
Leung, Tim; Zhao, Theodore

Article

Multiscale decomposition and spectral analysis of sector
ETF price dynamics

Journal of Risk and Financial Management

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Leung, Tim; Zhao, Theodore (2021) : Multiscale decomposition and spectral
analysis of sector ETF price dynamics, Journal of Risk and Financial Management, ISSN 1911-8074,
MDPI, Basel, Vol. 14, Iss. 10, pp. 1-22,
https://doi.org/10.3390/jrfm14100464

This Version is available at:
https://hdl.handle.net/10419/258568

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/jrfm14100464%0A
https://hdl.handle.net/10419/258568
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


Journal of

Risk and Financial
Management

Article

Multiscale Decomposition and Spectral Analysis of Sector ETF
Price Dynamics

Tim Leung * and Theodore Zhao

����������
�������

Citation: Leung, Tim, and

Theodore Zhao. 2021. Multiscale

Decomposition and Spectral Analysis

of Sector ETF Price Dynamics. Journal

of Risk and Financial Management 14:

464. https://doi.org/10.3390/

jrfm14100464

Academic Editor: Ruipeng Liu

Received: 16 August 2021

Accepted: 24 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Applied Mathematics Department, University of Washington, Seattle, WA 98195, USA; zdzhao16@uw.edu
* Correspondence: timleung@uw.edu

Abstract: We present a multiscale analysis of the price dynamics of U.S. sector exchange-traded funds
(ETFs). Our methodology features a multiscale noise-assisted approach, called the complementary
ensemble empirical mode decomposition (CEEMD), that decomposes any financial time series into
a number of intrinsic mode functions from high to low frequencies. By combining high-frequency
modes or low-frequency modes, we show how to filter the financial time series and estimate condi-
tional volatilities. The results show the different dynamics of the sector ETFs on multiple timescales.
We then apply Hilbert spectral analysis to derive the instantaneous energy-frequency spectrum of
each sector ETF. Using historical ETF prices, we illustrate and compare the properties of various
timescales embedded in the original time series. Through the new metrics of the Hilbert power
spectrum and frequency deviation, we are able to identify differences among sector ETF and with
respect to SPY that were not obvious before.

Keywords: empirical mode decomposition; spectral analysis; time series; multiscale analysis;
exchange-traded funds

1. Introduction

Asset prices are driven by factors of different timescales, ranging from long-term
market regimes to short-term fluctuations. Many market observations and empirical studies
(Fouque et al. 2003; In and Kim 2012; Maghyereh et al. 2019; Yahya et al. 2019) suggest that
many financial time series often exhibit nonstationary behaviors, such as time-varying
volatility and trends. These characteristics can hardly be captured by linear models and
call for an adaptive and nonlinear approach for analysis.

One approach for analyzing nonstationary time series is the Hilbert-Huang transform
(HHT) introduced by Huang et al. (1998). The HHT method can decompose any time
series into oscillating components with nonstationary amplitudes and frequencies using
empirical mode decomposition (EMD). This fully adaptive method provides a multiscale
decomposition for the original time series, which gives richer information about the time
series. The instantaneous frequency and instantaneous amplitude of each component are
later extracted using the Hilbert transform. The decomposition onto different timescales
also allows for reconstruction up to different resolutions, providing a smoothing and
filtering tool that is ideal for noisy financial time series.

As discussed in Huang (2014), the method of HHT and its variations have been
applied in numerous fields, from engineering to geophysics. Applications of HHT to
finance date back to the work by Huang and co-authors on modeling mortgage rate data
(Huang et al. 2003). Empirical mode decomposition (EMD) has been used for financial
time series forecasting (Nava et al. 2018b; Wang and Wang 2017) and for examining the
correlation between financial time series (Nava et al. 2018a).
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In terms of methodology, there have been several studies on the variations and
alternatives to EMD, including optimization-based methods (Hou and Shi 2011, 2013; Hou
et al. 2009; Huang and Kunoth 2013), ensemble empirical-mode decomposition (EEMD) for
tackling mode mixing (Wu and Huang 2009), and noise-assisted alternative approaches
(Yeh et al. 2010).

For financial time series with high levels of intrinsic noise, we apply the complemen-
tary ensemble empirical mode decomposition (CEEMD). Like EMD, CEEMD decomposes
any time series—stationary or not—into a number of intrinsic mode functions representing
the local characteristics of the time series at different timescales, but the timescale separa-
tion is improved by resolving mode mixing in EMD (Huang et al. 1999). The noise-assisted
approach is also more robust to intrinsic noise in the data. CEEMD have been found to be
useful for forecasting (Niu et al. 2016; Tang et al. 2015) and signal processing Li et al. (2015).
In our companion papers Leung and Zhao (2021a, 2021b), we introduce variations of
the complementary ensemble EMD method to analyze cryptocurrency and equity prices,
respectively.

We focus our study on the multiscale analysis of sector ETF price dynamics. Our
noise-assisted approach decomposes any financial time series into a number of intrinsic
mode functions, along with the corresponding instantaneous amplitudes and instantaneous
frequencies. Different combinations of modes allow us to reconstruct the time series using
components of different timescales. We then apply Hilbert spectral analysis to define
and compute the associated instantaneous energy-frequency spectrum to illustrate the
properties of various timescales embedded in the original time series. In particular, we
derive and compute the central frequency associated with a collection of sector ETFs, which
allows us to compare the distinct behaviors of ETF prices.

In the literature, there are relatively few studies that examine and compare the price
dynamics of sector ETFs. In Arugaslan and Samant (2014), traditional statistical estimation
techniques are used to compare the price dynamics of ETFs. In Tiwari et al. (2017), the
authors use multifractal detrended fluctuation analysis (MF-DFA) and the Hurst exponent
to show that the sector ETF market is multifractal. They also argue that the dynamics on
long and short timescales challenge the market efficiency hypothesis. Similar studies in
other markets can also be found in Aloui et al. (2018); Mensi et al. (2017); Yang et al. (2016).
These studies provide evidence and motivation that multiscale analysis is necessary to
fully understand the price dynamics of various assets.

Our primary objective is to present a new method to analyze sector ETFs on a multi-
scale level. Comparing to previous studies, our methodology provides a new multiscale
time-frequency perspective to investigate sector ETF price dynamics. To our best knowl-
edge, our study is the first application of CEEMD to sector ETFs, and our Hilbert spectral
analysis and derivation of power spectrum for sector ETFs are also new.

Moreover, our approach is a fully data-driven method and flexible to adapt to the
different timescales embedded in the time series. Through the new metrics like filtered
conditional volatility and the Hilbert power spectrum, we provide new ways to discern
differences among sector ETFs that are hidden in certain timescales. For example, we
introduce frequency deviation in order to measure the synchronization between a sector ETF
and the market index.

Among our results, we find that sector ETFs exhibit different degrees of volatility
asymmetry. Perhaps surprisingly, some sector ETFs, such as XLP, XLY, and XLC, tend to
have higher volatility in an upside market than that in a downside market.

The rest of the paper is structured as follows. We present our time series decomposition
method in Section 2. As a direct application, CEEMD is used for filtering ETF time series in
Section 3. In Section 4, we discuss the estimation of multiscale conditional volatilities and
compare them across sector ETFs. In Section 5, we derive the energy-frequency spectra of
various sector ETFs and provide a comparative analysis. Lastly, concluding remarks are
provided in Section 6.
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2. Multiscale Decomposition Methodology

For our analysis of financial time series, a major building block is the empirical mode
decomposition (EMD) introduced by Huang et al. (1998). In its simplest form, this method
iteratively decomposes a time series x(t) into a finite sequence of oscillating components
c1(t), · · · , cn(t), plus a nonoscillatory trend called the residual term rn(t). Precisely, we
have

x(t) =
n

∑
j=1

cj(t) + rn(t). (1)

The resulting components cj(t)s are called intrinsic mode functions (IMFs) by Huang
et al. (1998). They have certain oscillatory properties and admit well-behaved and phys-
ically meaningful Hilbert transform. For each IMF, the numbers of extrema and zero
crossings must be equal or at most, differ by one, and the maxima of the function defined
by the upper envelope and the minima defined by the lower envelope must sum up to
zero at any time. These conditions ensure pure oscillation while allowing time-varying
frequency and amplitude. Mathematically, an IMF c(t) can be expressed as

c(t) = a(t) cos(θ(t)), (2)

where a(t) ≥ 0 is the instantaneous amplitude, and θ(t) is the phase function with θ′(t) ≥ 0.

2.1. EMD Algorithm and Variations

In other words, the standard EMD algorithm (Huang et al. 1998; Rilling et al. 2003) is
a sifting process that decomposes any time series into a finite set of IMFs that oscillate on
different timescales, plus a nonoscillatory residual term. The key idea is as follows: look
for the finest oscillation by finding all the local maxima and minima, and then subtract the
remaining trend until the oscillation satisfies the IMF conditions. Each IMF discovered is
removed sequentially from the time series until a nonoscillatory residual term remains.
The residual term is a constant or monotonic function, or has, at most, one maximum or
minimum.

The algorithm is summarized as follows:

• Initialize the residual term as r0(t) = x(t) and set j = 1.
• While rj−1(t) is not nonoscillatory, which means having more than one maximum/

minimum, apply the following sifting process:
• Initialize the component as cj(t) = rj−1(t).

– Interpolate the maxima of cj(t) using a cubic spline as the upper envelope u(t),
and interpolate the minima of cj(t) using a cubic spline as the lower envelope
l(t). Compute the mean of the upper and lower envelopes m(t) = 1

2 (u(t) + l(t)).
– Iterate cj(t)← cj(t)−m(t).
– Stop when cj(t) satisfies the criteria of an IMF. Let cj(t) be the j-th component,

and iterate rj(t) = rj−1(t)− cj(t) and j← j + 1.

• Return the IMFs c1(t), · · · , cn(t), and the residual term rn(t).

This algorithm is purely empirically driven and adaptive with minimal assumption on
temporal changes and distributional properties, making it ideal for nonstationary financial
time series.

When decomposing a time series into IMF components of different frequencies, the
phenomenon of mode mixing may arise. Mode mixing is defined as either one IMF
consisting of widely disparate scales, or signals of similar scales residing in several IMF
components (Huang et al. 1999; Wu and Huang 2009). This problem poses potential
challenges on the interpretation of IMFs, and can be exacerbated by the high degrees of
nonstationarity and noise commonly observed in sector ETF prices.
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The ensemble empirical mode decomposition (EEMD) was proposed by Wu and
Huang (2009) to resolve the mode mixing issue. It is a noise-assisted signal processing tech-
nique that extracts each component from an ensemble mean computed based on N trials.
In each trial i, an i.i.d. white noise wi(t) with a zero mean and finite variance is added to the
original time series x(t), and x(t) + wi(t) is referred to as the signal in this trial. The plain
EMD algorithm is then applied to the signal, outputting the IMFs cij(t), j = 1, · · · , n, and
the residual term rin(t). Finally, the ensemble mean of the IMF components and residual
terms across all the N trails is regarded as the true mode extraction. The components are
given by

cj(t) =
1
N

N

∑
i=1

cij(t), rn =
1
N

N

∑
i=1

rin(t). (3)

Applying these to (1), we obtain

n

∑
j=1

cij(t) + rin(t) = x(t) + wi(t). (4)

Summing up (4) over the trials divided by N, the ensemble mean of the IMF compo-
nents is x(t) + 1

N ∑N
i=1 wi(t), which converges to the original time series x(t) almost surely

at the rate of O( 1√
N
).

Hence, a large ensemble size is desired, though it can also be prohibitive in terms of
computational cost and speed. To address this particular issue, Yeh et al. (2010) introduced
the complementary ensemble EMD (CEEMD) method. CEEMD adds a complementary
negative noise −wi(t) to the ensemble for each trial, thus expanding the total ensemble
size to 2N. The components from the ensemble mean sum up to equal the original time
series:

n

∑
j=1

cj(t) + rn(t) = x(t) +
1

2N

N

∑
i=1

(wi(t)− wi(t)) = x(t). (5)

This holds exactly regardless of the choice of N, thus reducing the need to have a very
large ensemble size. In addition to reducing mode mixing, CEEMD is also more robust
to intrinsic noise in the original data, as it automatically averages out extra independent
noises in the process.

2.2. CEEMD for Sector ETFs

We now apply CEEMD to analyze the empirical price dynamics of U.S. sector ETFs.
As summarized in Table 1, there are, in total, eleven funds representing all the sectors
in the U.S. market. Each ETF represents a portfolio of equities within the corresponding
sector. The ETFs hold different numbers of stocks, and their assets under management
(AUM) range from under U.S.$10 bil to over U.S.$70 bil. All these sector ETFs, except the
real estate sector ETF VNQ, are the Select Sector SPDR Funds issued by State Street Global
Advisors (SSGA). SSGA also has a real estate sector ETF (ticker: XLRE), but its AUM is
much smaller than a similar fund, VNQ, issued by Vanguard. Hence, we select VNQ over
XLRE as the real estate sector ETF in our study. Moreover, the communication services
sector ETF XLC has the shortest price history since it was created in June 2018. To make a
fair comparison across all the ETFs, we fix the common time frame from 20 June 2018 to 15
June 2021 to accommodate for the shortest price history of the ETFs in Table 1.

In Figures 1–6, we illustrate the decomposition implemented from CEEMD. We take
the log prices of the top six sector ETFs: {XLK, XLE, XLF, XLV, XLY, VNQ}, and apply
CEEMD to obtain five IMFs along with the residuals. As such, the top row in each plot
shows the original log price time series x(t), followed by the IMF cj(t)s with decreasing
frequencies, ending with the residual term. The number of IMF components n = 5, so
along with the residual term, there are six components in total. As we can see, the first IMF
exhibits the highest frequency of fluctuation, whereas the smooth residual term reflects the
overall trend.
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Table 1. List of U.S. sector ETFs ranked by asset under management (AUM). Source: ETF fact sheets
by Vanguard and State Street Global Advisors as of 30 June 2021.

Sector ETF Ticker # Holdings AUM ($b)

Real Estate VNQ 174 77.50
Technology XLK 74 44.19
Financials XLF 65 39.30

Health Care XLV 64 31.19
Energy XLE 22 22.58

Consumer Discretionary XLY 63 19.72
Industrials XLI 74 19.40

Communication Services XLC 26 13.93
Consumer Staples XLP 32 12.36

Utilities XLU 28 11.78
Materials XLB 28 8.59
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Figure 1. Five IMFs and residual terms extracted from the time series of XLK using CEEMD over the
period 20 June 2018–15 June 2021. The top row in each plot shows the original time series (in log
prices). The subsequent rows show the IMFs of the corresponding time series, except for the bottom
row which shows the residuals.
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Figure 2. Five IMFs and residual terms extracted from the time series of XLV using CEEMD over the
period 20 June 2018–15 June 2021.
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Figure 3. Five IMFs and residual terms extracted from the time series of XLF using CEEMD over the
period 20 June 2018–15 June 2021.
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Figure 4. Five IMFs and residual terms extracted from the time series of VNQ using CEEMD over
the period 20 June 2018–15 June 2021.
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Figure 5. Five IMFs and residual terms extracted from the time series of XLE using CEEMD over the
period 20 June 2018–15 June 2021.
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Figure 6. Five IMFs and residual terms extracted from the time series of XLY using CEEMD over the
period 20 June 2018–15 June 2021.

The modes on different timescales can indicate different behavior of the time series.
Let’s consider the recent COVID-19 event, for example. When S&P 500 and all sector ETFs
began the sharp decline from 2/21/2020 on, intrinsic modes 1, 2, and 3 also showed a
notable peak around the time period. The lower-frequency modes 4 and 5 exhibited a steep
decrease towards the day of market crash.

3. Multiscale Filtering

The CEEMD algorithm is an iterative sifting process that identifies the rapid fluctu-
ations and long-term trends from any given time series. As a consequence, the first few
components have higher frequency and the last few components have lower frequency,
and they all sum up to the original time series. Hence, by combining different components
from the decomposition, CEEMD can be used as a filtering and reconstruction tool.

In the reconstruction of the original time series using the IMF components, we can
choose a subset of modes as a filter for desired information. By removing the first few
high-frequency components, we create a low-pass filter; that is,

x(ml)
L (t) = x(t)−

n−ml+1

∑
j=1

cj(t). (6)

This reconstruction using only the last few components can serve as a smoothing of
the time series. Similarly, we can also build a high-pass filter with

x(mh)
H (t) =

mh

∑
j=1

cj(t), (7)

which captures the high-frequency local behaviors, and can also be used to estimate
volatility.
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In each case, the number of components (including the residual term) equals to ml

and mh, respectively. We use x(ml)
L (t) and x(mh)

H (t) to denote the low-pass and high-pass
filtered reconstruction of x(t) with ml and mh components. Note that the low-pass filter
and the high-pass filter are complementary to each other when ml + mh = n + 1, where
n + 1 is the total number of components (including the residual term).

To illustrate these filters, we consider four sector ETFs over a 3-year period. For each
ETF, let s(t) be the value of the time series and x(t) := log(s(t)) be its log price. In each
case, CEEMD is applied to the time series x(t) to extract the IMFs and residual.

In Figure 7, we show the low-pass filters of the price time series of four sector ETFs:
{XLK, XLE, XLF, and XLV}. This involves applying (6) using different collections of compo-
nents. Specifically, we used the last 4, 3, and 2 components including the residual term,
that is, x(ml)

L (t) with ml = 4, 3, 2. The reconstructed log prices were taken exponentially to
approximate the original price data. We can see that, with more components included in
the reconstruction, the resulting time series resembles the original time series on a finer
timescale. Compared to some other time series smoothing techniques, such as the moving
average, the CEEMD low-pass filter achieves smoothing without lags.
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Figure 7. From top to bottom: time series of XLK, XLE, XLF, and XLV prices and their associated
low-pass filters. The low-pass filters consist of low-frequency IMF components and are generated
based on Equation (6) by using the last 2, 3, or 4 components.
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4. Multiscale Volatility

We now examine the multiscale properties of volatility we apply CEEMD to filter the
original time series into low-pass and high-pass components. Statistical analysis, such as
mean and volatility, can be defined on the filtered time series.

4.1. High-/Low-Pass Filters

To set up, let s(t) be the price of the asset price, and x(t) = log s(t) be the log price.
Implement CEEMD on x(t) and apply (6) and (7) to get x(ml)

L (t) and x(mh)
H (t), with ml and

mh being the number of components in the low-pass and high-pass filters, respectively. To
study the statistical properties of the asset prices, we define the low-pass and high-pass log
returns:

r(ml)
L (t) = x(ml)

L (t)− x(ml)
L (t− 1), (8)

r(mh)
H (t) = x(mh)

H (t)− x(mh)
H (t− 1). (9)

The low-pass volatility and high-pass volatility are the standard deviation of the
low-pass and high-pass returns, defined by the unbiased estimators

σ
(ml)
L =

√√√√ 1
T − 1

T

∑
t=1

(
r(ml)

L (t)− µ
(ml)
L

)2
, (10)

σ
(mh)
H =

√√√√ 1
T − 1

T

∑
t=1

(
r(mh)

H (t)− µ
(mh)
H

)2
, (11)

where

µ
(ml)
L =

1
T

T

∑
t=1

r(ml)
L (t), µ

(mh)
H =

1
T

T

∑
t=1

r(mh)
H (t) (12)

are the mean low-pass and high-pass log returns.
Figures 8 and 9 show the 3-month rolling volatility of XLK, XLE, and SPY computed

using all components, high-pass filtered data, and low-pass filtered data. Recall from
Figures 1 and 6 that the time series are decomposed into six components, including the
residual terms. We use ml = 4 for low-pass filtering and mh = 2 for high-pass filtering.
Notice that the high-pass filtered time series captures most of the volatility residing in
the original times series. This is also observed in Table 2. Hence, we consider using the
stationary high-pass filtered data for statistical analysis.
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Figure 8. Time series of the 3-month rolling volatility of XLK over the period 19 September 2018–15
June 2021.
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Figure 9. Time series of the 3-month rolling volatility of XLE, and SPY over the period 19 September
2018–15 June 2021. For each ETF, we compute the annualized volatility using all IMF components,
only the high-pass (mh = 2) filtered data, or only the low-pass (ml = 4) filtered data.

Table 2. Percentage of log return variance in IMF component reconstruction of sector ETFs (%).

First 5 First 4 First 3 First 2 First 1 Last 5 Last 4 Last 3 Last 2 Last 1

XLK 99.8259 99.6508 98.5317 92.9884 77.3954 19.7625 6.0245 1.0859 0.2588 0.0054
XLE 99.6452 99.1981 95.3561 87.5555 71.9705 25.5809 12.9790 3.6628 0.9244 0.0451
XLF 99.4613 98.8796 96.4074 90.2359 72.9261 25.2204 8.8075 2.7549 0.7481 0.4160
XLV 99.8574 99.6924 97.5934 92.6984 73.0258 25.3905 6.8497 1.5566 0.1210 0.0711
XLY 99.7793 99.4109 97.6389 89.9345 68.9575 26.6930 8.6944 1.6817 0.7732 0.0686
XLP 99.8637 99.5129 98.5454 92.1821 71.2906 23.5865 7.0254 1.0266 0.3154 0.0118
XLI 99.7285 99.3705 97.1640 89.5023 69.6809 27.4544 9.0584 2.3807 0.6726 0.1157
XLB 99.6872 99.2413 97.1382 90.0120 66.0320 30.7538 9.3170 2.4662 0.5770 0.1226
XLU 99.8460 99.7146 99.0680 92.3583 71.5283 24.3641 7.0881 0.8368 0.1555 0.0280
XLC 99.7025 99.5082 98.6954 92.1340 75.4771 22.4029 7.2018 0.8245 0.2376 0.1101
VNQ 99.6289 99.2716 98.2043 89.1387 68.9805 28.0985 9.4033 1.3126 0.5772 0.1554
SPY 99.7060 99.4936 97.7869 90.4462 71.7355 24.8835 9.4217 1.7540 0.4948 0.2072

4.2. Volatility Asymmetry

It has been observed in the financial market that the volatility of asset returns is
usually asymmetric, that is, the volatility is higher in a downside market than that in an
upside market. Following Bekaert and Wu (2000), we capture the asymmetry by looking at
the conditional volatility. Specifically, we examine whether the asymmetry exists in the
price dynamics. To that end, we define the conditional volatilities based on the ACE-EMD
high-pass filter as follows:

σ
(mh)
+H =

√
Var(r(mh)

H (t)|r(mh)
H (t− 1) > µ

(mh)
H ), (13)

σ
(mh)
−H =

√
Var(r(mh)

H (t)|r(mh)
H (t− 1) < µ

(mh)
H ). (14)

In essence, σ
(mh)
+H and σ

(mh)
−H capture the high-pass volatilities conditioned on an upside

movement and a downside movement, respectively.
Figure 10 shows the 3-month rolling estimation of the conditional volatility using

high-pass filtered data of XLK, XLE, and SPY. In the high-pass components, we see that
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S&P 500 shows asymmetric volatility with a larger downside volatility most of the time.
The sector ETFs, however, exhibit both directions of asymmetry, where upside and down-
side movements trigger high volatility alternately during different periods of time. This
phenomenon suggests distinct behavior of the sector ETFs comparing with the traditional
equity indices.

Define the events of upside volatility asymmetry and downside volatility asymmetry
as:

A+ = (σ
(mh)
+H − σ

(mh)
−H ) > εσ

(mh)
H (15)

A− = (σ
(mh)
+H − σ

(mh)
−H ) < −εσ

(mh)
H (16)
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Figure 10. From top to bottom: time series of the 3-month rolling conditional volatility using high-
pass (mh = 2) filtered data of XLK, XLE, and SPY from 19 September 2018 to 15 June 2021. For each
ETF, we plot the unconditional volatility, along with the conditional upside volatility and conditional
downside volatility.
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In Figure 11, we plot the frequency of event A+, as defined in (15), against the fre-
quency of event A−, as defined in (16). The dashed line corresponds to P(A+)+P(A−) = 1,
and the closeness to the dashed line indicates the level of volatility asymmetry in general.
We can see there are clear clusters separating the ETFs. In the upper left region, the corre-
sponding ETFs, such as XLP, XLY, and XLC, are upside volatility asymmetry dominated. In
contrast, towards the lower right direction the corresponding ETFs are downside volatility
asymmetry dominated. The sector ETFs with the highest probability of downside asymme-
try are XLU, XLE, XLK, XLV, and XLB. The S&P 500 index ETF, along with XLF and XLI, lie
somewhere in the middle in terms of the upside/downside asymmetry.
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Figure 11. Asymmetric volatility effect for large cap sector ETFs and SPY, estimated using prices
from 20 June 2018 to 15 June 2021. Points closer to the lower right corner are more dominated by
downside volatility, while the upper left region shows more upside volatility. Points closer to the
dashed line show more volatility asymmetry in general.

5. Energy-Frequency Spectrum

As is well-known (see Koopmans 1995; Huang et al. 2003, among others), spectral
analysis provides an alternative aspect to analyze time series on the frequency domain.
The definition of an IMF is very amenable to Hilbert spectral analysis. In this section, we
apply this approach to compute and analyze the energy-frequency spectra of the sector
ETFs.

5.1. Hilbert Spectral Analysis

Every oscillating real-valued function can be viewed as the projection of an orbit on
the complex plane onto the real axis. For any function in time X(t), the Hilbert transform
is given by

Y(t) = H[X](t) :=
1
π

∫ +∞

−∞

X(s)
t− s

ds, (17)

where the improper integral is defined as the Cauchy principle value. The transform exists
for any function in Lp (see Titchmarsh 1948). As a result, Y(t) provides the complementary
imaginary part of X(t) to form an analytic function in the upper half-plane defined by

Z(t) = X(t) + iY(t) = a(t)eiθ(t), (18)
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where

a(t) = ‖Z(t)‖ =
√

X2(t) + Y2(t), (19)

θ(t) = arg Z(t) = arctan(
Y(t)
X(t)

). (20)

Recall from Equation (2) that an IMF admits the form c(t) = a(t) cos(θ(t)). It is known
that if the amplitude and frequency are slow modulations, then the corresponding Hilbert
transform gives a π/2 shift to the phase θ(t) (see Bedrosian 1963; Nuttall and Bedrosian
1966). Therefore, the a(t) given by (19) is the instantaneous amplitude, and the θ(t) given
by (20) is the instantaneous phase function. The instantaneous frequency is then defined as
the 2π-standardized rate of change of the phase function:

f (t) =
1

2π
θ̇(t) =

1
2π

d
dt

(
arctan(

Y(t)
X(t)

)

)
. (21)

Applying Hilbert transform to each of the IMF components individually yields a
sequence of analytic signals (see Huang et al. 1998):

cj(t) + iH[cj](t) = aj(t)e
iθj(t), (22)

for j = 1, · · · , n. In turn, the original time series can be represented as

x(t) = Re
n

∑
j=1

aj(t)e
i
∫ t 2π f j(s)ds + rn(t). (23)

This decomposition can be seen as a sparse spectral representation of the time se-
ries with time-varying amplitude and frequency. In other words, each IMF represents a
generalized Fourier expansion that are suitable for nonlinear and nonstationary financial
time series. In summary, the procedure generates a series of complex functions that are
analytic in time, along with their associated instantaneous amplitudes and instantaneous
frequencies. These components capture different time scales and resolutions embedded in
the time series and are used for time series filtering and reconstruction.

Lastly, the Hilbert spectrum is defined by

H( f , t) =
n

∑
j=1

Hj( f , t), where Hj( f , t) =

{
aj(t), f = f j(t),
0, otherwise.

(24)

The instantaneous energy of the j-th component is defined as

Ej(t) = |aj(t)|2. (25)

We examine the behavior of the Hilbert spectrum through the pair ( f j(t), Ej(t)) for
t ∈ [0, T] and j = 1, · · · , n (see Figure 12), which forms a sparse energy-frequency spectrum.
Through this new lens, we examine the behaviors of the time series.

5.2. Central Frequency and Power Spectrum

For each time series, we can obtain the instantaneous frequency f j(t) from (21) and
instantaneous energy Ej(t) from (25), corresponding to mode j = 1, · · · , n. This allows us to
derive the instantaneous energy-frequency spectrum as shown in Figures 12–15. Each point
on the plots is a pair of ( f j(t), Ej(t)), for mode j = 1, · · · , n, and time t = 1, · · · , T. We see
that for each mode j, the instantaneous energy-frequency pairs ( f j(t), Ej(t)), t = 1, · · · , T
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form a cluster of points. We define the central frequency and central energy of mode j during
the time period [0, T] as follows:

f̄ j = exp
(

1
T

∫ T

0
log f j(t)dt

)
, (26)

Ēj = exp
(

1
T

∫ T

0
log Ej(t)dt

)
. (27)

While the instantaneous frequency and energy are time-varying, they are typically
fluctuating or orbiting around the central points. Dragomiretskiy and Zosso (2013) assumed
a central frequency in each mode and used the concept to derive the variational mode
decomposition (VMD). Intuitively, the central frequency and central energy capture the
overall spectral properties of the time series (see Wu and Huang 2004).

From Figures 12–15 we also observe a clear linear relationship in the log space of
central frequency and energy pair ( f̄ j, Ēj), which are marked as the black crosses. A linear
regression is run on the central frequencies to estimate the slope of the spectrum. This
indicates a power spectrum relation

E( f ) ∼ 1
f α

. (28)

The power spectrum exponent α controls how fast the energy decays from lower to
higher frequency, and is key to the property of the spectrum and the associated time series.
It has been long observed that many time series in nature have α close to one, well-known
as the 1/ f spectrum or “pink noise”. In Figures 12–15, the solid line in each plot is obtained
from linear regression of (log( f̄ j), log(Ēj)). The negative slope of the line estimates the
power spectrum exponent α for the time series. The power spectrum exponents for the
S&P 500 index and U.S. sector ETFs are summarized in Table 3.
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Figure 12. Instantaneous energy-frequency spectrum for SPY and sector ETFs {XLK, XLE, XLF}
based on the time period from 20 June 2018 to 15 June 2021.
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Figure 13. Instantaneous energy-frequency spectrum for sector ETFs XLV and XLY.
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Figure 14. Instantaneous energy-frequency spectrum for four sector ETFs: XLP, XLI, XLB, and XLU.
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Figure 15. Instantaneous energy-frequency spectrum for sector ETFs XLC and VNQ.

Table 3. Power spectrum exponents for the S&P 500 index and U.S. sector ETFs.

ETF α ETF α ETF α

SPY 0.8000 XLK 1.2001 XLE 1.4110
XLF 0.9785 XLV 0.6146 XLY 1.2625
XLP 0.9729 XLI 1.1377 XLB 1.1059
XLU 0.9204 XLC 0.8836 VNQ 0.9265

5.3. Frequency Synchronization

To further investigate the spectral characteristics of sector ETFs, we conduct a pair-
wise comparison between each sector ETF and the S&P500 ETF (SPY). For each pair of ETFs,
we plot the associated central frequencies derived from their price time series, denoted by
f̄ j, j = 1, · · · , n. In Figures 16–19, we show the log-log scatter plots of the instantaneous
frequencies of sector ETFs and SPY. Each point on the plot is a pair of instantaneous
frequencies of the two time series recorded at the same time, and the central frequencies
are marked as black crosses. The solid straight line of unit slope shows the reference line
for identical frequencies.

We observe that some sector ETFs, such as XLF and VNQ, appear to share similar
frequency profiles and their central frequencies are very close. On the other hand, the
central frequencies deviate from the identical line at low-frequency modes for all sector
ETFs vs. SPY, with XLK being the most extreme example. This means that sector ETFs tend
to exhibit slower dynamics in the longer term components, while the fast modes of both
sector ETFs and SPY have similar mean frequencies. Similar frequency profiles suggest
synchronization, which is a typical phenomenon in nonlinear dynamics with interaction
(see e.g., Pikovsky et al. 2003). In order to quantify the frequency synchronization level
between two time series x1 and x2, we define the associated frequency deviation as follows:

D(x1, x2) :=
n

∑
j=1

log2

 f̄ (1)j

f̄ (2)j

 = ‖ log( f̄ (1))− log( f̄ (2))‖2. (29)

A lower frequency deviation value represents a higher synchronization level. In
particular, we have D(x1, x2) = 0 if, and only if the central frequencies of all the IMF
components are identical for x1 and x2, meaning the two time series are fully synchronized.

To see how the sector ETFs have evolved compared to the S&P 500, we plot their power
spectrum exponent α estimated from a 2-year rolling window. As shown in Figure 20, the
power spectrum exponents α of most sector ETFs are consistently higher than that of SPY.
Over the one-year period, the power spectrum exponent of SPY is gradually decreasing
from close to 1 to less than 0.8. Several sector ETFs, such as XLE and XLY, continue to have
the highest power spectrum exponents through time. In contrast, the real estate ETF VNQ
is seen to have the lowest power spectrum exponent over time.
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Furthermore, in Figure 21, we see that the sector ETF frequency deviation, when
compared against SPY as defined in (29), has shown a general trend of increase from
2020 to 2021. The largest frequency deviation comes from the technology ETF XLK, while
the industrial sector ETF XLI has experienced a drastic continual increase in frequency
deviation. These observations are evidence of partial asynchronization over a relatively
long period of time.

The power spectra and frequency profiles provide new perspectives on how to differ-
entiate and compare the price dynamics of sector ETFs. Our findings on these ETFs are
useful for a number of practical purposes, including sector rotation, asset allocation, and
portfolio diversification, which are vital not only for individual and institutional investors.
Our study also discovers some new price behaviors and properties of sector ETFs. The
multiscale metrics used herein, such as asymmetric volatility and frequency deviation,
provide better understanding of the risks associated with these ETFs, which is important
for both investors and policy makers.
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Figure 16. Instantaneous frequency: Sector ETFs {XLK, XLE, XLF, XLV} vs. SPY. The data are based
on the time period from 20 June 2018 to 15 June 2021.
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Figure 17. Instantaneous frequency: Sector ETFs {XLY, XLP} vs. SPY. The data are based on the time
period from 20 June 2018 to 15 June 2021.
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Figure 18. Instantaneous frequency: Sector ETFs {XLI, XLB, XLU, XLC} vs. SPY. The data are based
on the time period from 20 June 2018 to 15 June 2021.
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Figure 19. Instantaneous frequency: VNQ vs. SPY. The data are based on the time period from 20
June 2018 to 15 June 2021.
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Figure 20. The evolution of the power spectrum exponents for all sector ETFs, compared against SPY.
The results are computed based on a 2-year rolling window from 22 June 2020 to 15 June 2021.
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Figure 21. Frequency deviations between sector ETFs and SPY over time. Results are computed
using Equation (29) based on a 2-year rolling window from 22 June 2020 to 15 June 2021.

6. Conclusions

We developed a data-driven algorithm to discover and examine the multiscale charac-
teristics of U.S. sector ETF price dynamics, including intrinsic mode functions of various
frequencies. Different combinations of modes allow us to filter the financial time series or
estimate its volatility based on different timescales. Across all sector ETFs, we compare
their price behaviors as well as multiscale properties. In the same spirit, we apply Hilbert
spectral analysis to compute the associated instantaneous energy-frequency spectrum for
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each sector ETF. In particular, the power spectrum exponents of most sector ETFs have
been significantly higher than that of the S&P 500, and the phenomenon tends to persist.

The EMD approach also has its shortcomings. One common issue is the end-effect,
whereby the decomposition becomes less accurate near both ends of the time series (see
Chen and Feng 2003, among others). The noise-assisted CEEMD method here partially
addresses the end effect, but there is no guarantee. In addition, the number of modes from
EMD may depend on a number of factors, such as the time frame of the data. Therefore, if
two time series result in different numbers of modes, then comparison becomes less direct.
As a remedy, one can pre-specify a common number of modes for the decomposition of
multiple time series.

For future research, one direction is to apply or extend CEEMD to examine the high-
frequency price evolution of ETFs and other assets. The CEEMD method can also be
used to generate a collection of new HHT features. These features can be integrated into
machine learning models, leading to several practical applications, such as forecasting and
classification (see e.g., Leung and Zhao 2021b).
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