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Abstract: This paper explores price spillover effects around the COVID-19 pandemic market melt-
down between the S&P 500 index, five other financial markets, and the VIX. Frequency domain
causalities are estimated for the January–May 2020 time period on a high-frequency data set at
five-minute intervals. The results reveal that price movements in the S&P 500 generally caused price
movements in other financial markets before the market meltdown; however, a large number of
bi-directional causalities emerged during the market meltdown. During the market recovery, S&P
500 price movements were more likely to be caused by other financial markets’ price movements.
The VIX, exchange rate, and gold returns had the most prominent influence on the S&P 500 returns
in the market recovery.

Keywords: frequency domain causality; COVID-19 pandemic; spillover effects; 2020 market crash;
LASSO

1. Introduction

There is an increasing focus on the importance of intermarket links, as measured
by returns and volatility, across many traditional and non-traditional financial markets.
These price spillovers have increasingly important implications for portfolio decisions. The
spillovers have received much attention in the empirical literature, suggesting that financial
markets are becoming increasingly integrated due to various factors, including global-
ization, technological developments, and deregulation. In the context of the COVID-19
pandemic, for example, Guo et al. (2021) show that the worldwide intermarket connections
became tighter at the time of the pandemic when compared to those of any other risk.

There is a large body of literature that explores price and volatility spillovers across
financial markets. For example, Maghyereh and Abdoh (2020) present recent evidence of
right-tail dependence between Bitcoin returns and S&P 500 index returns in the long-run,
and weaker dependence between Bitcoin and the exchange rate in monthly returns.
Coronado et al. (2017) found that the causality among gold, crude oil, and U.S. stock
markets goes in all directions, whereby gold and oil changes can be observed based upon
U.S. stock market returns and vice versa. Most of the prior studies have focused on
volatility spillovers (e.g., Hong et al. 2009; Mensi et al. 2018; Guo and Tanaka 2020) as
opposed to price spillovers. Some studies focus solely on an individual set of asset prices
(e.g., Marquez and Merler 2020).

Price spillovers across financial markets have come to the forefront over the past year
with the emergence of the novel coronavirus disease (COVID-19). COVID-19 emerged
with regional outbreaks in Wuhan (Hubei region), China, and quickly evolved into a global
pandemic as declared by the World Health Organization (WHO) on 11 March 2020. As
of 8 March 2021, the COVID-19 pandemic has resulted in over 117 million infections and
2.6 million deaths, as reported by the WHO. During the pandemic’s initial months, local and
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national governments implemented unprecedented and wide-spanning policies to curb the
pandemic. These policies had significant impacts on the global economy, disrupting human
capital in labour markets, leading to unprecedented costs that sent shock waves throughout
financial markets (Deng et al. 2021). The recent market impacts of the COVID-19 pandemic
have also increased focus on what would have typically been considered non-traditional
asset price spillovers and correlations. For example, the positive co-movements between
U.S. equity markets and gold have been covered by various financial media outlets (e.g.,
Keown 2020).

There is a quickly growing body of literature exploring the financial implications of
the COVID-19 pandemic. Researchers have already explored the impact of the COVID-19
pandemic on the economy (e.g., Liu et al. 2020; Padhan and Prabheesh 2021; Yagi and
Managi 2021), policy responses (Gungoraydinoglu et al. 2021; Makin and Layton 2021;
Zaremba et al. 2020), and society and policies in general (Tisdell 2020; Park and Chung
2021). With respect to financial markets, Bing and Ma (2021) categorize the large and
growing body of literature across four groups, namely the impacts of COVID-19 on (a) firm
and industry performances (e.g., Gu et al. 2020; Qin et al. 2020; Xiong et al. 2020; Xu et al.
2020); (b) stock return volatility (e.g., Al-Awadhi et al. 2020; Dai et al. 2021; Liu et al. 2021);
(c) fear sentiments (e.g., Baig et al. 2020; Hoang and Syed 2021; Ortmann et al. 2020); and
(d) risk contagion (e.g., Corbet et al. 2020, 2021; Jiang et al. 2020).

Our study aligns mostly with the research related to stock return volatility and risk
contagion. To date, the prior literature primarily focuses on market spillovers associated
with the number of reported COVID-19 cases in a given country. For example, the con-
sistent increase in reported COVID-19 cases and deaths resulted in lower stock returns in
China (Al-Awadhi et al. 2020), stock prices becoming more disconnected with firm-specific
information (Xu et al. 2020), and markets becoming more volatile and unpredictable due to
the uncertainty raised by the COVID-19 pandemic. Increasing numbers of COVID-19 cases
are also shown to have a negative relationship with Bitcoin initially and positively during
a later period (Demir et al. 2020). Researchers have also explored the presence of volatility
spillovers from both long-standing influenza indices and recently developed coronavirus
and face mask indices with financial markets. For example, Corbet et al. (2021) find that
traditional financial assets in the Chinese financial markets experienced significant impacts
from the coronavirus pandemic, as measured by the coronavirus index relative to the
traditional and long-standing influenza index.

The purpose of this paper is to explore price spillovers across a large number of
financial markets. This paper contributes to the literature as it is the first known study
to explore frequency domain causality focusing on price returns across a large number
of financial markets during the regime shifts related to the COVID-19 pandemic market
turmoil, which has been dubbed the 2020 market crash by many mainstream analysts. Ex-
ploring price spillovers around the 2020 market crash is essential, as this period witnessed
stock markets across the globe reporting the largest one-week decline in stock prices since
the 2008 financial crisis, with some economic measures and asset classes seeing declines
not witnessed since either 1987’s Black Monday or the Great Depression. Our second
contribution is to examine the significance of S&P 500 index returns’ potential drivers for
the post-COVID-19 stock market recovery period. As a result, our study provides valuable
insights into the high-frequency market microstructure and portfolio management at the
time of the pandemic.

For the January–May 2020 time period, we calculated the frequency domain causalities
based upon a high-frequency data set for the S&P 500 index (SPX), the CBOE VIX index
(VIX), the EUR/USD exchange rate (FX), NYMEX WTI crude oil (OIL), COMEX gold spot
(GOLD), Bitcoin (BTC) and U.S. Treasury Bills (TBILL). We estimate the causal relationships
across three time periods (i.e., three distinct market regimes): (i) before the market crash,
(ii) during the market crash, and (iii) through the market recovery.

We find that the underlying stock market (SPX) seems to be the main driver of the pub-
lic perception of risk (VIX). However, during the COVID-19 crash, a pattern of distressed
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trading emerges. The drop in the SPX index was caused by the VIX (at medium to long
horizons). Further, the price spillovers between the FX market and the SPX are primarily
absent in both causality directions, except for the crash period at high-frequencies, when
the stock returns caused the FX returns. A bearish stock market could cause additional
turbulence in the FX market due to international portfolio rebalancing, i.e., capital outflows
(Granger et al. 2000).

Regarding the causality between the SPX and commodity returns, the SPX only causes
oil prices before the market crash. In contrast, oil prices cause SPX prices during the market
crash and recovery. We conjecture that the economic activity in steady markets drives oil
demand. Still, this causality channel collapses when the market experiences an excessive
drop. As Kilian and Park (2009) suggested, lower oil prices driven by an unanticipated
global economic crisis could cause a stock market’s fall in such a market.

Further, we find that SPX returns, in general, caused GOLD returns, especially during
the market crash. We also document intriguing evidence that GOLD returns caused
stock market returns during the crash and recovery. It appears that some very short-term
investors speculated that the stock market would recover quickly. Additionally, we find
that price movements in Bitcoin (at all trading horizons) caused SPX price movements
during both the crash and the recovery periods. Moreover, the evidence of reverse causality
(from the SPX to the BTC returns) was revealed during the market crash for a narrow range
of frequencies with wavelengths between 14 and 35 min. Our findings may suggest that
investors in Bitcoin (at all trading horizons) moved their holdings to the stock market
during the crash and the recovery periods. Finally, we show that the SPX returns caused
returns on TBILL before and during the market crash. Investors may have hedged against
equity risk in times of distress; however, TBILL returns caused SPX returns during the
market recovery, suggesting that certain stock market investors that had initially behaved
more conservatively moved back into stocks over the recovery period. Another possible
explanation could be that the Federal Reserve’s quantitative easing efforts to alleviate the
pandemic’s effects caused rallies in both stock and bond markets.

Overall, the results reveal that the S&P 500 index’s price movements generally cause
price movements in other financial markets before the market meltdown (i.e., VIX, OIL,
GOLD, and TBILL); however, a large number of bi-directional causalities emerge during
the market meltdown. During the market recovery, the other financial markets’ price
movements were more likely to cause S&P 500 price movements (i.e., OIL, GOLD, BTC,
and TBILL). In conclusion, our results suggest that information flows mostly from the SPX
to other financial markets during normal market conditions, flows both ways during the
market crash, and flows mostly from other financial markets to the SPX during the market
recovery.

To examine the significance of the observed information flows from other markets
to the SPX, we employ the Least Absolute Shrinkage and Selection Operator (LASSO)
framework and identify SPX returns’ covariates during the market recovery. LASSO
regression performs both variable selection and regularization simultaneously. The VIX
(negative effect), FX (positive effect), and GOLD (positive effect) returns are found to be
the most important forces driving the SPX market recovery.

Section 2 presents a brief overview of the data, and Section 3 describes the methodol-
ogy. Section 4 discusses the main findings, while Section 5 offers a brief conclusion and
future research suggestions.

2. Data

The data are at a five-minute frequency. Returns are calculated (rt = ln(Pt) − ln(Pt−1))
across each five-minute interval for seven asset classes (SPX, VIX, FX, OIL, GOLD, BTC, and
TBILL) from 1 January 2020 to 12 May 2020, for a total of 7594 observations per asset class.
The data are obtained from the Thomson Reuters Eikon terminal. We divided the data
across three regime shifts during the 2020 market crash (Figure 1). The first period spans
from 1 January–19 February, just before the 2020 market crash. We label this period the
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normal market regime. The second period spans from 20 February–23 March, representing
the peak to trough of the 2020 market crash as measured by the SPX. We label this period as
the market crash regime. The third period spans from 24 March–12 May, representing the
recovery from the 2020 market crash trough. We label this period as the market recovery
regime.

Table 1 presents the summary statistics for all seven asset classes. We note that in the
pre-COVID-19 period, the average SPX returns were positive (negative for the VIX). At
the same time, excess kurtosis was present in all of the time series. However, during the
COVID-19 crash, the mean SPX returns became negative (positive for the VIX). In contrast,
the standard deviation and kurtosis generally increased for all assets. The post-COVID-19
period was marked by lower volatility and risk (VIX), except for the crude oil returns,
which showed excessive volatility and high excess (negative) skewness and kurtosis.

Table 1. Summary Statistics.

∆SPX ∆VIX ∆FX ∆OIL ∆GOLD ∆BTC ∆TBILL

Normal Market Regime

Mean (×10−6) 9.210 −97.90 −2.470 −29.50 7.800 71.00 0.168
Standard deviation (×10−4) 5.176 64.877 1.887 15.224 5.043 18.224 0.480

Median (×10−6) 27.00 0.000 0.000 0.000 11.50 51.70 0.000
Skewness −0.266 0.320 0.305 0.067 −0.588 −0.269 0.010
Kurtosis 5.100 7.627 8.556 7.209 16.530 13.905 2.864

Market Crash Regime

Mean (×10−6) −3.840 267.70 −3.440 −162.10 −30.50 −14.10 0.623
Standard deviation (×10−4) 39.286 163.123 6.526 60.548 16.832 51.075 0.622

Median (×10−6) −183.70 583.00 0.000 −198.90 −1.610 29.40 0.000
Skewness 0.525 −0.668 −0.157 −0.174 −0.140 0.389 −0.598
Kurtosis 6.569 13.178 8.974 26.917 7.249 20.609 11.879

Market Recovery Regime

Mean (×10−6) 51.50 −155.80 11.90 88.60 21.90 79.10 −0.612
Standard deviation (×10−4) 19.155 63.263 4.465 1187.191 11.236 28.053 0.544

Median (×10−6) 85.50 −307.30 0.000 0.000 51.20 82.70 0.000
Skewness 0.280 0.330 0.746 −23.636 −0.352 0.420 −0.131
Kurtosis 10.041 4.843 9.422 1125.328 6.592 43.722 3.163

Notes: The Normal Market Regime subsample is from 2 January 2020 to 19 February 2020, the Market Crash
Regime subsample is from 19 February 2020 to 23 March 2020, and the Market Recovery Regime subsample is
from 24 March 2020 to 12 May 2020. The following time series at the 5-min sampling frequency are considered:
S&P 500 index returns (∆SPX), the CBOE VIX index returns (∆VIX), the EUR/USD exchange rate returns (∆FX),
NYMEX WTI crude oil returns (∆OIL), COMEX gold spot returns (∆GOLD), Bitcoin/USD returns (∆BTC) and
Treasury Bill returns (∆TBILL).
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3. Methods

In time series analysis, the most commonly used test for gauging causality in bivariate
systems was devised by Granger (1969). This test evaluates the forecasting performance
of one time series in predicting another in regard to the first moment of a time series. By
definition, the testing procedure is linked to a specific data frequency, while neglecting the
fact that, in financial markets, data generating processes typically contain multiple layers
of information, with each layer corresponding to a particular frequency. Hence, in this
paper, we utilize the method by Breitung and Candelon (2006), which allows us to account
for data dynamics across a range of frequencies.

Causality analysis can be effective in monitoring systemic risk and financial contagion
in financial markets. Recent literature demonstrates its ability to capture risk propagation
among investors that transact in different geographical locations (or invest in different
asset classes). For example, Billio et al. (2012), McMillan (2020) and Duarte and Eisenbach
(2021) have adopted causality analysis as a proxy for return-spillover effects among various
market participants and asset classes. In the context of the current paper, price spillover
effects represent causal interactions (or relationships) of market participants that are based
on time series’ first moments. In essence, we study the dynamics of the price discovery
process in terms of how information (and related trading activity) produced in one asset
class transmits across other asset classes owing to the degree of market distress at various
stages of the COVID-19 pandemic.

The test for causality in the frequency domain by Breitung and Candelon (2006)
originates from Geweke (1982) and Hosoya (1991). Let zt = [xt, yt]′ be a two-dimensional
time series vector with t = 1, ..., T. It is assumed that zt has a finite-order VAR representation:

Θ(L)zt = εt, (1)

where Θ(L) = I − Θ1L − . . . − ΘpLp is a 2 × 2 lag polynomial with Lk zt = zt−k. It
is assumed that the vector εt is white noise with E(εt) = 0 and E(εtεt

′) = ∑, where ∑ is
a positive definite matrix. Next, let G be the lower triangular matrix of the Cholesky
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decomposition G′G = ∑−1, such that E(ηtηt
′) = I and ηt− = Gεt. The system is assumed to

be stationary, implying the following moving average representation:

zt = Φ(L)εt =

[
Φ11(L) Φ12(L)
Φ21(L) Φ22(L)

][
ε1t
ε2t

]
(2)

= Ψ(L)ηt =

[
Ψ11(L) Ψ12(L)
Ψ21(L) Ψ22(L)

][
η1t
η2t

]
where Φ(L) = Θ(L)−1 and Ψ(L) = Φ(L)−1G−1. Using this representation, the spectral
density of xt can be expressed as:

fx(ω) =
1

2π

{∣∣∣Ψ11(e−iω)
∣∣∣2 + ∣∣∣Ψ12(e−iω)

∣∣∣2} (3)

The measure of causality suggested by Geweke (1982) and Hosoya (1991) is defined as:

My→x(ω) = log
2π fx(ω)∣∣Ψ11(e−iω)

∣∣2 (4)

= log

[
1 +

∣∣Ψ12(e−iω)
∣∣2∣∣Ψ11(e−iω)
∣∣2
]

(5)

This measure is zero if
∣∣Ψ12

(
e−iω)∣∣ = 0 in which case it is said that y does not cause x

at frequency ω. The following null hypothesis is used to test the hypothesis that y does not
cause x at frequency ω:

My→x(ω) = 0 (6)

Breitung and Candelon (2006) show that the null hypothesis My→x(ω) = 0 is equiva-
lent to a linear restriction on the VAR coefficients from the following equation:

xt = a1xt−1 + . . . + apxt−p + β1yt−1 + . . . + βpyt−p + ε1t. (7)

The hypothesis My→x(ω) = 0 is equivalent to the linear restriction:

H0 : R(ω)β = 0, (8)

where β = [β1, . . . , βp]’ and:

R(ω) =

[
cos(ω) cos(2ω) . . . cos(pω)
sin(ω) sin(2ω) . . . sin(pω)

]
(9)

The ordinary F statistic for (8) is approximately distributed as F(2, T − 2p). To assess
the statistical significance of the causal relationship between asset returns, the causality
measure for ω ∈ (0, π) is compared to the 5% critical value of a x2-distribution with
2 degrees of freedom (5.99).

4. Empirical Results and Discussion
4.1. Causality

We present the results of the causality tests in Table 2. According to a battery of infor-
mation criteria, the following VAR specifications were selected for the bivariate systems
between the S&P 500 index returns (∆SPX) and the other time series: the CBOE VIX index
returns (∆VIX)-VAR(4), the EUR/USD exchange rate returns (∆FX)-VAR(12), NYMEX
WTI crude oil returns (∆OIL)-VAR(27), COMEX gold spot returns (∆GOLD)-VAR(15),
Bitcoin/USD returns (∆BTC)-VAR(5), and Treasury Bill returns (∆TBILL)-VAR(10).
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Table 2. Causality tests.

Normal Market Regime
(1 January–19 February 2020)

Market Crash Regime
(20 February–23 March 2020)

Market Recovery Regime
(24 March–12 May 2020)

Null Hypothesis χ2 Statistic Prob > χ2 χ2 Statistic Prob > χ2 χ2 Statistic Prob > χ2

∆SPX does not
cause ∆VIX at
frequency ω

For ω > 1.9 Reject For all ω ∈ (0, π) Reject For ω < 1.3 Reject

∆VIX does not
cause ∆SPX at
frequency ω

For all ω ∈ (0, π) Do not
reject For ω < 1.5 Reject For all ω ∈ (0, π) Do not

reject

∆SPX does not
cause ∆FX at
frequency ω

For all ω ∈ (0, π) Do not
reject For ω > 2.8 Reject For all ω ∈ (0, π) Do not

reject

∆FX does not cause
∆SPX at frequency

ω
For all ω ∈ (0, π) Do not

reject For all ω ∈ (0, π) Do not
reject For all ω ∈ (0, π) Do not

reject

∆SPX does not
cause ∆OIL at
frequency ω

For ω < 0.3, 1.7 <
ω < 2.0, 2.2 < ω <

2.3
Reject For all ω ∈ (0, π) Do not

reject For all ω ∈ (0, π) Do not
reject

∆OIL does not
cause ∆SPX at
frequency ω

For all ω ∈ (0, π) Do not
reject

For ω < 0.1, 0.5 < ω
< 0.6, 1.8 < ω < 1.9,
2.3 < ω < 2.5, 2.9 <

ω < 3.0

Reject For 1.4 < ω < 1.5 Reject

∆SPX does not
cause ∆GOLD at

frequency ω
For 1.1 < ω < 1.4 Reject

For ω < 0.3, 0.6 < ω
< 0.9, 2.3 < ω < 2.4,

ω > 2.9
Reject For 2.2 < ω < 2.5 Reject

∆GOLD does not
cause ∆SPX at
frequency ω

For all ω ∈ (0, π) Do not
reject For ω > 2.6 Reject For 0.9 < ω < 1.1 Reject

∆SPX does not
cause ∆BTC at
frequency ω

For all ω ∈ (0, π) Do not
reject For 0.9 < ω < 2.2 Reject For all ω ∈ (0, π) Do not

reject

∆BTC does not
cause ∆SPX at
frequency ω

For all ω ∈ (0, π) Do not
reject For all ω ∈ (0, π) Reject For all ω ∈ (0, π) Reject

∆SPX does not
cause ∆TBILL at

frequency ω

For 2.4 < ω < 2.5,
ω > 3.0 Reject For 1.2 < ω < 1.5,

ω > 2.7 Reject For all ω ∈ (0, π) Do not
reject

∆TBILL does not
cause ∆SPX at
frequency ω

For all ω ∈ (0, π) Do not
reject For all ω ∈ (0, π) Do not

reject
For ω < 0.9, 1.5 <

ω < 1.7 Reject

Notes: The null hypothesis is that y does not cause x at frequency ω. The following means that there is no causality at any data frequencies:
“For all ω ∈ (0, π): Do not reject”. The following means that there is always causality at all data frequencies: “For all ω ∈ (0, π): Reject”.
To find the actual data frequency at which the null hypothesis is rejected/not rejected, find (2π/ω), where the basic frequency is 5-min.
For instance, if ω > 1.9, this represents data frequencies that are (2π/ω) = 3.3 × 5 min = 16.5 min; then the ω > 1.9 range corresponds to
frequencies with a wavelength that is shorter than 16.5 min.

We begin by discussing the results at the aggregate level. Table 2 reveals that the
SPX returns cause returns in four other financial markets at specific frequencies (i.e., VIX,
GOLD, OIL, and TBILL) during normal market conditions. In contrast, bi-directional causal
relationships emerge during the market crash (i.e., between the SPX and the VIX, OIL,
GOLD, and BTC). All of the bi-directional causal relationships disappeared during the
market recovery, aside from the SPX and GOLD. Interestingly, OIL, BTC, and TBILL are all
shown to cause the SPX during the market recovery, while the SPX only causes the VIX
(for ω < 1.3) and GOLD (2.2 < ω < 2.5). Overall, we observe the SPX driving unidirectional
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relationships with other financial markets during normal market conditions, the emergence
of bi-directional causal relationships during the market crash, and several unidirectional
connections whereby other financial markets cause the SPX during the market recovery.

Next, we highlight the individual causal relationships among the SPX and other
financial markets. First, we note that the SPX and BTC do not exhibit any causality
across any data frequency during normal market conditions. However, there is partial
bi-directional causality between BTC and SPX during the market crash. Specifically, BTC
causes SPX across all data frequencies. The SPX causes BTC across a narrow range of
frequencies between 14 and 35 min (0.9 < ω < 2.2). During the market recovery, BTC
continues to cause the SPX across all data frequencies. In contrast, the SPX no longer
exhibits a causal relationship with BTC at any frequency.

Another intriguing finding emerges from the SPX and OIL, whereby the SPX causes
OIL during the normal market regime at a wide range of higher and lower frequencies;
however, this relationship shifts to OIL, causing the SPX at specific frequencies during the
market crash (over a wide range of ω) and market recovery (over a narrow range of ω).

The SPX and GOLD also exhibit an interesting pattern of causal relationships across
the three market conditions. The SPX has a causal relationship with GOLD across all three
regimes. Specifically, the SPX causes GOLD at a narrow range of frequencies between 22
and 29 min during normal market conditions, across a wide range of frequencies during
the market crash, and at a narrow range of frequencies between 12 and 14 min during
the market recovery. Conversely, GOLD does not cause the SPX during normal market
conditions. Still, it does exhibit a causal relationship during the market crash at frequencies
greater than 12 min and at frequencies between 29 and 35 min during the market recovery.

The SPX is shown to have a causal relationship at specific frequencies with TBILL
during normal market conditions and the market crash; however, the causal relationship’s
direction switches to TBILL, causing the SPX during the market recovery.

The SPX and VIX causality tests yield results that are more intuitive and expected.
Specifically, we find that the SPX exhibits a causal relationship with the VIX at specific
frequencies across all three market conditions; however, the VIX only causes the SPX during
the market crash at data frequencies less than 21 min. Therefore, a bi-directional causal
relationship at specific frequencies is only exhibited between the SPX and VIX during the
market crash. A unidirectional causal relationship whereby the SPX causes the VIX is
exhibited during normal market conditions and the market recovery.

Lastly, we only note a causal relationship between the SPX and FX during the market
crash, whereby the SPX causes the FX at frequencies greater than 11 min.

4.2. Determinants of Recovery

Considering that the market recovery period findings suggest that other asset returns
mainly drove the S&P 500 index returns during this period, this subsection aims to identify
the covariates of stock market returns at high-frequencies. For this purpose, we employ
the LASSO framework at the five-minute time resolution. The advantage of the LASSO
regression is that it will select only the most significant covariates of the six considered.1

LASSO is an estimator that reduces the number of potential coefficients in the model,
which improves prediction accuracy and model interpretability. It is a variant of the
least-squares approach, which constrains the sum of the coefficients’ absolute values. The
LASSO estimator can be written as:

β̂ = argmin
β

∑n
i=1

(
yi − β0 −∑p

j=1 xijβ j

)2
subject to ||β||1 ≤ s (10)

where yi is the ith observation of the dependent variable, β0 is an intercept, xij is the ith

observation of the jth explanatory variable, and βj is its corresponding coefficient, while

||β||1≡
p
∑

j=1

∣∣β j
∣∣ is the L1 norm and s is a tuning parameter. When s is relatively large enough,
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the constraint on β has no effect. The model becomes the standard least-squares regression.
However, for smaller (but positive) values of s, the estimated parameters are shrunken
versions of their least-squares counterparts, with some βj’s often equal to zero. A cross-
validation (CV) method is typically used for estimating the optimal value for s (as well as
for the parameter λ below), and we will also follow this approach.

Equivalently, the LASSO optimization problem can be written in a Lagrangian form
as follows:

β̂ = argmin
β

{
1
2 ∑n

i=1

(
yi − β0 −∑p

j=1 xijβ j

)2
+ λ ||β||1

}
(11)

We estimate the LASSO regression using the coordinate descent algorithm that in-
volves two stages (Friedman et al. 2007). In the first stage, we estimate λ with ten-fold CV
on the third subsample of data (24 March 2020–12 May 2020; 2894 five-minute observations),
which we refer to as the market recovery period. In the second stage, from the estimate of
λ, we estimate the vector of regression coefficients. We set equal observation weights of 1,
while the number of values for selecting λ is 100. All time series are standardized to zero
mean and unit variance, and, thus, no intercept is used.

Table 3 displays the LASSO estimates of the predictors ranked based on the absolute
value of the coefficients. The left panel of Table 3 shows the coefficients from the standard
LASSO model. In contrast, the coefficients in the right panel are based on the adaptive
LASSO model that adds weights to the LASSO optimization problem to counteract the
potential issue of LASSO estimates being biased (Zou 2006). Both LASSO approaches
produce similar results, with the largest coefficients on the VIX returns (negative) and
the EUR/USD exchange rate returns (positive). The positive coefficient on GOLD returns
follows them. Finally, we observe a positive coefficient on the U.S. Treasury Bill returns.
The coefficients on Bitcoin and oil returns are both equal to zero.

Table 3. Estimated coefficients of the LASSO model.

LASSO Adaptive LASSO

Rank Variable Coefficient Variable Coefficient

1 ∆VIX −0.9169 ∆VIX −0.9289
2 ∆FX 0.0584 ∆FX 0.0655
3 ∆GOLD 0.0557 ∆GOLD 0.0628
4 ∆TBILL 0.0178 ∆TBILL 0.0234
5 ∆BTC 0.0000 ∆BTC 0.0000
6 ∆OIL 0.0000 ∆OIL 0.0000

R2 0.6273 0.6272

Figure 2 plots the LASSO results for each coefficient. The coefficient’s magnitude is
measured on the vertical axis and the L1 norm is measured on the horizontal axis. One can
track the significance of a coefficient as it changes horizontally in the positive direction (i.e.,
from left to right). Clearly, the first predictor that diverges from 0 is the VIX, followed by the
exchange rate and GOLD returns. Essentially, Figure 2 and Table 3 suggest similar results.

In all, we reveal that the VIX returns had the largest (negative) effect on the stock
market during the market recovery. In other words, a reduction in the global perception
of risk played the most prominent role in the post-COVID-19 recovery, and it increased
SPX returns. The inverse relationship is intuitive, as the VIX is sometimes referred to as
the “fear index.”2 Based on the magnitude of LASSO coefficients, the recovery process
was (positively) affected by the spillovers from the FX and GOLD markets. Firstly, it
appears that international portfolio investments could, to a certain extent, explain the
stock market recovery via the FX market’s order flows. The seemingly counterintuitive
positive relationship between GOLD and SPX returns suggests that the market recovery
was liquidity-driven. This was also the case during the aftermath of the 2008 financial crisis.
The only other significant effect was observed from the U.S. Treasury Bill returns, and it
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was positive. Such a relationship was also documented in the post-2008 credit crisis period,
and it was contributed to a series of quantitative easings by the Federal Reserve that caused
both the stock and bond markets to rally. Surprisingly, we do not find any evidence of
the spillover effects originating in the Bitcoin market. Such findings are consistent with
James (2021), who reported that cryptocurrencies and equities displayed a lower degree of
correlation in the post-COVID-19 period than the peak-COVID-19 period.
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5. Conclusions, Limitations and Future Research

This paper presents new insights into intermarket links and the resulting market
microstructure across financial markets measured by price spillovers around the COVID-19
market meltdown. Overall, the results reveal that information is shown to mostly flow
from the SPX to other financial markets during normal market conditions, flow both ways
during the market crash, and mostly flow from other financial markets to the SPX during
the market recovery.

More specifically, based on the local minimum and maximum values of the S&P 500
index, we define three market regimes and study the causal interactions between the stock
market and other asset classes. We find, during the pre-COVID-19 regime, stock market
activity spillovers to oil, gold and t-bills markets. In addition, the movements in the S&P
500 index cause the VIX returns (for ω > 1.9, i.e., at high-frequencies). We do not document
any price spillover effects with the FX and Bitcoin markets. The evidence that the stock
market is a “leading indicator” and moves ahead of the real economy is not new.3 However,
by documenting the same phenomenon for high-frequency data, we make an original
contribution to the literature in this area.

Furthermore, we provide overwhelming evidence of distressed trading across asset
classes with causalities running in multiple directions during the COVID-19 market crash.
The most pronounced bi-directional market spillovers are found between the stock market,
and the gold and Bitcoin markets. Clearly, investors were severely distressed during the
market crash and moved their trades intermittently from stocks to gold and Bitcoin (and
vice versa). Moreover, there exists a bi-directional causality relationship between the S&P
Ye500 index and the VIX (i.e., from the SPX to the VIX for all ω ∈ (0, π); from the VIX
to the SPX for ω < 1.5). As the VIX represents theoretical 30-day market expectations (or
market sentiment) based on the S&P 500 index, its larger values indicate an increased risk
that the market will make a large swing. The observed bi-directional causality could be
interpreted as the impact of trading activity on market sentiment that is in the state of panic
and distress, while such a market sentiment at the same time drives trading decisions and
leads to more distress.

Finally, we uncover the microstructure mechanisms that were catalysts for the post-
COVID-19 market recovery. The evidence shows that the null hypotheses that the OIL,
GOLD, BTC and T-BILL returns do not cause the SPX returns at frequency ω are all rejected
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for various frequencies (ω) during the recovery period. Such spillover effects can be
attributed to the regained confidence of investors as they shifted from other asset classes
back to the stock market. Further, the LASSO model estimates indicate that the investor
sentiment reflected in the aggregate perception of market risk (VIX) was crucial for the
gains in the S&P index returns after 23 March 2020. Also, the FX and GOLD market returns
were among the top three determinants of SPX returns during this period.

This study is not without limitations. First, based on this study, future researchers
could develop a more theoretical model that explores the price spillovers among the
different asset classes explored within this study. That is, theoretical linkages could be
explored to develop a set of hypotheses to explore asset price spillovers around the COVID-
19 market meltdown. Secondly, our study relies upon high-frequency data at the five-
minute interval over a relatively short period of time (i.e., 1 January 2020 to 12 May
2020). Future researchers may explore asset price spillovers across a longer period of time,
especially for the COVID-19 market recovery period, in order to conduct out-of-sample
robustness tests for the generalizability of the results. Lastly, our study relies upon seven
different asset classes. Future researchers may consider additional asset classes, such as
longer-term bond or international equity markets.

As a result, additional research in this setting is meritorious due to the unprecedented
nature of the COVID-19 pandemic and the resulting impacts on financial markets across the
globe. To better understand the market sentiment around the COVID-19 market meltdown,
future research could also explore the option contracts written on the SPX and BTC and a
panel of technical indicators.

Author Contributions: Conceptualization, C.L. and N.G.; methodology, N.G.; software, N.G.; val-
idation, N.G.; formal analysis, N.G.; investigation, C.L. and N.G.; resources, C.L. and N.G.; data
curation, N.G.; writing—original draft preparation, C.L. and N.G.; writing—review and editing, C.L.
and N.G.; visualization, C.L. and N.G.; supervision, C.L. and N.G.; project administration, C.L. and
N.G. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 Please see, e.g., Hastie et al. (2009, 2015) for more information.
2 For example, in an option pricing setting, Shafi et al. (2019) conclude that the S&P 500 index movements are negatively correlated

with those of the VIX index.
3 For instance, a comprehensive discussion can be found in Næs et al. (2011). In short, investors trade stocks based upon their

expectations of the future. Therefore, stock market activity may antcipate a market movement before the actual economy reacts.

References
Al-Awadhi, Abdullah M., Khaled Alsaifi, Ahmad Al-Awadhi, and Salah Alhammadi. 2020. Death and contagious infectious diseases:

Impact of the COVID-19 virus on stock market returns. Journal of Behavioral and Experimental Finance 27: 1–5. [CrossRef]
Baig, Ahmed, Hassan Anjum Butt, Omair Haroon, and Syed Aun R. Rizvi. 2020. Deaths, panic, lockdowns and US equity markets: The

case of COVID-19 pandemic. Finance Research Letters 38: 101701. [CrossRef]
Billio, Monica, Mila Getmansky, Andrew W. Lo, and Loriana Pelizzon. 2012. Econometric measures of connectedness and systemic risk

in the finance and insurance sectors. Journal of Financial Economics 104: 535–59. [CrossRef]
Bing, Tao, and Hongkun Ma. 2021. COVID-19 pandemic effect on trading and returns: Evidence from the Chinese stock market.

Economic Analysis and Policy 71: 384–96. [CrossRef]
Breitung, Jorg, and Bertrand Candelon. 2006. Testing for short- and long-run causality: A frequency-domain approach. Journal of

Econometrics 132: 363–78. [CrossRef]
Corbet, Shaen, Yang Hou, Yang Hu, Brian Lucey, and Les Oxley. 2020. Aye corona! the contagion effects of being named corona during

the covid-19 pandemic. Finance Research Letters 38: 101591. [CrossRef]
Corbet, Shaen, Yang Hou, Yang Hu, Les Oxley, and Danyang Xu. 2021. Pandemic-related financial market volatility spillovers:

Evidence from the Chinese covid-19 epicentre. International Review of Economics &. Finance 71: 55–81.

http://doi.org/10.1016/j.jbef.2020.100326
http://doi.org/10.1016/j.frl.2020.101701
http://doi.org/10.1016/j.jfineco.2011.12.010
http://doi.org/10.1016/j.eap.2021.05.012
http://doi.org/10.1016/j.jeconom.2005.02.004
http://doi.org/10.1016/j.frl.2020.101591


J. Risk Financial Manag. 2021, 14, 330 12 of 13

Coronado, Semei, Rebeca Jiménez-Rodríguez, and Omar Rojas. 2017. An Empirical Analysis of the Relationships between Crude Oil,
Gold and Stock Markets. The Energy Journal 39: 193–207. [CrossRef]

Dai, Peng-Fei, Xiong Xiong, Zhifeng Liu, Toan Luu Duc Huynh, and Jianjun Sun. 2021. Preventing crash in stock market: The role of
economic policy uncertainty during COVID-19. Financial Innovation 7: 1–15. [CrossRef]

Demir, Ender, Mehmet Huseyin Bilgin, Gokhan Karabulut, and Asli Cansin Doker. 2020. The relationship between cryptocurrencies
and COVID-19 pandemic. Eurasian Economic Review 10: 349–60. [CrossRef]

Deng, Guichuan, Jing Shi, Yanli Li, and Yin Liao. 2021. The COVID-19 pandemic: Shocks to human capital and policy responses.
Accounting and Finance. Available online: https://onlinelibrary.wiley.com/doi/10.1111/acfi.12770 (accessed on 28 April 2021).

Duarte, Fernando, and Thomas Eisenbach. 2021. Fire-sale spillovers and systemic risk. Journal of Finance 76: 1251–94. [CrossRef]
Friedman, Jerome, Trevor Hastie, Holger Hofling, and Robert Tibshirani. 2007. Pathwise coordinate optimization. The Annals of Applied

Statistics 1: 302–32. [CrossRef]
Geweke, John. 1982. Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical

Association 77: 304–24. [CrossRef]
Granger, Clive W. J. 1969. Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the

Econometric Society 37: 424–38. [CrossRef]
Granger, Clive W.J, Bwo-Nung Huangb, and Chin-Wei Yang. 2000. A bivariate causality between stock prices and exchange rates:

Evidence from recent Asian flu. The Quarterly Review of Economics and Finance 40: 337–54. [CrossRef]
Gu, Xin, Shan Ying, Weiqiang Zhang, and Yewei Tao. 2020. How do firms respond to COVID-19? First evidence from Suzhou, China.

Emerging Markets Finance and Trade 56: 2181–97. [CrossRef]
Gungoraydinoglu, Ali, Ilke Öztekin, and Özde Öztekin. 2021. The Impact of COVID-19 and Its Policy Responses on Local Economy

and Health Conditions. Journal of Risk and Financial Management 14: 233. [CrossRef]
Guo, Jin, and Tetsuji Tanaka. 2020. Dynamic Transmissions and Volatility Spillovers between Global Price and U.S. Producer Price in

Agricultural Markets. Journal of Risk Financial Management 13: 83. [CrossRef]
Guo, Hongfeng, Xinyao Zhao, Hang Yu, and Xin Zhang. 2021. Analysis of global stock markets’ connections with emphasis on the

impact of COVID-19. Physica A: Statistical Mechanics and Its Applications 569: 125774. [CrossRef]
Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction.

Springer Series in Statistics. New York: Springer.
Hastie, Trevor, Robert Tibshirani, and Martin Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations. Boca

Raton: Chapman and Hall/CRC.
Hoang, Thi Hong Van, and Qasim Raza Syed. 2021. Investor sentiment and volatility prediction of currencies and commodities during

the COVID-19 pandemic. Asian Economics Letters, 1. [CrossRef]
Hong, Yongmiao, Yanhui Liu, and Shouyang Wang. 2009. Granger causality in risk and detection of extreme risk spillover between

financial markets. Journal of Econometrics 150: 271–87. [CrossRef]
Hosoya, Yuzo. 1991. The decomposition and measurement of the interdependence between second-order stationary process. Probability

Theory and Related Fields 88: 429–44. [CrossRef]
James, Nick. 2021. Dynamics, behaviours, and anomaly persistence in cryptocurrencies and equities surrounding COVID-19. Physica

A: Statistical Mechanics and Its Applications 570: 125831. [CrossRef]
Jiang, Yonghong, Gengyu Tian, and Bin Mo. 2020. Spillover and quantile linkage between oil price shocks and stock returns: New

evidence from G7 countries. Financial Innovation 6: 1–26. [CrossRef]
Keown, Callum. 2020. Gold and Stocks Have Been Moving Together for Weeks. Here’s What It Means. Barron’s. May 11. Available

online: https://www.barrons.com/articles/gold-and-stocks-have-been-moving-together-for-weeks-heres-what-it-means-51
589203866 (accessed on 20 June 2020).

Kilian, Lutz, and Cheolbeom Park. 2009. The impact of oil price shocks on the U.S. stock market. International Economic Review 50:
1267–87. [CrossRef]

Liu, Taixing, Beixiao Pan, and Zhichao Yin. 2020. Pandemic, mobile payment, and household consumption: Micro-evidence from
China. Emerging Markets Finance and Trade 56: 2378–89. [CrossRef]

Liu, Zhifeng, Toan Luu Duc Huynh, and Peng-Fei Dai. 2021. The impact of COVID-19 on the stock market crash risk in China. Research
in International Business and Finance 57: 101419. [CrossRef]

Maghyereh, Aktham, and Hussein Abdoh. 2020. Tail dependence between Bitcoin and financial assets: Evidence from a quantile
cross-spectral approach. International Review of Financial Analysis 71: 101545. [CrossRef]

Makin, Anthony J., and Allan Layton. 2021. The global fiscal response to COVID-19: Risks and repercussions. Economic Analysis and
Policy 69: 340–49. [CrossRef]

Marquez, Jaime, and Silvia Merler. 2020. A Note on the Empirical Relation between Oil Prices and the Value of the Dollar. Journal of
Risk and Financial Management 13: 164. [CrossRef]

McMillan, David G. 2020. Interrelation and spillover effects between stocks and bonds: Cross-market and cross-asset evidence. Studies
in Economics and Finance 37: 561–82. [CrossRef]

Mensi, Walid, Ferihane Zaraa Boubaker, Khamis Hamed Al-Yahyaee, and Sang Hoon Kang. 2018. Dynamic volatility spillovers and
connectedness between global, regional, and GIPSI stock markets. Finance Research Letters 25: 230–38. [CrossRef]

http://doi.org/10.5547/01956574.39.SI1.scor
http://doi.org/10.1186/s40854-021-00248-y
http://doi.org/10.1007/s40822-020-00154-1
https://onlinelibrary.wiley.com/doi/10.1111/acfi.12770
http://doi.org/10.1111/jofi.13010
http://doi.org/10.1214/07-AOAS131
http://doi.org/10.1080/01621459.1982.10477803
http://doi.org/10.2307/1912791
http://doi.org/10.1016/S1062-9769(00)00042-9
http://doi.org/10.1080/1540496X.2020.1789455
http://doi.org/10.3390/jrfm14060233
http://doi.org/10.3390/jrfm13040083
http://doi.org/10.1016/j.physa.2021.125774
http://doi.org/10.46557/001c.18642
http://doi.org/10.1016/j.jeconom.2008.12.013
http://doi.org/10.1007/BF01192551
http://doi.org/10.1016/j.physa.2021.125831
http://doi.org/10.1186/s40854-020-00208-y
https://www.barrons.com/articles/gold-and-stocks-have-been-moving-together-for-weeks-heres-what-it-means-51589203866
https://www.barrons.com/articles/gold-and-stocks-have-been-moving-together-for-weeks-heres-what-it-means-51589203866
http://doi.org/10.1111/j.1468-2354.2009.00568.x
http://doi.org/10.1080/1540496X.2020.1788539
http://doi.org/10.1016/j.ribaf.2021.101419
http://doi.org/10.1016/j.irfa.2020.101545
http://doi.org/10.1016/j.eap.2020.12.016
http://doi.org/10.3390/jrfm13080164
http://doi.org/10.1108/SEF-08-2019-0330
http://doi.org/10.1016/j.frl.2017.10.032


J. Risk Financial Manag. 2021, 14, 330 13 of 13

Næs, Randi, Johannes A. Skjeltorp, and Bernt Arne Ødegaard. 2011. Stock market liquidity and the business cycle. The Journal of
Finance 66: 139–76. [CrossRef]

Ortmann, Regina, Matthias Pelster, and Sascha Tobias Wengerek. 2020. COVID-19 and investor behavior. Finance Research Letters 37:
101717. [CrossRef]

Padhan, Rakesh, and K. P. Prabheesh. 2021. The economics of COVID-19 pandemic: A survey. Economic Analysis and Policy 70: 220–37.
[CrossRef] [PubMed]

Park, June, and Eunbin Chung. 2021. Learning from past pandemic governance: Early response and public–Private partnerships in
testing of COVID-19 in South Korea. World Development, 10. [CrossRef]

Qin, Xiuhong, Guoliang Huang, Huayu Shen, and Mengyao Fu. 2020. COVID-19 pandemic and firm-level cash holding—Moderating
effect of goodwill and goodwill impairment. Emerging Markets Finance and Trade 56: 2243–58. [CrossRef]

Shafi, Khuram, Natasha Latif, Shafqat Ali Shad, and Zahra Idrees. 2019. High-frequency trading: Inverse relationship of the financial
markets. Physica A: Statistical Mechanics and Its Applications 527: 121067. [CrossRef]

Tisdell, Clement A. 2020. Economic, social and political issues raised by the COVID-19 pandemic. Economic Analysis and Policy 68:
17–28. [CrossRef]

Xiong, Hao, Zuofeng Wu, Fei Hou, and RJun Zhang. 2020. Which firm-specific characteristics affect the market reaction of chinese
listed companies to the COVID-19 pandemic? Emerging Markets Finance and Trade 56: 2231–42. [CrossRef]

Xu, Liao, Jilong Chen, Xuan Zhang, and Jing Zhao. 2020. COVID-19, public attention and the stock market. Accounting and Finance.
Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/acfi.12734 (accessed on 1 May 2021).

Yagi, Michiyuki, and Shunsuke Managi. 2021. Global supply constraints from the 2008 and COVID-19 crises. Economic Analysis and
Policy 69: 514–28. [CrossRef]

Zaremba, Adam, Renata Kizys, David Y. Aharon, and Ender Demir. 2020. Infected markets: Novel coronavirus, government
interventions, and stock return volatility around the globe. Finance Research Letters 35: 1–7. [CrossRef] [PubMed]

Zou, Hui. 2006. The adaptive lasso and its oracle properties. Journal of the American Statistical Association 101: 1418–29. [CrossRef]

http://doi.org/10.1111/j.1540-6261.2010.01628.x
http://doi.org/10.1016/j.frl.2020.101717
http://doi.org/10.1016/j.eap.2021.02.012
http://www.ncbi.nlm.nih.gov/pubmed/33658744
http://doi.org/10.1016/j.worlddev.2020.105198
http://doi.org/10.1080/1540496X.2020.1785864
http://doi.org/10.1016/j.physa.2019.121067
http://doi.org/10.1016/j.eap.2020.08.002
http://doi.org/10.1080/1540496X.2020.1787151
https://onlinelibrary.wiley.com/doi/full/10.1111/acfi.12734
http://doi.org/10.1016/j.eap.2021.01.008
http://doi.org/10.1016/j.frl.2020.101597
http://www.ncbi.nlm.nih.gov/pubmed/32550842
http://doi.org/10.1198/016214506000000735

	Introduction 
	Data 
	Methods 
	Empirical Results and Discussion 
	Causality 
	Determinants of Recovery 

	Conclusions, Limitations and Future Research 
	References

