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Abstract: This paper proposes a semiparametric realized stochastic volatility model by integrating
the parametric stochastic volatility model utilizing realized volatility information and the Bayesian
nonparametric framework. The flexible framework offered by Bayesian nonparametric mixtures not
only improves the fitting of asymmetric and leptokurtic densities of asset returns and logarithmic
realized volatility but also enables flexible adjustments for estimation bias in realized volatility.
Applications to equity data show that the proposed model offers superior density forecasts for returns
and improved estimates of parameters and latent volatility compared with existing alternatives.

Keywords: stochastic volatility; Dirichlet process mixture; realized volatility; density forecast

1. Introduction

Asset volatility plays a crucial role in many financial problems such as derivative pric-
ing, risk management, and portfolio allocation. The generalized autoregressive conditional
heteroscedasticity (GARCH) model introduced by Bollerslev (1986) and stochastic volatility
(SV) model formalized by Taylor (1986) are standard econometric tools for estimating and
forecasting financial asset volatility. Recent developments in financial econometrics benefit
volatility modeling in several aspects. For one thing, the availability of high-frequency data
provides realized measures of ex-post volatility, which are data on historical volatility. For
another, econometric techniques such as the Bayesian nonparametric mixture enable mod-
eling data in more flexible ways. This paper proposes an extended SV model that utilizes
information from both returns and realized volatility (RV) under a flexible Bayesian non-
parametric framework. Compared with existing models, the proposed models significantly
improve density forecasts of returns and volatility measures.

To better accommodate asymmetric and heavy-tailed features of asset returns, many
works have extended the SV model by relaxing the Gaussian distributional assumption. Non-
Gaussian innovation distributions used in the SV framework include the Student’s t (Chib et al.
2002; Sandmann and Koopman 1998), normal inverse Gaussian (Barndorff-Nielsen 1997),
finite Gaussian mixture (Kim et al. 1998); (Mahieu and Schotman 1998) and generalized
hyperbolic skew Student’s t (Nakajima and Omori 2012). Recent advances in Bayesian
nonparametrics enable modeling data without distributional assumptions. Jensen and
Maheu (2010) extends the SV model to its semiparametric version with a nonparametric
mixture innovation distribution. Other versions of semiparametric SV models include
those in Yu (2012); Delatola and Griffin (2013); Jensen and Maheu (2014) and Virbickaitė
and Lopes (2019).

For two decades, estimation of ex-post volatility using high-frequency data has
been a very active research topic in financial econometrics. Andersen et al. (2001) and
Barndorff-Nielsen and Shephard (2002) show that the RV estimator defined as the summa-
tion of squared intraday returns is consistent for ex-post daily volatility in an ideal scenario. In
practice, price observations are contaminated with market microstructure noise, which leads to
biased RV measures. Zhang et al. (2005) suggest that the average of subsampled RV measures
outperforms RV and introduce a two-scales volatility estimator. Barndorff-Nielsen et al. (2008)

J. Risk Financial Manag. 2021, 14, 617. https://doi.org/10.3390/jrfm14120617 https://www.mdpi.com/journal/jrfm

https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://orcid.org/0000-0003-0361-7623
https://doi.org/10.3390/jrfm14120617
https://doi.org/10.3390/jrfm14120617
https://doi.org/10.3390/jrfm14120617
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jrfm14120617
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm14120617?type=check_update&version=2


J. Risk Financial Manag. 2021, 14, 617 2 of 22

propose a kernel-based approach for volatility estimation. Other estimators include the re-
alized power variation (Barndorff-Nielsen and Shephard 2004), range-based volatility esti-
mator (Christensen and Podolskij 2007), pre-averaged RV (Jacod et al. 2009) and quasi-
maximum likelihood estimator (Xiu 2010). High-frequency volatility estimators quantify
latent volatility nonparametrically and provide data on volatility. Maheu and McCurdy
(2011) show that jointly modelling returns and RV leads to significant improvements in
return density forecasts. Takahashi et al. (2009) propose a realized SV (RSV) model that si-
multaneously analyzes returns and RV measures. Shirota et al. (2014) and Asai et al. (2017)
extend the RSV model to allow for leverage, long memory or asymmetry. Other joint
return-RV models include the realized GARCH (Hansen et al. 2012), high-frequency-based
volatility (HEAVY) model (Shephard and Sheppard 2010) and Markov switching model
with RV (Liu and Maheu 2018).

Compared with return data, ex-post volatility estimates offer more accurate volatility
measures but are subjective to estimation bias caused by the market microstructure noise.
Takahashi et al. (2009) equip the RSV model with a constant correction term to adjust
the estimation bias. Nevertheless, later works such as Bandi et al. (2013) note that the
bias in RV could be time-varying due to the variation in market microstructure noise. In
addition, most works, including Takahashi et al. (2009), assume that logarithmic RV (logRV)
follows a Gaussian distribution. However, Corsi et al. (2008) shows that the volatility of
RV is time-varying, and residuals in several logRV models are not normally distributed.
Huang et al. (2019) study the option implied volatility and find the volatility of volatility
varies over time.

This paper extends the RSV model to its semiparametric version by relaxing assump-
tions about innovation distributions and RV estimation bias. Such an extension provides
two benefits. First, the non-Gaussian features of both return and logRV are better accommo-
dated under the Bayesian nonparametric framework with no distributional assumptions.
Following Jensen and Maheu (2010), I incorporate the RSV model with the Dirichlet process
mixture (DPM), which is a Bayesian nonparametric mixture model allowing a nonfixed
number of clusters. Second, I assume that the RV estimation bias is time-varying. Instead
of adjusting the RV bias via a constant parameter, the proposed model adopts a varying
correction term to filter out the bias, which facilitates the extraction of volatility information
from RV data. I consider three versions of semiparametric RSV models, in which return
and logRV processes are influenced by a common DPM, are governed by two independent
DPMs, or only the return innovation terms follow a DPM.

The proposed model is evaluated against existing SV models including RSV, SV-DPM,
and standard SV and GARCH models with normal or Student’s t innovations. Empirical
applications to three U.S. equities (Disney (DIS), IBM, SPDR S&P 500 ETF (SPY)) and one
South Korea stock (SK Hynix (SKHY)) disclose the benefit of the proposed extension of
the RSV model. The semiparametric RSV model captures stronger volatility persistence
and results in a less noisy log volatility process compared with the RSV model. The
nonparametric mixture well characterizes skewed and heavy-tailed densities for both
returns and logRV, as shown in predictive density plots. In contrast to the semiparametric
SV model without RV, the semiparametric RSV model fits the return density using a
mixture with fewer clusters. In out-of-sample forecasting, the proposed model significantly
improves return density forecasts compared with benchmark models. Incorporating the
RSV model with Bayesian nonparametric mixtures also benefits the forecast of logRV
densities. Both in-sample and out-of-sample results are robust to the choice of assets,
subsample periods, and RV measures.

The remainder of the paper is organized as follows. Section 2 provides a brief summary
of ex-post volatility estimation and discusses the data. Section 3 illustrates the proposed
models, benchmarks, Bayesian inference, and model comparison. Full sample estimates
and out-of-sample forecasting results are reported in Section 4. Section 5 concludes the
paper, followed by an Appendix A.
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2. Ex-Post Volatility Estimation and Data
2.1. Ex-Post Volatility Estimation

Consider the following stochastic process for logarithmic price p(τ):

dp(τ) = m(τ)dτ + σ(τ)dw(τ), (1)

where m(τ) is a drift term, σ(τ) stands for the instantaneous volatility, and w(τ) is a
Brownian motion. The integrated variance Vt is the true variance measure of the return
over the period (t− 1, t) and is defined as

Vt =
∫ t

t−1
σ2(τ)dτ. (2)

Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002) show that the RV defined
as the sum of squared intraperiod returns is a consistent estimator of Vt in an ideal setting
without market microstructure noise.

Due to the bid-ask bounce, discrete price changes and measurement error, price
observations are contaminated with errors. Let p̃t,i∆ = pt,i∆ + εt,i∆ denote the log price
observed at time1 i∆ on day t, where pt,i∆ and εt,i∆ represent the frictionless log price and
error term, respectively. The ith intraday return over ∆ seconds is given as

r̃t,i = p̃t,i∆ − p̃t,(i−1)∆ = pt,i∆ − pt,(i−1)∆ + εt,i∆ − εt,(i−1)∆. (3)

The presence of microstructure noise induces autocorrelation in the return series and leads
to biased RV. One simple way to reduce the estimation bias is to form RV using low-
frequency data such as ∆ = 300 or 600 seconds. Such an approach leads to a less biased
but noisy volatility estimator. Zhang et al. (2005) suggest that an improved estimator with
reduced estimation noise can be obtained by averaging sparsely sampled RV estimators
from different subsamples. Each subsample contains returns with the same ∆ but different
starting times. The subsampled RV (SRV) with K subsampling groups is defined as

SRV(K)t =
1
K

K

∑
k=1

RVk
t , RVk

t =
nt

∑
i=1

r̃2
t,ik , (4)

where r̃t,ik = p̃t,(i+k/K)∆ − p̃t,(i−1+k/K)∆ is the return from the subsample that shifts the
time period ((i− 1)∆, i∆) by k/K∆ and nt is the number of intraday returns on day t.

Another popular ex-post volatility estimator robust to microstructure noise is the real-
ized kernel (RK) proposed by Barndorff-Nielsen et al. (2008). Barndorff-Nielsen et al. (2009)
recommend the nonnegative RK, which guarantees RK estimates to be positive, for practical
application. The nonnegative RK is defined as

RKt =
H

∑
h=−H

k
(

h
H+1

)
γh, γh =

nt

∑
i=|h|+1

r̃t,i r̃t,i−|h|, (5)

where k(·) stands for the kernel weight function and γh is a realized autocovariance term.
H is the bandwidth controlling the number of γh terms used in constructing RKt. Barndorff-
Nielsen et al. (2008) suggest that the optimal choice of H is H∗ = c0n0.6

t (ωt/
√

IQt)
0.8 and

the preferred kernel function is the Parzen kernel2. ω2
t stands for the variance of microstruc-

ture noise and can be estimated as RVdense,t/(2ndense,t) following Bandi and Russell (2008)3.
IQt is the integrated quarticity, which can be approximated by the square of 10-minute
SRVt. For the Parzen kernel, c0 = 3.5134.

2.2. Data Source and Motivation

The tick-by-tick transactions of DIS, IBM, and SPY from 2 January 2004 to 31 December
2020 and SKHY from 2 January 2009 to 31 December 2020 are obtained from Tick Data4. The
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data are cleared following the procedure used in Barndorff-Nielsen et al. (2009) and con-
verted to continuously compounded returns. Both the 600-second SRV with 20 subsampling
groups and 30-second nonnegative RK are employed to estimate the ex-post volatility.

Equities are actively traded during trading hours, but after-market transactions are
very sparse. The RV based on high-frequency data over trading hours measures the
variance of open-to-close return, rather than close-to-close return. Following Hansen and
Lunde (2005), I construct the daily volatility measure by combining RV over trading hours
with squared overnight return rt,co, where rt,co is defined as the log difference between
the closing price on day t− 1 and the opening price on day t. The RV corresponding to
close-to-close daily return is measured as

RVt,cc = RVt,oc + r2
t,co. (6)

To simplify the notation, I drop the subscript “cc” and use RVt in the remaining sections.
Figure 1 plots daily returns and logarithmic realized volatility measures of DIS. Table 1

provides summary statistics for daily returns, two versions of RV and logRV measures of
DIS, IBM, SPY and SKHY. As evident from the nonzero skewness values and large values
of kurtosis, all four return series exhibit asymmetric and leptokurtic features. The skewness
of all logRV series deviate from zero and their kurtosis5 values are all greater than 6.5,
which clearly departs from a normality assumption. The summary statistics of logRV data
are consistent with findings reported in Corsi et al. (2008).

Table 1. Descriptive statistics for returns and volatility measures of DIS, IBM, SPY and SKHY.

Data Mean St. Dev. Skewness Kurtosis Min Max

Panel A: DIS
rt 0.048 0.045 2.922 0.378 17.063 −13.908 14.818
SRVt 3.022 1.255 74.446 12.149 214.107 0.101 222.816
RKt 3.076 1.281 80.633 12.779 234.898 0.124 222.505
log(SRVt) 0.372 0.227 0.982 1.023 7.823 −2.296 5.406
log(RKt) 0.401 0.248 0.943 1.100 8.026 −2.089 5.405

Panel B: IBM
rt 0.007 0.025 2.055 −0.378 14.591 −13.755 10.899
SRVt 2.232 0.952 34.375 9.621 142.584 0.096 138.501
RKt 2.296 0.969 36.599 9.258 126.467 0.113 128.970
log(SRVt) 0.094 −0.049 0.911 1.207 8.340 −2.340 4.931
log(RKt) 0.125 −0.032 0.890 1.284 8.555 −2.180 4.860

Panel C: SPY
rt 0.028 0.065 1.476 −0.389 21.891 −11.589 13.558
SRVt 1.377 0.457 22.279 15.417 352.039 0.013 148.459
RKt 1.405 0.466 22.680 15.250 343.385 0.017 147.030
log(SRVt) −0.630 −0.782 1.367 0.713 7.048 −4.305 5.000
log(RKt) −0.595 −0.764 1.331 0.757 7.104 −4.079 4.991

Panel D: SKHY
rt 0.097 0.000 6.586 0.237 5.504 −13.062 13.958
SRVt 6.559 4.348 54.981 4.240 28.222 0.589 87.957
RKt 6.294 4.071 55.954 4.165 26.820 0.338 85.496
log(SRVt) 1.559 1.470 0.536 0.727 6.758 −0.529 4.477
log(RKt) 1.481 1.404 0.606 0.616 6.690 −1.084 4.448

This table reports the summary statistics of daily returns (rt), subsampled realized variance (SRVt),
realized kernel (RKt) and log volatility measures of DIS, IBM, SPY and SKHY.
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Figure 1. Daily returns and logarithmic realized volatility measures of DIS.

Volatility estimators such as SRV and RK are not bias-free, especially in finite sam-
ples. Table 1 shows that the two RV measures overestimate the return variance on average
for DIS and IBM, but provide underestimations of SPY and SKHY return variance. How-
ever, the above results are based on the full sample and may not be true for subsamples.
Figure 2 shows the ratios between the sample variance of returns and the sample mean of
RV measures in 100-day rolling windows based on DIS. The ratio fluctuates between 0.57
and 1.33. Similarly, the ratio varies from 0.68 to 1.65 in the SPY case. The varying ratios
suggest that the gap between return variance and RV average is not a constant and that RV
estimation bias could be time-varying or state-dependent.

 0.6

 0.8

 1

 1.2

 1.4

2004/06/01 2007/06/01 2010/07/01 2013/07/01 2016/07/01 2019/07/01

Figure 2. Ratios between return variance and RV average of DIS in 100-days rolling window.

3. Models
3.1. Semiparametric Realized Stochastic Volatility Models

Following Jensen and Maheu (2010), I adopt the flexible distributional framework
offered by the DPM and integrate it with the RSV model. The Gaussian innovation
distributions for returns and logRV in the RSV model are replaced with nonparametric
mixtures. In addition, the RV bias correction term is assumed to follow the DPM to
more flexibly adjust the RV estimation bias. DPM is a nonparametric version of the
finite mixture model. Unlike the conventional mixture, which requires a predetermined
number of distributions, DPM allows the number of clusters to be nonfixed and learned
endogenously from the data. Such a flexible framework is achieved with the use of the
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Dirichlet process (DP) formally introduced by Ferguson (1973). The DP is an infinite-
dimensional generalization of the Dirichlet distribution and can be seen as a distribution
of distributions. Let G represent a discrete distribution for mixture parameters. Imposing
DP(α, G0) as a prior for G makes the number of clusters and the corresponding weights in
G random. α in DP(α, G0) is the concentration parameter that influences the likelihood of
creating new clusters. The larger the value of α is, the more mixtures the DPM contains. G0
is the base function for DP and serves as the center of G.

Expressing the DP prior as the stick-breaking form by Sethuraman (1994), the RSV
model incorporated with DPM (RSV-DPM) is given as

rt|st = µst + λst exp(ht/2)zt, zt ∼ N(0, 1) (7)

log RVt|st = ξst + ht + σu,st ut, ut ∼ N(0, 1) (8)

ht = ρ0 + ρ1ht−1 + vt, vt ∼ N(0, σ2
v ) (9)

st ∼ Multinomial(Π), Π = (π1, π2, · · · )′ (10)

πj = vj

j−1

∏
l=1

(1− πl), vj ∼ Beta(1, α), (11)

φj ∼ G0, φj = {µj, λj, ξ j, σ2
u,j}. (12)

The return and logRV are linked by the latent log volatility ht, which follows the para-
metric autoregressive process defined by Equation (9). Parameters µst , λ2

st , ξst and σ2
u,st

are all state-dependent and follow the distribution G, whose prior is DP(α, G0). As in
Jensen and Maheu (2010), a mixture with state-dependent mean µst and volatility scalar λst

is applied to fit the return innovation distribution. Parameters ξst and σ2
u,st in Equation (8)

correspond to the RV estimation bias and logRV variance, respectively. Allowing ξst and
σ2

u,st to be nonfixed not only accommodates the non-Gaussian features of logRV, but also
allows flexible adjustment for RV bias. To maintain parsimony, I assume that all state-
dependent parameters are governed by the underlying state variable st = 1, 2, · · · , ∞.
Π is the state probability vector whose elements are generated from the stick-breaking
process in Equation (11). The DP prior’s base function G0 is defined as G0(µj) ≡ N(mµ, v2

µ),
G0(λ

2
j ) ≡ IG(v0/2, s0/2), G0(ξ j) ≡ N(mξ , v2

ξ) and G0(σ
2
u,j) ≡ IG(v0,u/2, s0,u/2), where

IG stands for an inverse-gamma distribution. The prior for (ρ0, ρ1) is N(0, V) and σ2
v ∼

IG(v0,v/2, s0,v/2). A hierarchical prior Gamma(a, b) is placed on α to add more flexibility.
I further consider an alternative semiparametric RSV model termed RSV-DPM-ind,

which assigns two independent DPMs to return and logRV processes and analyzes logRV
as follows.

log RVt|wt = ξwt + ht + σu,wt ut, ut ∼ N(0, 1) (13)

wt ∼ Multinomial(Γ), Γ = (γ1, γ2, · · · )′ (14)

γj = cj

j−1

∏
l=1

(1− γl), cj ∼ Beta(1, α2), (15)

χj ∼ H0, χj = {ξ j, σ2
u,j}. (16)

Equations (7), (9)–(12) and (13)–(16) constitute the RSV-DPM-ind model. Underlying state
variables st and wt govern return and logRV, respectively. Parameters ξwt and σ2

u,wt follow
the distribution H, whose prior is DP(α2, H0) with base function H0(ξ j) ≡ N(mξ , v2

ξ)

and H0(σ
2
u,j) ≡ IG(v0,u/2, s0,u/2). The model settings for return and latent log volatility

processes are the same as the RSV-DPM model, except that the DPM with prior DP(α1, G0)
only governs µst and λ2

st .
In addition, a semiparametric RSV model with DPM influencing only the return

process is included for the purpose of model comparison. Termed RSV-DPM-ret, the
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model is constituted by Equations (7) to (12) but with fixed parameters ξ and σ2
u in the

logRV equation.
The first-order autoregressive latent volatility process can be generalized to include

more lagged terms, factor capturing volatility-feedback effect, or additional predictors.
For example, Huang et al. (2019) find that the option implied volatility (IV) benefits
the prediction of future RV. Equation (9) could contain IV as an additional explanatory
variable. In addition, motivated by Corsi et al. (2008), the realized quarticity (RQ), which
measures the volatility of RV, can be potentially incorporated in Equation (8) to improve
the characterization of the logRV residual error. All of those are left for future studies.

3.2. Benchmark Models

Several volatility models are considered as benchmarks. The first benchmark is the
RSV model, which analyzes return and logRV in the following parametric way.

rt = µ + exp(ht/2)zt, zt ∼ N(0, 1) (17)

log RVt = ξ + ht + σuut, ut ∼ N(0, 1) (18)

Combining Equations (9), (17) and (18) completes the RSV model. To evaluate the proposed
models with existing semiparametric SV models, we consider the SV-DPM designed by
Jensen and Maheu (2010). Equations (7), (9)–(12) constitute the SV-DPM model, which
does not take the RV information into account. The conventional SV model formed by
Equations (17) and (9) and the SV model with Student’s t-distributed innovation term6 are
included. Finally, the GARCH model and GARCH with Student’s t-distributed innovation
(GARCH-t) are included as benchmarks. The GARCH model is given as

rt = µ + σtzt, zt ∼ N(0, 1), (19)

σ2
t = ω + α(rt−1 − µ)2 + βσ2

t−1. (20)

3.3. Bayesian Inference

The semiparametric RSV models are estimated using the Markov chain Monte Carlo
(MCMC) technique. Taking the RSV-DPM model as an example, the parameter set
includes {φj}∞

j=1 = {µj, λ2
j , ξ j, σ2

u,j}∞
j=1, ψ = {ρ0, ρ1, σ2

v}, α and latent volatility series
h1:T = {h1, h2, . . . , hT}. The slice sampling technique introduced by Walker (2007) and
further developed by Kalli et al. (2011) is applied to facilitate model estimation in infinite
state space. Conditional on a set of auxiliary variables u1:T = {u1, u2, . . . , uT}, the infinite
number of clusters is randomly truncated to a finite number K, which facilitates the use of
Gibbs sampling or Metropolis-Hasting algorithms to estimate model parameters.

Let yt = (rt, log RVt), y1:T = {y1, y2, · · · , yT} and θ =
{
{φj}K

j=1, ψ
}

. After augment-

ing s1:T and u1:T , the joint posterior p
(
{φj}∞

j=1, ψ, h1:T , s1:T , u1:T |y1:T

)
is proportional to

T

∏
t=1

{
1(ut < πst)N

(
rt|µst , λ2

st exp(ht)
)

N
(

log RVt|ξst + ht, σ2
u,st

)
N
(

ht|ρ0 + ρ1ht−1, σ2
v

)}
·

K

∏
j=1

[
p(φ2

j )
]

p(ψ).
(21)

Each MCMC iteration contains the following sampling steps.

1. Sample model parameters {φj}K
j=1 and ψ conditional on r1:T , log RV1:T , h1:T , s1:T .

Given conjugate priors, the conditional posterior distributions of µj, λ2
j , ξ j, σ2

u,j, ρ0, ρ1

and σ2
v can be easily derived. See the Appendix A for details. Model parameters are

estimated by iteratively using Gibbs samplers as follows.

(a). µj
∣∣r1:T , h1:T , s1:T , λ2

j for j = 1, . . . , K.
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(b). λ2
j

∣∣r1:T , h1:T , s1:T , µj for j = 1, . . . , K.

(c). ξ j| log RV1:T , h1:T , s1:T , σ2
u,j for j = 1, . . . , K.

(d). σ2
u,j| log RV1:T , h1:T , s1:T , ξ j for j = 1, . . . , K.

(e). ρ0, ρ1|h1:T , σ2
v .

(f). σ2
v |h1:T , ρ0, ρ1.

2. Sample latent volatility ht for t = 1, 2, . . . , T.
Latent volatility variables are sampled using the Metropolis-Hasting algorithm with a
single move sampler. The conditional posterior of ht is given as

p
(

ht|rt, log RVt, ht−1, ht+1, {φj}K
j=1, ψ

)
∝p
(

rt|ht, {φj}K
j=1

)
p
(

log RVt|ht, {φj}K
j=1

)
p(ht|ht−1, ψ)p(ht+1|ht, ψ).

(22)

The proposal distribution f (ht|·) for ht is derived from the conditional posterior
following the approach in Kim et al. (1998). We leave the details to the Appendix A. A

proposed value h′t ∼ f (ht|·) is accepted with probability min
(

1, f (h′t)p(ht |yt ,ht−1,ht+1,θ)
f (ht)p(h′t |yt ,ht−1,ht+1,θ)

)
.

3. Sample state variable st for t = 1, . . . , T from

p(st = j
∣∣rt, ht, {φj, πj}K

j=1, ut) ∝
K

∑
j=1

1(ut < πj)N
(

rt
∣∣µj, λ2

j exp(ht)
)

N
(

log RVt
∣∣ξ j + ht, σ2

u,j

)
. (23)

4. Sample auxiliary variable ut for t = 1, . . . , T.

(a). Calculate πj = vj

j−1
∏
l=1

(1− πl) for j = 1, · · · , K, where vj is sampled from

p(vj
∣∣s1:T , α) ∼ Beta

(
1 +

T

∑
t=1

1(st = j), α +
T

∑
t=1

1(st > j)

)
. (24)

(b). Sampling ut for t = 1, . . . , T from p(ut
∣∣st, π1:K) ∼ Uniform(0, πst).

(c). Find the smallest K such that ∑K
j=1 πj > 1−min(u1:T).

5. Sample α based on K.
Following the method proposed by Escobar and West (1994), α is sampled from the
Gamma mixture below.

p(α
∣∣K) ∼ q ·Gamma(a + K, b− log ζ) + (1− q) ·Gamma(a + K− 1, b− log ζ), (25)

where q = a+K−1
a+K−1+T(b−log ζ)

and ζ ∼ Beta(α + 1, T) .

The estimation of the RSV-DPM-ind model is essentially the same as that of the
RSV-DPM model but two sets of DPM-related parameters need to be estimated. The RSV-
DPM-ret model shares the same estimation steps as RSV-DPM, except that ξ and σ2

u are
sampled conditional on y1:T .

Posterior statistics can be calculated conditional on MCMC draws after dropping
results in a burn-in period. For example, the posterior mean of σ2

v based on G MCMC
outputs is given as

E(σ2
v |y1:T) =

1
G

G

∑
i=1

σ
2(i)
v , (26)

where σ
2(i)
v is the ith draw of σ2

v . Similarly, the smoothed log volatility can be estimated as

E(ht|y1:T) =
1
G

G

∑
i=1

h(i)t . (27)
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3.4. Prediction

Since volatility is not observable but the return is, the density forecast of returns is a
natural way to evaluate the predictive power of volatility models. The predictive likelihood
for returns provides the measure of the density forecast and is defined as

p(rt+1|y1:t) =
∫

p(rt+1|θ, ht+1)p(ht+1|θ, y1:t)p(θ|y1:t)dθdht+1. (28)

For all semiparametric SV models, based on G MCMC outputs, p(rt+1
∣∣y1:t) can be obtained

by integrating out parameter uncertainties as

p(rt+1
∣∣y1:t) ≈

1
G

G

∑
i=1

p(rt+1
∣∣µ(i)

t+1, λ
2(i)
t+1 exp(h(i)t+1)), (29)

where h(i)t+1 ∼ N(ρ
(i)
0 + ρ

(i)
1 h(i)t , σ

2(i)
v ), (ρ(i)0 , ρ

(i)
1 , σ

2(i)
v ) ∼ p(θ|y1:t) and µ

(i)
t+1 and λ

2(i)
t+1 are

determined based on the predicted state s(i)t+1 ∼ Multinomial(Π(i), K(i) + 1). If s(i)t+1 <=

K(i), set µ
(i)
t+1 = µ

(i)
st+1 and λ

2(i)
t+1 = λ

2(i)
st+1 . If s(i)t+1 = K(i) + 1, µ

(i)
t+1 ∼ N(mµ, v2

µ) and λ
2(i)
t+1 ∼

IG(v0/2, s0/2).
The log predictive likelihood (LPL) of modelM1 over the out-of-sample period from

t0 + 1 to T is

LPL1 =
T−1

∑
t=t0

log p(rt+1|y1:t,M1). (30)

The model with a higher LPL is preferred. In model comparison, it is convenient to
compute the log predictive Bayes factor (LBF ). The LBF between modelsM1 andM2
equals LBF = LPL1 −LPL2. A LBF value greater than 5 suggests thatM1 strongly
dominatesM2. The subsample performance of density forecasts can be investigated using
cumulative LBF defined as follows.

CLBF s =
s

∑
t=t0

[log p(rt+1|y1:t,M1)− log p(rt+1|y1:t,M2)] for s = t0, . . . , T − 1. (31)

For SV models incorporating RV measures, the predictive likelihood of logRV can be
calculated similarly to evaluate the prediction of volatility measures.

p(log RVt+1|y1:t) =
∫

p(log RVt+1|θ, ht+1)p(ht+1|θ, y1:t)p(θ|y1:t)dθdht+1. (32)

Taking the RSV-DPM model as an example, p(log RVt+1|y1:t) can be consistently estimated
based on posterior outputs as

p(log RVt+1
∣∣y1:t) ≈

1
G

G

∑
i=1

p(log RVt+1
∣∣ξ(i)t+1 + h(i)t+1, σ

2(i)
u,t+1), (33)

where h(i)t+1 ∼ N(ρ
(i)
0 + ρ

(i)
1 h(i)t , σ

2(i)
v ), (ρ(i)0 , ρ

(i)
1 , σ

2(i)
v ) ∼ p(θ|y1:t). For state-dependent

parameters, ξ
(i)
t+1 = ξ

(i)
st+1 and σ

2(i)
u,t+1 = σ

2(i)
u,st+1 if s(i)t+1 <= K(i). ξ

(i)
t+1 ∼ N(mξ , v2

ξ) and

σ
2(i)
u,t+1 ∼ IG(v0,u/2, s0,u/2) if s(i)t+1 = K(i) + 1.

4. Empirical Applications

This section reports the results of applying the proposed and benchmark models to the
four data series discussed in Section 2. Model estimation is based on 5000 MCMC results,
after 5000 burnin and the code is written in C programming language. The out-of-sample
period starts on 2 January 2009, and contains 3021 days. We consider both SRV and RK
discussed in Section 2 as volatility measures. The priors applied to the semiparametric
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RSV models are µj ∼ N(0, 0.1), λ2
j ∼ IG(10/2, 10/2), ξ j ∼ N(0, 1), σ2

u,j ∼ IG(10/2, 2/2)

for j = 1, . . . , K, ρi ∼ N(0, 100) for i = 0 or 1, σ2
v ∼ IG(10/2, 0.5/2) and α ∼ Gamma(2, 8).

The benchmark models have the same priors for parameters µ, ρ0, ρ1, σ2
v , ξ and σ2

u .

4.1. Parameter Estimates

Table 2 reports posterior estimates for the RSV-DPM, RSV-DPM-ind, RSV and SV-DPM
models. Among the three models incorporating RV measures, the two semiparametric
RSV models capture stronger volatility persistence than the conventional RSV model. The
posterior means of ρ1 in the RSV-DPM model for DIS, IBM, SPY, and SKHY are all higher
than 0.96, while the RSV model reports ρ1 values of 0.861, 0.887, 0.940, and 0.933 in the
four cases. The variance estimates of log volatility in the proposed models are lower than
those in the benchmark RSV model. For example, in the DIS application, the posterior
mean of σ2

v in RSV-DPM is 0.0325, but the RSV model estimates σ2
v as 0.1922. To mitigate

the gap between return variance and RV, the RSV model uses a positive bias correction
term ξ for DIS and IBM and a negative ξ for SPY and SKHY. The sign of ξ is consistent
with the relationship between return variance and RV averages observed in Table 1. The
semiparametric RSV models, in contrast, adjust the estimation bias more flexibly via a
time-varying correction term. Figure 3 plots E(ξt|y1:T) from RSV-DPM model7 in the DIS
case. ξt is on average positive but varies substantially from large values to even negative
values. In addition, the proposed models report lower posterior standard deviations of ρ1
and σ2

v than the RSV model, which suggests that the Bayesian nonparametric extension
improves the precision of latent volatility parameter estimation. The results are based on
ex-post volatility measured by SRV, and using RK leads to similar results.

Table 2. Posterior estimates of the RSV-DPM, RSV-DPM-ind, RSV and SV-DPM models.

RSV-DPM RSV-DPM-ind RSV SV-DPM

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Panel A: DIS
µ 0.0480 0.0139
ξ 0.0538 0.0240
σ2

u 0.1934 0.0124
ρ0 0.0120 0.0042 0.0607 0.0139 0.0055 0.0074 0.0023 0.0039
ρ1 0.9711 0.0041 0.9424 0.0072 0.8615 0.0147 0.9704 0.0057
σ2

v 0.0325 0.0026 0.0816 0.0080 0.1922 0.0192 0.0461 0.0095
K 6.2806 1.3239 3.0540 1.0079 5.5072 1.4271
α 0.4478 0.1878 0.2448 0.1379 0.3975 0.1857
K2 3.9734 1.1658
α2 0.2988 0.1567

Panel B: IBM
µ 0.0688 0.0154
ξ 0.0525 0.0240
σ2

u 0.1763 0.0102
ρ0 0.0275 0.0056 0.0446 0.0085 0.0360 0.0075 0.0132 0.0042
ρ1 0.9662 0.0049 0.9553 0.0058 0.8866 0.0112 0.9795 0.0043
σ2

v 0.0446 0.0042 0.0535 0.0049 0.1776 0.0152 0.0324 0.0053
K 5.1318 1.1947 2.8922 1.2027 3.5662 1.4451
α 0.3797 0.1758 0.2363 0.1413 0.2747 0.1576
K2 5.2840 2.0734
α2 0.3817 0.2005
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Table 2. Cont.

RSV-DPM RSV-DPM-ind RSV SV-DPM

Mean St. Dev. Mean St. Dev. Mean St. Dev. Mean St. Dev.

Panel C: SPY
µ 0.0937 0.0094
ξ −0.0808 0.0230
σ2

u 0.2176 0.0088
ρ0 −0.0337 0.0067 −0.0484 0.0124 −0.0328 0.0068 −0.0177 0.0057
ρ1 0.9667 0.0045 0.9429 0.0066 0.9405 0.0065 0.9793 0.0040
σ2

v 0.0707 0.0056 0.1300 0.0106 0.1357 0.0101 0.0689 0.0090
K 5.1950 1.2383 1.8864 0.9991 8.3496 3.5307
α 0.3769 0.1723 0.1746 0.1214 0.5806 0.2952
K2 3.1826 1.1761
α2 0.2532 0.1422

Panel D: SKHY
µ 0.0885 0.0384
ξ −0.0566 0.0308
σ2

u 0.2068 0.0077
ρ0 0.0459 0.0087 0.0830 0.0139 0.1074 0.0157 0.0165 0.0053
ρ1 0.9688 0.0056 0.9473 0.0083 0.9331 0.0096 0.9676 0.0071
σ2

v 0.0175 0.0022 0.0328 0.0043 0.0434 0.0055 0.0199 0.0039
K 5.9140 1.0316 2.1472 1.2665 3.5878 1.4628
α 0.4347 0.1782 0.1937 0.1339 0.2848 0.1637
K2 3.3990 1.3635
α2 0.2701 0.1531

This table reports the posterior means and standard deviations of model parameters in the DIS, IBM
SPY and SKHY applications.

 0

 0.5
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 1.5

 2

2004/01/02 2007/01/03 2010/01/04 2013/01/02 2016/01/04 2019/01/02

Figure 3. Posterior mean of ξt of DIS from the RSV-DPM model.

A comparison of the estimation results of the three semiparametric models shows that
the RSV-DPM-ind model requires fewer mixtures to fit the asymmetric and leptokurtic
properties of returns, whereas the SV-DPM model has to rely on additional mixtures. For
example, the mixture for return distributions in the RSV-DPM-ind model contains on
average 3.05, 2.89, 1.88 and 2.15 Gaussian distributions in the four applications, whereas
the average numbers of clusters in the SV-DPM model are 5.51, 3.56, 8.34, and 3.59.

As shown in the top panel of Figure 4, the latent volatility estimates E(ht|y1:T) of the
RSV model is noisier than that of the RSV-DPM model, which is consistent with the weaker
volatility persistence and higher logRV volatility shown in Table 2. Such a result indicates
that without non-Gaussian innovation terms, volatility fluctuates more to accommodate
the return distribution, which sacrifices the time-dependent nature of volatility. The bottom
panel of Figure 4 shows that the RSV-DPM model captures similar time-series volatility
dynamics as the SV-DPM model.
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Figure 4. Posterior mean of log volatilities ht of DIS.

4.2. Density Forecasts

The top panel of Figure 5 plots the predictive return density p(rt+1|y1:t) of DIS on
31 December 2020, from the RSV and RSV-DPM models. The bottom panel of Figure 5
provides the log predictive density of returns to more clearly visualize the tail pattern. The
predictive return density under the RSV-DPM model is asymmetric and heavy-tailed, in
contrast to the Gaussian density under the RSV model. The predictive density of logRV and
its log density can be found in Figure 6. The RSV-DPM model fits logRV using a skewed
density with a heavy right tail, which is not achievable with the Gaussian assumption in
the benchmark RSV model.

 0
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Figure 5. Cont.
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Figure 5. (Top): predictive return density p(rt+1|y1:t); (Bottom): log predictive return density
log p(rt+1|y1:t) of the RSV-DPM and RSV models.
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Figure 6. (Top): Predictive logRV density p(log(RVt+1)|y1:t); (Bottom): Log predictive logRV density
log p(log(RVt+1)|y1:t) of the RSV-DPM and RSV models.

Table 3 reports the log predictive likelihoods of returns at three forecast horizons
and log predictive Bayes factors against the SV model. In all four asset cases, either the
semiparametric SV or RSV model outperforms the basic SV model in terms of return density
forecasting. While the parametric RSV model fails to provide better density forecasts of DIS
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and IBM returns than the SV-DPM model, the semiparametric versions of the RSV model
improve return density forecasts significantly in all four asset cases, compared with the
benchmarks. For example, based on SRV measures, the log predictive Bayes factors of RSV-
DPM relative to RSV are 60.8, 96.5, 16.8, and 7.3 in DIS, IBM, SPY, and SKHY applications,
respectively. Density forecasts of DIS, SPY, and SKHY returns suggest that RSV-DPM is the
top-performing model, and the IBM result favors the RSV-DPM-ind model slightly more.
The log predictive Bayes factors between the RSV-DPM and RSV model in DIS and IBM
cases are larger than those in the other two cases, which suggests the proposed extension
offers more improvement when logRV data is more skewed and has heavier tails. The RSV-
DPM-ret model, which only extends the return innovation distribution to DPM, provides
very small forecast improvements compared with the benchmark RSV model. The results
among the three semiparametric RSV models show that the relaxation of assumptions
about logRV distribution and RV bias are the main drivers for improving return density
forecasts. The upward slope cumulative log predictive Bayes factors shown in Figure 7
confirm that the RSV-DPM model consistently offers density forecast improvement over
the RSV model in subsample periods. Table 3 also shows that the proposed models have
improved density forecasts of returns over five and ten days in most of the cases considered
and the ranking of models is robust to the choice of RV measures.

Table 3. Return density forecasts.

h = 1 h = 5 h = 10

LPL LBF LPL LBF LPL LBF
Panel A: DIS
SV −5174.3 −5194.5 −5209.1
SV-t −5129.4 44.9 −5157.6 36.9 −5175.1 33.9
GARCH −5383.1 −208.8 −5333.2 −138.7 −5339.8 −130.8
GARCH-t −5149.5 24.8 −5177.0 17.6 −5189.3 19.7
SV-DPM −5121.1 53.2 −5150.5 44.0 −5174.1 35.0
RSV (SRV) −5128.8 45.5 −5185.9 8.6 −5238.6 −29.5
RSV (RK) −5140.4 33.9 −5188.8 5.7 −5235.8 −26.7
RSV-DPM-ret (SRV) −5128.3 46.1 −5184.9 9.6 −5237.7 −28.7
RSV-DPM-ret (RK) −5138.7 35.6 −5189.1 5.4 −5234.2 −25.2
RSV-DPM (SRV) −5066.8 107.5 −5142.6 51.9 −5185.3 23.7
RSV-DPM (RK) −5070.2 104.1 −5141.4 53.1 −5185.5 23.5
RSV-DPM-ind
(SRV) −5073.9 100.4 −5150.9 43.6 −5195.5 13.5

RSV-DPM-ind (RK) −5075.1 99.2 −5152.0 42.5 −5196.7 12.3

Panel B: IBM
SV −4851.8 −4872.9 −4894.2
SV-t −4797.7 54.1 −4832.9 40.0 −4860.6 33.60
GARCH −5127.2 −275.4 −4993.1 −120.2 −5008.6 −114.43
GARCH-t −4825.4 26.4 −4851.7 21.2 −4872.6 21.53
SV-DPM −4792.2 59.6 −4834.0 38.8 −4859.8 34.40
RSV (SRV) −4846.2 5.6 −4880.3 −7.4 −4913.3 −19.10
RSV (RK) −4841.5 10.3 −4880.3 −7.4 −4903.5 −9.30
RSV-DPM-ret (SRV) −4844.9 6.9 −4881.6 −8.7 −4913.9 −19.77
RSV-DPM-ret (RK) −4834.1 17.7 −4878.2 −5.3 −4902.0 −7.84
RSV-DPM (SRV) −4749.3 102.5 −4812.7 60.1 −4843.2 50.95
RSV-DPM (RK) −4744.9 106.8 −4814.3 58.6 −4845.9 48.22
RSV-DPM-ind
(SRV) −4745.5 106.2 −4815.2 57.7 −4844.6 49.57

RSV-DPM-ind (RK) −4739.6 112.2 −4816.5 56.4 −4843.7 50.47
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Table 3. Cont.

h = 1 h = 5 h = 10

LPL LBF LPL LBF LPL LBF
Panel C: SPY
SV −3855.2 −3956.1 −4016.2
SV-t −3867.8 −12.6 −3943.1 12.9 −3998.0 18.1
GARCH −3975.8 −120.6 −4060.3 −104.3 −4126.5 −110.4
GARCH-t −3851.5 3.7 −3945.9 10.1 −4011.1 5.1
SV-DPM −3843.2 12.0 −3940.1 16.0 −3996.7 19.5
RSV (SRV) −3767.6 87.6 −3908.3 47.8 −3981.1 35.1
RSV (RK) −3768.8 86.4 −3910.0 46.0 −3980.0 36.1
RSV-DPM-ret (SRV) −3766.4 88.8 −3908.0 48.1 −3980.0 36.2
RSV-DPM-ret (RK) −3767.8 87.4 −3909.8 46.2 −3979.1 37.0
RSV-DPM (SRV) −3752.2 103.0 −3891.3 64.7 −3970.7 45.5
RSV-DPM (RK) −3750.6 104.6 −3893.4 62.6 −3972.8 43.3
RSV-DPM-ind
(SRV) −3766.2 89.0 −3910.7 45.4 −3980.6 35.5

RSV-DPM-ind (RK) −3766.7 88.5 −3913.3 42.7 −3981.0 35.1

Panel D: SKHY
SV −4308.1 −4304.7 −4297.7
SV-t −4320.9 −12.7 −4315.2 −10.6 −4312.3 −14.6
GARCH −4509.3 −201.2 −4507.5 −202.8 −4509.8 −212.0
GARCH-t −4303.2 4.9 −4302.5 2.2 −4302.2 −4.5
SV-DPM −4305.0 3.1 −4299.5 5.2 −4293.9 3.9
RSV (SRV) −4290.6 17.5 −4288.5 16.1 −4287.8 9.9
RSV (RK) −4290.5 17.6 −4289.6 15.1 −4288.5 9.2
RSV-DPM-ret (SRV) −4289.5 18.6 −4288.3 16.4 −4287.5 10.3
RSV-DPM-ret (RK) −4290.4 17.7 −4290.0 14.6 −4288.9 8.8
RSV-DPM (SRV) −4283.4 24.8 −4287.3 17.4 −4285.7 12.1
RSV-DPM (RK) −4281.4 26.7 −4290.5 14.2 −4286.4 11.3
RSV-DPM-ind
(SRV) −4289.1 19.0 −4289.2 15.5 −4286.4 11.3

RSV-DPM-ind (RK) −4289.7 18.4 −4291.8 12.8 −4287.7 10.1
This table reports the log predictive likelihood and log Bayes factors. Bold numbers indicate the
highest values.

Table 4 summarizes the results of the density forecast of logRV in the four asset
applications. The RSV-DPM and RSV-DPM-ind models offer more accurate logRV density
forecasts than the benchmark RSV model. The one-period ahead log predictive likelihoods
of both RSV-DPM and RSV-DPM-ind are 300, 500, 30 and 90 units higher than the RSV
model in the DIS, IBM, SPY and SKHY cases, respectively. The cumulative log predictive
Bayes factors shown in Figure 8 confirm that the logRV density forecast results are robust
to subsamples. The RSV-DPM-ind model, which assumes returns and logRV is governed
by two independent DPMs, offers the best one-period ahead density forecast of logRV.
The more parsimonious RSV-DPM model yields better density forecasts of logRVs over
longer periods.
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Figure 7. Cumulative log predictive Bayes factors for semiparametric RSV models vs the RSV model
(from top to bottom: DIS, IBM, SPY and SKHY).
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Table 4. Density forecasts of log realized volatility measures.

h = 1 h = 5 h = 10

LPL LBF LPL LBF LPL LBF
Panel A: DIS

RSV (SRV) −3166.5 −3634.7 −3853.0
RSV-DPM-ret (SRV) −3159.4 7.1 −3618.4 16.3 −3853.4 −0.5
RSV-DPM (SRV) −2864.9 301.6 −3313.5 321.2 −3476.9 376.0
RSV-DPM-ind (SRV) −2860.9 305.5 −3346.6 288.1 −3559.6 293.3
RSV (RK) −2985.0 −3496.2 −3738.4
RSV-DPM-ret (RK) −2981.8 3.2 −3492.2 4.0 −3735.5 2.9
RSV-DPM (RK) −2614.3 370.7 −3146.6 349.6 −3328.9 409.5
RSV-DPM-ind (RK) −2598.4 386.5 −3170.7 325.5 −3410.2 328.2

Panel B: IBM
RSV (SRV) −3306.9 −3569.9 −3784.9
RSV-DPM-ret (SRV) −3304.2 2.8 −3570.1 −0.2 −3784.3 0.5
RSV-DPM (SRV) −2746.3 560.7 −3123.1 446.8 −3324.3 460.6
RSV-DPM-ind (SRV) −2748.6 558.4 −3163.0 406.9 −3368.1 416.7
RSV (RK) −3168.4 −3464.7 −3669.8
RSV-DPM-ret (RK) −3171.8 −3.4 −3461.3 3.4 −3676.9 −7.0
RSV-DPM (RK) −2536.9 631.5 −2973.8 490.9 −3201.6 468.2
RSV-DPM-ind (RK) −2526.7 641.8 −3009.4 455.3 −3248.1 421.7

Panel C: SPY
RSV (SRV) −3328.5 −3846.6 −4067.6
RSV-DPM-ret (SRV) −3327.4 1.1 −3844.5 2.1 −4071.4 −3.8
RSV-DPM (SRV) −3289.9 38.6 −3849.9 −3.3 −4031.5 36.1
RSV-DPM-ind (SRV) −3273.7 54.8 −3817.2 29.5 −4042.9 24.7
RSV (RK) −3187.8 −3762.3 −3996.4
RSV-DPM-ret (RK) −3187.6 0.2 −3768.1 −5.8 −3987.6 8.8
RSV-DPM (RK) −3152.9 34.9 −3742.2 20.1 −3946.6 49.8
RSV-DPM-ind (RK) −3112.3 75.5 −3713.9 48.4 −3955.0 41.4

Panel D: SKHY
RSV (SRV) −1722.1 −1874.3 −1911.4
RSV-DPM-ret (SRV) −1722.3 −0.2 −1873.0 1.2 −1911.0 0.4
RSV-DPM (SRV) −1632.2 90.0 −1782.0 92.3 −1836.5 74.8
RSV-DPM-sep (SRV) −1629.8 92.4 −1810.1 64.2 −1856.6 54.8
RSV (RK) −1857.5 −2013.0 −2052.1
RSV-DPM-ret (RK) −1857.7 −0.2 −2013.3 −0.3 −2054.5 −2.4
RSV-DPM (RK) −1803.7 53.8 −1962.2 50.8 −2003.0 49.1
RSV-DPM-ind (RK) −1798.2 59.3 −1975.9 37.1 −2016.2 35.9

This table reports the log predictive likelihood and log Bayes factors of predicting logRV densities.
Bold numbers indicate the highest values.
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Figure 8. Cumulative log predictive Bayes factors for logRV between RSV-DPM and RSV models
T−1
∑

t=t0

log(p(log RVt+1|y1:t, RSV-DPM)/p(log RVt+1|y1:t, RSV)).

5. Conclusions

This paper contributes to the SV modeling literature by integrating the RSV model with
a Bayesian nonparametric framework. Such an extension benefits the volatility modeling in
two aspects. First, the Bayesian nonparametric mixture better fits the empirical distributions
of returns and logRVs, compared with Gaussian densities. Second, the information from
high-frequency volatility measures can be better utilized by allowing more flexible RV
bias adjustment.

Applications to DIS, IBM, SPY, and SKHY data compare the proposed model with
benchmarks including RSV, SV-DPM, SV-t, SV, and GARCH. The semiparametric RSV
model offers a significant improvement on density forecast of return and logRV, especially
for asset data with more severe asymmetric and leptokurtic features. Compared with the
parametric RSV model, the proposed model yields less noisy and more persistent latent
volatility series.

The forecasting improvements mainly originate from the generalization of the logRV
framework. The empirical results of this paper are consistent with Corsi et al. (2008) that
non-Gaussian densities better characterize logRV. Another suggestion from this study
is that RV estimation bias may not remain constant and it is beneficial to filter out the
time-varying bias flexibly. One potential future research direction is to adopt a time-
dependent mixture, so that the volatility of logRV and bias adjustment parameter is related
to past values and allowed to cluster. Another area of potential research is to explore if the
information from realized quarticity could be incorporated to improve the characterization
of the volatility of logRV.
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Appendix A

The estimation for parameters in the RSV-DPM model contains the following steps.

1. µj
∣∣r1:T , h1:T , s1:T , λ2

j for j = 1, · · · , K.

https://www.tickdata.com/
https://www.tickdata.com/
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Given prior µj ∼ N(mµ, v2
µ), the conditional posterior of µj is given as

p(µj| . . . ) ∝ exp

{
− ∑

st=j

(rt − µj)
2

2λ2
j exp(ht)

}
exp

{
−
(µj −mµ)2

2v2
µ

}
∼ N(mµ, v2

µ)

where

v2
µ =

(
∑
st=j

1
λ2

j exp(ht)
+

1
v2

µ

)−1

, mµ = v2
µ

(
∑
st=j

rt

λ2
j exp(ht)

+
mµ

v2
µ

)
.

2. λ2
j

∣∣r1:T , h1:T , s1:T , µj.

Given prior λ2
j ∼ IG( v0

2 , s0
2 ), the conditional posterior of λ2

j is given as

p(λ2
j | . . . ) ∝ (λ2

j )
−

nj
2 exp

{
− ∑

st=j

(rt − µj)
2

2 exp(ht)λ2
j

}
(λ2

j )
− v0

2 −1 exp

(
− s0

2λ2
j

)

∼ IG

(
v0 + nj

2
, ∑

st=j

(rt − µj)
2

2 exp(ht)
+

s0

2

)

where nj =
T
∑

t=1
1(st = j).

3. ξ j| log RV1:T , h1:T , s1:T , σ2
u,j

Given prior ξ j ∼ N(mξ , v2
ξ), the conditional posterior of ξ j is given as

p(ξ j| . . . ) ∝ exp

{
−

∑st=j(log RVt − ht − ξ j)
2

2σ2
u,j

}
exp

{
−
(ξ j −mξ)

2

2v2
ξ

}
∼ N(mξ , v2

ξ)

where

mξ =
v2

ξ ∑st=j(log RVt − ht) + mξ σ2
u,j

njv2
ξ + σ2

u,j
, v2

ξ =
v2

ξ σ2
u,j

njv2
ξ + σ2

u,j

4. σ2
u,j| log RV1:T , h1:T , s1:T , ξ j

Given prior σ2
u,j ∼ IG(

v0,u
2 , s0,u

2 ), the conditional posterior of σ2
u,j is given as

p(σ2
u,j| . . . ) ∝ (σ2

u,j)
−

nj
2 exp

{
−

∑st=j(log RVt − ht − ξ j)
2

2σ2
u,j

}
(σ2

u,j)
− v0

2 −1 exp

(
− s0

2σ2
u,j

)

∼ IG

(
v0 + nj

2
, ∑

st=j

(log RVt − ht − ξ j)
2

2
+

s0

2

)

5. ρ0, ρ1|h1:T , σ2
v

Let ρ = (ρ0, ρ1), Y = (h1, h2, · · · , hT)
′ and X = (X1, X2, · · · , XT)

′, where Xt =
[1, ht−1]

′. Given prior ρ ∼ N(M, V), the conditional posterior of ρ is given as

p(ρ| . . . ) ∝ exp
{
− 1

σ2
v
(Y− ρX)′(Y− ρX)

}
exp

{
−(ρ−Mρ)

′V−1(ρ−Mρ)
}

∝ exp
{
−0.5(ρ−M)′V−1

(ρ−M)
}

∼ N(M, V)

where

M = V−1
(

V−1M +
1
σ2

v
X′Y

)
, V =

(
V−1 +

1
σ2

v
X′X

)
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6. σ2
v |h1:T , ρ0, ρ1

Given prior σ2
v ∼ IG(

v0,v
2 , s0,v

2 ), the conditional posterior of σ2
v is given as

p(σ2
v | . . . ) ∼ IG

(
T + v0,v

2
,

s0,v + ∑T
t=1[ht+1 − ρ0 − ρ1ht]2

2

)

7. ht|rt, log RVt, ht−1, ht+1, {φj}K
j=1, ψ for t = 1, 2, · · · , T.

The conditional posterior of ht is given as

p(ht|yt, h−t, θ) ∝ p(rt|ht, {φj}K
j=1)p(log RVt|ht, {φj}K

j=1)p(ht+1|ht, ψ)p(ht|ht−1, ψ)

∝
1

exp(ht/2)
exp

{
− (rt − µst)

2

2λ2
st exp(ht)

}
exp

{
− (log RVt − ht − ξst)

2

2σ2
u,st

}
· exp

{
− (ht+1 − ρ0 − ρ1ht)2

2σ2
v

}
exp

{
− (ht − ρ0 − ρ1ht−1)

2

2σ2
v

}
∝

1
exp(ht/2)

exp
{
− (rt − µst)

2

2λ2
st exp(ht)

}
exp

{
− (log RVt − ht − ξst)

2

2σ2
u,st

}
· exp

{
−
(ht − µ∗h)

2

2σ∗2h

}

∝ exp
{
−ht

2
− 1

2
exp(−ht)

(rt − µst)
2

2λ2
st

}
exp

{
−
(ht − µ∗∗h )2

2σ∗∗2h

}

where

µ∗h =
ρ0(1− ρ1) + ρ1(ht−1 + ht+1)

1 + ρ2
1

, σ∗2h =
σ2

v

1 + ρ2
1

and

µ∗∗h =
(log RVt − ξst)σ

∗2
h + µ∗hσ2

u,st

σ∗2h + σ2
u,st

, σ∗∗2h =
σ∗2h σ2

u,st

σ∗2h + σ2
u,st

.

Kim et al. (1998) show that

exp
{
−ht

2
− 1

2
exp(−ht)

(rt − µst)
2

2λ2
st

}
exp

{
−
(ht − µ∗∗h )2

2σ∗∗2h

}

≤ exp
{
−ht

2
− 1

2
exp(−µ∗∗h )

(rt − µst)
2

λ2
st

(1 + µ∗∗h − ht)

}
exp

{
−
(ht − µ∗∗h )2

2σ∗∗2h

}

∝ exp

{
−
(ht − µ∗∗∗h )2

2σ∗∗2h

}
∼ N(µ∗∗∗h , σ∗∗2h ) ≡ f (ht|·)

where

µ∗∗∗h = µ∗∗h +
σ∗∗2h

2

[(
rt − µst

λst

)2
exp(−µ∗∗h )− 1

]
and f (ht|·) is the proposal distribution for drawing ht. A new value h′t ∼ f (ht|·) is

accepted with probability min
(

1, f (h′t)p(ht |yt ,ht−1,ht+1,θ)
f (ht)p(h′t |yt ,ht−1,ht+1,θ)

)
.

Notes
1 Under the previous-tick scheme, p̃t,i∆ is the price observed the nearest before time i∆.
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2 The Parzen kernel function is given as

k(x) =


1− 6x2 + 6x3, 0 ≤ x ≤ 1/2

2(1− x)3, 1/2 < x ≤ 1

0, x > 1.

3 RVdense,t is calculated using high-frequency returns such as every q trades, and ndense,t is the number of nonzero returns. I set
q = 5.

4 https://www.tickdata.com/, accessed in 15 August 2021.

5 The kurtosis measure is calculated using formula K =
1
n ∑n

i=1

(
xi − µ̂

σ̂

)4
.

6 The innovation term εt ∼ t(ν), where ν is the degree of freedom.
7 To better visualize the bias correction difference in RSV-DPM and RSV models, we set the scaling parameter λ2

j to be 1 to make
two models have the same setting in return variance.
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