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Abstract: This paper investigates the volatility of daily returns on the Romanian stock market
between January 2020 and April 2021. Volatility is analyzed by means of the representative index
for Bucharest Stock Exchange (BSE), namely, the Bucharest Exchange Trading (BET) index, along
with twelve companies traded on BSE. The quantitative investigation was performed using GARCH
approach. In the survey, the GARCH model (1,1) was applied to explore the volatility of the BET
and BSE traded shares. Conditional volatility for the daily return series showed noticeable evidence
of volatility that shifts over the explored period. In the first quarter of 2020, the Romanian equity
market volatility increased to a level very close to that recorded during the global financial crisis
of 2007–2009. Over the next two quarters, volatility had a downward trend. Besides, after VAR
estimation, no causal connection was found among the COVID-19 variables and the BET index.

Keywords: Romanian stock market; volatility clustering; autocorrelation; COVID-19; GARCH
models; vector autoregression model; Granger causality

1. Introduction

The coronavirus malady (COVID-19) is a sanitary and economic turning point that
has harmed the basis of the human condition (Verma and Gustafsson 2020), it being one of
the most acute health emergencies in the recent past (Vera-Valdés 2021). The occurrence
of the disease hurt the global economies and caused insecurity on worldwide equity
markets (Engelhardt et al. 2021). The extensive uncertainty of the plague and its related
economic failures has triggered markets to turn extremely volatile and unpredictable
(Zhang et al. 2020). Baker et al. (2020) suggested that no prior contagious virus outburst,
including the Spanish Flu, has disturbed the equity market as strongly as the COVID-19
pandemic. Since it was difficult to expect and has never hitherto arose, this slump was
described as a “black swan” event (Yarovaya et al. 2021). As compared with the 2008 crash
which commenced in the United States and progressively diffused to other nations with a
substantial time postponement, the coronavirus disease rapidly brought the worldwide
economy to a stoppage by instantaneously hampering demand and supply lines around
the globe due to extensive lockdowns (Ozkan 2021). Anser et al. (2021) noticed that
COVID-19 contaminated cases are the central element that impedes financial activities and
reduces money allocation, but a growing number of recovered cases offer investors’ trust
to boost stock trade across nations. Agarwalla et al. (2021) documented that the rescue
package had limited the extreme tail risks, but the volatility level persisted at a high level.
Ghorbel and Jeribi (2021) claimed that equity indices and financial assets rely not only on
their earlier volatility, but also on the preceding volatility of the fuel prices. Therefore,
in the aftermath of SARS-CoV-2 virus diffusion, the unpredictability in stock exchanges
substantially increased, thus causing huge shortfalls for investors (Farid et al. 2021). The
decline of the composite indicator of systemic stress among February and April 2020
was equivalent to the failures it recorded at the beginning of the 2008 global financial
crisis and the 2011–2012 sovereign debt crisis, whereas the collapse in March 2020 was

J. Risk Financial Manag. 2021, 14, 341. https://doi.org/10.3390/jrfm14080341 https://www.mdpi.com/journal/jrfm

https://www.mdpi.com/journal/jrfm
https://www.mdpi.com
https://orcid.org/0000-0003-2911-6480
https://orcid.org/0000-0003-3486-5443
https://doi.org/10.3390/jrfm14080341
https://doi.org/10.3390/jrfm14080341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jrfm14080341
https://www.mdpi.com/journal/jrfm
https://www.mdpi.com/article/10.3390/jrfm14080341?type=check_update&version=1


J. Risk Financial Manag. 2021, 14, 341 2 of 29

the fourth-greatest monthly change since the commence of the euro (Borgioli et al. 2020).
Pan et al. (2021) emphasized that the level of sovereign credit default swap enlarged
throughout periods when the coronavirus pandemic turned out to be more critical. S&P
500 and EURONEXT 100 indices plummeted by nearly 30–38% between January and 15
June 2020 (data.europa.eu 2020), whilst Romania ranked ninth by considering the top
ten best-performing leading European indices in the first half of 2020 (Bucharest Stock
Exchange 2020).

However, although the COVID-19 pandemic undesirably affected worldwide economies
and stock exchanges, Fernandez-Perez et al. (2021) proved that culture significantly influ-
ences market volatility since nations with reduced individualism and great uncertainty
avoidance respond more adversely and with larger instability than nations with high indi-
vidualism and weak uncertainty avoidance. Thus, Hunjra et al. (2021) supported that East
Asian markets reacted differently to manifold sanitation arrangements and virus security
strategies. Additionally, Bannigidadmath et al. (2021) explored 25 nations and showed that
their reaction to government measures was dissimilar, claiming that in states where the
guidelines counted, the impact was mainly harmful. Orhun (2021) supported that equity
markets of nations with greater health outflow, better promptitude for diseases and superior
GDP per capita are more protected against the coronavirus crisis. Harjoto and Rossi (2021)
proved that the current pandemic had a significantly larger adverse effect to the equity
markets in emerging nations than in the developed states.

COVID-19 induced panic and concerns amidst investors, thus contributing to social
mindsets such as the herding behavior (Mnif et al. 2020). Shaikh and Huynh (2021) docu-
mented that investors’ concern came out to be greater in the equity sector first—ever since
the stock market crash of 1987 and the global financial crisis of 2008–2009. For instance,
Subramaniam and Chakraborty (2021) found a robust negative relationship among COVID-
19 fear and stock returns. Hence, returns were adversely influenced by fear through rising
the market risk premium claimed by stockholders (Aggarwal et al. 2021). Bourghelle
et al. (2021) found that the COVID-19 shock caused further oil price instability, primarily
attributable to intensified insecurity, alongside stockholder tension and fear. Chang et al.
(2020) argued that different to the Global Financial Crisis, investors panic about assuming
risks, so they may imprudently get rid of all their holdings. Karamti and Belhassine (2021)
advised that concern in the US market dispersed to the worldwide markets at the longer in-
vestment horizons. Hence, Kizys et al. (2021) documented herding conduct in the first three
months of 2020, along with Espinosa-Méndez and Arias (2021), which confirmed that the
pandemic heightened herding conduct in European equity markets. Ortmann et al. (2020)
established that investors raised their brokerage deposits and launched further accounts,
whereas mean weekly trading intensity expanded by 13.9% as the number of cases dupli-
cated. Moreover, Pagano et al. (2021) proved that retail investors lessened momentum
trading and heightened contrarian trading operations throughout the preliminary stage of
this turning point, whilst Smales (2021) claimed that individual traders are more inclined
to perform online explorations for facts to settle dwelling insecurity in the course of the
corona crisis. On the contrary, Sun et al. (2021) argued that coronavirus-associated reports
and economic-related publications do not generate unreasonable investment judgments.
Besides, Hong et al. (2021) advised that the pandemic period was related with market
inefficiency, establishing rewarding prospects for dealers and opportunists.

Prior papers were focused on volatility examination for African equity markets
(Lo et al. 2021; Takyi and Bentum-Ennin 2021; Zoungrana et al. 2021), the Australian
stock market (Brueckner and Vespignani 2021), BRICS and G7 states (Yu et al. 2021),
Canada and the US (Xu 2021), the Chinese stock market (Chen et al. 2021; Liu et al. 2021b;
Shahzad et al. 2021), seven emerging countries (Hashmi et al. 2021), euro area stock markets
(Duttilo et al. 2021), the Indian financial market (Bora and Basistha 2021), the South Korea
stock market (Hoshikawa and Yoshimi 2021), Thailand (Hongsakulvasu et al. 2020), the
Tunisian sectorial stock market (Fakhfekh et al. 2021), the US stock market (Curto and
Serrasqueiro 2021; Hong et al. 2021), Vietnam and Philippines (Le and Tran 2021), Visegrad



J. Risk Financial Manag. 2021, 14, 341 3 of 29

Group member states (Czech et al. 2020), or several international markets (Al-Najjar et al.
2021; Al-Qudah and Houcine 2021; Anser et al. 2021; Banerjee 2021; Chowdhury et al.
2021; Contessi and Pace 2021; Engelhardt et al. 2021; Höhler and Lansink 2021; Rouatbi
et al. 2021; Szczygielski et al. 2021b; Topcu and Gulal 2020; Vera-Valdés 2021; Youssef
et al. 2021; Zhang et al. 2020). This paper aims to examine the volatility throughout the
Romanian financial market during the COVID-19 pandemic. Investigating volatility is
crucial, as an unexpected and substantial rise in instability may cause a financial meltdown
(Uddin et al. 2021). We investigate an emerging stock exchange as long as these markets
are more exposed to insecurity of pandemics and epidemics than developed markets
(Salisu et al. 2020).

In the present article, it was analyzed how the volatility on the Romanian stock market
manifested itself due to the COVID-19 pandemic outbreak. Thus, in order to fulfill the
objective of the study, coronavirus daily data were used between January 2020 and April
2021 for the following markets: USA, Italy, and Romania. For the Romanian capital market,
we selected the representative index for Bucharest Stock Exchange (BSE), namely, the
Bucharest Exchange Trading (BET) index, as well as a number of twelve shares, these being
positioned in the top of the most traded on BSE at the time of this research. Regarding the
variables used as proxies for COVID-19, they are related to the evolution of the new number
of cases of COVID-19 registered in the USA, Italy, and Romania. Italy was the epicenter of
the COVID-19 pandemic in Europe, whereas the USA had the highest number of COVID-19
cases. Moreover, the USA has some of the largest stock markets that have a strong impact
on other markets. For instance, Celık (2012) proved that emerging markets appear to be
the most affected by the contagion consequences from the U.S. Moreover, Le and Tran
(2021) found evidence that Vietnamese and the Philippine stock markets are affected by
the contagion effect from the US stock market throughout the COVID-19 pandemic.

So far, the evidence for BSE is limited, this being, to the best of our knowledge, among
the first studies that address the impact of COVID-19 on the Romanian capital market.

The rest of the paper is organized as follows. Section 2 reviews the related literature.
Section 3 describes the dataset and quantitative techniques. Section 4 presents and discusses
the empirical outcomes. Section 5 concludes the study.

2. Literature Review

The occurrence of COVID-19 has harmful effects on worldwide markets (Naeem et al.
2021), being expected to be the largest economic shock in human history (Insaidoo et al. 2021).
Broadly, Xu (2021) noticed an adverse effect of a rise in the COVID-19 cases on the financial
market. Chowdhury et al. (2021) claimed that European financial markets were the most
terrible victim related to others. In the same vein, Youssef et al. (2021) noticed that European
equity markets, excepting Italy, spread more spillovers to the whole other financial markets
than they obtained, mainly through the coronavirus outburst. Szczygielski et al. (2021b)
showed that pandemic insecurity has affected nearly all territories via smaller returns and
heightened market volatility. Hence, the insecurity triggered by the COVID-19 outbreak
and the rapidity with which the novel coronavirus dispersed around the world produced a
panic in international financial markets (Lo et al. 2021). As such, Zhang and Hamori (2021)
noticed that the effect of disease on the volatility of the oil and stock markets surpassed
that of the 2008 global financial crisis. Moreover, Szczygielski et al. (2021a) proved that
no national energy market was unharmed by COVID-19 insecurity. Hence, coronavirus
disease lessened stock market liquidity involving equally the depth and the tightness facets
(Mdaghri et al. 2021). For S&P 500 enterprises, Chebbi et al. (2021) documented a negative
link among the quotidian increase in the numbers of coronavirus cases and fatalities and
stock liquidity. Moreover, for the Shanghai stock market, Ftiti et al. (2021) confirmed the
rise of stock market volatility and liquidity risk justified by a ripple effect triggered by
the vulnerability of the sanitary sector. However, Curto and Serrasqueiro (2021) argued
that coronavirus occurrence did not strike evenly across all the US segments and stock
quotes. For instance, Milcheva (2021) noticed that the most affected segments in the US are
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retail and hotels, but in Asia the most affected segment is the office. Nevertheless, Höhler
and Lansink (2021) noted that the food sector was less influenced by the pandemic than
other segments.

A first strand of literature was focused on the reaction of stock returns to the existing
pandemic. Topcu and Gulal (2020) exhibited that Asian markets were the most influenced
by the pandemic, succeeded by South America and the Middle East. As such, Hongsakul-
vasu et al. (2020) revealed that COVID-19 disquiet negatively influenced every kind of
Thailand’s stock return. Al-Najjar et al. (2021) claimed that coronavirus incidents exert
an adverse impact on equity market indices of G8 countries. Al-Qudah and Houcine
(2021) noticed that the surge in established cases of COVID-19 negatively influenced stock
returns for the main affected nations in the WHO Regions. For Central, North, and the
South American realm, Amin et al. (2021) concluded that COVID-19 cases undesirably
influence market indexes. Takyi and Bentum-Ennin (2021) revealed that African financial
markets performance lessened between −2.7% and −20 % throughout and subsequently
the incidence of the pandemic. Czech et al. (2020) reported a negative association among
the Visegrad stock market indices and the COVID-19 diffusion. For the case of emerging
markets, Hashmi et al. (2021) advised that the number of coronavirus cases negatively
influences stock prices mainly when these financial markets are in a bearish condition.
Contrariwise, O’Donnell et al. (2021) found that the everyday amounts of COVID-19 cases
did not explain the index price variations in China, Spain, Italy, the United Kingdom, and
the United States. Zoungrana et al. (2021) revealed for the West African Economic and
Monetary Union’s (WAEMU) stock market that weekly validated cases do not influence
stock returns, even if the impact of death cases is harmful. However, Brueckner and Vespig-
nani (2021) documented that COVID-19 contaminations had a positive influence on the
performance of the Australian equity market.

Another strand of research was oriented on how COVID-19 news influences stock
returns and oil prices because terrific fear caused by the mass media is related with
growing volatility in the financial markets (Haroon and Rizvi 2020). Chundakkadan and
Nedumparambil (2021) provided evidence that emphasis on the pandemic has generated
a pessimistic reaction between market players and weakened the stock exchanges. Weng
et al. (2021) established that news throughout the coronavirus pandemic has more fore-
casting information, which is essential for the transient volatility estimating of fuel futures,
whereas Salisu and Vo (2020) reinforced that considering health reports over illnesses
boosts stock return foresight. Baek et al. (2020) advised a negativity tendency since adverse
announcements concerning the number of fatalities are twice as impactful as optimistic
facts with respect to recoveries. Wu et al. (2021) argued that media can stimulate the
forecast of oil cost and usage over the COVID-19 contagion. Atri et al. (2021) noticed that
the number of casualties and the COVID-19 panic adversely impact petroleum value, but
the COVID-19 media coverage positively influences fuel cost in the short run.

Further studies were exploring safe-haven assets throughout ongoing health crises.
Huang et al. (2021) suggested that Bitcoin can promote efficient diversification and risk
alleviation, whereas Mariana et al. (2021) strengthened that Ethereum is a superior safe-
haven than Bitcoin. Similarly, Disli et al. (2021) advised that gold, oil, and Bitcoin offer
diversification benefits at extended investment perspectives. Ji et al. (2020) underlined
that gold and soybean futures may uphold the worth of an investment. Contrariwise,
Będowska-Sójka and Kliber (2021) claimed that cryptocurrencies rarely performed as weak
safe-haven assets during several market disorders, whilst Conlon and McGee (2020) argued
that Bitcoin does not behave as a safe haven over the bear market stemming from the
coronavirus disease. For financial markets of Africa, Omane-Adjepong and Alagidede
(2021) concluded that the safe-haven potential of precious metals, particularly gold, has
diminished. In the same vein, Umar et al. (2021) contradicted the safe-haven feature of
precious metals over the coronavirus plague, apart from silver. For the case of Chinese
portfolios, Pho et al. (2021) found that Bitcoin is appropriate to risk-prone investors,
whereas gold is adequate to prudent investors.
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A summary of prior literature exploring equity market volatility due to the coronavirus
pandemic is exhibited in Table 1.

Table 1. Brief review of earlier studies towards the effect of the COVID-19 pandemic on stock market volatility.

Author(s) Sample Period Quantitative Methods Outcomes

Shahzad et al.
(2021)

CSI 300 sector index
series for ten sectors

3 January 2019–30
September 2020

Vector
autoregressive model

Bad volatility spillover shocks
dominate good volatility

spillover shocks

Salisu and
Ogbonna (2021)

Prices of Bitcoin,
Ethereum, Litecoin

and Ripple

2 September
2019–29 September

2020
GARCH MIDAS

Return unpredictability of
cryptocurrencies is riskier

throughout the pandemic as
related to prior

financial slumps

Abuzayed et al.
(2021)

14 country-specific
stock markets

7 January 2016–1
July 2020

Dynamic conditional
correlation (DCC)

conditional
autoregressive
heteroscedastic

(GARCH) model

Developed stock exchanges in
North America and Europe
spread and received more

marginal extreme risk to and
from the worldwide market

index compared to Asian
equity markets

Bai et al. (2021) US, China, UK, and
Japan financial markets

4 January 2005–30
April 2020 GARCH-MIDAS

Pandemic positively influence
perpetual volatility up to

24-month lag

Li (2021)
G7 and 3 emerging

nations (China, India,
and Brazil)

1 June 2009–28
August 2020

Asymmetry in
volatility spillovers

Equity markets of Japan,
China, India, and Brazil are

risk receivers
Stock markets of the US,

Germany, the U.K., France,
Italy, and Canada are

risk spreaders

Tian and Ji (2021)

MSCI indices of the US,
the UK, France,

Germany and the MSCI
developed markets

2 January 2001–31
December 2020

GARCH copula
quantile

regression-based
CoVaR model

Germany exhibits the greatest
risk spillovers, succeeded by
France, the US and, the UK

Malik et al. (2021) Brazil, Russia, India,
China, South Africa

1 January 2013–24
April 2020

Baba-Engle-Kraft-
Kroner

(BEKK) model

The US, China and Brazil
exhibited the highest

individual volatility spillovers

Yousfi et al. (2021) S&P 500 index and the
CSI 300 index

5 January 2011–21
September 2020

GARCH models, DCC
process, and wavelet

coherence

Higher volatility spillover
among US and Chinese equity

markets throughout the
pandemic period than before it

Contessi and Pace
(2021)

18 main stock
market indices

1 November
2019–29 May 2020

Generalized
Supremum ADF

(GSADF) test

Volatility spread from the
Chinese equity market to all

other markets

Liu et al. (2021a) 16 main equity markets
in the world

24 January 2019–30
December 2020

Spillover analysis in
time and

frequency domain

Following the outbreak of
COVID-19 pandemic, the
integration of global stock

markets increases considerably
and the market risk contagion

between them also
raised substantially
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Table 1. Cont.

Author(s) Sample Period Quantitative Methods Outcomes

Zaremba et al.
(2020) 67 nations 1 January 2020–3

April 2020 Regression models
Government interventions
increase worldwide stock

markets’ volatility

Duttilo et al. (2021) European
stock markets

4 January 2016–31
December 2020 Threshold GARCH

The first wave of pandemic
affected stock market volatility

of euro area nations with
middle-large financial centers,
but the second wave impacted
merely stock market volatility

of Belgium

Banerjee (2021)
China and its key

trading partners’ index
futures contracts

1 August 2015–31
July 2020

Bivariate asymmetric
dynamic conditional

(ADCC)
GARCH model

Substantial financial contagion
in most developed and

emerging markets showing
sizeable business relations

with China throughout
COVID-19 period

Liu et al. (2021b) Shanghai A shares 1 January 2017–31
March 2020. GARCH with skewness The pandemic boosts financial

market crash risk

Hoshikawa and
Yoshimi (2021)

Volatility index of the
South Korean Stock

market (KVI)

2 January 2019–31
August 2020 VAR, OLS, GARCH

The rise of new infection cases
caused an upsurge in stock

market volatility

Bora and Basistha
(2021)

Nifty and Sensex
stock indices

3 September
2019–10 July 2020 GJR GARCH

Indian equity market has
undergone volatility

throughout the pandemic

Fakhfekh et al.
(2021) 12 sectorial indices 4 January 2016–30

April 2020
EGARCH, FIGARCH,
FIEGARCH, TGARCH

Subsequent COVID-19
eruption, volatility is frequent

in all series

Yousaf (2021)
Precious metals,

industrial metals and,
energy markets

22 January 2020–4
January 2021 BEKK-MGARCH

Volatility diffusion is
significantly negative from the
COVID-19 to gold, palladium,

and brent oil markets, but
positively spread to the WTI

oil market

Source: Authors’ work based on the literature review.

3. Data and Methodology
3.1. Sample Selection

For our study, we selected the most traded companies on the Bucharest Stock Exchange
(BSE)—ALR, BRD, BVB, COTE, EL, FP, SNG, SNP, TEL, TLV, TRP and WINE—for the
period January 2020–April 2021. To capture the types of causality between the variables
regarding COVID-19 and the Romanian stock exchange, we decided to select the latest
number of cases of COVID-19 registered in the USA, Italy, and Romania. The selected
measures are presented in Table 2.
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Table 2. Variables’ descriptions.

Variables Description

Variables regarding Romanian financial market

BET

Bucharest Exchange Trading is the first index developed by BSE and signifies the
reference index for the Romanian equity market. BET indicates the performance of
the most traded corporations on BSE’s regulated market, apart from financial
investment enterprises. It is a free float market capitalization weighted index, with
the highest weight of its components of 20%.

ALR Alro is affiliate of Vimetco N.V., a worldwide, vertically-integrated primary and
processed aluminium manufacturer. Field of activity: Aluminium production.

BRD BRD Groupe Societe Generale is the second leading bank in Romania and the fourth
market capitalization on the BSE. Field of activity: Other monetary intermediation.

BVB
The Bucharest Stock Exchange is the most significant organization of the local capital
market. It coordinates and operates the regulated markets of financial instruments
under European guidelines. Field of activity: Administration of financial markets.

COTE

CONPET delivers specific gas transport services via tubes and by rail, ensuring the
supply of the factories with domestic and imported crude oil and derivatives. It
manages a 3800 km pipeline grid encompassing 24 Romanian counties. Field of
activity: Transport via pipeline.

EL
Societatea Energetica Electrica is a major participant in the energy sharing and
supply market in Romania. Field of activity: Business and other management
consultancy activities.

FP

Fondul Proprietatea is a joint stock company running as a closed-end investment
company (Alternative Investment Fund) short of a set period, integrated in
Romania, trading on the BSE since January 2011, and on the London Stock Exchange
since April 2015. Field of activity: Trusts, funds and similar financial entities.

SNG
Romgaz is the leading natural gas manufacturer and the key provider in Romania. It
is a joint stock corporation whose majority stockholder is the Romanian State
owning a 70% share. Field of activity: Extraction of natural gas.

SNP

OMV Petrom is the leading energy corporation in Southeastern Europe. The firm is
involved along the whole energy value chain: from exploration and fabrication of oil
and gas, to processing and fuels supply, and further on to power production and
advertising of gas and power. Field of activity: Extraction of crude petroleum.

TEL

Transelectrica is the Romanian Transmission and System Operator which performs a
vital position in the Romanian electricity market. It operates and runs the energy
spread system and delivers the electricity connections among the Central and
Eastern European nations as a member of European Network of Transmission and
System Operators for Electricity. Field of activity: Transmission of electricity.

TLV Banca Transilvania is the first largest bank in Romania in terms of total assets. Field
of activity: Other monetary intermediation.

TRP
TeraPlast SA is the parent corporation of the TeraPlast Group, respectively the major
Romanian manufacturer of construction materials. Field of activity: Manufacture of
plastic plates, sheets, tubes and profiles.

WINE

Purcari Wineries Group is a prominent participant in the wine and brandy sectors in
the Central and Eastern Europe area, handling around 1,300 hectares of vineyards
and 4 wineries placed in Romania and the Republic of Moldova. Field of
activity: wineries.

Variables regarding COVID-19 pandemic

RO_COVID Number of new cases of COVID-19 in Romania

IT_COVID Number of new cases of COVID-19 in Italy

US_COVID Number of new cases of COVID-19 in USA
Source: Authors’ own work.
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The data consist of daily observations. For the variables regarding the Romanian
financial market, the data source was Thomson Reuters Datastream, whereas for the
variables regarding the COVID-19 pandemic, the data source was Our World in Data.

The formula for daily yields is in line with Banerjee (2021); Bora and Basistha (2021);
Curto and Serrasqueiro (2021); Duttilo et al. (2021); Fakhfekh et al. (2021); Ftiti et al. (2021);
Ghorbel and Jeribi (2021); Höhler and Lansink (2021); Hong et al. (2021); Hongsakulvasu
et al. (2020); Le and Tran (2021); Orhun (2021); Tian and Ji (2021); Yousfi et al. (2021); Yu
et al. (2021); Zoungrana et al. (2021):

Ri,l = ln
(

Pi,l

Pi,l−1

)
(1)

where Ri,l is the yield of the index/asset i in period l, Pi,l is the asset price/stock market
index value i in period l and Pi,l−1 is the price of the asset/stock market index value in
the l-1 period. Logarithmic yields were used because they are expected to have a normal
distribution.

3.2. Quantitative Methods

To explore the selected financial time series, we will employ ARCH/GARCH models
as in prior studies (Salisu and Ogbonna 2021; Abuzayed et al. 2021; Bai et al. 2021; Banerjee
2021; Bora and Basistha 2021; Curto and Serrasqueiro 2021; Czech et al. 2020; Duttilo et al.
2021; Fakhfekh et al. 2021; Farid et al. 2021; Ghorbel and Jeribi 2021; Harjoto and Rossi 2021;
Haroon and Rizvi 2020; Hongsakulvasu et al. 2020; Insaidoo et al. 2021; Le and Tran 2021;
Liu et al. 2021b; Malik et al. 2021; Mariana et al. 2021; Omane-Adjepong and Alagidede
2021; Szczygielski et al. 2021a, 2021b; Uddin et al. 2021; Vera-Valdés 2021; Xu 2021; Yousaf
2021; Yousfi et al. 2021; Yu et al. 2021; Zhang and Hamori 2021; Zoungrana et al. 2021).
These models simultaneously evaluate and test processes of yields and volatility processes.

ARCH models were introduced by Engle (1982) and Generalized (GARCH) by Boller-
slev (1986). A GARCH model allows conditional variation to be dependent on its previous
lags. GARCH models transform the AR process from the ARCH model into an ARMA
process by adding an MA process. The GARCH model (p, q) has the following form:

yt = µ + εt ∼ N
(

0, σ2
t

)
(2)

σ2
t = ω + α1ε2

t−1 + · · ·+ αqε2
t−q + β1σ2

t−1 + · · ·+ βpσ2
t−p (3)

where ω > 0 and αi ≥ 0, βi ≥ 0.
From Equations (2) and (3), it can be seen that the conditioned variance of random

perturbations depends both on the historical values of the shocks and on the values of the
variance in the past. The coefficients of σ2

t−p represent persistence of volatility, whereas the
coefficients of ε2

t−q signify the rate of reaction of volatility to shocks in the financial market.
Parameter p is the order of the terms GARCH and q is the order of the ARCH terms.

According to Baybogan (2013), the core issue with an ARCH specification is that it
involves a substantial number of lags to seize the type of the volatility, whereas the GARCH
framework is generally much more parsimonious for the reason that it integrates much of
the evidence that a larger ARCH model with considerable lags would cover.

In order to analyze the causality between the BET index and the number of new
COVID-19 cases, we will estimate in the first instance three vector autoregression (VAR)
models, much like those found in Anser et al. (2021), Chen et al. (2021), Chowdhury et al.
(2021), and Youssef et al. (2021), incorporating the stock market index and each COVID-19
pandemic measure, as described below:

BETt = δ1 +
k

∑
j=1

β jBETt−j +
k

∑
j=1

γjCOVIDt−j + u1t (4)
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COVIDt = δ2 +
k

∑
j=1

ψjCOVIDt−j +
k

∑
j=1

ϕjBETt−j + u2t (5)

where δ1 and δ2 are the intercepts, β, γ, ψ, and ϕ are the endogenous variables coefficients,
whereas u are the residual terms.

Further, for each estimated VAR model, we will employ the Granger causality test, as
in earlier literature (Bourghelle et al. 2021; Chen et al. 2021; Liu et al. 2021b). So as to perform
the causality test, the data series must be stationary and zero average (Granger 1969). The
null hypothesis is that b does not cause Granger on c and that c does not cause Granger on
b. The following bivariate regressions are given:

ct = α0 + α1ct−1 + · · ·+ αpct−p + β1bt−1 + · · ·+ βpb−p + εt (6)

bt = α0 + α1bt−1 + · · ·+ αpbt−p + β1ct−1 + · · ·+ βpc−p + ut (7)

Thus, a first step in the present study is the examination of the stationarity of the
selected variables, which is an important stage in any econometric study. This will be
verified by the ADF test, much like Bai et al. (2021) and Chen et al. (2021). Next, we intend
to model BSE volatility through the GARCH model and identify the types of causality that
are established between BSE and COVID-19 variables through the Granger causality test
after VAR estimation.

The research hypotheses are formulated as follows:

Hypothesis 1 (H1). The COVID-19 pandemic negatively influences the return of the Bucharest
Exchange Trading Index.

Hypothesis 2 (H2). The COVID-19 pandemic adversely impacts the return of the companies
traded on the Bucharest Stock Exchange.

4. Empirical Results
4.1. Preliminary Statistics

Table 3 shows descriptive statistics for the daily logarithmic returns of the shares
traded on BSE, as well as for the BET stock market index, whereas Figure 1 reveals the
density graphs. The selected shares have a negative skewness (except for the TRP share)
in line with Agarwalla et al. (2021), Banerjee (2021), Malik et al. (2021),Yousaf (2021),
and Zhang and Hamori (2021). As a common condition of financial markets, skewness is
negative, suggesting an asymmetry to the left.

Table 3. Descriptive statistics for daily logarithmic returns.

Variables Mean Std. Dev. Skewness Kurtosis Jarque–Bera Probability

BET 0.000328 0.013891 −1.69758 16.55179 2748.758 0
ALR 0.000654 0.024085 −1.52064 18.71394 3607.831 0
BRD −8.72 × 10−5 0.018169 −0.82825 7.13984 280.0083 0
BVB −6.82 × 10−5 0.014499 1.201959 21.34744 4822.239 0

COTE 0.000448 0.016037 −1.33521 16.31311 2596.545 0
EL 0.000723 0.016134 −0.64638 8.430259 438.822 0
FP 0.000995 0.020352 −0.23783 34.51292 13,988.84 0

SNG −0.000359 0.01451 −0.52513 6.038829 145.5867 0
SNP −8.05 × 10−5 0.020049 −1.47295 14.83691 2095.471 0
TEL 0.000837 0.01552 −0.65783 7.630885 326.3964 0
TLV 6.32E−05 0.01956 −0.99008 7.62791 356.8519 0
TRP 0.003905 0.023626 1.82107 19.48105 4012.206 0

WINE 0.000398 0.016247 −0.52416 7.145975 257.5572 0

Source: Authors’ calculations. Notes: Variables’ descriptions are provided in Table 2.
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The Kurtosis indicator measures the magnitude of the extreme values. Accordingly, in
the current investigation, all the explored variables register a value of kurtosis greater than
three. This fact indicates that the return series has fatter tails than the normal distribution,
similar to Banerjee (2021), Bourghelle et al. (2021), Fakhfekh et al. (2021), Ftiti et al. (2021),
Malik et al. (2021), Yu et al. (2021), and Zhang and Hamori (2021). This feature is referred
to as leptokurtosis, which could be caused by volatility clustering.

Additionally, through the Jarque–Bera test, we can decide the distribution of vari-
ables. Consistent with the empirical results presented in Table 2, the probability ac-
companying the test is 0%. Hence, the test values are quite different from those of
the normal distribution, proving that the series are not normally distributed, much like
Curto and Serrasqueiro (2021), Liu et al. (2021a), Malik et al. (2021), Yousfi et al. (2021),
and Zhang and Hamori (2021).

Figure 2 shows the Q–Q (quantile–quantile) plots. The quantiles–quantiles graph is
a straightforward method used to compare two distributions. Therewith, it signifies the
graph of an empirical distribution versus a theoretical distribution (normal distribution). If
the empirical distribution is normal, the subsequent Q–Q graph should be the first bisector.
However, in current investigation, the distribution is very different from the normal one.
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Figure 2. Q–Q plots for daily logarithmic returns. Source: Authors’ own work. Notes: Variables’ descriptions are provided 
in Table 2. 
Figure 2. Q–Q plots for daily logarithmic returns. Source: Authors’ own work. Notes: Variables’ descriptions are provided
in Table 2.

The density graph (see Figure 1) and Q–Q plot (see Figure 2) against the normal
distribution show that the returns distribution also exhibits fat tails confirming the results
in Table 2.

Further, we studied the stationarity of stocks and the stock market index using the
ADF (Augmented Dickey–Fuller) test, much like Abuzayed et al. (2021), Atri et al. (2021),
Banerjee (2021), Bora and Basistha (2021), Insaidoo et al. (2021), Li (2021), Yousaf (2021),
Yousfi et al. (2021), and Zhang and Hamori (2021). ADF test is a very common method of
assessing stationarity. The null hypothesis of the test is that the analyzed data series is not
stationary and has a root unit. The outcomes of ADF test are revealed in Table 4.
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Table 4. ADF test results for daily logarithmic returns.

Level Augmented Dickey–Fuller Test Statistic 1% Level 5% Level 10% Level

BET −7.012889 −3.44986 −2.87003 −2.571363
ALR −7.440329 −3.44968 −2.86995 −2.571321
BRD −18.45231 −3.44956 −2.8699 −2.571293
BVB −16.64729 −3.44962 −2.86993 −2.571307

COTE −10.02282 −3.44962 −2.86993 −2.571307
EL −23.85922 −3.44956 −2.8699 −2.571293
FP −7.815322 −3.44986 −2.87003 −2.571363

SNG −16.81902 −3.44956 −2.8699 −2.571293
SNP −17.54115 −3.44956 −2.8699 −2.571293
TEL −17.88766 −3.44956 −2.8699 −2.571293
TLV −17.41272 −3.44956 −2.8699 −2.571293
TRP −15.9066 −3.44956 −2.8699 −2.571293

WINE −6.367165 −3.44980 −2.8700 −2.571349
Source: Authors’ calculations. Notes: Intercept included in test equation. Lag length: Automatic selection based
on Schwarz Info Criterion. Variables’ descriptions are provided in Table 2.

According to the results presented by the ADF stationarity test in Table 4, the null
hypothesis of a unit root can be rejected, indicating that the daily logarithmic returns are
significant at the 1% level, hence stationary, similar to Bai et al. (2021) and Yu et al. (2021).
Thus, taking into account the empirical results of the ADF stationarity test, the examined
variables are stationary and have an integration order I (0). Likewise, the stationarity of the
series can be seen in Figure 3, where the daily yields of the analyzed series are represented.
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Figure 3 shows the evolution of the selected returns. Hence, there is acknowledged a
phenomenon of “volatility clustering” and an alternation between periods of low volatility
and those with high volatility, similar to Abuzayed et al. (2021), Insaidoo et al. (2021),
Malik et al. (2021), and Yousfi et al. (2021). Moreover, “volatility clustering” implies a
strong autocorrelation of returns.

Figures 4–6 reveal the evolution of the BET index against the new cases of COVID-19.
The relationship between the evolution of the BET index and the number of new SARS-
CoV-2 cases (USA, Italy, and Romania) is an indirect one. Thus, the increase in the number
of infections (USA, Italy, and Romania) determined a decrease in the local stock market
index and its return.
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4.2. GARCH Outcomes

Before applying GARCH models, it is advisable to perform preliminary tests to detect
the effects of ARCH. Heteroskedasticity was investigated by determining autocorrelation
(AC), partial autocorrelation (PAC), and Q test. The number of offsets used for all the time
series was 20. The outcomes of AC, PAC and Q-Stat are revealed in Table 5.

Table 5. Estimated autocorrelation (AC), partial autocorrelation (PAC) and Q-statistics with 20 lags
for daily squared returns.

Variables AC PAC Q-Stat Prob

BET 0.013 −0.062 269.34 0.000
ALR −0.017 −0.079 100.97 0.000
BRD −0.039 −0.068 304.44 0.000
BVB −0.020 −0.001 94.308 0.000

COTE 0.006 0.016 133.29 0.000
EL −0.009 0.021 201.63 0.000
FP −0.008 0.059 140.89 0.000

SNG −0.028 −0.073 204.75 0.000
SNP 0.036 −0.024 80.962 0.000
TEL −0.028 0.004 146.21 0.000
TLV 0.020 −0.012 220.99 0.000
TRP −0.023 −0.028 7.8138 0.993

WINE 0.041 −0.071 204.04 0.000
Source: Authors’ own work. Notes: Variables’ descriptions are provided in Table 2.

According to the results of the Q test, in most of the cases, the existence of the serial
correlation, heteroscedasticity (p-value less than 5%), is confirmed. However, in the case of
TRP, the probability is greater than 5% and the null hypothesis of the absence of the serial
correlation up to lag 20 cannot be rejected. Therefore, the data series shows heteroscedas-
ticity that can be modelled by GARCH models (except TRP, because heteroskedasticity is a
pre-condition for applying GARCH models for financial time series, where we may not be
able to match GARCH models).
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Table 6 shows the outcomes of GARCH approach. The model used was GARCH (1,1),
restriction-Variance target, error distribution: Student’s t being selected to register among
the smallest AICs among the other available variants, similar to Czech et al. (2020) and
Xu (2021). Only valid models, whose coefficients are statistically significant and different
from 0, have been selected.

Following the application of a GARCH model (1,1), we estimated the conditioned
volatilities which are plotted in Figure 7.
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We notice that in the first quarter of 2020, the volatility of the Romanian capital market
increased to a level very close to that recorded during the global financial crisis of 2007–2009.
Similarly, Curto and Serrasqueiro (2021) noticed an intensification of volatility following
February 2020. Hence, this outcome is in line with both of the proposed hypotheses H1 and
H2. Our results are consistent with Czech et al. (2020), which noted that Visegrad Group
member countries were hit by the COVID-19 disease at the outset of March 2020 when the
first case was registered.

Besides, in the next two quarters, volatility had a downward trend, argued by the fact
that COVID-19 vaccine findings were declared (Yu et al. 2021). In the same vein, Rouatbi
et al. (2021) reinforced that the launch and expansion of the vaccinations reduce stock
market volatility.

Further, Figure 8 exhibits the daily evolution of selected shares’ yields and the BET
index for the period 2007–2021 in order to highlight the fact that the volatility in the
period 2007–2009 was much more significant than that during the COVID-19 pandemic.
This fact supports Le and Tran (2021), which pointed out for the case of Vietnam that the
contagion effect throughout the coronavirus period was lesser than that over the global
financial crisis.

Thus, the first two quarters of 2020 were marked by an increase in volatility on
international financial markets, more pronounced in March and April, and the companies
FP, ALR, SNP, and BVB had the highest volatilities during this period. August, September,
and October show moderate volatility, being higher than before the outbreak of the COVID-
19 pandemic.
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Table 6. GARCH estimations.

Dependent Variable: BET Dependent Variable: ALRO

Variable Coeff Std. Error z-Stat Prob. Variable Coeff Std. Error z-Stat Prob.

C 0.00118 0.000391 3.014619 0.0026 C 0.000289 0.000749 0.385655 0.6998

Variance Equation Variance Equation

C 4.76 × 10−6 C 4.51 × 10−5

RESID(−1)ˆ2 0.184229 0.054926 3.35414 0.0008 RESID(−1)ˆ2 0.139141 0.050071 2.778885 0.0055
GARCH(−1) 0.7911 0.062407 12.67647 0 GARCH(−1) 0.782887 0.077865 10.05445 0
T-DIST. DOF 4.264243 0.887964 4.80227 0 T-DIST. DOF 2.915888 0.214055 13.62215 0

R-sq −0.003773 Mean dependent var 0.000328 R-sq −0.000231 Mean dependent var 0.000654
Adj R-sq −0.003773 S.D. dependent var 0.013891 Adj R-sq −0.000231 S.D. dependent var 0.024085

S.E. of regr 0.013917 Akaike info crit −6.537876 S.E. of regr 0.024088 Akaike info crit −5.236626
Sum sq resid 0.065275 Schwarz crit −6.492633 Sum sq resid 0.195534 Schwarz crit −5.191383

Log likelihood 1108.901 Hannan–Quinn crit −6.519845 Log likelihood 888.9898 Hannan–Quinn crit −5.218595
DW stat 2.106484 DW stat 1.936172

Dependent Variable: BRD Dependent Variable: BVB

Variable Coeff Std. Error z-Stat Prob. Variable Coeff Std. Error z-Stat Prob.
C 0.00077 0.000709 1.085874 0.2775 C −0.000109 0.000504 −0.21581 0.8291

Variance Equation Variance Equation

C 1.43 × 10−5 C 2.12 × 10−5

RESID(−1)ˆ2 0.150634 0.043495 3.463245 0.0005 RESID(−1)ˆ2 0.292829 0.072636 4.031475 0.0001
GARCH(−1) 0.806065 0.061517 13.10319 0 GARCH(−1) 0.606027 0.102678 5.902193 0
T-DIST. DOF 5.300367 1.31796 4.021645 0.0001 T-DIST. DOF 4.976087 1.251612 3.975743 0.0001

R-sq −0.002232 Mean dependent var −8.72 × 10−5 R-sq −0.000008 Mean dependent var −6.82 × 10−5

Adj R-sq −0.002232 S.D. dependent var 0.018169 Adj R-sq −0.000008 S.D. dependent var 0.014499
S.E. of regr 0.018189 Akaike info crit −5.52442 S.E. of regr 0.014499 Akaike info crit −6.126467

Sum sq resid 0.11149 Schwarz crit −5.479177 Sum sq resid 0.07084 Schwarz crit −6.081224
Log likelihood 937.627 Hannan−Quinn crit −5.506389 Log likelihood 1039.373 Hannan–Quinn crit −6.108436

DW stat 2.011758 DW stat 2.525927
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Table 6. Cont.

Dependent Variable: COTE Dependent Variable: EL

Variable Coeff Std. Error z-Stat Prob. Variable Coeff Std. Error z-Stat Prob.
C 0.000205 0.00034 0.604738 0.5454 C 0.001186 0.000632 1.87812 0.0604

Variance Equation Variance Equation

C 4.99 × 10−6 C 2.13 × 10−5

RESID(−1)ˆ2 0.250596 0.04803 5.217482 0 RESID(−1)ˆ2 0.209315 0.052881 3.958218 0.0001
GARCH(−1) 0.729937 0.053054 13.75829 0 GARCH(−1) 0.708624 0.078695 9.004646 0
T-DIST. DOF 3.486178 0.373561 9.332278 0 T-DIST. DOF 5.627834 1.419299 3.965221 0.0001

R-sq −0.000229 Mean dependent var 0.000448 R-sq −0.000828 Mean dependent var 0.000723
Adj R-sq −0.000229 S.D. dependent var 0.016037 Adj R-sq −0.000828 S.D. dependent var 0.016134

S.E. of regr 0.016039 Akaike info crit −6.427494 S.E. of regr 0.016141 Akaike info crit −5.754231
Sum sq resid 0.086694 Schwarz crit −6.382251 Sum sq resid 0.087795 Schwarz crit −5.708987

Log likelihood 1090.246 Hannan–Quinn crit −6.409463 Log likelihood 976.465 Hannan–Quinn crit −5.736199
DW stat 1.767033 DW stat 2.51603

Dependent Variable: FP Dependent Variable: SNP

Variable Coeff Std. Error z-Stat Prob. Variable Coeff Std. Error z-Stat Prob.
C 0.001227 0.000524 2.341939 0.0192 C 0.000648 0.001333 0.486339 0.6267

Variance Equation Variance Equation

C 2.92 × 10−5 C 0.00016
RESID(−1)ˆ2 0.191734 0.06115 3.13549 0.0017 RESID(−1)ˆ2 0.000401 0.007995 0.050126 0.96
GARCH(−1) 0.737594 0.078636 9.379818 0 GARCH(−1) 0.6 0.56513 1.061702 0.2884
T-DIST. DOF 2.80621 0.225963 12.41887 0 T-DIST. DOF 20 3.777537 5.294455 0

R-sq −0.00013 Mean dependent var 0.000995 R-sq −0.001325 Mean dependent var −8.05 × 10−5

Adj R-sq −0.00013 S.D. dependent var 0.020352 Adj R-sq −0.001325 S.D. dependent var 0.020049
S.E. of regr 0.020353 Akaike info crit −5.925241 S.E. of regr 0.020062 Akaike info crit −5.118899

Sum sq resid 0.139607 Schwarz crit −5.879998 Sum sq resid 0.135641 Schwarz crit −5.073656
Log likelihood 1005.366 Hannan–Quinn crit −5.90721 Log likelihood 869.0939 Hannan–Quinn crit −5.100868

DW stat 2.534692 DW stat 1.912486
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Table 6. Cont.

Dependent Variable: SNG Dependent Variable: WINE

Variable Coefficient Std. Error z-Statistic Prob. Variable Coeff Std. Error z-Stat Prob.
C −0.00011 0.000579 −0.190745 0.8487 C 0.00093 0.000575 1.616535 0.106

Variance
Equation Variance Equation

C 0.0000175 C 2.53E-05
RESID(−1)ˆ2 0.206748 0.053863 3.838396 0.0001 RESID(−1)ˆ2 0.274618 0.063641 4.315126 0
GARCH(−1) 0.709914 0.084466 8.404724 0 GARCH(−1) 0.629318 0.093136 6.757009 0
T-DIST. DOF 4.572915 0.814926 5.611448 0 T-DIST. DOF 4.076108 0.615755 6.61969 0

R-squared −0.000296 Mean dependent var −0.000359 R-sq −0.001074 Mean dependent var 0.000398
Adjusted R-squared −0.000296 S.D. dependent var 0.01451 Adj R-sq −0.001074 S.D. dependent var 0.016247

S.E. of regression 0.014512 Akaike info criterion −5.903807 S.E. of regr 0.016256 Akaike info crit −5.761172
Sum squared resid 0.070969 Schwarz criterion −5.858564 Sum sq resid 0.089052 Schwarz crit −5.715929

Log likelihood 1001.743 Hannan–Quinn criter. −5.885776 Log likelihood 977.6381 Hannan–Quinn crit −5.743141
Durbin-Watson stat 1.830748 DW stat 2.292014

Dependent Variable: TEL Dependent Variable: TLV

Variable Coefficient Std. Error z-Statistic Prob. Variable Coefficient Std. Error z-Statistic Prob.
C 0.000993 0.00053 1.873592 0.061 C 0.000385 0.00059 0.652159 0.5143

Variance
Equation

Variance
Equation

C 0.0000155 C 0.00000789
RESID(−1)ˆ2 0.184978 0.055272 3.346684 0.0008 RESID(−1)ˆ2 0.169068 0.040267 4.198672 0
GARCH(−1) 0.750384 0.07748 9.684826 0 GARCH(−1) 0.810254 0.046858 17.2916 0
T-DIST. DOF 3.593242 0.439082 8.183526 0 T-DIST. DOF 3.940655 0.593309 6.64183 0

R-squared −0.000102 Mean dependent var 0.000837 R-squared −0.000272 Mean dependent var 0.0000632
Adjusted R-squared −0.000102 S.D. dependent var 0.01552 Adjusted R-squared −0.000272 S.D. dependent var 0.01956

S.E. of regression 0.015521 Akaike info criterion −5.879238 S.E. of regression 0.019563 Akaike info criterion −5.561135
Sum squared resid 0.081186 Schwarz criterion −5.833995 Sum squared resid 0.128969 Schwarz criterion −5.515892

Log likelihood 997.5912 Hannan–Quinn criter. −5.861207 Log likelihood 943.8319 Hannan–Quinn criter. −5.543104
Durbin-Watson stat 1.953884 Durbin-Watson stat 1.899838

Source: Authors’ calculations. Notes: Notes: Variables’ descriptions are provided in Table 2. Method: ML ARCH—Student’s t distribution (BFGS/Marquardt steps). Included observations: 338. Coefficient
covariance computed using outer product of gradients. Presample variance: backcast (parameter = 0.7).
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4.3. Causality Analysis

Given that the health crisis has a significant impact on the global economy, we also
aimed to explore the causal relationships that are established between the variables re-
garding COVID-19 and the BET stock market index. Primarily, it was checked if the stock
market index and each COVID-19 pandemic measure were cointegrated. In this regard,
Table 7 exhibits the outcomes of the Phillips–Ouliaris cointegration test. Accordingly, we
reject the null hypothesis and decide that the series are cointegrated.

Table 7. The outcomes of the Phillips–Ouliaris cointegration test.

Series: RBET, DRO_COVID
Included observations: 312 after adjustments

Dependent tau-Statistic Prob.* z-Statistic Prob.*

RBET −20.03971 0 −387.7359 0
DRO_COVID −37.24025 0 −316.0871 0

Series: RBET, DIT_COVID
Included observations: 316 after adjustments

Dependent tau-Statistic Prob.* z-Statistic Prob.*

RBET −18.96646 0 −400.8999 0
DIT_COVID −23.96736 0 −284.9561 0

Series: RBET, DUS_COVID
Included observations: 316 after adjustments

Dependent tau-Statistic Prob.* z-Statistic Prob.*

RBET −18.93794 0 −400.6069 0
DUS_COVID −27.8585 0 −369.0163 0

Source: Authors’ calculations. Notes: * MacKinnon (1996) p-values. Sample (adjusted): 6 January 2020–9 April 2021. Cointegrating equation
deterministics: C. Long-run variance estimate (Bartlett kernel, Newey–West fixed bandwidth). No d.f. adjustment for variances. Variables’
descriptions are provided in Table 2.

Further, the lag selection criterion is explored. Table 8 reveals the related lag order
selection criteria. Hence, the Schwarz information criterion suggests five and seven lags.
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Table 8. VAR lag order selection criteria.

Endogenous variables: RBET,
DRO_COVID

Exogenous variables: C
Included observations: 296

Lag LogL LR FPE AIC SC HQ

0 −1607.62 NA 181.2816 10.87581 10.90074 10.88579
1 −1587.74 39.35295 162.8402 10.76852 10.84333 10.79847
2 −1559.53 55.4685 138.2672 10.60494 10.72961 10.65485
3 −1551.44 15.79743 134.5 10.5773 10.75184 10.64718
4 −1458.68 179.8884 73.8342 9.977539 10.20195 10.06739
5 −1439.81 36.32215 66.78202 9.87712 10.1514 9.986937
6 −1429.8 19.15297 64.12454 9.836468 10.16062 9.966253
7 −1399.38 57.75557 * 53.64450 * 9.657959 * 10.03198 * 9.807711 *
8 −1398.9 0.893729 54.94222 9.681783 10.10568 9.851501

Endogenous variables: RBET,
DIT_COVID

Exogenous variables: C
Included observations: 308

Lag LogL LR FPE AIC SC HQ

0 −2012.61 NA 1645.988 13.08185 13.10607 13.09153
1 −2007.18 10.74477 1630.827 13.0726 13.14526 13.10165
2 −1987.05 39.60666 1468.66 12.96785 13.08896 13.01628
3 −1975.61 22.36096 1399.403 12.91954 13.08909 12.98733
4 −1947.2 55.16232 1194.285 12.76102 12.97902 12.84819
5 −1902.16 86.8554 914.9435 12.49456 12.76099 * 12.60109
6 −1892.38 18.73185 881.2824 12.45703 12.77191 12.58293
7 −1884.43 15.12514 * 859.0133 * 12.43138 * 12.79471 12.57666 *
8 −1883.75 1.295962 877.7618 12.4529 12.86467 12.61755

Endogenous variables: RBET,
DUS_COVID

Exogenous variables: C
Included observations: 308

Lag LogL LR FPE AIC SC HQ

0 −2539.78 NA 50478.62 16.50506 16.52928 16.51474
1 −2520.57 38.04213 45731.93 16.4063 16.47897 16.43536
2 −2508.57 23.61618 43416.26 16.35434 16.47544 16.40276
3 −2503.86 9.195366 43218.5 16.34976 16.51931 16.41756
4 −2483.95 38.65642 38977.11 16.24645 16.46444 16.33361
5 −2453.01 59.68167 32721.35 16.07148 16.33791 * 16.17801
6 −2442.42 20.28741 * 31351.76 * 16.02868 * 16.34356 16.15458 *
7 −2441.24 2.234599 31934.01 16.04703 16.41035 16.1923
8 −2439.71 2.89233 32452.48 16.06306 16.47483 16.2277

Source: Authors’ calculations. Notes: Sample: 3 January 2020–9 April 2021. * indicates lag order selected by the criterion. LR: sequential
modified LR test statistic (each test at 5% level). FPE: Final prediction error. AIC: Akaike information criterion. SC: Schwarz information
criterion. HQ: Hannan–Quinn information criterion. Variables’ descriptions are provided in Table 2.

After estimating the VAR model for the stock market index and each COVID-19
variable (see Tables A1–A3), we proceed to explore the Granger causality relationships.
According to Freeman (1983), a variable, X, which evolves over time, causes another
variable in evolution, Y, if the predictions of the value Y based on its own past values
and on the previous values of X are better than the predictions of Y based only on Y’s
own past values. Table 9 shows the empirical results of the Granger causality test after
VAR estimation.

Thus, for the analyzed period January 2020–April 2021, no causal relationship was
identified between the COVID-19 variables and the BET index. This outcome is not
consistent with Liu et al. (2021b), who found that fear sentiment causes stock market crash
risk. Therefore, Yu et al. (2021) cannot be maintained either since it was found that the
COVID-19 Anxiety Index causes stock market returns.
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Table 9. The results of the VAR Granger causality/block exogeneity Wald tests.

Sample:
3 January 2020–9 April 2021
Included observations: 298

Dependent variable: RBET

Excluded Chi-sq df Prob.

DRO_COVID 2.811942 7 0.9018
All 2.811942 7 0.9018

Dependent variable: DRO_COVID

Excluded Chi-sq df Prob.

RBET 4.566812 7 0.7127
All 4.566812 7 0.7127

Sample:
3 January 2020–9 April 2021
Included observations: 311

Dependent variable: RBET

Excluded Chi-sq df Prob.

DIT_COVID 1.199299 5 0.9449
All 1.199299 5 0.9449

Dependent variable: DIT_COVID

Excluded Chi-sq df Prob.
RBET 3.959237 5 0.5553

All 3.959237 5 0.5553

Sample:
3 January 2020–9 April 2021
Included observations: 311

Dependent variable: RBET

Excluded Chi-sq df Prob.

DUS_COVID 1.266153 5 0.9384
All 1.266153 5 0.9384

Dependent variable: DUS_COVID

Excluded Chi-sq df Prob.

RBET 0.801005 5 0.977
All 0.801005 5 0.977

Source: Authors’ calculations. Notes: Variables’ descriptions are provided in Table 2.

5. Concluding Remarks

The COVID-19 virus has spread very rapidly around the globe, negatively impacting
the economy, and according to the latest information, it undergoes various mutations, with
new variants of COVID-19 always appearing. The study of volatility has always been a
hotly debated topic by experts, especially now in these times of uncertainty. The impact
of COVID-19 on the capital markets did not take long to appear, so it initially manifested
itself on the largest stock markets in the world, then, due to the contagion effect, it was
transmitted to the other smaller markets. To our knowledge, the studies conducted on
the Romanian capital market related to the research of volatility during the pandemic are
extremely limited, which led us to focus on analyzing the volatility of the BSE indices.

Our main goal of the article was to analyze the BSE volatilities during the COVID-19
pandemic, selecting indices and a group of traded shares (these being among the most
traded on BSE, which are also found in the BET stock index). To study volatility, we
used the GARCH model (1,1), and the graphical outputs capture the episodes of volatility.
Finally, through the Granger causality test, after VAR estimation, we were able to identify
the relationships to be established between BSE stock index, respectively, the shares traded
on BSE and variables that capture the evolution of the COVID-19 pandemic in the USA,
Italy, and Romania.

This research contributes to the existing literature, which is the reason that we studied
the volatility of the main companies traded on the Bucharest Stock Exchange, between
January 2020 and April 2021, a period subject to a major change due to the COVID-19
pandemic, using GARCH models. We found that the distribution of the daily return
series for the Romanian stock market is leptokurtic, it is not normally distributed, and has
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significant time dependencies. The GARCH (1,1) model was used to model volatility on
the Romanian stock market.

The study revealed strong evidence of volatility that lasts over time, a trend of high
and low volatility periods, and a high persistence of volatility on the Bucharest Stock
Exchange. In the first quarter of 2020, capital market volatility in Romania increased to a
level very close to that recorded during the global financial crisis of 2007–2009. In the next
two quarters, volatility had a downward trend. Nevertheless, no causal association was
noticed between the COVID-19 variables and the BET index.

The empirical outcomes could help investors and asset managers to adjust their
trading strategies. Moreover, the government should consider economic relief packages
and formulate policies to lessen severe falls in prices (Hashmi et al. 2021).
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Appendix A

Table A1. Vector autoregression estimates for stock market index and the number of new cases of
COVID-19 in Romania.

RBET DRO_COVID

RBET(−1) −0.039042 −1347.071
−0.05944 −3387.07

[−0.65686] [−0.39771]

RBET(−2) 0.104624 −2907.972
−0.05457 −3109.71
[1.91723] [−0.93513]

RBET(−3) −0.008179 −1776.737
−0.05343 −3044.46

[−0.15309] [−0.58360]

RBET(−4) −0.017674 −1706.189
−0.05245 −2988.76

[−0.33699] [−0.57087]

RBET(−5) 0.099649 −3998.206
−0.05212 −2970.19
[1.91184] [−1.34611]

RBET(−6) −0.195458 −2384.377
−0.05129 −2922.5

[−3.81120] [−0.81587]
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Table A1. Cont.

RBET DRO_COVID

RBET(−7) −0.012525 1802.935
−0.05213 −2970.85

[−0.24025] [0.60687]

DRO_COVID(−1) −8.20 × 10−7 −0.57646
−9.40 × 10−7 −0.05368

[−0.87075] [−10.7389]

DRO_COVID(−2) 1.33 × 10−7 −0.803286
−1.10 × 10−6 −0.06107

[0.12428] [−13.1529]

DRO_COVID(−3) 2.53 × 10−8 −0.150507
−1.20 × 10−6 −0.06772

[0.02129] [−2.22260]

DRO_COVID(−4) 5.87 × 10−7 −0.261028
−1.20 × 10−6 −0.06638

[0.50356] [−3.93240]

DRO_COVID(−5) −1.44 × 10−7 0.637747
−1.20 × 10−6 −0.06798

[−0.12112] [9.38180]

DRO_COVID(−6) 4.04 × 10−7 0.306384
−1.10 × 10−6 −0.06128

[0.37555] [4.99998]

DRO_COVID(−7) 3.67 × 10−7 0.4326
−9.50 × 10−7 −0.05413

[0.38643] [7.99193]

C 0.001192 31.51544
−0.00066 −37.8873
[1.79229] [0.83182]

R-squared 0.107799 0.729229
Adj. R-squared 0.063661 0.715834
Sum sq. resids 0.034824 1.13 × 108

S.E. equation 0.011093 632.1363
F-statistic 2.442354 54.44024

Log likelihood 926.2818 −2336.982
Akaike AIC −6.115985 15.78511
Schwarz SC −5.92989 15.97121

Mean dependent 0.00113 16.43289
S.D. dependent 0.011464 1185.836

Determinant resid covariance (dof adj.) 49.15166
Determinant resid covariance 44.32804

Log likelihood −1410.638
Akaike information criterion 9.668714

Schwarz criterion 10.0409
Number of coefficients 30

Source: Authors’ calculations. Notes: Standard errors in ( ) and t-statistics in [ ]. Sample (adjusted): 15 January
2020–9 April 2021. Included observations: 298 after adjustments. Variables’ descriptions are provided in Table 2.
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Table A2. Vector autoregression estimates for stock market index and the number of new cases of
COVID-19 in Italy.

RBET DIT_COVID

RBET(−1) −0.033198 −4632.009
−0.0569 −8536.69

[−0.58340] [−0.54260]

RBET(−2) 0.246594 −2994.404
−0.05647 −8471.69
[4.36677] [−0.35346]

RBET(−3) 0.029426 −4806.22
−0.05822 −8734.25
[0.50542] [−0.55027]

RBET(−4) −0.110034 −10,837.98
−0.05661 −8492.63

[−1.94372] [−1.27616]

RBET(−5) 0.177356 −8666.519
−0.05708 −8562.82
[3.10725] [−1.01211]

DIT_COVID(−1) 8.74 × 10−8 −0.211916
−3.40 × 10−7 −0.05074

[0.25850] [−4.17662]

DIT_COVID(−2) 1.75 × 10−8 −0.302194
−3.40 × 10−7 −0.05081

[0.05158] [−5.94763]

DIT_COVID(−3) −3.00 × 10−8 −0.169155
−3.50 × 10−7 −0.05314

[−0.08468] [−3.18296]

DIT_COVID(−4) −2.90 × 10−7 −0.204575
−3.50 × 10−7 −0.05182

[−0.84012] [−3.94743]

DIT_COVID(−5) 1.35 × 10−9 0.487342
−3.50 × 10−7 −0.05253

[0.00386] [9.27781]

C 0.000266 76.10105
−0.00079 −118.787
[0.33573] [0.64065]

R-squared 0.108079 0.452144
Adj. R-squared 0.078348 0.433882
Sum sq. resids 0.0579 1.30 × 109

S.E. equation 0.013892 2084.126
F-statistic 3.635264 24.75893

Log likelihood 894.2746 −2812.385
Akaike AIC −5.680222 18.15682
Schwarz SC −5.547947 18.28909

Mean dependent 0.000392 60.84887
S.D. dependent 0.014471 2769.942

Determinant resid covariance (dof adj.) 836.7493
Determinant resid covariance 778.6048

Log likelihood −1917.822
Akaike information criterion 12.47474

Schwarz criterion 12.73929
Number of coefficients 22

Source: Authors’ calculations. Notes: Standard errors in ( ) and t-statistics in [ ]. Sample (adjusted): 13 January
2020–9 April 2021. Included observations: 311 after adjustments. Variables’ descriptions are provided in Table 2.
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Table A3. Vector autoregression estimates for stock market index and the number of new cases of
COVID-19 in the US.

RBET DUS_COVID

RBET(−1) −0.033139 32,151.08
−0.05671 −50,868.3

[−0.58440] [0.63205]

RBET(−2) 0.244778 24,680.63
−0.0564 −50,592.7
[4.34020] [0.48783]

RBET(−3) 0.024836 −17,993.17
−0.05813 −52,150.7
[0.42722] [−0.34502]

RBET(−4) −0.108053 −26,717.78
−0.05637 −50,566.7

[−1.91689] [−0.52837]

RBET(−5) 0.181611 6054.621
−0.05668 −50,842.6
[3.20434] [0.11909]

DUS_COVID(−1) 2.85 × 10−8 −0.334621
−5.90 × 10−8 −0.05323

[0.48101] [−6.28657]

DUS_COVID(−2) 4.52 × 10−8 −0.172527
−6.20 × 10−8 −0.05599

[0.72473] [−3.08140]

DUS_COVID(−3) 5.78 × 10−9 −0.177546
−6.20 × 10−8 −0.056

[0.09263] [−3.17063]

DUS_COVID(−4) 2.31 × 10−8 −0.151236
−6.20 × 10−8 −0.05606

[0.36926] [−2.69776]

DUS_COVID(−5) 5.54 × 10−8 0.389606
−6.00 × 10−8 −0.05339

[0.93125] [7.29772]

C 0.000223 373.3586
−0.00079 −709.148
[0.28226] [0.52649]

R-squared 0.108277 0.360989
Adj. R-squared 0.078553 0.339689
Sum sq. resids 0.057887 4.66 × 1010

S.E. equation 0.013891 12,461.02
F-statistic 3.64273 16.94756

Log likelihood 894.3091 −3368.533
Akaike AIC −5.680444 21.73333
Schwarz SC −5.548169 21.8656

Mean dependent 0.000392 265.91
S.D. dependent 0.014471 15,334.84

Determinant resid covariance (dof adj.) 29,925.76
Determinant resid covariance 27,846.27

Log likelihood −2474.037
Akaike information criterion 16.05169

Schwarz criterion 16.31624
Number of coefficients 22

Source: Authors’ calculations. Notes: Standard errors in ( ) and t-statistics in [ ]. Sample (adjusted): 13 January
2020–9 April 2021. Included observations: 311 after adjustments. Variables’ descriptions are provided in Table 2.
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