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Abstract: The increasingly complex economic and financial environment in which we live makes
the management of liquidity in payment systems and the economy in general a persistent challenge.
New technologies make it possible to address this challenge through alternative solutions that
complement and strengthen existing payment systems. For example, interbank balancing and
clearing methods (such as real-time gross settlement) can also be applied to private payments,
complementary currencies, and trade credit clearing to provide better liquidity and risk management.
The paper defines the concept of a balanced payment system mathematically and demonstrates
the effects of balancing on a few small examples. It then derives the construction of a balanced
payment subsystem that can be settled in full and therefore that can be removed in toto to achieve
debt reduction and payment gridlock resolution. Using well-known results from graph theory, the
main output of the paper is the proof—for the general formulation of a payment system with an
arbitrary number of liquidity sources—that the amount of liquidity saved is maximum, along with
a detailed discussion of the practical steps that a lending institution can take to provide different
levels of service subject to the constraints of available liquidity and its own cap on total overdraft
exposure. From an applied mathematics point of view, the original contribution of the paper is
two-fold: (1) the introduction of a liquidity node with a store of value function in obligation-clearing;
and (2) the demonstration that the case with one or more liquidity sources can be solved with the
same mathematical machinery that is used for obligation-clearing without liquidity. The clearing
and balancing methods presented are based on the experience of a specific application (Tetris Core
Technologies), whose wider adoption in the trade credit market could contribute to the financial
stability of the whole economy and a better management of liquidity and risk overall.

Keywords: obligation-clearing; invoice-netting; liquidity-saving; graph theory

1. Introduction

This paper provides the mathematical foundations of an algorithm discussed in a
recent companion paper that presents liquidity-saving in payment systems through the
analysis and visualization of an empirical data set (Fleischman et al. 2020). We focus on
a particular implementation of the multilateral set-off of obligations between companies,
the centralized software application Tetris Core Technologies (TCT) developed by Be So-
lutions, which has been running uninterrupted in Slovenia since 1991 in support of the
trade credit market (Schara and Bric 2018). Although the BeSolutions TCT algorithm is
proprietary, we feel that obligation-clearing as a financial instrument is so important for
supporting cash-strapped small and medium-sized enterprises (SMEs) that the mathe-
matical logic underpinning it should be disseminated widely and made as accessible as
possible, in preparation for eventually opening it up. Therefore, the mathematical pre-
sentation deliberately revisits well-established graph theory results from the 1980s and
1990s in a semi-formal and interdisciplinary style, with the specific objective to make the
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material more easily accessible to applied scientists and practitioners without sacrificing
mathematical rigour.

Liquidity-saving mechanisms (LSMs) such as clearing houses, complementary cur-
rencies, debt recovery services, etc. are an important and well-studied part of interbank
payment and settlement systems. Tompkins and Olivares (2016) observe that LSMs are used
in all 27 jurisdictions of the EU. Most payment systems are becoming more open to a greater
number of direct participants, and are leveraging centralized architectures to implement
advanced liquidity-management tools. This evolution is necessary for the payment systems
to be able to keep up with the development of the economy. Galbiati and Soramäki (2010)
point out that banks have a tendency to under-provide liquidity and, therefore, incur higher
delays and overall costs than is socially optimal.

A “central planner” using an LSM would provide the economy with more trade
credit liquidity than banks do. Thus, it is important to introduce an LSM in markets that
are interconnected with payment systems to reduce the risk of spillovers (e.g., a domino
effect of payment defaults) and to provide enough liquidity for the smooth running of the
economy. A public blockchain can serve as a viable decentralized finance (DeFi) alternative
to a central authority and a centralized architecture. Although we are currently pursuing
such an application of the blockchain to LSMs, the legal and regulatory implications of this
approach are far from clear at this stage. Thus, in this article, we focus on the mathematical
aspects of the mechanism and the algorithm, leaving a computer science and regulatory
discussion of possible blockchain architectures, implementations, and protocols for LSMs
to a future paper.

From an applied mathematics point of view, therefore, the original contribution
of the paper is two-fold: (1) the introduction of a liquidity node with a store of value
function in obligation-clearing; and (2) the demonstration that the case with one or more
liquidity sources can be solved with the same mathematical machinery that is used for
obligation-clearing without liquidity, including the application of the Minimum Cost Flow
optimization method (Király and Kovács 2012) to LSMs. More generally, although we
are well aware that the mathematical material presented in this article has been known
for decades and that there are other systems that provide similar functionality, the main
differences are that TCT provides a guaranteed maximum aggregate debt reduction, equal
treatment of all parties and, most importantly, has been operating in a public institutional
environment for 30 years.

1.1. Interbank vs. Trade Credit Clearing

Interbank networks are a well-researched topic (Gobbi 2018). Contrary to interbank
networks, trade credit networks have not enjoyed the same level of attention, as suggested
by the number of hits resulting from a Google Scholar search in August 2021 for these terms:

• interbank network: 2770
• interbank networks: 1960
• trade credit network: 64
• trade credit networks: 51

Such a large difference is partly due to the importance of the network approach to the
assessment of overall financial stability and systemic risk (Hüser 2015). However, despite
all the research, the inter-connectedness and the network effects in the financial system
are still not well-understood (Glasserman and Young 2016). The gap in understanding the
network effects in the trade credit market is therefore even larger, which is one of the main
motivators for writing this article.

The network approach is in fact very important also for the analysis of trade credit
relationships. A trade credit relationship is established upon the issuance of an invoice,
unless the payment was upfront. The usual way to settle this trade credit is to pay the
invoice using the bank payment system. The typical alternative is bilateral set-off among
the parties. There can be other arrangements involving different financial intermediaries
(e.g., invoice factoring). Payment within the banking system is the prevailing trade credit
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settlement method, but there are alternatives. For example, a payment system can use a
variety of settlement modes (Gobbi 2018), among which the most used is real-time gross
settlement (RTGS). This method requires liquidity and operates continuously, with the
settlement being made by the transfer of payment means. The main advantage of RTGS
is the immediate settlement; the main disadvantage is the cost of acquiring the necessary
liquidity to operate it.

The main alternative to RTGS is Deferred Netting Systems (DNS). They can be di-
vided into Bilateral Netting Systems (BNS) and Multilateral Netting Systems (MNS). The
main advantage of these systems is that there is no cost of acquiring liquidity; the main
disadvantages are the delay and the partial settlement of the obligations.

As different as these settlement modes are, they usually work together within the
payment system. For example, TARGET 2, which is an RTGS system, uses MNS for the end-
of-day settlement. When banks net their credit/debt obligations instead of clearing their
mutual exposures on a gross basis, they decrease the chance of defaults (Gaffeo et al. 2019).
The effectiveness of netting increases with the inter-connectedness of the network. This
is true as much for the trade credit network as for the current interbank network. The
payment system described in this article can be categorized as a Deferred Multilateral
Netting System (DMNS). This is a good choice for the trade credit market, since, in this
market, liquidity sources are scarce and there is no preconception that a netting system
must settle all the obligations in full—simply put, any help is welcome.

The prevailing claim in the literature is that MNS requires a clearing house that takes
the responsibility for the settlement of the remainders, after netting. The claim is that
the clearing house breaks the bilateral relationships and imposes new ones. This is not
necessarily true. In this paper, as in Fleischman et al. (2020), we introduce a MNS method
where the bilateral relationships are not broken but simply diminished in value by the
amounts cleared. This is the key missing point in the current literature and in a common
understanding of how multilateral settlement works. The effectiveness of this approach
is supported by 30 years of continuous operation of this system in Slovenia in a public
institutional environment (Fleischman et al. 2020).

In the MNS system described in this article, bilateral relationships among system
participants are not broken and no new relationships among participants and system
operators are created. This allows it to be used as an integration point among otherwise
incompatible systems. For example, in this paper, we show that a variety of otherwise
incompatible currency systems—like a CBDC,1 crypto, complementary currencies, and
mutual credit—can be used as sources of liquidity to increase the utility and efficiency2 of
the MNS. This addresses the main disadvantage of the MSN, namely partial settlement.
However, with a careful design and the use of multiple liquidity sources, we can obtain a
system that settles a majority or even all of the obligations in full.

1.2. Historical Context and Brief Literature Review

Although references are provided throughout the paper, where relevant, here we offer
a brief high-level account of the field from a historical, mathematical, and information
technology perspective.

The complex technique of partial discharge of obligations without money can be
traced to the Middle Ages (Börner and Hatfield 2017). The earliest evidence is from the
late 12th Century, although the exact methods used are undocumented. The effective use
of multilateral set-off, on the other hand, is well-documented in Central European fairs
starting from the late 14th Century. These methods enabled the development of modern
banking and are still used today in its financial and payment systems. By contrast, their
use in the real economy among traders and producers decreased progressively over the
centuries, until the development of targeted information technology (IT) systems such as
TCT have made multilateral set-off in the real economy a viable option again.

As discussed by Vuillemey (2020), financial frictions can prevent the benefits of trade
from being fully realized and resources from being efficiently allocated. However, agents
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can design contracts to mitigate such frictions—historical examples being the bill of ex-
change or limited liability. Central clearing houses for derivatives trading are another
example of such contractual innovations. The main service used by central clearing houses
before 1882 was netting, but, with the invention of contracts that insulated the merchants
from counterparty risks that year, the clearing house became a buyer to any seller and a
seller to any buyer. Current literature binds the concept of central clearing strictly to the
novation of the contracts e.g., to the transfer of risks from the merchants and traders to
the central clearing counterparty (Pirrong 2011). The term ‘centralized netting’ is used
when the netting is combined with the novation. In practical terms, the novation implies
that some bilateral relations in the financial networks are transferred to the central party
(Garratt and Zimmerman 2020).

While insulating traders from counterparty risk is important for futures and deriva-
tives trading, the risk level in the trade credit market in the real economy is much lower,
such that netting on its own turns out to be sufficient to make a significant difference
in firms’ management of their cashflow, especially in the case of SMEs. In particular,
the method discussed in this paper demonstrates efficient netting without disruption of
bilateral relationships in the financial network.

The increasing scale and sophistication of the economy coupled with advances in digi-
tization have given rise to tremendously large repositories of financial data, much of which
can be analysed as a network. As discussed in Bardoscia et al. (2021), methods from modern
mathematics and physics are necessary to analyse the intricate economic relations inside
such networks. Graph theory’s minimum cost-maximum flow (MCF) problem offers an
excellent opportunity for applications in financial networks. Király and Kovács (2012), for
example, present a comprehensive review of efficient implementations of MCF algorithms.
Such algorithms are regarded as LSMs too by the financial industry, which uses them in
clearing and settlement systems (Tompkins and Olivares 2016). The position and importance
of LSMs for payment systems are clearly presented in Bech and Soramäki (2001).

Simić and Milanović (1992) provide an early example of the use of IT in network flow
algorithms to implement efficient multilateral set-off in the real economy, and discuss the
problem of maximum set-off possible. They also address the problem of complexity and
propose a polynomial-time complexity solution. Gazda et al. (2015) debate a form of multi-
lateral obligation set-off that involves both private and public sectors, demonstrating that
including taxes and government spending into the obligation network further increases the
utility of multilateral compensation. The effects of using multilateral set-off in the national
economy are analysed in Gavrila and Popa (2021), whose results demonstrate considerable
potential—although the authors implement an algorithm that does not identify all cycles.

In Slovenia, the TCT application, which focuses on the network of undisputed pay-
ment obligations between firms in the B2B market, reduces firms’ mutual indebtedness by
between 1% and 7.5% of GDP, depending on the economic situation and the number of
firms participating (Fleischman et al. 2020). The most basic use of the TCT algorithm deliv-
ers a significant decrease of the mutual indebtedness present in the obligation network. Its
extended use, where the obligation network is transformed into a payment system, allows
for the efficient use of external liquidity sources to discharge the maximum amount of debt
possible. TCT does not include the novation of existing bilateral relationships among firms
in the obligation network, although external financing may require new contracts to be
made between the liquidity providers and the firms receiving the funds. New contracts are
not required if the firm provides its own liquidity.

TCT can be seen as an example of ‘constructive informal financing’ (Allen et al. 2018),
since it supports firms’ growth and provides financing options for firms where banks fail
to provide adequate financing. In particular, the impact of constructive informal financing
is size-dependent and tends to be greater for small firms with limited access to bank loans.

Cyclic structures in networks are important also outside finance. The most significant
advances in this field outside of finance have been achieved in biochemistry. For example,
Abraham et al. (2007) discuss an interesting and life-saving application where the method
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is used to match donors and recipients of kidneys in situations where individual allocations
of organs are impossible.

Are there any weaknesses or drawbacks to obligation-clearing? While we cannot think
of any drawbacks, one weakness is that it is not necessarily easy to motivate firms to partic-
ipate and register their invoices. GDPR rules dictate that participation should be strictly
voluntary, even in countries like Italy that mandate all invoices to be electronic and to be
registered with the Ministry of Economics and Finance.3 Since the effectiveness of clearing
increases nonlinearly with the number of participants and their inter-connectedness, it is in
everyone’s interest to participate. However, even disregarding any illicit activities, it will
take a significant effort to educate SMEs in most countries that they have nothing to lose
and everything to gain from participating. Trust towards the state, the agency performing
the clearing,4 and the tax authority if it is also involved will need to be built. The move of
the system to a public blockchain may encounter even higher barriers to adoption. Without
a focused effort in education and communication about the benefits of trade credit clearing,
it may therefore take significantly longer than would be good for the local stakeholders
themselves for the method to be adopted in any given country.

1.3. Basic Concepts

A payment system consists of two main parts, the obligation network and the liquidity
source/sink, which helps discharge the obligations in the obligation network. A balanced
payment system is a payment system in which all obligations can be discharged simulta-
neously. This is possible when the total inflow of cash equals the total outflow of cash
for every node in the network—meaning that the system satisfies the flow conservation
condition, such that the conclusion that this clears all obligations in the system is trivial.

Constructing a balanced system has practical value. For example, subtracting a
balanced subsystem does not disrupt the balance of the remaining payment system. This
means that the subtraction of a balanced subsystem will decrease the total debt in a payment
system. Where it decreases the debt of individual firms, it also decreases their in-flow;
therefore, it does not change the value of their net positions. The key to constructing a
balanced system at any one time is a centralized knowledge of the obligations that are
present at that time between the members of the obligation network. This centralized
knowledge allows for maximizing the amount of mutual indebtedness that can be taken
out of the obligation network. The main benefits of membership are liquidity-saving for the
participating members and a decreased systemic risk for the group and the wider economy.

An obligation network can be viewed as a set of payments due. Payment invoices
reflect the complex and highly interconnected supply networks and usually form a dense
strongly-connected obligation network. ‘Strongly connected’ means that there is a path
of payments or invoices in each direction connecting any pair of firms.5 If the obligation
network is not strongly connected, then it can usually be split into just a few strongly-
connected parts or “clusters”. A consequence of this definition is that all the firms in a
strongly-connected network are part of at least one cycle. Although this sounds encour-
aging, depending on the distribution of liquidity over the payment system members we
can observe situations where payments cannot be processed individually. Leinonen (2005)
provides the following definitions for different possible liquidity distributions:

• Circular —is a situation where individual payments can only be settled in a specific
order. This situation is resolvable by reordering the payment queue.

• Gridlock—is a situation in which several payments cannot be settled individually but
can be settled simultaneously. This situation is resolvable with multilateral off-set.

• Deadlock—is a situation where the individual payments can be made only by adding
liquidity to at least one of the system participants.

These situations can be resolved with LSMs. The benefits of LSMs in interbank
payment systems are well described and demonstrated in Bech and Soramäki (2001) on a
set of real data. Specifically, an LSM applied to a payment system shortens the queues and
reduces the need for additional liquidity to discharge the obligations. While the use of LSMs
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in interbank payment systems is widespread, outside of the banking system the benefits
of liquidity-saving do not reach everyone. In particular, small companies with limited
access to liquidity often use various alternative ways to discharge their obligations in the
trade credit market or through the use of complementary currencies. This is connected to
the question of system interdependence and the risk of liquidity problems spilling from
one system to another. Unresolved gridlocks and payment defaults due to insolvency are
typical examples of such liquidity problems. Foote (2014) shows that the use of an LSM in
one system reduces this risk in all the systems connected to it.

Similarly to a payment system, a balanced obligation network is a network that can
discharge all obligations simultaneously without the use of liquidity. The most important
task of any LSM is to find such a network. To manage the risks in the context of the
increasing complexity of payment systems, the concept of a balanced network should be
applied to as many payment and clearing systems as possible.

1.4. Overview of Paper

The paper is organized as follows: After a few basic definitions, it develops the model
of an obligation network to demonstrate the balancing logic in general and in a few simple
examples. The obligation network is represented by a nominal liability matrix that allows
the use of standard matrix and lattice algebra to develop all the mathematics. Next, an
external liquidity source is introduced to create a payment system. A generalization is
presented that enables a broader application of the balanced payment system concept to
multiple liquidity sources. Finally, the functional and algorithmic details of a practical
model for the management of liquidity are discussed in detail, offering guidelines that a
lending institution can follow to provide different levels of service subject to the constraints
of available liquidity and its own cap on total overdraft exposure.

2. Materials and Methods
2.1. Notation and Definitions

We use the following terms:

• An obligation network is a directed graph where the nodes6 represent firms and
the edges represent the obligations. Parallel edges are allowed to represent multiple
obligations between two firms:

• A nominal liability matrix is a matrix representing total obligations or liabilities
between firms. We will define special vectors to describe properties of the nominal
liability matrix.

• A payment system is constructed by adding special-function nodes to the obligation
network. These special nodes represent sources of funds and a store of value. They can
have connections to all nodes in the obligation network, and the set of all connections
for each special node is expressed as a vector.

The notation and basic definitions are based on Eisenberg and Noe (2001). We use
boldface to denote vector character and uppercase Latin letters for matrices and for sets. G
is reserved for a graph, andN = {1, 2, . . . , n} ⊂ N where n represents the number of nodes
in the graph. When we extend or generalize the concepts, we use an asterisk superscript.

For any two vectors x, y ∈ Rn, we define the lattice operations

x+ := (max[x1, 0], max[x2, 0], · · · , max[xn, 0])

x− := (−x)+ = (max[−x1, 0], max[−x2, 0], · · · , max[−xn, 0])

x ∧ y := (min[x1, y1], min[x2, y2], · · · , min[xn, yn])

x ≤ y⇔ xi ≤ yi ∀i ∈ N .

(1)
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The vector 0 represents an n-dimensional vector all of whose components equal 0, i.e.,
0 = (0, · · · , 0). The special brackets ‖·‖ denote the l1-norm on n. That is,

‖x‖ :=
n

∑
i=1
|xi|. (2)

2.1.1. Obligation Network

Let the directed graphG represent an obligation network composed of a set V = {v1, · · · , vn}
of n vertices (or nodes) representing firms, a set E = {e1, · · · , em} of m directed edges repre-
senting obligations between firms, and the function o(e) representing the value of a single
obligation e ∈ E between firm vi and firm vj (e.g., from a single invoice). The graph G may
contain multiple edges from node vi to vj, i.e., it can be a ‘multigraph’. We use (vi, vj) ⊂ E
to denote the subset of E that corresponds to all the edges between node vi and node vj.
We will use ‘weight’ informally to refer to the value of the obligation associated with a
given edge but also to the sum of the values of all the edges linking two nodes (vi, vj). In
Section 3.1, however, the weight of the network will also be defined formally to denote the
sum of all the obligations over the whole network. The meaning in each case should be
clear from the context.

These definitions are summarized formally as follows:

G = (V, E, o) directed (multi)graph of obligations between firms (3)

V = {v1, · · · , vn} set of n nodes representing firms (4)

E = {e1, · · · , em} set of m edges representing individual obligations (5)

e ∈ E individual edge from set E (6)

o : E→ R assigns the value of an obligation to each edge e ∈ E. (7)

To develop extended systems and generalizations, we add special nodes such as,
following Simić and Milanović (1992), a source and a target node:

V∗ = V ∪ {vs, vt} (8)

vs = the source node

vt = the target node

E∗ = E ∪ {(vs, vi) : vi ∈ V} ∪ {(vi, vt) : vi ∈ V}, (9)

and in this case there is a single edge between vs, vt and the vertices in V. The asterisk
superscript denotes an extended set, vector, matrix or graph. For example, in this case,
N ∗ = {1, 2, . . . , n, n + 1, n + 2}.

2.1.2. Nominal Liability Matrix

The nominal liability matrix L is a square (n× n) matrix each of whose entries is the
sum of the obligations between two firms. Since companies do not invoice themselves, L
has zeros on the diagonal. Each entry is given by

Lij = ∑
e∈(vi ,vj)

o(e). (10)

We will see later that the liability matrix is the basis for the formal definition of a payment
system.

The sum of column i of the nominal liability matrix represents the total credit of firm i,
and the sum of row i represents the total debt of firm i:

ci =
n

∑
k=1

Lki, di =
n

∑
k=1

Lik, (11)
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Equation (11) provides the components of the system-wide credit vector c and debt vector d.
The difference between the credit and debt for each firm gives the obligation network’s net
position vector b:7

b = c− d

bi = ci − di, di, ci, bi ∈ R, i ∈ N .
(12)

2.1.3. Balanced Net Position Vector

Definition 1. A vector b is called balanced if the sum of its components equals 0:

n

∑
i=1

bi = 0. (13)

Theorem 1. Vector b representing the net positions of all firms is balanced.

Proof. Every obligation that forms the liability matrix contributes towards the net position
exactly twice, once as a credit and once as a debt. The sum of all credits is therefore equal
to the sum of all debts and the sum of all the net positions equals zero:

n

∑
i=1

ci =
n

∑
i=1

n

∑
k=1

Lki =
n

∑
i=1

n

∑
k=1

Lik =
n

∑
i=1

di

n

∑
i=1

bi =
n

∑
i=1

(ci − di) =
n

∑
i=1

ci −
n

∑
i=1

di = 0.
(14)

Corollary 1. As a consequence of vector b being balanced, the sum of its positive vector components
must be equal to the sum of the absolute value of its negative vector components:∥∥b+

∥∥ =
∥∥b−

∥∥, (15)

where b+ and b− are calculated as defined in Equation (1).

A balanced net positions vector is important for the analysis of cashflow8 from external
sources to the obligation network and vice versa. To visualize these definitions, we use a
small obligation network, as shown in Figure 1, that consists of four nodes representing
firms and arrows representing the individual obligations between them. The arrow labels
represent the values of the obligations.

Figure 1. Small obligation network.
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Equation (16) shows the corresponding nominal liability matrix L. Note that L14 is the
sum of the two obligations from Firm 1 to Firm 4. Equation (16) also shows the total credit
and the total debt for each firm, as defined above.

L =


0 1 0 3
0 0 2 0
3 0 0 0
0 0 1 0


4
2
3
1

d1
d2
d3
d4

3 1 3 3
c1 c2 c3 c4

(16)

Vector b for this obligation network is calculated as

b = c− d = (3, 1, 3, 3)− (4, 2, 3, 1) = (−1,−1, 0, 2)

b+ = (0, 0, 0, 2) ⇒
∥∥b+

∥∥ = 2

b− = (1, 1, 0, 0) ⇒
∥∥b−

∥∥ = 2
n

∑
i=1

bi =
∥∥b+

∥∥− ∥∥b−
∥∥ = 0.

(17)

2.2. Obligation-Clearing with a Liquidity Source

Even if it is not usually possible to clear all the obligations in the network, to make the
mathematical treatment more easily understandable, in this section we focus on the case
where all the obligations can be cleared. To achieve this, as shown in Figure 2 and unlike
the formulation of Simić and Milanović (1992), we introduce a special node v0 in place of vs
and vt that can act as a liquidity source for all the cashflow towards the obligation network
as well as a liquidity sink for all the cashflow from the obligation network. The definitions
(8) and (9) for V∗ and E∗ are therefore updated as follows:

V∗ = V ∪ {v0} (18)

E∗ = E ∪ {(v0, vi) : vi ∈ V} ∪ {(vi, v0) : vi ∈ V}. (19)

The collapse of vs and vt into a single node makes it possible to treat a payment system
as a new, bigger obligation network to which the same Tetris algorithm can be applied
to obtain an optimal use of liquidity. Without such an identification, one would need an
additional edge between vs and vt with infinite capacity. The implications of this change
are discussed in greater detail in Section 3.1.3.

Figure 2. Payment system: obligation network, liquidity source/sink v0, and vectors representing
cashflows.

In practice, v0 can be a banking system where every firm in the network has a bank
account. It can also be a complementary currency system or any other system with a store
of value function. The cashflow is represented by an external cashflow vector f ∈ Rn. When
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fi > 0, the cashflow for firm i is towards the obligation network, while when fi < 0, its
cashflow is from the network back to its bank account. By adding the cashflow vector, we
have created the payment system (L, f).

Definition 2. A payment system, denoted (L, f), is an ordered pair composed of an (n × n)
liability matrix L and an (n× 1) cashflow vector f.

The cashflow available to firms from v0 changes their net positions. If vector b
represents the net positions of firms in the obligation network, let b` represent the vector
of firms’ net positions in the payment system, where the subscript ` is a mnemonic for
‘liquidity’. The value of b` is

b` = b + f. (20)

This equation simply states that the net position of every firm is increased by liquidity
coming into the obligation network or decreased by liquidity going out of the obligation
network. If our goal is to clear all the debt in the network, then—assuming enough liquidity
is available—after our intervention the net position of every firm in the payment system
has to be zero. In such a scenario, the incoming cashflow is used to pay off the debts of all
the firms with negative net positions, whereas the outgoing cashflow carries the liquidity
into the bank accounts of the firms with positive (credit) net positions. Therefore,

b` = b + f = 0 ⇒ f = −b. (21)

Given an obligation network and the net positions b of its members, we now define:

Definition 3. The Net Internal Debt (NID) of the obligation network is the amount of liquidity
needed by firms to discharge all the obligations in the network:

NID =
∣∣∣∣b−∣∣∣∣. (22)

The payment system in Figure 2 relates to a real-life situation if we take that v0 is a
bank, complementary currency, or some other financial institution that can provide an
account-holding function and/or that can serve as a source of liquidity. Thus, the positive
values of the cashflow vector f+ = (−b)+ represent the payments from individual firms’
accounts at the financial institution, while the negative values of the cashflow vector (or
the values of f−) represent the payments out of the network and into individual firms’
accounts. Under the current assumption of complete clearance, since the vector b of the
firms’ net positions is balanced, the cashflow vector f also needs to be balanced. Thus, the
total cashflow flowing into the network equals the cashflow out of the network:∣∣∣∣f+∣∣∣∣ = ∣∣∣∣f−∣∣∣∣. (23)

Definition 4. A payment system that can discharge all obligations in an obligation network is
balanced.

Theorem 2. Payment system (L, f) is balanced when f = −b.

Proof. A balanced payment system has to discharge all obligations in the obligation
network. That is, for every firm or node in the obligation network, the sum of all incoming
and outgoing cashflows has to be 0. Using Equations (11), (12) and (21),

ci − di + fi = bi + fi = bi − bi = 0 ∀i ∈ N . (24)
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Corollary 2. Every balanced payment system satisfies the flow conservation constraint.

Proof. The flow conservation constraint requires all flows into a node to be equal to all
outflows from a node. For a balanced payment system, this is true for all nodes in the
obligation network, as proven in Theorem 2. It is also true for the special node v0 since
the sum of all outgoing cashflows ‖f+‖ equals the sum of all incoming cashflows ‖f−‖, as
shown by Equation (23).

2.3. Simple Examples

The following examples appear also in Fleischman et al. (2020), but here they are
discussed in greater mathematical detail.

2.3.1. Obligation Chain

To demonstrate the idea of a balanced cashflow vector that clears all obligations in an
obligation network, let us observe a small network with four firms that contains only one
chain, Figure 3. Firm 1 represented by v1 has an obligation to pay 1 to company v2, and so
forth. The three obligations imply the presence of three edges: {e1, e2, e3}.

Figure 3. A chain of obligations.

It is easy to see from the graph of the obligation network that, if Firm 1 has access to
one unit of account of liquid assets, all the firms in the chain can clear all their obligations,
resulting in Firm 4 having one unit of account more in their assets. Vector b for this
obligation network is

b = (−1, 0, 0, 1)

b− = (1, 0, 0, 0)

NID =
∣∣∣∣b−∣∣∣∣ = 1.

(25)

Therefore, the NID—or the amount of external liquidity needed to clear all obligations in
this small obligation network containing only one chain—is 1.

As shown in Figure 4, to create a payment system we have to add a new node v0
representing the liquidity source with two edges: e5 = (v0, v1) with value o(e5) = 1 that
represents the flow of cash into the obligation network, and e4 = (v4, v0) with value
o(e4) = 1 that represents the flow of cash out of the obligation network. Therefore, clearing
the obligation network leaves Firm 1 with 1 unit of account less in their bank account and
Firm 4 with 1 unit of account more.

Figure 4. A payment system with a chain of obligations.
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Figure 4 also shows that providing liquidity is not just a problem concerning the
total amount of liquid assets available, or NID, but also their distribution. As shown in
Equation (25), vector b− contains the distribution of liquid assets needed to discharge all
obligations in the obligation network. If we let the firms with just enough liquid assets
to discharge all obligations act as independent actors, it will take three steps or three
individual payments to discharge all obligations in the chain. Using a centralized queue
with an LSM, on the other hand, will discharge all obligations simultaneously. This is an
example of the time-saving property of LSMs.

2.3.2. Obligation Cycle

Another interesting example of a small obligation network is a cycle, see Figure 5.
Note that, although the edges of a cycle as a topological object could have different weights,
in this paper, when we refer to a cycle, we imply that the weights are all equal.

Figure 5. A cycle.

The NID for this network is 0. Therefore, all obligations in the cycle can be cleared
without the use of external liquidity. In this special case where the vector b = 0, we can
say that the network is balanced. This also means that a cycle meets the flow conservation
constraint at all nodes. In other words, for each firm i,

n

∑
k=1

Lki −
n

∑
k=1

Lik = 0 ∀i ∈ N . (26)

This flow conservation constraint equation can be written as a special case of the net
positions calculation, Equation (12). Thus, the flow conservation constraint is met when all
credits equal all debts for every firm in the cycle.

Although there is no need for external liquidity sources, such a simple cycle cannot be
discharged if firms act as independent agents. Without the knowledge of the existence of
such a cycle, the payments to discharge the obligations cannot be executed. To discharge all
the obligations in a cycle without knowledge of its existence, at least one of the firms in the
cycle has to use external liquidity to execute the first payment that then cascades around
the cycle. Only with a centralized queue and an LSM can we discharge all obligations in a
cycle without the use of external liquidity sources. This is the liquidity-saving property
of LSMs.

Cycles in obligation networks are the key to liquidity-saving. At this point, it is worth
noting that a cashflow that discharges obligations in the payment system is always a cycle.
This cycle can form inside the obligation network as our example in Figure 5, or it can pass
through the special node v0 as shown in Figure 4. The flow conservation constraint is met
in this case too.

2.3.3. Small Obligation Network with a Chain and a Cycle

Combining a chain and a cycle in a small obligation network, we move closer to a
real-life situation. Figure 6 shows the union of the chain and cycle discussed above. The
obligation network shown is obviously not balanced and needs external sources of liquidity
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to discharge all the obligations. The solution is similar to the chain example. The vector b
for this obligation network is

b = (−1, 0, 0, 1, 0)
n

∑
i=1

bi = 0 =⇒ b is balanced

‖b‖ = 2 =⇒ obligation network is not balanced∥∥b−
∥∥ = 1 =⇒ NID = 1.

(27)

While vector b is always balanced by definition, the obligation network usually is not. In
our case NID = 1, so this obligation network needs an external liquidity source that can
provide 1 unit of account to discharge all the obligations.

Figure 6. An obligation network with a chain and a cycle.

The payment system containing chain and cycle is shown in Figure 7. Although
there is enough liquidity in such a system to discharge all obligations, it cannot be done if
members of the system act as independent agents. The cycle in the system prevents the
smooth flow of cash. Firm 2 cannot discharge its obligations even when it receives payment
from Firm 1. This creates a gridlock that can be resolved in several ways. One way is for
Firm 2 to borrow from an external source, which implies the need for another edge from
node v0 to node 2 with value 1. The borrowed funds can be returned to v0 as soon as the
payment from Firm 5 to Firm 2 is executed.

Figure 7. Payment system with a chain and a cycle.

This scenario is depicted in Figure 8. Another way to resolve the gridlock is for any
other firm in the cycle to borrow from an external source, which would require new edges
from node v0. The third option, which still assumes that 1 unit arrives at v2 from v1, is
that Firms 2 and 3 agree on the partial discharge of the obligation between them. In this
case, the partial payment of 1 unit of account from Firm 2 enables Firm 3 to discharge
one of its obligations. If Firm 3 decides to discharge the obligation to Firm 5, the cycle
will be discharged in full. This removes the gridlock situation created by the cycle. The
flow of 1 unit from v0 through the obligation network is therefore unobstructed and all the
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remaining obligations can be cleared. If, instead, Firm 3 decides to discharge the obligation
towards Firm 4 before Firm 5, we are back to gridlock.

Figure 8. Example of gridlock resolution scenario. Sequence of steps depicted with dashed arrows is
marked with letters from “a” to “e”.

Only putting the whole obligation network in a queue with an LSM will resolve the
gridlock without the need for additional liquidity or special agreements among the firms.
The solution is to identify the cycles that discharge the obligations simultaneously. This
example contains two cycles. The first, smaller cycle involving firms (2, 3, 5, 2) is located
inside the obligation network. Obligations with value of 1 can be discharged and the
cycle can be removed from the obligation network without affecting the value of vector
b. Therefore, the NID or the minimal requirement for external liquidity to discharge all
the obligations in the obligation network remains the same. The situation in the payment
system after removal of this cycle is a chain with the liquidity source, as shown in Figure 4.
This chain with a liquidity source forms the second cycle that is discharged in full with the
use of liquidity from the external source.

3. Results
3.1. General Formulation

In this and the following sections, we build on the basic definitions and examples
of the previous sections to develop some deeper results with important applications to
large-scale payment systems.

3.1.1. A Cycle as a Balanced Payment Subsystem

Although we have made a distinction between an obligation network and a payment
system, where the latter includes also a liquidity source, in the general formulation it is
more convenient to use the payment system concept in all cases. In particular, an obligation
network G with liability matrix L is a payment system with zero liquidity, i.e., (L, 0).

Definition 5. A payment subsystem (L′, f′) of a payment system (L, f) is a payment system
obtained by picking a subset G ′ of an obligation network G, and may or may not include also the
same liquidity source v0 with a subset of the liquidity available.

Definition 6. A topological cycle Ec = {ec1, ec2, . . . eck} in G is a closed sequence of k edges that
connect nodes Vc = {vc1, vc2 . . . vck, vc1} consecutively, where vc1 . . . vck are distinct.

Definition 7. An obligation network cycle Gc is an ordered triplet (Vc, Ec, p) where all the
weights of the edges are set to the minimum obligation in the cycle, i.e., to p = min(o(e)|e ∈ Ec).
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Theorem 3. An obligation network cycle is a balanced payment subsystem.

Proof. The net position bi of every node in such a system is equal to zero since all obliga-
tions are equal to p and every node has exactly one incoming and one outgoing edge with
the same value:

bi = p− p = 0 ∀i ∈ {1 . . . k}. (28)

Therefore, such a balanced payment subsystem meets the flow conservation constraint (28)
and thus does not need external sources of liquidity to clear all its obligations. We note
that henceforth the term ‘cycle’ by itself will mean ‘obligation network cycle’.

Theorem 4. Subtracting a cycle from the obligation network does not change the vector of net
positions b.

Proof. All the flows in a cycle are equal to p. Therefore, when a cycle is subtracted from
the obligation network both credit and debt positions of every firm included in the cycle
decrease by the same amount p, leaving the net position vector b unchanged:

bi = (ci − p)− (di − p) = ci − di = bi ∀vi ∈ Vc. (29)

It is important to note that, while from the system’s viewpoint the removal of a
balanced payment subsystem does not change, the amount of external liquidity needed to
clear all the obligations (i.e., the NID, Equation (22), remains the same), from the individual
firm’s perspective it makes a big difference, since, with the removal of a balanced payment
subsystem, the corresponding gridlock situation is cleared without having to resort to
external financing to resolve it. This reduction of the need for external financing can be
seen as a reduction of the volume of obligations in the payment system.

3.1.2. Finding the Maximum-Weight Set of Cycles

The problem of cycle elimination from directed graphs to get an acyclic graph is a well-
studied area in graph theory. An overview of graph cycles is provided by Kavitha et al. (2009),
and a fast parallel algorithm for finding the cycles in a graph is proposed in Cui et al. (2017).
Here, we develop our own method, starting with the concept of “weight”.

Definition 8. We define the weight of an obligation network with set of edges E as a function
w : G → R whose value is the sum of all the obligations in the network:

w(G) = ∑
e∈E

o(e). (30)

Similarly, a cycle Gc of length k with all its obligations of value p has weight:

w(Gc) = pk. (31)

Removing a cycle Gc from the obligation network reduces its weight. The weight of
the residual obligation network Gr is:

w(Gr) = w(G)− w(Gc) (32)

Therefore, reducing the debt of the individual firms can be achieved by removing all the
cycles from the obligation network, which is also equivalent to resolving all the gridlocks.
To achieve this, we need to solve the following problem:
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Problem 1. Find a sequence of cycles Gci and residual obligation networks Gri such that

q

∑
i=1

w(Gci) is maximum, (33)

where

Gc1,Gr1 ⊂ G
Gc2,Gr2 ⊂ Gr1

...

Gcq,Grq ⊂ Gr(q−1),

(34)

Gc1, . . . ,Gcq are cycles, and q is the number of cycles present in the network.

Sequential elimination of cycles from the obligation network will always lead to a
residual network Grq that is acyclic. The exact number of cycles q that will be eliminated is
not known upfront and depends on the methods used to find them. For example, every
directed acyclic graph has a topological ordering, i.e., an ordering of the vertices such that
the start-point of each directed edge occurs earlier in the ordering than the end-point of
that edge. The ordering can be found in linear time using Kahn’s algorithm for topological
sorting (Kahn 1962). This would be a possible formal test. Alternatively, the cycle-finding
algorithm usually has a “cycle not found” exit condition, which is also an acyclic graph
test: the algorithm repeats until a cycle can be found and, when no cycles can be found any
longer, whatever is left is acyclic.

Definition 9. Given an obligation network G, a maximum-weight set of cycles {Gc1, . . . ,Gcq}
is one of the solutions to Problem 1.9

It is known that there is always a way to eliminate all the cycles and that the solution
is not unique. The problem is that the removal of one cycle can break other embedded
cycles,10 so the solution depends on the order in which the cycles are found. This makes
finding the maximum-weight set of cycles even harder. The solution is not to look for cycles
at all but to use the concept of balanced payment system and minimum-cost flow instead.

3.1.3. The Minimum-Cost Flow Problem

In the context of the present paper, the minimum-cost flow (MCF) problem (Király
and Kovács 2012) presents a terminology challenge because both ‘cost’ and ‘flow’ are
overloaded. The ‘cost’ in MCF has nothing to do with the cost of transactions or invoices.
Rather, it is a cost of attrition in following different paths through a continuous system or
a discrete network. In addition, the ‘flow’ has nothing to do with the cashflows we have
been discussing; rather, it refers to movement through the same system or network. Thus,
we seek to pose the problem of optimal liquidity-saving as one where the ‘MCF flow’ is a
flow through the network that avoids all the cycles. It is all about avoiding the additional
costs associated with flows that go through cycles, since that tends to lengthen the paths
and therefore to make them too “expensive”. In this formulation, the ‘MCF cost’ is uniform
and set to 1 for all network hops, for the sake of simplicity.

The starting point in applying the MCF method to the optimization of the obligation-
clearing problem is a perfectly balanced payment system as described in Section 2.2. We
have an obligation network G with associated nominal liability matrix L, net position vector
b, and external cashflow vector f = −b, forming a balanced payment system (L, f). We
know that the external-liquidity cashflow through this balanced payment system equals the
NID as defined in Equation (22). Now, we try to find a balanced payment system (M, f),
where the nominal MCF liability matrix M represents the minimum-weight sub-network
Gm of the obligation network G subject to a specific constraint. Namely, we are looking for
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a matrix M the sum of whose elements is a function11 that we wish to minimize subject
to the constraint that its column sum (or credit vector) minus its row sum (or debt vector)
equals matrix L’s net positions vector b.

To find such nominal liability matrix M, we have to:

• Define the object function as a Grandsum function µ : Rn2 → R, which is the sum
of all the elements of a given square n× n matrix. Looking for the minimum of the
function µ(M) is equivalent to looking for the minimum-weight sub-network Gm.

• Make sure that the payment system (M, f) is balanced. The constraint above ensures
this since (L, f) is balanced by construction. In fact, since f = −b and M uses the
same cashflow vector f, ensuring that M has the same net position vector b is enough
to guarantee that (M, f) will be balanced too.

• Make sure we are not introducing edges between nodes in sub-network Gm that do
not exist in the obligation network G. Therefore, all matrix elements Mij must have a
value between 0 and Lij.

The optimization problem is therefore posed formally as follows:

Problem 2. Find the liability matrix M of the obligation network Gm such that its Grandsum
function µ is minimum:

min µ(M) = min
n

∑
i=1

n

∑
j=1

Mij (35)

subject to the constraints:

n

∑
k=1

Mki −
n

∑
k=1

Mik = bi ∀i ∈ N (36)

0 ≤ Mij ≤ Lij ∀i, j ∈ N . (37)

The reason we need to find M is that it is the solution to the standard MCF problem
as defined in graph theory. The solution to the MCF problem equals all flows in a cyclic
structure that includes the liquidity source, i.e., from v0, represented by vector b−, through
the obligation network and back to the liquidity source, represented by vector b+. We
are looking for the shortest paths that can carry the NID through the obligation network.
Because from the MCF point of viewcycles are inefficient, M always represents an acyclic
network composed only of chains.

We can map our definition of the optimization problem to the standard MCF problem
(Király and Kovács 2012). The difference to the standard MCF problem is that we do
not use MCF costs assigned to individual edges of the network. The goal as defined
in Equation (35) is the same: finding the minimum flow. In the standard MCF problem
definition, the constraint (36) is called a ‘flow conservation constraint’. The constraint
conserves the balance of flows through the nodes of the network. The constraint (37) is
called capacity constraint in the standard MCF problem. We are setting the limit to the
maximum flow between two nodes as the sum of all the individual obligations between
those nodes. In the standard MCF solution, the cost of the flows through different edges
can vary. In our case, the cost of the flow through different edges is the same, since we do
not want to prioritize any specific flow or firm. Thus, using the standard MCF solution all
costs of a flow through an edge are set to 1.

Any minimum-cost flow algorithm will find a set of chains that can carry the max-flow
NID through the obligations at minimum cost. There are many known algorithms to solve
the minimum-cost flow problem, e.g., see Király and Kovács (2012) for an overview. A
polynomial-time algorithm was proposed by Orlin (1996). The solution is not unique, but
the value and the cost of the flow through the edges of the set of minimum-cost flows are
always the same.
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Theorem 5. Subtracting the min cost-max flow solution M from the nominal liability matrix
L leaves a balanced payment subsystem (T, 0) that requires no external liquidity source to clear
the obligations:

T = L−M. (38)

Proof. We need to prove that all the edges in the remaining nominal liability matrix T are
part of a cycle. As such, no liquidity is needed to clear all the obligations in the network T,
which implies that it must be balanced. Therefore, the vector b for the matrix T must be 0.

We can show that

n

∑
k=1

Tki −
n

∑
k=1

Tik = 0, ∀i ∈ N , (39)

is always true since L and M have the same vector b. First, (38) trivially implies that

Tij = Lij −Mij. (40)

Then, using (11) and (12), we have that, ∀i ∈ N ,

bi = ci − di =
n

∑
k=1

Lki −
n

∑
k=1

Lik =
n

∑
k=1

(Lki − Lik). (41)

In addition, from the definition of the MCF Problem (36),

bi =
n

∑
k=1

Mki −
n

∑
k=1

Mik =
n

∑
k=1

(Mki −Mik). (42)

Using (41) and (42) and reordering the sums,

bi − bi = 0
n

∑
k=1

(Lki − Lik)−
n

∑
k=1

(Mki −Mik) = 0

n

∑
k=1

(Lki −Mki)−
n

∑
k=1

(Lik −Mik) = 0

n

∑
k=1

Tki −
n

∑
k=1

Tik = 0,

(43)

thereby showing that the vector b for the matrix T always equals 0. This proves that T is
composed of cycles only.

Corollary 3. T is a maximum-weight balanced payment subsystem.

Proof. Since we subtracted the minimum value of chains M from L, the remaining obli-
gation network T consists of the maximum value of cycles. Since we have just proven
that T is a balanced payment system, T must be a maximum-weight balanced payment
subsystem of L.

3.2. Using Balanced Payment Subsystems in the Trade Credit Market

In normal business situations, we seldom have enough cash available to clear all
our obligations. Therefore, it would be helpful to adjust our model to reflect the scarcity
of liquidity.

The trade credit market is an interesting example since there are no liquidity sources
at all. We can look at it as a payment system where the external financing vector f equals 0,
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i.e., (L, 0). Still, it is possible to discharge the obligations bilaterally or multilaterally by
applying the balanced payment subsystem idea.

Theorem 6. Subtracting a balanced payment subsystem from the payment system does not
change the net position vector b.

Proof. We adopt a similar strategy as in the proof of Theorem 4. We have a nominal liability
matrix L with a net position vector b, credit vector c and debt vector d. The balanced pay-
ment subsystem (T, 0) satisfies the flow conservation constraint, as shown in Corollary 2.
Therefore, the cashflow into each node of the balanced payment subsystem equals the
outflow. Following Eisenberg and Noe (2001), for the nominal liability matrix T of the
balanced payment subsystem (T, 0), we can define a ‘clearing vector’ p = (p1, p2, · · · , pn)
such that pi stands for the flow into or out of node i. This is a generalization of the constant
p scalar of Theorem 4. Now, we subtract the balanced payment subsystem T, such that

L− T = M, (44)

and show that the net position vector of the resulting nominal liability matrix M equals the
net position vector of the nominal liability matrix L:

(bi)(L−T) = (bi)M = (ci − pi)− (di − pi) = ci − di = (bi)L ∀i ∈ N . (45)

The method to discharge the maximum volume of obligations without using any
liquidity can be summarized by the following steps:

1. Collect obligations to form an obligation network G.
2. Form a nominal liability matrix L and a payment system (L, 0) without external

financing.
3. Find a maximum-weight balanced payment subsystem T.
4. Discharge the obligations in the balanced payment subsystem (T, 0) by sending set-off

notices to all pertinent firms.
5. Subtract the balanced payment subsystem T, such that L− T = M.
6. Leave the remaining obligations in the nominal obligation matrix M to be discharged

using the normal bank payment system.

We call matrix T a ‘Tetris solution’. Depending on the economic conditions, in Slovenia,
TCT discharges between 1% and 7.5% of GDP per year in saved liquidity towards the
clearing of trade credit obligations. This is an example of an LSM in the trade credit market
with a significant contribution to national financial stability.

4. Discussion: Practical Trade Credit Formulation

Having presented the basic mathematics in the previous sections, in this section we
elaborate the payment system model further for the benefit of practitioners and application
developers.

4.1. Formal Model for Single Liquidity Source

From an applied viewpoint, it is helpful to explain the functioning of a general
liquidity source in terms of an abstraction whereby different sub-functions are represented
by separate nodes. In particular, two main functions are given by the accounting of liquidity
balances and the accounting of credit lines. Each function, in turn, requires two nodes,
one for cashflow from the source towards the network and the other for the reverse flow,
leading to a total of four auxiliary nodes. Each of the four nodes holds as many accounts as
there are companies in the network, i.e., |N | = n. This is an abstraction in the sense that
the value of |N ∗| remains n + 1; it is not affected by the auxiliary nodes, i.e., it is not n + 5.
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Figure 9 shows the payment system with the auxiliary nodes. This model was used
to analyse the potential for integrating TCT with the Sardex complementary currency
(Fleischman et al. 2020). It can be adapted to cover a wide variety of use cases, so here we
explain a very similar but more general model relevant to a bank. In particular, correspond-
ing to the roles of the four auxiliary nodes, the cashflow vector f for the case of a single
liquidity source v0 can be expressed as a vector sum of the four different “component”
vectors shown in the figure:

• f1: cashflows from firms’ bank accounts (only positive balances used)
• f2: overdraft cashflows up to firms’ credit lines
• f3: cashflows to repay firms’ overdrafts (different set of firms from f2’s)
• f4: cashflows into firms’ bank accounts (different set of firms from f1’s),

where the ‘different set of firms’ refers only to the non-zero components of the vectors in
question, since |fi| = n ∀i. In other words, although each vector fi has the same length as
all the others, the non-zero components of each are different pairwise for f1 and f4 and for
f2 and f3. As shown in the figure, f1 and f2 issue from v01 and v02, respectively, whereas f3
and f4 lead from the network back towards v03 and v04, respectively. The resultant vector f,
then, is given by

f = f1 + f2 − f3 − f4. (46)

Figure 9. A payment system with firms’ accounts and an overdraft facility.

Each of the component vectors is calculated by means of the following lattice algebra
expressions:

f1 = b− ∧ q+ q+ holds the available funds in firms’ accounts (47)

f2 = ra ∧ (b− − f1) ra holds the available credit lines (48)

f3 = b+ ∧ ru ru tallies the overdraft (loan) repayments due (49)

f4 = b+ ∧ (b+ − f3) the remainder after repayment can be saved. (50)

We remark that the meet operation in (50) is redundant, since (b+ − f3) by itself would
give the same result. However, the extended version is kept to highlight the symmetry
with (48). To explain what ‘available credit line’ in (48) means, we need to explain how
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vector ra is constructed. To that end, let xi be the balance of account i. In principle, this
value could be positive or negative but because we have already taken positive balances
into account with Equation (47), it can only be zero or negative, i.e., xi ≤ 0. Let yi be that
account’s credit line, which, for the purposes of this explanation, is taken as a negative
number such that yi ≤ xi. Then, by available credit lines, we mean the funds available;
namely, (ra)i = xi − yi, such that (ra)i ≥ 0 necessarily. We emphasize that in this model
nothing stops the same firm i from appearing in the calculations of both f1 and f2, which
corresponds to a case where qi ≥ 0 and b−i > qi. Finally, although for mutual credit there
is no interest, in a more general setting, ru can be defined as ‘the principal and interest
repayment due’ at the time of the multilateral set-off.

Having explained the data structures and the functions used by this model, we now
briefly summarize the high-level algorithm in five steps, where the output of each is the
input to the next:

1. After all the obligations have been uploaded into the repository (which could be a
blockchain), an obligation network exists, but the net positions are not yet known.
The network is the first output, and the input to Step 2.

2. Based on the network, the net positions are calculated, i.e., the components of vector
b. This is the output of Step 2 and the input to Step 3.

3. The cyclic structure is determined. This is the output of Step 3 and the input to Step 4.
4. The cyclic structure is removed from the obligation network, i.e., multilateral set-off is

performed. This results in a new, acyclic obligation network with obligation amounts
that, usually, are the same as before for a subset of firms, smaller for another subset,
and zero for a third subset, which is the complement of the first two.

5. The TCT multilateral set-off process is completed when set-off notices are sent to all
the firms instructing them about what is left to pay.

The optimization goal of the TCT algorithm is to achieve total clearing, i.e., a balanced
payment system. This objective is constrained by the availability of customers’ funds and
by the lending policy of fiduciary and lending institutions. The lending policy, in turn, is
formulated in terms of the maximum overdraft exposure the lending institution allows
itself and of the individual credit lines it affords the firms. The maximum exposure of
the overdraft facility rmax ∈ R is set by the lending institution and represents a constraint
on the maximum value that the capacity of the edge connecting v0 with v02 can assume.
The repayment of loans/overdraft vector ru represents the current overdraft taken by
individual firms, which is the amount that has to be repaid to balance their bank accounts.
The actual overdraft facility’s repayment cashflow, however, is set by f3. Node v04 accepts
the remaining cashflow f4 out of the obligation network back to the “master” accounts-
holding node v0. When the distribution of the available external liquidity sources is equal
to or exceeds the components of vector b− at all points, a balanced payment system can be
formed. This condition is met when:

f1 + f2 ≥ b− (51)

‖f2‖ ≤ rmax. (52)

If both conditions are satisfied, there are enough external liquidity sources in the firms’
account holdings and overdraft facilities to form an external financing vector f that satisfies
the condition for a balanced payment system (L, f), Equation (21):

f = −b.

If the conditions for a balanced payment system are not met, it makes sense to find a
balanced payment subsystem to facilitate the discharge of as many obligations as possible.
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4.2. Generalization to Multiple Sources

The case of multiple sources is handled in exactly the same way for each source. To
distinguish between the different sources, we simply add a subscript such that, for each
source j,

fj = fj1 + fj2 − fj3 − fj4, (53)

and

f =
ns

∑
j=1

fj, (54)

where ns is the number of independent liquidity sources and for each source the same
Equations (47)–(50) apply for its component vectors in each case.

Figure 10 shows a visualization of the cyclic structure for a case where ns = 3
(EUBOF 2021). Each node shown is a firm or an individual. The arcs of the graph de-
note bilateral obligations (IOUs), not currency flows. The picture does not show all the
obligations between these roughly 3000 points, it only shows the obligations that can be
cleared with (red, blue, yellow) or without (green) the liquidity sources. To utilize multiple
liquidity sources, the exchange rate must be set to an agreed unit of account (e.g., the
Euro) for each party at the moment of clearing, which is near-instantaneous. Yellow could
represent fiat held in bank accounts, red CBDC balances, and blue cryptocurrencies. A
fourth source could be added representing mutual credit.

Figure 10. Visualization of payment system with three liquidity sources (EUBOF 2021).
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4.3. Optimizing the Use of Available Liquidity

The setup and algorithm of the previous section can be adjusted unilaterally by
individual firms. For example, a firm may wish to use its credit line even though it still
has cash available in its bank account. Similarly, a bank may set different global or local
constraints. In general, however, the optimal solution for the payment system described
above can be obtained by applying the idea from Theorem 5 to the payment system in its
entirety. This ensures the maximum total obligation settlement amount with the available
liquidity sources. Leaving the execution of payments to the discretion of the individual
firms will yield a sub-optimal solution since firms do not have sufficient information about
the payment system.

To use the idea of removing the maximum weight of cycles from the payment system,
we have to transform the payment system into an extended nominal liability matrix, where
liquidity sources become new nodes and the desired cashflows become new obligations.
Let us denote such an extended nominal liability matrix by L∗. Let us apply the MCF
algorithm to find an extended minimum-cost flow M∗ and then the extended maximum
weight set of cycles T∗ by using the equation

L∗ −M∗ = T∗. (55)

Theorem 7. The extended maximum-weight set of cycles T∗ discharges the maximum amount of
obligations in the obligation network with the available liquidity.

Proof. The extended nominal liability matrix has no external liquidity sources, by con-
struction. Therefore, new sources of liquidity are needed to discharge the obligations in
M∗. This is consistent with how we defined the MCF problem in Section 3.1.3. The cycles
in T∗ as shown in Corollary 3, therefore, use the available distribution of liquidity inside
L∗ to discharge the maximum volume of obligations in the obligation network.

5. Conclusions

The generalization of the payment system presented allows for the implementation
of an LSM outside the interbank payment systems. The potential in trade credit markets
is proven by 30 years of positive experience with trade credit clearing in Slovenia. New
developments in e-invoicing and tax compliance create new opportunities to implement
LSMs in the trade credit market in the rest of Europe and beyond.

In Fleischman et al. (2020), we made the empirical claim that the most basic use of the
TCT algorithm delivers a significant decrease of the mutual indebtedness present in an
obligation network. In this paper, we have provided the mathematical proofs for why a
decrease is assured as long as there are cycles in the network, although we did not address
mathematically what ‘significant’ might mean. Building on that, its extended use, where
the obligation network is transformed into a payment system, allows for an efficient use
of external liquidity sources to discharge the maximum amount of debt possible. In this
paper, we proved the maximum claim, although again how significant that might be in
economic terms remains a context-dependent question that will be explored in future
work. From an applied mathematics point of view; therefore, the original contribution of
the paper has been the introduction of a liquidity node with a store of value function in
obligation-clearing and the demonstration that the case with one or more liquidity sources
can be solved with the same mathematical machinery that is used for obligation-clearing
without liquidity.

From a wider perspective, obligation-clearing and complementary currencies such as
mutual credit can be seen as examples of ‘collaborative finance’. There are new services
developing that collect a huge amount of trade credit information that can be utilized to
implement the idea of the balanced payment subsystem. For example, new methods of
information exchange using decentralized ledger technologies (DLTs) and decentralized
finance (DeFi) call for the implementation of LSMs that provide solutions in environments
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where liquidity is not readily available and that can help communities of small firms in
development and humanitarian crisis contexts in significant ways. Further opportunities
for implementation are with complementary currencies and crypto assets that can enable
the discharging of obligations issued in fiat currency as external sources of liquidity. This
way, the impact of the benefits of mutual trust characteristic of complementary currency
communities, which are most visible at small scales, could be transmitted to the national
economy and the wider society.
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Notes
1 Central Bank Digital Currency.
2 Efficiency could be loosely defined as the ratio of debt cleared to the total initial debt. Due to network effects (probably factorial)

that are not yet well-understood and that will be explored in future work, the injection of liquidity increases this value even after
the liquidity used is subtracted from the debt cleared.

3 https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eInvoicing+in+Italy (accessed on 18 September 2021).
4 In Slovenia, it is an institution equivalent to the UK’s Companies House.
5 Such a path usually involves multiple, and different, firms or ‘hops’ in each direction.
6 Usually referred to as vertices in graph theory.
7 We note that this is opposite to the ‘balance’ function δ(v) in Simić and Milanović (1992), which is defined using the standard

fluid mechanics convention of ‘net flow = outflow − inflow’. In the present analysis, it is more convenient to follow financial
intuition to define the net position as ‘inflow − outflow’. The only difference between Simić and Milanović (1992), and our
analysis as far as this function is concerned, therefore, is merely a sign.

8 We should clarify that we are using the term ‘cashflow’ in a more general sense than its normal application in business, i.e., as
the revenue per unit time of a given company. In this paper, cashflow means literally the movement or “flow” of currency over
one or more hops of the network, i.e., between two or more companies. Such flow can also be a closed loop or cycle, and one
of the nodes can also be a bank or other account-holding institution. The units are still

[ currency
unit time

]
, but the time period is not

important and can be trivially assumed to be 1,
9 There are many possible maximum-weight sets of cycles but only one maximum weight. Interestingly, depending on which

maximum-weight set of cycles one finds, q could be different. Empirical tests on larger datasets show that the number of cycles
can change within a range of about 1%.

10 In the context of a multigraph, there can be multiple edges between any two nodes. One might therefore expect different cycles
to be associated with different edges between the same two nodes. While this is possible, it is not necessarily the case. The same
edge can be the intersection of multiple cycles such that, if it happens to be the smallest weight of multiple cycles, subtracting
one cycle will break all the others.

11 The ‘object function’ in optimization theory.
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