differently to new information on oil returns under different market
conditions. By analyzing the asymmetrical effect of oil returns on clean energy stock
returns, they find a strong effect of negative oil returns during bearish periods.
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In this paper, we study the skewness risk and its return predictability in the energy
market. Skewness risk is often used to measure the possibility of market crash. Unlike the
standing literature, we study both physical skewness (market skewness and cross-sectional
average realized skewness) estimated from underlying stock returns and risk-neutral
skewness evaluated from options market.

Our study contributes to the existing literature primarily by linking individual average
skewness to the energy market at the aggregate level. We present the unique relationship
between skewness of individual energy stock returns (derived from the return of individual
distribution of the energy stocks) and expected energy market returns. Specifically, we find
the average realized skewness (of energy stocks) positively predicts subsequent energy
market returns. This outcome is contrary to that of Goyal and Santa-Clara (2003); Bali
et al. (2005) and Jondeau et al. (2019), who study the overall stock market. These results
reflect those of Stilger et al. (2016) and Mohrschladt and Schneider (2021), who also find
a positive link between skewness risk and future stock returns,4 though our empirical
evidence primarily stems from average realized skewness.

3. Data
3.1. Energy Market Index (EMI)

XLE is the first energy-sector-concentrated ETF in the US that tracks the index of the
US energy companies in the S&P 500 and is considered as the largest energy ETF to date.
XLE was launched in December 1998 to provide a high volume of exposure to a basket of
US companies in the energy sector with a small amount of holding costs (Ruan and Zhang
2019). Because State Street Global Advisors, the issuer of XLE ETF, does not report the list
of securities held in its ETF, we create our own energy market index (EMI) which tracks
the performance of the XLE ETF very closely. XLE has net assets under management of
$9.98 billion, and the average daily trading volume of XLE is around 14.84 million as of
the 18th of November 2019.5 The correlation between XLE and EMI is as high as 98% and
is used for all model specifications in Section 5. Given the size and growing interest in
its market, it is important to study the role of skewness (crash) risk in the energy market
to provide information to investors, who seek to invest in commodity or energy-related
equity portfolios and for effective risk management.

3.2. The Energy Market Return and Average Factors

Daily energy stock returns are downloaded from the Center for Research in Security
Prices (CRSP) for the sample period ranging from January 1996 to December 2018.6 We
keep the daily stocks with a share code equal to 10 or 11 and exchange code equal to 1, 2, or
3. We use standard industry classification (SIC) codes to obtain energy sector stocks only
and the risk-free rate to compute daily excess returns. The 48 industry classifications for
the energy sector are obtained directly from Kenneth French’s website and the risk-free
rate is downloaded from CRSP for the sample period, which is the one-month Treasury
bill rate.

The initial sample contained 42,775,300 daily observations, and it drops to 900,518 daily
observations after applying the above filters. The final sample comprises 494 energy stocks
in total. These data are used to compute EMI. Data for the energy market options, such as
implied volatility, delta, and days to maturity, are downloaded from IvyDB OptionMetrics
matched by their permanent security identifier (PERMNO) and the committee on uniform
securities identification procedures (CUSIP) for the sample period of January 1996 to
December 2018 and are used to compute nonparametric risk-neutral factors.

3.3. Control Variables
Default Spread

Default spread (DEF) is calculated as the difference between a Moody’s Baa corporate
bond yield and the ten-year Treasury bond yield.7 The monthly Moody’s corporate bond
yield is downloaded directly from the Federal Reserve Bank of St. Louis (FRED) for the
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sample period ranging from January 1996 to December 2018. The monthly ten-year Treasury
bond yield is downloaded from CRSP. DEF is computed using two rates, that is, taking the
difference by subtracting the ten-year Treasury bond yield from Moody’s Baa corporate
bond yield, which can be defined as

DEFt = MDt − TB10Yt,

where DEFt is the default spread in a current month, t. MDt denotes the monthly Moody’s
Baa corporate bond yield at a current month, t, and TB10Yt denotes the monthly ten-year
Treasury bond yield at a current month, t.

Term Spread

Term spread (TERM) is calculated as the difference between the monthly ten-year
Treasury bond yield and three-month Treasury bill rate. TERM is calculated as the differ-
ence between the monthly ten-year Treasury bond yield and three-month Treasury bill
rate as

TERMt = TB10Yt − TB3Mt,

where TERMt is the term spread in a current month t, and TB10t and TB3Mt denote the
ten-year Treasury bond and three-month Treasuy bill rate, respectively.

Illiquidity Measure

Illiquidity variable (ILLIQ) is calculated using a daily return of energy stocks down-
loaded from the CRSP dataset, following Amihud (2002) illiquidity measure. The illiquidity
of a given stock i in month t is defined as

ILLIQi,t =
1

Dt

Dt

∑
d=1

|ri,d|
Voli,d

,

where Voli,d is the dollar trading volume of firm i on day d. The aggregate illiquidity is the
average across all stocks available in month t:

ILLIQt =
Nt

∑
i=1

wi,t ILLIQi,t × 106,

where wi,t denotes the corresponding market capitalization of firm, i, in month, t. We
multiply by a million to avoid values being extremely small.

Average Correlation

Average correlation (AC) across all energy stocks is computed using daily returns
of energy stocks downloaded from the CRSP dataset for the sample period ranging from
January 1996 to December 2018. Following Pollet and Wilson (2010) the number of trading
days, Dt, in month t, the sample variance of daily returns for stock j is

σ̂2
j,t =

 1
Dt − 1

Dt

∑
d=1

(
(1 + rj,d)−

1
Dt

Dt

∑
d=1

(1 + rj,d)

)2
,

where d is a trading day in a month t, and rj,d is daily return of stock j at day d.
The sample correlation for stocks j and k, denoted as ρjk,t, is calculated in the usual

way given the definition of σ̂2
j,t.

ρ̂jk,t =
σ̂jk,t

σ̂j,tσ̂k,t
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our estimator of ∑N
j=1 ∑K 6=j wj,twk,tρjk,t, average correlation can be defined as

ACt =
N

∑
j=1

∑
K 6=j

wj,twk,tρ̂jk,t

Implied Volatility

The monthly implied volatility (IV) is computed using daily implied volatilities of XLE
index options, only including 30 days to expiration and both call and put options, downloaded
from IvyDB OptionMetrics for the sample period ranges from December 1998 to December
2018. IV is simply the sum of equal-weighted average of daily implied volatilities

IVt =
Dt

∑
d=1

IVd,t,

where IVd,t =
1

Dt
∑Dt

d=1 IVd, the average daily implied volatility at month t. d and Dt denote
a particular day of the month and total number of days in a month, t, respectively.

Implied Volatility Skew

The skew variable (Skew) is the value between the implied volatility of OTM put
options and the implied volatility of at-the-money (ATM) call options, which are directly
downloaded from IvyDB OptionMetrics for the sample period ranging from January 1996
to December 2017. The days to maturity range from 7 to 186 days, and the minimum
(maximum) value of implied volatilities is set to zero (two). The number of days used
for calculating historical volatility is set at 30 days. After downloading the value for the
sample period, we remove non-energy equity options by matching with the energy stocks’
PERMNO, then take the average for each month across firms. Initially, 323 energy stocks
matched for the sample period and then it dropped to 201 energy stock options after
removing missing values.

Put-Call-Parity Implied Volatility Spread

Put-call-parity implied volatility spread (PCP) is the weighted average of the differ-
ence between the implied volatilities of put options and corresponding parity call options,
matched by their expiration date and strike price. This variable is directly downloaded
from IvDB OptionMetrics for the sample period, from January 1996 to December 2017.
The values are only for the energy stocks’ options as they are matched by their PERMNO.
Similarly, 323 energy stocks matched and then the number dropped to 303 energy stock
options after removing missing values.

Variance Risk Premium

The variance risk premium (VRP) of the energy market is simply the difference
between the implied volatilities of the XLE index available from IvyDB OptionMetrics
and the realized volatility calculated using daily returns of energy stocks from the CRSP
dataset for the sample period ranging from December 1998 to December 2018.8 Following
Bollerslev et al. (2009) the monthly VRP of the energy market is defined as

VRPt ≡ IVt − RVt,

where IVt is simply the ex-ante implied volatility of the XLE index options over the [t, t + 1]
time interval and RVt is the realized energy market variance over the [t− 1, t] time interval.
Using the variance differences has the advantage that IVt and RVt, and therefore VRPt, are
now directly observable at time t.
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3.4. Preliminary Analysis

The average monthly EMI return for the entire sample period is 0.0132 with a standard
deviation of 0.0561, which is reported in Table 1. The table also reports changes in the EMI
return over the sample period. Table 2 shows the summary statistics of the energy sector
concerning several available firms and the amount of their total market capitalization over
time for both options and stocks. The average total market capitalization of energy stocks
and options is $949 and $934 million, respectively. There are 494 and 266 firms available
over the sample period for energy stocks and options, respectively. The correlation between
EMI and XLE daily return is 98% which is close to 1.9

Table 3 shows the summary statistics and correlation matrix for the following variables:
value-weighted CRSP of EMI excess return, rEMI

m,t , energy market variance, Vm,t, energy
market skewness, Skm,t, value-weighted average variance, Vvw,t, equal-weighted average
variance, Vew,t, value-weighted average skewness, Skvw,t, and equal-weighted average
skewness, Skew,t, nonparametric risk-neutral volatility, NRNVt, nonparametric risk-neutral
skewness, NRNSkt.

Table 1. Summary statistics of EMI monthly return. This table shows the summary statistics of
energy market index (EMI) monthly excess return over the full sample period, which is from January
1996 to December 2018. Monthly return of rEMI

m,t is the simple sum of EMI daily return, rEMI
m,d , and the

correlation between XLE and EMI returns is as high as 98%. (See Table A1 for more details.) SD
stands for standard deviation of rEMI

m,t .

Year Mean SD Skewness Kurtosis Minimum Median Maximum

1996 0.0249 0.0288 −0.8207 3.4403 −0.0442 0.0258 0.0630
1997 0.0224 0.0418 −0.1868 1.9234 −0.0558 0.0211 0.0782
1998 0.0048 0.0633 0.2638 2.6285 −0.1042 −0.0084 0.1364
1999 0.0243 0.0645 1.1669 3.1001 −0.0512 0.0058 0.1575
2000 0.0284 0.0631 0.3469 1.6690 −0.0519 0.0062 0.1371
2001 −0.0050 0.0486 0.7433 2.7513 −0.0735 −0.0083 0.1005
2002 −0.0024 0.0518 −0.5885 2.5463 −0.1086 0.0046 0.0761
2003 0.0233 0.0453 1.1138 3.2004 −0.0216 0.0191 0.1294
2004 0.0262 0.0317 0.4041 2.1495 −0.0202 0.0114 0.0885
2005 0.0272 0.0664 0.2600 3.4421 −0.0966 0.0237 0.1806
2006 0.0215 0.0570 −0.0465 2.2568 −0.0848 0.0370 0.1274
2007 0.0269 0.0381 −0.0847 1.7228 −0.0386 0.0306 0.0778
2008 −0.0095 0.0759 −0.3255 1.9853 −0.1512 0.0008 0.1048
2009 0.0201 0.0566 −0.9197 3.8556 −0.1227 0.0331 0.1129
2010 0.0209 0.0590 −0.5936 2.0549 −0.0962 0.0466 0.0913
2011 0.0117 0.0712 0.2256 2.9588 −0.1152 0.0115 0.1631
2012 0.0076 0.0466 −0.9331 3.7565 −0.1066 0.0171 0.0704
2013 0.0234 0.0280 0.1083 2.2029 −0.0192 0.0255 0.0767
2014 −0.0051 0.0510 −0.4290 1.7975 −0.0957 0.0133 0.0592
2015 −0.0112 0.0632 0.8119 2.7141 −0.0902 −0.0353 0.1266
2016 0.0291 0.0504 0.5486 1.9749 −0.0324 0.0218 0.1185
2017 0.0035 0.0424 1.0075 3.4931 −0.0494 −0.0087 0.1083
2018 −0.0101 0.0690 −0.5445 2.2442 −0.1324 0.0113 0.1007

Total 0.0132 0.0561 −0.0613 3.2927 −0.1512 0.0131 0.1806
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The energy market variance and value-weighted average variance of the energy stocks
are both positive, i.e., 0.005 and 0.0072, respectively. The monthly energy market skewness
is negative, on average, while average monthly energy stock skewness with equal- and
value-weighted measures are positive. Panel B provides a correlation matrix between each
variable. EMI return and value- and equal-weighted average energy stock skewness is
positively correlated, whereas market variance and nonparametric risk-neutral average
variance of the energy stocks are negatively correlated. This may imply that the energy
market return decreases (increases) with increases (decreases) in variance risk (skewness
risk) of energy stock returns.

Table 2. Summary statistics of energy stocks and options. This table shows the summary statistics
of energy market stocks and options as well as their corresponding market capitalization over the
sample period. The sample period is from January 1996 to December 2018. † denotes the total number
of firms available for the entire sample period.

Energy Stocks Energy Options

Year No. Firms Market Cap No. Firms Market Cap

1996 273 423 90 395
1997 270 555 116 523
1998 252 567 125 544
1999 227 546 122 526
2000 196 611 104 568
2001 206 652 95 612
2002 165 548 86 526
2003 150 536 85 515
2004 151 712 99 692
2005 160 993 116 964
2006 175 1133 123 1093
2007 177 1334 119 1284
2008 172 1340 111 1278
2009 170 986 111 950
2010 163 1076 107 1021
2011 170 1318 116 1244
2012 167 1290 119 1214
2013 160 1449 122 1361
2014 159 1574 127 1478
2015 151 1238 127 1177
2016 149 1176 123 1124
2017 152 1249 125 1190
2018 142 1345 122 1273

Total 494 † 949 266 † 934
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Table 3. Summary statistics and correlation matrix. This table provides the summary statistics and the correlation matrix for
the following variables: the energy market (EMI) excess return rEMI

m,t , energy market variance Vm,t, energy market skewness
Skm,t, value-weighted average variance of energy stocks Vvw,t, equal-weighted average variance of energy stocks Vew,t,
value-weighted average skewness of energy stocks Skvw,t, and equal-weighted average skewness of energy stocks Skew,t,
nonparametric risk-neutral volatility of energy stocks, NRNV1st

t and NRNV2nd
t , nonparametric risk-neutral skewness of

energy stocks, NRNSk2nd
t , NRNSk2nd

t . SD and N stand for standard deviation and number of observations in our sample,
respectively. The sample period is from January 1996 to December 2018.

Panel A: Summary Statistics

Variable Mean SD Skewness Kurtosis Minimum Median Maximum N

rEMI
m,t 0.0025 0.0132 0.1541 5.9435 −0.0435 0.0018 0.0639 276

Vm,t 0.0050 0.0094 10.7269 142.0966 0.0005 0.0032 0.1356 276
Skm,t −0.0039 0.1231 −0.0376 4.1341 −0.4507−0.0071 0.3631 276
Vvw,t 0.0072 0.0105 10.1142 131.3646 0.0011 0.0052 0.1508 276
Skvw,t 0.0031 0.0903 −0.2623 4.6761 −0.3521 0.0051 0.3135 276
Vew,t 0.0289 0.0247 4.3528 28.6839 0.0070 0.0232 0.2155 276
Skew,t 0.0369 0.0441 −0.3589 6.9115 −0.1538 0.0420 0.2559 276
NRNV1st

t 0.7162 0.1735 1.6965 8.2693 0.4650 0.6816 1.6018 276
NRNSk1st

t −0.0308 0.0239 −1.7400 9.7367 −0.1650−0.0283 0.0249 276
NRNV2nd

t 0.7125 0.1717 1.7722 8.7897 0.4678 0.6796 1.6268 276
NRNSk2nd

t −0.0302 0.0264 −1.5276 8.1326 −0.1653−0.0272 0.0251 276

Panel B: Correlation Matrix

Variable rEMI
m,t Vm,t Skm,t Vvw,t Skvw,t Vew,t Skew,t NRNV1st

t NRNSk1st
t NRNV2nd

t NRNSk2nd
t

rEMI
m,t 1

Vm,t −0.0021 1
Skm,t 0.0413 0.0555 1
Vvw,t 0.0195 0.9306 0.0752 1
Skvw,t 0.0648 0.0575 0.8675 0.0753 1
Vew,t −0.0165 0.5973 0.0711 0.6383 0.1031 1
Skew,t −0.091 0.0667 0.6617 0.0803 0.6597 0.1594 1
NRNV1st

t −0.0055 0.6193 0.1045 0.7016 0.0896 0.6291 0.0671 1
NRNSk1st

t −0.0298−0.5175 −0.0055 −0.4788 −0.0234−0.3488 −0.0452 −0.5381 1
NRNV2nd

t −0.0076 0.6155 0.1061 0.6979 0.0923 0.6266 0.0691 0.9984 −0.5371 1
NRNSk2nd

t −0.0893−0.4776 0.0483 −0.4363 0.0162−0.2832 0.0357 −0.4777 0.9286 −0.4739 1

Table 4 provides the summary statistics and the correlation matrix of the economic
and financial variables under consideration. Skewt is a skewness between OTM put and
ATM call of the energy sector options, PCPt is the put-call-parity implied volatility spread
variable of the energy sector options. DEFt and TERMt are economic control variables
and ILLIQt, ACt, IVt, and VRPt are financial control variables that we consider in our
regression specifications. In Panel A, the mean value of most of the control variables
over the sample period are positive on average, apart from PCPt—which is −0.0140. IVt,
which is the implied volatility of energy stock options—has the highest mean value of
0.2565. Panel B reports the correlation matrix between control variables. Most of control
variables have relatively low correlation with each other, ranging from −0.2810 (between
DEFt and Skewt) to 0.4547 (between IVt and VRPt), apart from a correlation of −0.8616
between TERMt and DEFt which is considered relatively high. These numbers confirm
that the control variables convey the different types of information that is appropriate to be
included in testing the robustness of average factors.
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Table 4. Summary statistics of control variables. This table provides the summary statistics and the correlation matrix for the
following control variables. The default spread, DEFt, the term spread, TERMt. The market illiquidity measure proposed
by Amihud (2002) is also included, ILLIQt. Skewt is a skewness between OTMP and ATMC of the energy sector options,
PCPt is put-call-parity implied volatility spread variable of the energy sector options, both of which can be downloaded
directly from IvyDB OptionMetrics for the sample period ranging from January 1996 to 2017. SD and N stand for standard
deviation and number of observations in our sample, respectively.

Panel A: Summary Statistics of Control Variables

Variable Mean SD Skewness Kurtosis Minimum Median Maximum

Skewt 0.0367 0.0091 −0.2940 2.3091 0.0173 0.0379 0.0588
PCPt −0.0140 0.0060 −1.4891 6.9020 −0.0405 −0.0134 −0.0011
DEFt 0.0600 0.0228 0.3681 3.3019 0.0021 0.0582 0.1330
TERMt 0.0023 0.0196 0.1147 4.2492 −0.0676 0.0013 0.0844
ILLIQt 0.0957 0.1170 3.7187 23.2601 0.0099 0.0593 1.0336
ACt 0.0124 0.0129 3.7522 26.5037 0.0020 0.0085 0.1273
IVt 0.2565 0.0880 2.6363 14.3155 0.1377 0.2380 0.8002
VRPt 0.0410 0.0413 4.3437 33.3495 0.0001 0.0333 0.4101

Panel B: Correlation Matrix between Control Variables

Variable Skewt PCPt DEFt TERMt ILLIQt ACt IVt VRPt

Skewt 1
PCPt −0.2367 1
DEFt −0.2810 −0.2150 1
TERMt 0.0592 0.0190 −0.8616 1
ILLIQt −0.0042 0.0075 −0.0245 −0.0099 1
ACt 0.1726 −0.2115 0.0202 0.0322 0.1392 1
IVt 0.2091 −0.5638 0.0453 0.2064 0.0304 0.3923 1
VRPt 0.1454 −0.2335 −0.0939 0.2216 0.0202 0.1747 0.4547 1

4. Methodology
4.1. Theoretical Background of Predictability in Average Variance and Skewness Factors

We adapt the theoretical model of Goyal and Santa-Clara (2003); Bali et al. (2005);
and Jondeau et al. (2019),10 which provides assumptions that the expected energy market
return should be defined by

Et[REMI
m,t+1]− R f ,t = λEMI,tVEMI,t + ψEMI,tSkEMI,t + λI,tVw,t + ψI,tSkw,t, (1)

where REMI
m,t+1 and R f ,t denote energy market return and risk-free rate for current month t,

VEMI,t and SkEMI,t denote energy market variance and energy market skewness at a future
month, t + 1, conditional on the information available at current month, t, Vw,t and Skw,t
denote average variance and skewness of energy stocks, and wi,t is the weight (either based
on equal or value), the relative market capitalization of a energy firm i.

4.2. Average Variance and Skewness of the Energy Stocks

Following Jondeau et al. (2019), the individual variance of energy stocks at month t is
defined as

Vi,t =
Dt

∑
d=1

(ri,d − r̄i,t)
2 + 2

Dt

∑
d=2

(ri,d − r̄i,t)(ri,d−1 − r̄i,t), (2)

where i denotes the energy stock i at month t, d and Dt denote the day in a particular
month t and the total number of days in month t. ri,d denotes daily individual energy stock
i’s excess return and r̄i,t denotes average excess daily return of energy stock i at month t.
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The average energy stock variance at month t is calculated using either equal weights or
value weights, used by Goyal and Santa-Clara (2003) and Bali et al. (2005), respectivley.11

The individual skewness at month t is defined as

Ski,t =
Dt

∑
d=1

r̃3
i,d, (3)

where i denotes stock i at month t, d and Dt denote the day in a month t and the total
number of days in month t. r̃i,d =

ri,d−r̄i,t
σi,t

is based on standardized measure, σ2
i,t =

(ri,d − r̄i,t)
2, is the variance of individual stock i in a month t. The average skewness can

also be computed using either value or equal weight, same as the average variance above.
Figures 1 and 2 plot the dynamics of variance and skewness, respectively. The top

row in Figure 1 plots the movement of the market and value-weighted variance over time.
Interestingly, market variance and value-weighted average variance share similar patterns,
unlike market variance with equal-weighted average variance. The value-weighted vari-
ance is smoothed out before and after the 2008 global financial crisis but has the highest
spike in the same year, which is the same as the other two variance measures (i.e., mar-
ket and equal-weighted). The last two figures confirm that two average nonparametric
risk-neutral volatilities move almost identically.12 This is quite distinct from Jondeau et al.
(2019), who observe three different patterns from each variance measure for the overall
market index (S&P 500) (i.e., market and two realized average variances).
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Figure 1. Time-series movement of variance. This figure shows the market, average realized, and
nonparametric risk-neutral variance of energy stock returns. The sample period is from January 1996
to December 2018. The nonparametric risk-neutral variance is computed in two different ways ; (1)
taking the average across equal-weighted average individual variance or (2) selecting at the end of
each month the value of individual NRNV and then taking the average.

Figure 1. Time-series movement of variance. This figure shows the market, average realized, and
nonparametric risk-neutral variance of energy stock returns. The sample period is from January
1996 to December 2018. The nonparametric risk-neutral variance is computed in two different ways ;
(1) taking the average across equal-weighted average individual variance or (2) selecting at the end
of each month the value of individual NRNV and then taking the average.
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Figure 2. Time-series movement of skewness. This figure shows the market, average realized, and
nonparametric risk-neutral skewness of energy stock returns. The sample period is from January
1996 to December 2018. The nonparametric risk-neutral skewness is computed in two different ways;
(1) taking the average across equal-weighted average individual skewness or (2) selecting at the end
of each month the value of individual NRNSk and then taking the average.

4.3. Nonparametric Risk-Neutral Moments

Following Xing et al. (2010); Yan (2011); and Ruan and Zhang (2018), NRNV and
NRNSk can be defined as

NRNVt,τ =
CIV50(τ) + PIV50(τ)

2
, (4)

NRNSkt,τ = CIV25(τ)− PIV25(τ). (5)

where the implied volatilities of the 50 delta call options (CIV50(τ)) and the −50 delta
put options (PIV50(τ)) are the ATM call and put implied volatilities t-day fitted implied
volatility surface at time t.13 Similarly, the implied volatility of the 25 delta call options
(CIV25(τ)) and the −25 delta put options (PIV25(τ)) are the OTM call and put implied
volatilities, respectively.14

The negative relationship between skewness and future equity returns has long been
recognized. For instance, Yan (2011) finds that the expected stock return is a function of the
average jump size, in the presence of jump risk. This suggests there is a negative predictive
relation between the slope of the implied volatility smirk, which is related to risk-neutral
skewness, and stock returns. Xing et al. (2010) find that the shape of the implied volatility
smirk is known to have statistically and economically significant predictive power, and that
the shape of the volatility smirk has significant cross-sectional predictive power for future
equity returns. Jondeau et al. (2019) also find that average realized skewness has significant
predictability on subsequent market returns. Consistent with the studies mentioned above,
we expect to find a consistent result in the US energy market.

Figure 2. Time-series movement of skewness. This figure shows the market, average realized, and
nonparametric risk-neutral skewness of energy stock returns. The sample period is from January
1996 to December 2018. The nonparametric risk-neutral skewness is computed in two different ways;
(1) taking the average across equal-weighted average individual skewness or (2) selecting at the end
of each month the value of individual NRNSk and then taking the average.

4.3. Nonparametric Risk-Neutral Moments

Following Xing et al. (2010); Yan (2011); and Ruan and Zhang (2018), NRNV and
NRNSk can be defined as

NRNVt,τ =
CIV50(τ) + PIV50(τ)

2
, (4)

NRNSkt,τ = CIV25(τ)− PIV25(τ). (5)

where the implied volatilities of the 50 delta call options (CIV50(τ)) and the −50 delta
put options (PIV50(τ)) are the ATM call and put implied volatilities t-day fitted implied
volatility surface at time t.13 Similarly, the implied volatility of the 25 delta call options
(CIV25(τ)) and the −25 delta put options (PIV25(τ)) are the OTM call and put implied
volatilities, respectively.14

The negative relationship between skewness and future equity returns has long been
recognized. For instance, Yan (2011) finds that the expected stock return is a function of the
average jump size, in the presence of jump risk. This suggests there is a negative predictive
relation between the slope of the implied volatility smirk, which is related to risk-neutral
skewness, and stock returns. Xing et al. (2010) find that the shape of the implied volatility
smirk is known to have statistically and economically significant predictive power, and that
the shape of the volatility smirk has significant cross-sectional predictive power for future
equity returns. Jondeau et al. (2019) also find that average realized skewness has significant
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predictability on subsequent market returns. Consistent with the studies mentioned above,
we expect to find a consistent result in the US energy market.

5. Empirical Results

This section evaluates the ability of energy market variance and skewness, average
realized variance and skewness, and nonparametric risk-neutral variance and skewness
to predict the subsequent energy market excess return in the regression corresponding to
theoretical expression in Equation (1).

5.1. Baseline Regression

The baseline regression can be written as follows, with the definitions of average
variance and skewness based on value- and equal-weights, respectively, and average
NRNV and NRNSk based on equal weights:15

rEMI
m,t+1 = α + β1Vm,t + β2Skm,t + β3Vw,t + β4Skw,t + εm,t+1, (6)

rEMI
m,t+1 = α + β1Vm,t + β2Skm,t + β3NRNVt + β4NRNSkt + εm,t+1, (7)

where rEMI
m,t+1 denotes future energy market excess returns, Vm,t and Skm,t denote energy

market variance and skewness, respectively. Vw,t and Skw,t denote either value- or equal-
weighted average variance and skewness of energy stock returns, NRNVt and NRNSkt
denote nonparametric average variance and skewness, respectively.

In Table 5, we consider each of the variables in Equations (6) and (7) separately. Panel
A reports the results of the regressions for the 1996–2018 sample period using individual
variables. The coefficients for market variance and skewness are insignificant as well as
all the other average predictors, except for value-weighted average skewness. The value-
weighted average skewness has a positive coefficient of 0.006 and is also significant at a
conventional level with p-value and adjusted-R2 of 0.046 and 1.11%, respectively. Other
variables, including market, average skewness, and equal-weighted variance, have no
significant coefficients, which implies that the future energy market excess return cannot
be predicted using these variables.

Table 5 Panel B reports the baseline regression of individual variables with the cur-
rent energy market excess return. The significance of value-weighted average skewness
increases slightly with the inclusion of current energy market excess return; however,
adjusted-R2 decreases to 0.91%. This means that although the model with current energy
market return increases the significance of the value-weighted average skewness factor, the
model with value-weighted average skewness as a sole predictor can predict with better
precision. Our findings are distinct from the results in many of the existing studies that find
significant and negative predictive power in the average skewness factor (Boyer et al. 2009;
Conrad et al. 2013; Bali and Murray 2013; Amaya et al. 2015; Byun and Kim 2016; Jondeau
et al. 2019); however, our result is consistent, to some extent, with Stilger et al. (2016), who
examine the relationship between the risk-neutral skewness of individual stock returns’
distribution obtained from option prices. The study reports a positive relationship between
the risk-neutral skewness (RNS), using options, of individual stock returns’ distribution
and future realized stock returns during the period from 1996 to 2012.

Table 6 reports predictive regressions of energy market return using a combination
of variables. Each specification in Panel A includes variance and skewness at the same
time. None of the coefficients is significant in all models inclusive, except for the model
with value-weighted average variance and skewness. In Column (2), though it is rather
weak, value-weighted skewness positively and significantly predicts subsequent energy
market excess return. Panel B in Table 6 reports the baseline regression with a combination
of variables with the current energy market excess return. In Column (2) in Panel B, with
the inclusion of market factors, the predictive power of value-weighted average skewness
is slightly higher than when it used as a sole predictor. The market skewness also has some
predictive power in Column (3), where we include equal-weighted average variance and
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skewness factors. The predictive power in market skewness and equal-weighted skewness
may not be as reliable, as they are only significant as additional factor; that is, there was no
strong predictability in the market skewness factor alone in predicting subsequent energy
market return.

Table 5. Baseline regression–Individual variables. The table contains results of the predictive
regressions of the energy market excess return rEMI

m,t+1. Vm,t and Skm,t are energy market variance and
skewness. Vvw,t and Skvw,t are the value-weighted average energy stock variance and skewness. Vew,t

and Skew,t are the equal-weighted average energy stock variance and skewness. NRNV1st
t , NRNSk1st

t
and NRNV2nd

t , NRNSk2nd
t are nonparametric risk-neutral volatility and skewness. p-values (two-

sided) are reported using Newey–West adjusted t-statistics and in parentheses. The table also reports
adjusted R2 values. ** denotes 5% level of significance. The sample period is from January 1996 to
December 2018.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Individual Variables

Vm,t 0.14
(0.202)

Skm,t 0.03
(0.177)

Vvw,t 0.14
(0.179)

Skvw,t 0.06 **
(0.046)

Vew,t 0.00
(0.982)

Skew,t −0.04
(0.479)

NRNV1st
t −0.00

(0.718)
NRNSk1st

t −0.02
(0.849)

NRNV2nd
t −0.01

(0.666)
NRNSk2nd

t −0.05
(0.603)

Adj.R2 −0.26% 0.20% −0.24% 1.11% −0.37% −0.18% −0.33% −0.35% −0.32% −0.26%

Panel B: Individual Variables with Current Market Return

rm,t −0.03 −0.03 −0.03 −0.04 −0.03 −0.03 −0.04 −0.03 −0.04 −0.04
(0.557) (0.488) (0.561) (0.383) (0.477) (0.518) (0.434) (0.473) (0.426) (0.460)

Vm,t 0.12
(0.318)

Skm,t 0.03
(0.180)

Vvw,t 0.12
(0.272)

Skvw,t 0.06 **
(0.041)

Vew,t −0.00
(0.999)

Skew,t −0.04
(0.505)

NRNV1st
t −0.01

(0.656)
NRNSk1st

t −0.02
(0.831)

NRNV2nd
t −0.01

(0.603)
NRNSk2nd

t −0.06
(0.594)

Adj.R2 −0.56% −0.06% −0.53% 0.91% −0.63% 0.46% −0.57% −0.61% −0.55% −0.50%
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Table 6. Baseline regression–Combination of variables. The table contains results of the predictive
regressions of the energy market excess return rEMI

m,t+1. Vm,t and Skm,t are energy market variance
and skewness. Vvw,t and Skvw,t are the value-weighted average energy stock variance and skewness.
Vew,t and Skew,t are the equal-weighted average energy stock variance and skewness. NRNV1st

t and
NRNSk1st

t are nonparametric risk-neutral volatility and skewness. p-values (two-sided) are reported
using Newey–West adjusted t-statistics and in parentheses. The table also reports adjusted R2 values.
* and ** denote 10% and 5% level of significance, respectively. The sample periods are January 1996
to December 2018.

(1) (2) (3) (4) (5)

Panel A: Combination of Variables

Vm,t 0.12
(0.654)

Skm,t 0.03
(0.228)

Vvw,t 0.09
(0.694)

Skvw,t 0.06 **
(0.050)

Vew,t 0.01
(0.925)

Skew,t −0.04
(0.472)

NRNV1st
t −0.01

(0.622)
NRNSk1st

t −0.05 −0.06
(0.665) (0.638)

Adj.R2 −0.10% 0.81% −0.54% −0.63% −0.61%

Panel B: Combination Variables with Current Market Return

rEMI
m,t −0.03 −0.05 −0.01 −0.04 −0.04

(0.641) (0.415) (0.835) (0.551) (0.542)
Vm,t 0.10 −0.24 0.23 0.24 0.27

(0.718) (0.885) (0.534) (0.481) (0.443)
Skm,t 0.03 −0.07 0.05 ** 0.03 0.03

(0.227) (0.161) (0.042) (0.182) (0.175)
Vvw,t 0.27

(0.854)
Skvw,t 0.14 **

(0.034)
Vew,t −0.05

(0.698)
Skew,t −0.13 *

(0.078)
NRNV1st

t −0.02
(0.297)

NRNSk1st
t −0.07 −0.07

(0.611) (0.580)

Adj.R2 −0.38% 0.58% 0.12% −0.72% −0.63%

Overall, the results of predictive regression with a combination of variables are consis-
tent with the baseline regression, where we test the predictability of individual variables.
The value-weighted skewness has positive predictive power, and it is statistically signif-
icant at a 5% level. That is, a one-standard-deviation increase in the average skewness
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results, on average, in a 0.54% (=0.06× 0.0903) increase in the energy market excess return
the next month. The results are different from the existing studies that find a negative
relationship between the skewness factor and expected stock, market, and options returns
(Goyal and Santa-Clara 2003; Bali et al. 2005; Jondeau et al. 2019). However, it is consistent
with Stilger et al. (2016), who find a positive relationship between RNS and future equity
returns. They argue that this relation is driven by holding stocks that are likely to be
over-valued, too risky, or too costly to trade. Further, they find that only the idiosyncratic
component of the RNS factor contributes to this relationship, not the systematic part.

5.2. Controlling for the Economic and Financial Variables

In this section, we look at whether the results from baseline regression are robust with
the inclusion of the economic and financial variables. Goyal and Santa-Clara (2003) investi-
gate the relationship between market return and average stock variance after controlling
for several economic variables.

We consider a similar set of economic variables following Goyal and Santa-Clara (2003).
The default spread (DEF), the term spread (TERM) as well as the illiquidity measure by
Amihud (2002). Bali et al. (2005) hypothesize that a premium from liquid stocks partly
enables the equal-weighted average stock variance to predict future market returns for their
sample period. They find empirical evidence that the positive predictive power of variance
of return diminishes with the inclusion of the illiquidity factor. For this reason, we also
consider the illiquidity factor to test the robustness of our average factors. Additionally,
an alternative measure of energy stock skewness, Skewt, is also included, which can be
directly obtained from IvyDB OptionMetrics and PCPt, put-call-parity implied volatility
spread are also included. Gao et al. (2019) re-examine the stock return predictability of the
call-put implied volatility spread through the eyes of investor attention. They find that
as investor attention heightens, the volatility spread return predictability becomes more
pronounced, presenting evidence for the informed trading hypothesis as opposed to the
mispricing hypothesis; therefore, it is important to test whether or not the predictability of
average energy stock skewness persists with the inclusion of these variables.

Table 7 reports the predictive regression of skewness and other economic variables,
which we introduced earlier, that are known to have return predictability. We also consider
an alternative measure of the skewness factor, Skew, as well as the implied volatility spread
variable, PCP.

The first column includes value-weighted average skewness and term spread as well
as Amihud’s illiquidity measure. The result is consistent with baseline regression that
the value-weighted average energy stock skewness predicts positively and significantly
on subsequent energy market excess return; the coefficient is 0.06 with adjusted-R2 of
0.41%. The significance of value-weighted energy stock average skewness is consistently
significant at a 5% and 10% level for all model specifications; that is, even with the inclusion
of economic, illiquidity, put-call-parity, and skew variables, the value-average skewness
factor is the dominant predictor which is positive and significantly related to subsequent
energy market return.

Finally, we compare the predictability of average skewness to three additional control
variables. We first consider the average correlation (AC) across the energy stocks as a
proxy for a total energy market risk following Pollet and Wilson (2010), who show that the
cross-sectional average value of the correlation between daily stock returns has significant
predictability on subsequent quarterly stock market excess returns. The authors argue
that the individual stock returns share an almost identical effect from true events in the
market return, larger accumulated risk can be depicted by a similarity in time-varying
movements between individual securities, which is the correlation between individual
stocks. They show that fluctuations in equity market risk, keeping the average correlation
across individual stocks constant, can be understood as changes in the average volatility of
a cross-section of stocks. Further, Buraschi et al. (2014) find evidence that disagreement in
investors’ beliefs is positively related to the correlation risk premium. Thus the authors
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suggest the average correlation captures the misalignment between investors which has
significant predictive power on future equity returns.16 They find that the volatility of
option contracts and portfolios sorted on correlation generate attractive returns with notable
sharpe ratios and have economically and statistically significant exposure to systematic
impact in interest alignment; therefore, we consider the average correlation across energy
stocks in our comparison. Secondly, we include implied volatility (IV), which is to measure
the expectation of volatility implied by XLE index options in the energy stock market. This
is used as a proxy for how anxious the market participants are about the energy market,
given the market conditions in that particular period. Lastly, we include the variance
risk premium (VRP), which is also often observed as a sign of fear in financial markets
(Bollerslev et al. 2009, 2015; López 2018). According to Bollerslev et al. (2015), the variance
risk premium, which is often described as the difference between the ex-post and ex-ante
expectations of the future aggregate market variance, helps to predict future market returns.
More recently, Londono and Zhou (2017) also confirmed that, in both currency and the US
stock market, variance risk premiums have essential and statistically significant predictive
ability; therefore, it is reasonable to include that VRP of the energy market in our analysis
and compare the predictability of these variables to our average value-weighted energy
stock skewness factor.

Table 7. Comparison with economic variables. The table contains results of the predictive regressions
of the energy market excess return rEMI

m,t+1. Skvw,t are the value-weighted average variance and
skewness. The default spread, DEFt, the term spread, TERMt. The market illiquidity measure
proposed by Amihud (2002) is also included, ILLIQt. Skewt is a skewness between OTMP and
ATMC of the energy sector options, PCPt is put-call-parity implied volatility spread variable of
the energy sector options, both of which can be downloaded directly from IvyDB OptionMetrics
for the sample period ranging from January 1996 to 2017. p-values (two-sided) are reported using
Newey–West adjusted t-statistics and in parentheses. The table also reports adjusted R2 values. * and
** denote 10% and 5% level of significance, respectively. The sample period is from January 1996 to
December 2018.

(1) (2) (3) (4)

Business cycle and market illiquidity (1996–2018)

rEMI
m,t −0.04 −0.03

(0.395) (0.501)
Skvw,t 0.06 ** 0.06 ** 0.05 * 0.05 *

(0.036) (0.036) (0.076) (0.070)
DEFt −0.09 −0.11 −0.13

(0.659) (0.753) (0.729)
TERMt 0.07 −0.03 −0.07 −0.09

(0.532) (0.909) (0.845) (0.809)
ILLIQt 0.00 0.00 0.00 0.00

(0.976) (0.970) (0.989) (0.985)
Skew1996−2017

t −0.11 −0.11
(0.801) (0.799)

PCP1996−2017
t 0.39 0.34

(0.512) (0.595)

Adj.R2 0.41% −0.90% 0.69% −0.11%

Table 8 reports the results of the one-month-ahead predictive regressions of the value-
weighted CRSP of energy market excess return, rEMI

m,t+1. Vvw,t and Skvw,t is the value-
weighted average variance and skewness. We also consider several control variables,
represented by Xt, including the average correlation, AC, the variance risk premium, VRP,
and the volatility index, IV. Panel A reports the results of predictive regression in the
comparison between value-weighted skewness, Skvw,t, and average correlation across
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energy stocks, ACt. The value-weighted skewness is consistently positive and significant in
Columns (1), (3), and (4), whereas average correlation has insignificant negative coefficients
across all model specifications. The value-weighted average skewness alone can predict
subsequent energy market return at a 5% level of significance with an adjusted-R2 of
1.46%. In Panel B, we consider the variance risk premium to compare our value-weighted
skewness factor. Similar to Panel A, there is no significant relationship between the variance
risk premium factor and subsequent energy market excess return. Panel C also has similar
results with A and B; that is, only the value-weighted average skewness has predictive
power in the future energy market excess return.

Table 8. Comparison with financial variables. The table contains results of the predictive regressions
of the energy market excess return rEMI

m,t+1. Vvw,t and Skvw,t are the value-weighted average variance
and skewness. The average correlation across energy stocks, ACt, the variance risk premium of
energy market stocks, VRPt, and the volatility index of energy stocks, IVt. p-values (two-sided) are
reported using Newey–West adjusted t-statistics and in parentheses. The table also reports adjusted
R2 values. ** denotes 5% level of significance.

(1) (2) (3) (4)

Panel A: AC (1996–2018)

rEMI
m,t −0.04

(0.422)
Skvw,t 0.06 ** 0.06 ** 0.06 **

(0.046) (0.041) (0.037)
ACt −0.08 −0.12 −0.11

(0.589) (0.419) (0.472)

Adj.R2 1.46% −0.69% 0.76% 0.12%

Panel B: VRP (1998–2018)

rEMI
m,t −0.03

(0.549)
Skvw,t 0.06 ** 0.06 ** 0.06 **

(0.045) (0.048) (0.043)
VRPt 0.01 0.00 0.00

(0.797) (0.952) (0.965)

Adj.R2 1.27% −0.40% 0.85% 0.52%

rEMI
m,t −0.03

(0.599)
Skvw,t 0.06 ** 0.06 ** 0.06 **

(0.045) (0.048) (0.043)
IVt 0.01 0.01 0.01

(0.611) (0.698) (0.764)

Adj.R2 1.27% −0.33% 0.90% 0.55%

Overall, the results of comparative analysis with economic and financial variables
confirm the finding from baseline regression that the value-weighted average skewness is
a dominant predictor in predicting subsequent energy market return, with adjusted-R2 as
high as 1.46%.

6. Conclusions

This study set out to examine the skewness risk and its return predictability in the en-
ergy market. The study finds a significant positive relationship between one-month-ahead
energy market return and the average realized skewness of energy stocks. The influence of
the average monthly skewness of energy stocks on the future energy market (risk-adjusted)
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return is significant at a conventional level across all regression specifications. The coeffi-
cient of the monthly average skewness is significant at a 5% level of significance and has a
positive value of 0.06 in our baseline regression with individual variables.

Additionally, the predictability of average skewness is unchanged even with alterna-
tive regression specifications, independent variables, and definitions (of skewness factor;
SKEW) that we consider in this study. These findings suggest that realized skewness risk
is more valuable than skewness risk derived from energy stock options in forecasting
energy market returns in the US energy market sector. This unique feature should be
noted by investors and carefully considered by energy policymakers. For example, market
participants should pay attention to the effect of the skewness of energy stock prices as
the relationship between the skewness of energy return and equity premiums from other
assets enables investors to form more diverse equity portfolios by using energy-related
assets to hedge against risks. Policymakers could make use of our findings when forming
effective hedging strategies to mitigate the impact of oil price shocks on energy-related
stocks. A potential policy implication could be motivating companies to efficiently manage
the usage of the main sources of energy and to support alternative sources to effectively
hedge downside risk in energy stock prices. Thus, policymakers should develop dynamic
policy systems to handle risk arising from the unsteady energy market.

While skewness risk has been a widely accepted proxy for crash risk, there remains a
paucity in measuring true skewness. For example, Neuberger (2012) and Jiang et al. (2020)
proposed a different measure of computing the skewness factor due to the inconclusive
predictive power of skewness that is measured in a standard way. The result observed
in this study, together with the current state of the literature, confirms that an accurate
measure of skewness of returns is needed to strengthen this area of research. Thus our
study sheds new light on potential future research avenues: (1) exploring the drivers
of conflicting results regarding the predictability of risk-neutral skewness risk in the US
energy sector, (2) how it contributes to the positive relationship between monthly average
skewness risk and subsequent energy market returns, and (3) developing a methodology
to more accurately measure true skewness of returns.
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Appendix A

Appendix A.1. Additional Table

Table A1. Correlation matrix of EMI and XLE return. This table shows the correlation between EMI
and XLE daily return over the period between 23 December 1998 and 31 December 2018.

rEMI
d rXLE

d

rEMI
d 1.00

rXLE
d 0.98 1.00

Appendix A.2. Predictability in Average Skewness

To understand the theoretical relationship between the energy market return at a
subsequent month, t + 1, and the average skewness at current month, t, we review the
theoretical model by Jondeau et al. (2019). In a future month t + 1, the return of the energy
firm i can also be described as Rm,t+1 = µi,t+1 + εi,t+1, where µi,t+1 = Et[Ri,t+1] denotes the
expected energy stocks’ return conditional on the information available at current month, t,
and εi,t+1 denotes the unexpected return of the energy stocks. Based on Jondeau et al.’s
(2019) theoretical model, we can assume that the unexpected energy stock return also arises
from two sources:

εi,t+1 = βiεm,t+1 + zi,t+1,

where εm,t+1 = Rm,t+1 − Et[Ri,t+1] is the combined innovation and zi,t+1 is only the un-
systematic part. It is possible that both innovations have a non-symmetric distribution,
with conditional variance denoted by Vt[εm,t+1] and conditional skewness denoted by
Skt[εm,t+1] and zi,t+1, respectively. εm,t+1 and zi,t+1 are assumed to be independent from
each other, so are zi,t+1 and zj,t+1 for all i and j.

Given the above process, the individual energy stock variance and skewness can be
defined following Jondeau et al. (2019):

Vt[εi,t+1] = Et[ε
2
i,t+1] = β2

i Vt[Rm,t+1] + Vt[zi,t+1],

Skt[εi,t+1] = Et[ε
3
i,t+1] = β3

i Vt[Rm,t+1] + Vt[zi,t+1].

In the three-moment CAPM, the center of the pricing kernel is quadratic in the market
return as

mt+1 = Λ0 + Λm + Rm,t+1 + ΨmR2
m,t+1,

where the definition for each parameter Λm and Ψm can be derived from a model of the
investors’ preferences.17 This pricing kernel provides the following definitions for the stock
(energy stock) and market (energy market) risk premia:

Et[Ri,t+1]− R f ,t = λ̃m,tCovt[Ri,t1 , Rm,t+1] + ψ̃m,tCovt[Ri,t+1, R2
m,t+1], (A1)

Et[Rm,t+1]− R f ,t = λ̃m,tVt[Rm,t+1] + ψ̃m,tSkt[Rm,t+1]. (A2)

The details regarding the market prices of risk λ̃m,t and ψ̃m,t can be found in Harvey and
Siddique (2000).

The most common approach is to write the pricing kernel as linear in the underlying
sources of risk. In this context with quadratic terms, the pricing kernel is written as below
following Jondeau et al. (2019):

mt+1 = Λ0 + ΛmRm,t+1 + ΨmR2
m,t+1 +

N

∑
i=1

Λiεi,t+1 +
N

∑
i=1

Ψiε
2
i,t+1, (A3)
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where parameters Λi and Ψi display investors’ dislike for individual variance and prefer-
ence for individual skewness (from energy stocks in our case).

Jondeau et al. (2019) state that the pricing kernel provides the following expression
for the expected excess return on a firm i:

Et[Ri,t+1]− R f ,t

1 + R f ,t
=−ΛmCovt[Ri,t+1, Rm,t+1]−ΨmCovt[Ri,t+1, Rm,t+1]

−
N

∑
j=1

ΛjCovt[Ri,t+1, ε j,t+1]−
N

∑
j=1

ΨjCovt[Ri,t+1, ε2
j,t+1].

(A4)

which generalized to

Et[Ri,t+1]− R f ,t =λ̃m,tCovt[Ri,t+1, Rm,t+1] + ψ̃m,tCovt[Ri,t+1, R2
m,t+1]

+
N

∑
j=1

λ̃j,tCovt[Ri,t+1, ε j,t+1] +
N

∑
j=1

ψ̃j,tCovt[Ri,t+1, ε2
j,t+1],

(A5)

where λ̃m,t = −(1 + R f ,t)Λm, ψ̃m,t = −(1 + R f ,t)Ψm, λ̃j,t = −(1 + R f ,t)Λj, ψ̃j,t = −(1 +
R f ,t)Ψj. Jondeau et al. (2019) further assume that market prices of risk are the same across
firms, i.e., Λi = ΛI , and Ψi = ΨI for all i. By aggregation, they obtain the expected excess
market return as

Et[Rm,t+1]− R f ,t =λ̃m,tVt[Rm, t + 1] + ψ̃m,tSkt[Rm,t+1] + λ̃I,t

N

∑
j=1

wt

N

∑
j=1

Covt[Ri,t+1, ε j,t+1]

+ ψ̃I,t

N

∑
j=1

wt

N

∑
j=1

Covt[Ri,t+1, ε2
j,t+1],

where wi denotes the relative market capitalization of firm i. In the authors’ data-generating
process, they have the following equalities: ∑N

j=1 Covt[Ri,t+1, ε j,t+1] = ∑N
j 6=i βiβ jVt[Rm,t+1] +

Vt[εi,t+1] and ∑N
j=1 Covt[Ri,t+1, ε2

j,t+1] = ∑N
j 6=i βiβ

2
j Skt[Rm,t+1] + Skt[εi,t+1]. This simpli-

fies to

Et[Rm,t+1]− R f ,t = λm,tVt[Rm,t+1] + ψm,tSkt[Rm,t+1] + λI,tVw,t + ψI,tSkw,t, (A6)

where Vw,t = ∑N
i=1 wiVt[εi,t+1] and Skw,t = ∑N

i=1 wiSkt[Rm,t+1] denote the expected average
variance and skewness across firms, respectively. Parameters are defined by Jondeau et al.
(2019) as

λm,t = −(1 + R f ,t)

(
Λm + ΛI

N

∑
i=1

βi

(
N

∑
j=1

β j − βi

))
,

ψm,t = −(1 + R f ,t)

(
Ψm + ΨI

N

∑
i=1

βi

(
N

∑
j=1

β2
j − β2

I

))
,

λI,t = −(1 + R f ,t)AI ,

and ψI,t = −(1 + R f ,t)ΨI .

This relation corresponds to Equation (1) in Section 4.1.
In short, we also believe that the expected market return is driven not only by the

energy market variance and skewness but also by the cross-sectional average variance
and skewness of returns from energy stocks, following Jondeau et al. (2019); however, we
find different results from Jondeau et al. (2019) that average energy stock skewness predict
positively on future energy market returns. Studying the drivers of the contrasting finding,
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positive predictive power in average energy stock skewness on subsequent energy market
return is left for future research.

Appendix A.3. SIC: Standard Industry Classification Codes

The followings are the energy sector SIC codes:

• 1300–1300 Oil and gas extraction.
• 1310–1319 Crude petroleum & natural gas.
• 1320–1329 Natural gas liquids.
• 1330–1339 Petroleum and natural gas.
• 1370–1379 Petroleum and natural gas.
• 1380–1380 Oil and gas field services.
• 1381–1381 Drilling oil & gas wells.
• 1382–1382 Oil-gas field exploration.
• 1389–1389 Oil and gas field services.
• 2900–2912 Petroleum refining.
• 2990–2999 Misc. petroleum products.

Notes
1 This is also found in Boyer et al. (2009); Bali and Murray (2013); Conrad et al. (2013) and Boyer and Vorkink (2014),

among others.
2 The difficulty in measuring skewness is still present to date; for example, Neuberger (2012) and Jiang et al. (2020),

who propose a different measure of computing the skewness factor due to the inconclusive predictive power of
skewness that is measured in a standard way; Stilger et al. (2016) and Chordia et al. (2020), who find positive
predictive power on the skewness factor and Albuquerque (2012), who reconciles evidence of skewness of return
on firm versus aggregate returns. The result observed in this study, together with the current state of the literature,
confirms that an accurate measure of skewness of returns is needed to strengthen this area of research. Further,
studying the driver of a positive relationship between the cross-sectional average skewness and energy market
return should be further investigated and is left for future work.

3 The authors argue that the results are driven mainly by individual stocks that were less liquid and more expensive to
short-sell.

4 The authors argue that the results are driven mainly by individual stocks that were less liquid and more expensive to
short-sell.

5 The ETF XLE provides precise exposure not only to companies in the oil and gas but also in consumable fuel, energy
equipment and services. Details can be found in https://www.ssga.com/library-content/products/factsheets/etfs/
us/factsheet-us-en-xle.pdf, accessed on 1 October 2021.

6 Due to the availablity of data, our sample starts from January 1996 and ends December 2018. The size of a sample
period is appropriate for our study to (1) precisely estimates the coefficient of beta (i.e., average skewness variable)
and (2) draw a conclusions with acceptable significance level.

7 Moody’s Corporation, often referred to as Moody’s, is an American business and financial services company.
8 Following Bollerslev et al. (2009), we first need to quantify the actual return variation. pt denotes the logarithmic

price of the asset. The realized variation over the set period time t to t + 1 time interval can then be measured

in a “model-free” style as: RVt = ∑n
j=1

[
pt−1+ j

n
− pt−1+ j−1

n (∆)

]2
→ Return variation (t− 1, t), where the convergence

depends on n → ∞, i.e., an increasing number of within-period price observations. This “model-free” realized
variance measure based on high-frequency data can generate much more accurate historical observations of the true
(unobserved) return variation than other traditional sample variances based on daily or less frequent returns.

9 The correlation table can be found in Appendix A.1.
10 See Appendix A.2 for more detail.
11 The first measure, following by Goyal and Santa-Clara (2003), is based on equal weights: Vew,t =

1
Nt

∑Nt
i=1 Vi,t, where

Nt is the number of energy firms available in month t. The second measure is following by Bali et al. (2005), is based
on value weights: Vvw,t = ∑Nt

i=1 wi,tVi,t, where wi,t is the relative market capitalization of energy stock i in month t.
12 This confirms that there is no significant difference between (1) taking the average across equal-weighted average

individual volatility or (2) selecting at the end of each month the value of individual NRNV or NRNSk and then
taking the average.

https://www.ssga.com/library-content/products/factsheets/etfs/us/factsheet-us-en-xle.pdf
https://www.ssga.com/library-content/products/factsheets/etfs/us/factsheet-us-en-xle.pdf
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13 τ denotes the time-to-maturity which is set to 30 days.
14 Values range from 100 to −100 (or 1.0 to −1.0, depending on the convention employed).
15 Denoted as w for equal and value weights, respectively.
16 The authors defined two investors, indexed by n = A, B, update their beliefs following Bayes’s rule and a standard

Kalma-Bucy filter. They define an uncertainty parameter that models the investor-specific perception of the noisiness
of certain market signals. This is then said to affect investors’ belief and thus their future dividend disagreement.
The authors then estimate the comovement of belief disagreement between two investors.

17 Details can be found in Harvey and Siddique (2000) and Dittmar (2002).
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