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Abstract: This paper builds and implements multifactor stochastic volatility models for the interna-
tional oil/energy markets (Brent oil and WTI oil) for the period 2011-2021. The main objective is
to make step ahead volatility predictions for the front month contracts followed by an implication
discussion for the market (differences) and observed data dependence important for market partici-
pants, implying predictability. The paper estimates multifactor stochastic volatility models for both
contracts giving access to a long-simulated realization of the state vector with associated contract
movements. The realization establishes a functional form of the conditional distributions, which are
evaluated on observed data giving the conditional mean function for the volatility factors at the data
points (nonlinear Kalman filter). For both Brent and WTI oil contracts, the first factor is a slow-moving
persistent factor while the second factor is a fast-moving immediate mean reverting factor. The
negative correlation between the mean and volatility suggests higher volatilities from negative price
movements. The results indicate that holding volatility as an asset of its own is insurance against
market crashes as well as being an excellent diversification instrument. Furthermore, the volatility
data dependence is strong, indicating predictability. Hence, using the Kalman filter from a realization
of an optimal multifactor SV model visualizes the latent step ahead volatility paths, and the data
dependence gives access to accurate static forecasts. The results extend market transparency and
make it easier to implement risk management including derivative trading (including swaps).

Keywords: energy; forecasting volatility; Markov Chain Monte Carlo (MCMC) simulations; projection-
reprojection; stochastic volatility models

1. Introduction

This research develops and evaluates multifactor scientific stochastic volatility (SV)
models for the purpose of predicting the volatility of the fossil oil market. At its most
basics, volatility is a statistical measure of the dispersion of price movements for a given
asset over a particular period. Typically, when prices fluctuate strongly and the associated
bid-ask spreads are wide, the latent volatility is high. Market participants understand
that the higher the volatility, the riskier the single contract. The adoption of any volatility
model requires the ability to forecast future price movements. Internationally, a volatility
model has been used to forecast the absolute magnitude of price fluctuations, quantiles,
and full densities. The fact that asset volatility is not directly observable is one of its
distinguishing characteristics (latent). Volatility’s unpredictability makes evaluating the
forecasting performance of volatility models difficult. However, when developing risk
management strategies such as market selection, derivatives and hedging, market-making,
and market timing, understanding the empirical features of future pricing is critical. Volatil-
ity predictability is critical for success in all these tasks. When it comes to other financial
markets, portfolio studies have shown that as volatility rises, risk rises, and portfolio
returns fall. If an asset manager adds more assets to his portfolio, the new assets diversify
the portfolio if they do not covary (correlation less than 1) with the existing assets. As a
result, portfolios imply diversification, emphasizing the need of asset allocation. The use
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of derivatives promotes hedging, a risk-reduction approach that necessitates a thorough
understanding of how to value derivatives and which risks should and should not be
hedged. A risk manager will typically wish to know the contract volatility as maturity
approaches for hedging purposes. In the Black-Scholes Model, the volatility measure is
the only parameter that requires estimation. Estimating parameters (1 and d) in a binomial
model may also benefit from the volatility estimations. There are numerous reasons to
trade volatility as a commodity. Higher (lower) volatility, in general, boosts (decreases)
derivative prices. As a result, if the expected volatility is reducing, market players will
sell (purchase) both call and put option contract holdings that are not part of speculative
or hedging positions (increasing) (Alexander 2008). The fact that volatility and energy
price changes are inversely associated suggests portfolio diversification as well as market
collapse insurance. A market maker can also adjust his bid-ask spread if he believes future
volatility will change. When volatility grows (falls), the bid-ask spread usually increases
(decreases). The major stylized facts of asset, currency, and commodity price variations can
be explained using SV models, which have a basic and intuitive framework. These models
are not functions of purely observables enabling multiple shocks (simulations). The three
main theoretical motivations for the of SV models: (1) random news item is constantly
changing (unpredictable events), (2) time deformation (Clark 1973; Ané and Geman 2000),
and (3) the approximation to a diffusion process for a continuous-time volatility variable
(Hull and White 1987). Furthermore, the observed regularly shifting volatility is an addi-
tional motivation for SV models. Moreover, the models show well-known international
volatility characteristics, for example, clustering and persistence (data dependence) which
facilitate predictions. In financial markets, time-varying volatility is common, and market
participants who understand the dynamic behavior of volatility are more likely to have
accurate predictions about future prices and risks.

The SV implementation tries to describe how volatility evolves over time. Given that
volatility is a non-traded instrument with inaccurate estimates, it can be viewed as a latent
variable that can be modelled and predicted based on its direct impact on return magnitude.
Risks can alter in complex ways over time; thus, it is only logical to create multifactor
stochastic models to explain the temporal evolution of volatility. The method implements
Chernozhukov and Hong's (Chernozhukov and Hong 2003) MCMC estimator, which is said
to be significantly better than traditional derivative-based hill climbing optimizers for this
stochastic class of problems. Furthermore, the normalized value of the objective function is
asymptotically x? distributed given proper structural model specification (and the degrees
of freedom is specified). The paper focuses on Gallant and Tauchen’s (Gallant and Tauchen
1992, 1998, 2010a) Bayesian Markov Chain Monte Carlo (MCMC) modeling technique
for implementing multivariate statistical models developed from scientific concerns. The
method is a systematic approach to producing moment conditions for the generalized
method of moments (GMM) estimator of structural model parameters (Gallant and Tauchen
2010b; Gallant and McCulloch 2011). Furthermore, the Chernozhukov and Hong (2003)
estimator maintains model parameters in the region where predicted shares are positive
for each observed price/expenditure vector. Furthermore, the methodology encourages
limitations, inequity reductions, and the use of previous information that is informative
(on the model parameters and functions). This article is organized as follows. Section 2
describes the methodology and explicitly describes the non-linear Kalman filter. Section 3
characterizes the Brent and WTI Oil front month contracts. Section 4 discusses the empirical
major and minor findings, and Section 5 summarizes and concludes the paper.

2. Materials and Methods

The Stochastic Volatility (SV) Models' approach specifies the predictive distribution
of price returns indirectly, rather than explicitly, through the structure of the model. The
SV model has its own stochastic process, so the econometrician does not have to worry
about the assumed one-step-ahead distribution of returns recorded over an arbitrary time
interval. The starting point is Andersen et al. (2002)’s application, which considers the
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well-known stochastic volatility diffusion for an observed stock price S; provided by
d%f = (p+c(Vip+ Vou))dt + /V1dWy p + \/Vo,dWs;, where the unobserved volatility
processes V;;, i = 1,2, are either log linear or square root (affine). The W;; and W, are
standard Brownian motions that may be associated with corr(dWy t, dW5 ;) = p. Intuitively,
the model has two shocks and one observable so that the current and past volatility are
never observed precisely. With daily S&P500 stock index data from 1953 to 31 December
1996, Andersen et al. (2002) estimated both versions of the stochastic volatility model. Both
versions of the SV model are outright rejected. Adding a jump component to a basic SV
model, on the other hand, considerably improves the fit, reflecting two well-known features:
fat non-Gaussian tails and persistent time-varying volatility. Chernov found promising
results using an SV model with two stochastic volatility variables (Chernov et al. 2003). An
affine configuration and a logarithmic setting are considered by the authors for the volatility
index functions and factor dynamics. The models are based on daily Dow Jones Index data
from 2 January 1953, through 16 July 1999. They discover that models with two volatility
variables perform significantly better than models with simply one. They also discover
that logarithmic two-volatility factor models beat affine jump diffusion models in terms
of data fit. One volatility element is quite persistent, whereas the other is substantially
mean reverting. The logarithmic model with two stochastic volatility factors is used in
this research (Chernov et al. 2003). The Cholesky decomposition for consistency is used
in the model to facilitate correlation between the factors. The key reason for correlation
modeling is that it allows for asymmetry effects to be introduced (correlation between
return and volatility innovations). Several alternative stochastic models are proposed in the
international literature for oil contracts. However, SV models combined with a non-linear
Kalman filter for functional forms and original data points are not available.”

The daily analyses cover the period from the end of 2011 until 5 February 2021, a
total of 11 years giving 2443 daily price movements for the two front month future series.
Price series are non-stationary and stationary logarithmic price changes from the two series
are therefore used in the analysis. Any signs of successful SV-model implementations for
the markets indicate random price change features and a minimum of weak-form market
efficiency. Consequently, the markets are applicable for both enhanced risk management
activities and derivative trading (including swaps). Summary statistics for the Brent
and WTI oil contracts front month future markets are presented in Table 1 and Figure 1
reports their distributions and correlograms. Negative average price movements (negative
drift) are reported for the raw data of both contracts. The standard deviation for the
Brent Oil contracts (2.285) are lower than the WTI crude Qil contracts (2.909); therefore,
reports lower the total risk. The maximum (19.1) and minimum (—28.0) numbers confirm
lower risk for the Brent Oil contracts relative to the WTI crude oil contracts (22.4 and
—56.9) contracts. Both front month oil contracts report a negative skewness coefficient,
indicating that the return distributions have a negative skew. The kurtosis coefficients
are relatively highly positive for both series, indicating a relatively peaked distributions
with heavy tails. The WTI oil contract series has more peaks than the Brent oil contract,
suggesting that the series has more observations close to the unconditional mean. The
Cramer-von Mises normal test statistics and the quantile normal test suggest non-normal
return distributions. Serial correlation in the mean equation is strong and the Ljung-Box
Q-statistic (Ljung and Box 1978) is significant for both series. Volatility clustering using the
Ljung-Box test statistic for squared returns (Q%) and ARCH statistics seems to be present.
The ADF (Dickey and Fuller 1979) and the Phillips—Perron (Phillips and Perron 1988) test
statistics reject non-stationary series and the KPSS (Kwiatowski et al. 1992) statistic (12 lags)
cannot reject stationary series.’
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Table 1. Characteristics for Brent oil and WTI Crude oil Front Month Contracts 2011-2021.
Brent Oil Front Month
Mean (all)/ Median Max./ Moment Quantile Quantile Cramer- Serial dependence VaR
M (-drop) Std.dev. Min. Kurt/Skew  Kurt/Skew Normal von-Mises Q(12) Q3(12) (1,2.5%)
—0.03419 0.06378 19.0774 23.2938 0.31680 12.4591 9.0716 17.9630 663.420 —6.315%
—0.03828 2.28495 —27.9761 —1.15275 —0.07439 {0.0020} {0.0000} {0.1170} {0.0000} —9.588%
BDS-Z-statistic (e = 1) Phillips- Augm. ARCH RESET CVaR
m=2 m=23 m=4 m=>5 KPSS Perron DF-test (12) (12;6) (1,2.5%)
13.8657 16.1690 18.3445 20.3371 0.07196 —50.831 —50.6842 372.232 104.961 —9.588%
{0.0000} {0.0000} {0.0000} {0.0000} {0.2721} {0.0000} {0.0000} {0.0000} {0.0000} —6.988%
WTI Crude Oil Front Month
Mean (all)/ Median Max./ Moment Quantile Quantile Cramer- Serial dependence VaR
M (-drop) Std.dev. Min. Kurt/Skew  Kurt/Skew Normal von-Mises Q(12) Q%*(12) (1,2.5%)
—0.05629 0.03577 22.3940 77.63566 0.26708 8.0652 15.9531 110.240 1382.50 —6.578%
—0.05688 2.90901 —56.8589 —3.38110 —0.04463 {0.0177} {0.0000} {0.1110} {0.0000} —13.616%
BDS-Z-statistic (e = 1) Phillips- Augm. ARCH RESET CVaR
m=2 m=3 m=4 m=>5 KPSS Perron DEF-test (12) (12;6) (1,2.5%)
14.8962 17.3605 19.5252 21.5017 0.04629 —49.464 —19.6282 514.024 158.376 —13.616%
{0.0000} {0.0000} {0.0000} {0.0000} {0.2459} {0.0000} {0.0000} {0.0000} {0.0000} —8.750%
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Figure 1. The ICE Brent Oil and WTI Oil Front Month contracts for the period 2011-2021.

The RESET (Ramsey 1969) test statistic, covering any departure from the assumptions
of the maintained model, is significant (instability). Furthermore, the BDS independence
test statistic (Brock et al. 1996) is a portmanteau test for time-based independence in a
series. The probability of the distance between a pair of points being less or equal to
epsilon (&) should be constant (cm(e)). The BDS test statistics report highly significant data
dependence for all integrals (m). Figure 1 (bottom) reports correlograms up to lag 20 for
the daily price and squared/absolute price movements. The correlograms for daily price
movements show only weak dependence while the correlogram for squared and absolute
returns indicate substantial data dependence mainly in the form of serial correlation. The
price change (log returns) data series show that the level of volatility seems to change
randomly but shows a time varying nature typically for financial markets. Finally, the
Quandt-Andrews breakpoint test (single breakpoint) (Andrews 1993) and the Bai (1997)
and Bai and Perron (1998) multiple breakpoint test (sequential L + 1 breaks vs. L) report that
both the single breakpoint test and the multiple breakpoint test cannot reject the null of zero
breakpoints.* Furthermore, breakpoint unit root tests (trend and intercept) use an F-statistic
augmented Dickey—Fuller equation (innovational outlier) test (Lumsdaine and Papell
1997; Lee and Strazicich 2003). Neither contract reports significant breakpoint statistics for
intercepts, trends or break dummies. However, using the Schwarz (1978) criterion (BIC)
with the innovational outlier specification and Dickey—Fuller (minimizing the t-statistic for
« in the ADF-test) report one most likely COVID-19 break date for the Brent oil contracts
(20200421) and for WTI crude oil contracts (20200427), suggesting that we cannot reject
the hypothesis that the contracts have a unit root. These test statistics are also inherently
related to whether the time series are affected by shocks. The COVID-19 period seems
to signal temporary shocks for the two oil contracts. Moreover, to differentiate the price
series twice will make the interpretation of the results much more complex. Therefore, the
classical unit-root tests reported no breakpoint statistics and temporary shocks/COVID-19
signals; the manuscript assumes stationary return series.

The conditional moments are estimated using a statistical model for the f(y|x) density,
where y is the price movements and x represents lags of the series. Using their condi-
tional moments, the SV model is estimated using the efficient method of moments (EMM)
(Gallant and Tauchen 2010b; Gallant and McCulloch 2011). Table 2 reports the conditional
moments from statistical moments (AR-GARCH) (panel A) and the stochastic SV model
parameters (panel B). Columns for the mode, mean and standard deviation are reported. A
test statistic (x?) is reported at the bottom (panel B) for the SV model. The objective func-
tion accuracy is —5.1 and —3.6 for the Brent oil and WTI crude oil front month contracts,
respectively, with associated X2 test statistics of 0.121 (5 df) and 0.151 (5 df).° Figure 2 shows
the MCMC log-posterior paths, which are an important measure for optimal solutions
(success). The model passes the over-identified restrictions test at a 10% level, the chains
are choppy, and the densities are close to normal (not reported), all of which indicate that
the SV model is suitable for the fossil oil market series.
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Table 2. Stochastic Volatility Model’s optimal parameters.

Panel A:

Statistical Model SNP (11116000) BIC-fit; semi-parametric-GARCH model

Mode and {Standard Error}

Var SNP Coeff. The ICE Brent Oil The ICE WTI Oil

Hermite Polynoms

71 a0[1] —0.04087 {0.0239} —0.03243 {0.0248}

12 a0[2] —0.15918 {0.0196} —0.17249 {0.0255}

73 a0[3] —0.02248 {0.0165} —0.03431 {0.0181}

4 a0[4] 0.10216 {0.0162} 0.07861 {0.0182}

15 a0[5] 0.00464 {0.0193} 0.01815 {0.0177}

6 a0[6] —0.07695 {0.0139} —0.07486 {0.0125}

Mean Equation (Correlation)

17 bO[1] 0.05108 {0.0320} 0.03047 {0.0287}

18 B(1,1) —0.04853 {0.0215} —0.04274 {0.0209}

Variance Equation (Correlation)

9 RO[1] 0.07765 {0.0159} 0.09123 {0.0133}

710 P[1,1] 0.18454 {0.0524} 0.13396 {0.0728}

11 Q[1,1] —0.96608 {0.0047} 0.96131 {0.0050}

112 VI[1,1] —0.34431 {0.0385} —0.40901 {0.0373}

113 W[1,1] 0.30542 {0.0842} 0.2378 {0.1020}

Model S 1.13023 0.98116

selection aic 1.13556 0.98648

criterais: bic 1.15100 1.00193

Largest eigenvalue for mean: 0.04853 0.04274

Largest eigenvalue variance: 0.96737 0.94205

Panel B:

Parameter values for Scientific Model.

The ICE Brent Oil model Standard The ICE WTI Oil Model Standard
0 Mode Mean error 0 Mode Mean error
a0 0.048340 0.045396 0.008082 a0 0.047852 0.038677 0.018611
al —0.057129 —0.053005 0.003842 al —0.063477 —0.043269 0.022061
b0 0.141240 0.152300 0.007916 b0 0.447270 0.437200 0.037493
b1 0.830930 0.831160 0.001875 b1 0.985530 0.986230 0.002146
cl 0 0 0 cl 0 0 0
sl 0.165310 0.164670 0.000869 sl 0.052612 0.051506 0.003467
s2 0.162140 0.160670 0.000782 s2 0.228150 0.229830 0.003395
rl —0.313600 —0.318690 0.006753 rl —0.636470 —0.634260 0.009521
r2 0.078979 0.086698 0.008793 r2 —0.120610 —0.113660 0.006984

Distributed Chi-square (freedoms) x2(5) Distributed Chi-square (freedoms) x2(5)

Posterior —5.0607 Posterior at the mode —3.5585

Chi-square test {0.1206} Chi-square test statistic {0.1507}

The non-linear Kalman filter technique, moving backwards to infer the unobserved
state vector from the observed process, is numerically intensive but straightforward
(Hamilton 1994). From the long-simulated realization of the state vector, the AR-GARCH
methodology obtains a convenient representation of one-step ahead conditional variance
07 of 94,1 given {y}}trzl. From simple regressions for V; i = 1,2 on 67, §; and | J<| and
a generous number of lags of these series, the calibrated functions that give step ahead
values of V;; ’ {yT}thl, t =1, 2 on the observed data series are constructed. The values for

Vi, i =1,2 are constructed at all observed data points.
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Figure 2. MCMC Posterior Chain from 250 k Optimal Stochastic Volatility Model (R = 75.000).

3. Results
3.1. The Stochastic Volatility Factors

Table 2 reports the optimal parameters for the scientific models. The mean drift is
similar (0.048), and the negative serial correlation is quite strong for WTT oil (—0.063 vs.
—0.057). For the volatility, the parameter by measures the constant volatility and by reports
the serial correlation. Brent oil (WTI crude oil) reports a relatively low (high) constant
volatility of 0.14 (0.45), indicating that the constant information flow (or trading volume)
is higher for WTI crude oil. The serial correlation for WTI oil (0.986) is clearly higher
than Brent oil (0.831), indicating more information from the WTI volatility lags. The high
correlation will probably also report higher data dependence. Furthermore, while Brent oil
reports significant and similar parameters for volatility factor 1 (V1) and factor 2 (V) of
approximately 0.16, the WTI oil contracts report a factor of 0.05 for factor 1 and 0.228 for
factor 2. The WTI oil volatility factor will therefore probably report a calm factor 1 (V1) and a
choppier factor 2 (V;), giving larger volatility responses to price movement shocks. Finally,
the correlation factor between the mean and volatility (1) is negative, indicating larger
volatility for negative price movements. The WTI crude oil contracts report a correlation
of —0.636, much higher than Brent oil contracts of —0.314, indicating that negative price
movements increase WTI volatility more than Brent oil contract volatility.

For the way back to reality, the SV model simulation together with the non-linear
Kalman filter approach establish the calibrated functions on all observed data points. The
original data points, which now contain returns and volatility factors, are observable for all
participants. For the period 2011-2021, Figure 3 reports factor 1 (V1), factor 2 (V) and the
e(V1+V2) for the observed data points for the ICE Brent Oil (top) and WTI crude oil (bottom),
respectively. Interestingly, V1 is a slow-moving, persistent volatility factor while V5 is fast
moving and the mean reverting factor. From the plots, the volatility e(17V2), seems more
influenced by the V; factor than V. For visibility and a clearer and more interpretative
evaluation of the factors, Figure 4 reports the last 60 days of these series in 2020/21 for the
latent volatility factors for observed data points (21/01/2020-5/2/2021). It seems quite
clear that the slowly persistent factor V1, leads the reprojected yearly volatility for both
series. For the period from March to May 2020 (COVID-19 outbreak), it is the slow-moving
factor (V'1), showing higher persistence, that seems to show the main contribution to the
yearly volatilities for both contracts. Additionally, for this period, the V', factor moves much
faster, showing strong mean reversion, absorbing the shocks. The Brent oil contracts show
both a higher and more choppy volatility. However, shocks seem to move the volatility
higher for WTI oil contracts than Brent oil contracts. From the non-linear Kalman filter
technique, Figures 3 and 4 also report the numerous and simulation-based ordinary least
square number (R?) for Brent oil and WTI crude oil contracts at a level of V;, wherei=1, 2.
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For V; (V5) the R? is 71.5% (5.1%) and 98.3% (6.7%) for the Brent oil and the WTI crude oil
contracts, respectively. Interestingly, the WTI crude oil contracts are both smoother and
lower than the Brent oil contracts (also suggested by higher R?).

Daily the ICE Brent Oil Front Month Price Movements: Forecasting the Latent Volatility (Plot)

Goodness of Fit: R? for Vi = 0.715; R? for Vze = 0.051
S vit B vat © vearly Reprojected volatiity

ent Valatity per Vear

Perc:

Daily the ICE WTI Crude Oil Front Month Price Movements: Forecasting the Latent Volatility (Plot)

546 Goodness of Fit: R® for V;; = 0.983; R® for V;, = 0.067
©vit B vzt © Yearly Reprojected Valatiity

Percent Volatility per Year

Figure 3. Daily Conditional Volatility from Observables and Kalman Filtered Volatility.

Daily the ICE Brent Oil Front Month Price Movements: Forecasting the Latent Volatility last 60 days (Plot)
Goodness of Fit: R? for Ve = 0.715; R? for Vzr = 0.051

© Vit [ vat © Veary Reprojsctad volatiity

Daily the ICE WTI Crude Ol Front Month Price Movements: Forecasting the Latent Volatility last 60 days (Plot)

Goodness of Fit: R? for Vy, = 0.983; R? for Vz = 0.067

© vit V2t © Vearly Reprojected Volatiity
.00

117201
11722

12/22-

0212
0214

Figure 4. The ICE Front Month Brent Oil (top) and WTI Crude Oil (bottom) Factor Volatility Paths (last 60 days).

Table 3 reports characteristics for the nonlinear Kalman filtered volatility (e(V1+V2)) .

The statics report stationarity, non-normality with high kurtosis and positive skew, and
some interesting volatility differences between Brent and WTI oil. The average yearly
volatility is around 19% for both contracts, while the maximum daily volatility is much
higher for WTI (228.2) than for Brent oil (108.5) contracts. The RESET (12,6) (Ramsey 1969)
test (specification errors) suggests non-stable correlation parameters up to 12 lags. Table 3
and associated figures will be used for additional results in sub-sections below.
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Table 3. Volatility Characteristics for the Oil Front Month Contracts.

Brent Oil Front Month

Mean (all)/ Median Maximum/ Moment Quantile Quantile Cramer- Anderson- Serial dep.
M (-drop) Std.dev. Minimum  Kurt/Skew  Kurt/Skew Normal von-Mises Darling Q(12)
18.4812 17.5436 108.53665 162.801 0.21031 40.2364 53.5048 296.842 8903.80
4.0973 15.6741 10.0512 0.29755 {0.0000} {0.0000} {0.0000} {0.0000}
BDS-Z-statistic (¢ = 1) Phillips- Augm. Breusch-Godfrey LM t.
m=2 m=3 m=4 m=5 m=6 Perron DF-test 10 lags 20 lags
44.3118 45.1030 44.7748 44.5608 44.7548 —29.7032 —4.552498 1513.60 1532.44
{0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0000}
WTI Crude Oil Front Month
Mean (all)/ Median Maximum/ Moment Quantile Quantile Cramer- Anderson- Serial dep.
M (-drop) Std.dev. Minimum  Kurt/Skew  Kurt/Skew Normal von-Mises Darling Q(12)
19.9114 18.8897 228.20711 497.53830 0.42812 32.1454 57.8702 313.840 6198.00
6.39430 11.80940 17.54151 0.18370 {0.0000} {0.0000} {0.0000} {0.0000}
BDS-Z-statistic (¢ = 1) Phillips- Augm. Breusch-Godfrey LM t.
m=2 m=3 m=4 m=>5 m=6 Perron DF-test 10 lags 20 lags
56.5300 56.1900 55.2791 54.8702 55.0307 —47.2572 —4.88025 1170.06 1210.83
{0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0000} {0.0000}

3.2. Empirical Facts for the Volatility of Oil Contracts

When comparing Figures 1 and 3, it seems clear that as returns become wider (nar-
rower), volatility rises (decreases). Furthermore, turbulent (wide returns) days are more
likely to be followed by other turbulent days, and calm (narrow returns) days are more
likely to be followed by other calm days (Baillie et al. 1996). These properties will influence
future volatility expectations. Volatility shows clustering/persistence if today’s return
has a large effect on the forecast variance for many periods in the future. From Table 3,
the Q-statistic (Ljung and Box 1978) and the Breusch-Godfrey Lagrange multiplier test
(Godfrey 1988) together with the correlograms in Figure 5(bottom) report expected depen-
dencies up to 40 lags. Furthermore, the BDS independence test statistic (Brock et al. 1996),
where ¢ is one standard deviation and the number of dimensions (m) is six, reports that
for both the Brent oil and WTI crude oil contracts, the volatility data strongly reject the
hypothesis that the observations are independent. The WTI crude oil contracts show the
highest BDS z-statistic dependence. An indication of serial correlation in volatility is also
visible from the coefficient by in Table 2. The table shows that the serial correlation is lower
for the Brent oil (b; = 0.828) than for the WTI oil (b; = 0.983) contracts. The dependence on
history therefore seems more profound for the WTI oil contracts. Results showing b; > 0.8
will indicate a form of volatility clustering. This is also visible in the above Figure 3 for
WTI oil, which show longer periods of high/low volatility (less choppy).

Despite the fact that the volatility process has long dependencies, it seems to return
to its mean. That is, the volatility process possesses mean reversion (stationarity). Table 3
reports the KPSS, Phillips—Perron, and augmented Dickey-Fuller test statistics. For both
Brent and WTI oil front month contracts, all these test statistics report mean reversion. For
Brent oil (WTI oil), the KPSS statistics are 0.108 {0.125} (0.109 {0.128}), the Phillips—Perron
tests are —29.7 {0.0} (—47.3 {0.0}), and the ADF statistics are —4.6 {0.0} (—4.88 {0.0}), where
t-statistics are reported in {}.

Furthermore, the volatility seems to increase more from negative price movements
than from positive ones (Engle and Ng 1993). For the SV model in Table 2 (panel B), this
asymmetry is modelled by negative correlation between returns and volatility (r1). The
negative asymmetry is significant for both the Brent and WTI oil contracts. This negative
correlation suggests that holding volatility as an asset class of its own provides market
participants with excellent diversification and by the same token, provide insurance against
market crashes.
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Figure 5. Daily Conditional Volatility from Observables and Kalman Filtered Volatility.

Volatility densities for both Brent oil and WTI oil contracts suggest lognormal densities.
The density for the WTI oil versus the Brent oil volatility is lower and wider. However, the
mean and standard deviation in Table 3 for WTI oil report a mean and standard deviation
marginally higher than for Brent oil. These two results may suggest that the volatility
for WTI oil is generally smoother and lower than for Brent Oil, but the shock responses
seem higher (i.e., higher responses from the COVID-19 shocks are indicated by a higher
maximum in Figure 3 (Table 3)). Furthermore, the Table 3 numbers show that the contracts
report volatility that is non-normal, right-skewed, and indicate specification errors (RESET
(Ramsey 1969). The distributions in Figure 5(top) strengthen these arguments, showing
non-normal volatility distributions (log-normal).

3.3. Tail Probabilities
The power law, an alternative to assuming normal distributions, is applied to the
nonlinear Kalman-filtered volatility (e(V1+V2)) for the Brent oil and WTI oil front month

contracts. The power law asserts that given a large number of variables, the value of the
variable, v, has the approximate property that when x is large Prob(v > x) = Kx~%, where
K and « are constants. The relationship indicates that In[Prob(v > x)] = InK — alnx,
and charting In[Prob(v > x)| against Inx is a test of whether it holds. The values for
Inx and In[Prob(v > x)] for the two energy contracts show that the logarithm of the
probability of a change by more than x standard deviations is approximately linearly
dependent in Inx for x > 3. Hence, for both contracts, the power law holds for the
volatility. Regressions show the estim