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Abstract: In this study, we propose a wavelet-copula-GARCH procedure to investigate the occurrence
of cross-market linkages during the COVID-19 pandemic. To explore cross-market linkages, we
distinguish between regular interdependence and pure contagion, and associate changes in the
correlation between stock market returns at higher frequencies with contagion, whereas changes at
lower frequencies are associated with interdependence that relates to spillovers of shocks resulting
from the normal interdependence between markets. An empirical analysis undertaken on six major
stock markets reveals evidence of long-run interdependence between the markets under consideration
before the start of the COVID-19 pandemic in December 2019. However, after the health crisis began,
strong evidence of pure contagion among stock markets was detected.

Keywords: stock market contagion; COVID-19 pandemic; wavelet decomposition; copula-GARCH
models

JEL Classification: C35; F37; G10; G15

1. Introduction

The escalation of the COVID-19 pandemic in 2020 posed a major challenge for financial
markets. As the contagion spread from the city of Wuhan in China’s Hubei province to
become a global pandemic, stock price volatility reached levels unseen since the Great
Financial Crisis in 2007–2008. In finance, it is well known that such extreme values do not
occur in isolation, and that financial shocks experienced in one market are often transferred
to another.

In the literature, a large body of empirical works distinguished between two forms of
contagion (see, for example, Wolf 1999; Forbes and Rigobon 2002; Pritsker 2001; Dornbusch
et al. 2000). The first form is referred to as “interdependence” between economic systems,
and emphasises spillovers resulting from the interactions between markets. Here, the
transmission mechanism of shocks is triggered by interdependence across countries in
relation to their real and financial linkages. The second form of contagion relates to the
cross-market linkages generated by shocks on financial markets not linked to the observed
changes in macroeconomic fundamentals, but primarily resulting from the investors’
behaviour. This form of contagion is at times referred to as “shift” or “pure” contagion. In
the literature, theoretical models explaining this form of contagion are based on multiple
equilibria, endogenous liquidity shocks affecting portfolio allocation, investor psychology,
and capital market liquidity. For example, Masson (1998) presents a multiple-equilibria
model wherein a crisis in one country can act as a sunspot for another. In this model, the
shift from a good to a bad equilibrium is driven not by actual linkages between economic
systems, but by investor expectations. Similarly, Hernández and Valdés (2001) propose
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a model wherein a crisis in one country causes a liquidity shock to market participants,
and induces investors to rebalance their portfolios. Realigning the weightings of portfolio
assets causes a sell-off of certain asset classes, which subsequently lowers asset prices
in countries not affected by the initial crisis. In behavioural finance, theoretical models
relate contagion to investors’ herding behaviour. In these models, investment decisions
by market participants are influenced by the investment choices of others. For example,
Bikhchandani and Sharma (2000) studied the social learning effects of actions taken by
agents who act sequentially; the authors argue that when decisions are sequential, the
earliest actions may disproportionately affect the choices of the following agents, thereby
leading to herd behaviour.

In the literature, several empirical works have documented evidence of contagion
due to financial or real economy shocks. Some of the most influential studies are those by
Kaminsky and Reinhart (2000), Allen and Gale (2000), Bae et al. (2003), and Bekaert et al.
(2005). The consensus in the literature agrees, however, that pandemic-related develop-
ments rarely cause stock market contagion. For example, Baker et al. (2020), looking back
to 1900, discovered no evidence of cross-market linkages in relation to infectious disease
outbreaks. Remarkably, the authors found that the Spanish flu—which infected an esti-
mated 500 million people worldwide between 1918 and 1920, and claimed approximately
50 million victims—had only a limited impact on the financial markets. In striking contrast,
the COVID-19 outbreak has massively impacted the real economy, driving many countries
into recession. Unlike other pandemic-related developments, the COVID-19 outbreak has
triggered a massive spike in uncertainty in financial markets. For example, in the U.S. stock
markets, volatility levels in the first quarter of 2020 surpassed those last seen in October
1987 and December 2008 and, before that, in late 1929 and the early 1930s (see Baker et al.
2020).

Following such a significant worldwide impact, a growing body of literature is emerg-
ing on the economic effects of COVID-19 (see, for example, Akhtaruzzaman et al. 2021;
Zhang et al. 2020). Shahzad et al. (2021) investigated the effects of COVID-19 on the
aggregate stock performance of tourism firms in the U.S. markets. Abuzayed et al. (2021)
investigated the systemic distress risk spillover between the global stock market and in-
dividual stock markets in the countries most affected by the COVID-19 pandemic. The
authors observed that during the COVID-19 period, financial markets in Europe and North
America transmitted and received a more marginal extreme risk to and from the entire
global market than Asian stock markets. Similarly, Bouri et al. (2021) provided evidence
of a dramatic change in the structure and time-varying patterns of the connectedness of
returns across various assets (gold, crude oil, world equities, currencies, and bonds) around
the COVID-19 outbreak (see also Conlon and McGee 2020; Yousaf et al. 2021; Yarovaya
et al. 2020).

Partially motivated by these observations, the present study searches for fresh insights
into the extent to which stock markets have been affected by the COVID-19 crisis, asking
whether the apparent market transmission is actually the effect of contagion or interdepen-
dence. Following the seminal paper by Forbes and Rigobon (2002), we investigate whether
correlations between different equity markets increased significantly during the peak of the
COVID-19 outbreak. We argue that in order to be classified as contagion, the correlation
between stock markets should increase during the crisis episode. In the absence of a surge
in cross-market linkages, volatility spillover is better classified as market interdependence.

In this paper, we propose a novel methodology combining the benefits of wavelet
series expansions with copula estimation. We label it the “wavelet-copula-GARCH” pro-
cedure, abbreviated as “WC-GARCH”. The procedure can be easily performed in two
steps: The first stage involves using wavelet analysis to decompose the series of stock
market returns into components associated with different scale resolutions. In the second
step, the decomposed series of stock market returns act as input variables to estimate
the transmission mechanisms of shocks using copula functions. Since modelling depen-
dence by copula is sensitive to marginal model assumptions to allow for heteroskedasticity,
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autocorrelation, and volatility asymmetry, we follow Jondeau and Rockinger (2006) in
estimating the marginal distributions using a GARCH-type model.

The main innovation of the suggested procedure is the combination of wavelet analy-
sis with GARCH-type copula models. Wavelet analysis is a filtering method closely related
to time series and frequency domain methods that transform the original data into different
frequency components with a resolution matching its scale. Unlike time series and spectral
analysis, which provide information only on the time domain and frequency domain,
respectively, wavelet analysis decomposes the stock market return series with respect to
both time and frequency domains simultaneously. This allows us to investigate whether
financial markets respond differently in dissimilar time scales. For example, two stock
markets may be highly correlated in the long run, but not in the short run. Analysing
different frequency components of the series separately enables us to examine the stock
markets over different time intervals (i.e., short-, medium-, and long-term), and allows an
assessment of how the evolution of market connectedness has evolved over time, thus cap-
turing the possible changes in the relationship. To analyse the strength of the co-movements
between stock markets over different time intervals, we estimate a copula-GARCH-type
model. Conditional copulas are extremely useful in financial applications because copula
functions allow the separation of the marginal distributions from the dependence struc-
ture entirely represented by the copula function. This separation enables researchers to
construct multivariate distribution functions, starting from given marginal distributions
that avoid the common assumption of normality for either marginal distributions or their
joint distribution function (Bartram et al. 2007). Moreover, copulas are invariant to strictly
increasing transformations of the random variables, while asymptotic tail dependence is
their important property.

The present study contributes to the literature in several ways: First, analysing daily
returns for six large stock markets in the USA, Canada, the UK, Hong Kong, China,
and Japan, evidence of significantly increasing interdependence among stock markets
was unearthed since the start of the COVID-19 outbreak. Our results reveal evidence of
contagion in line with Forbes and Rigobon’s (2002) definition: a significant increase in
linkages among stock markets after a shock to one country as measured by the degree to
which asset prices move together across markets relative to this co-movement in tranquil
times. Second, evidence of contagion among stock markets constitutes an unprecedented
event since, according to the literature (see Baker et al. 2020; Nippani and Washer 2004
among others), no previous infectious disease outbreak has impacted the stock market
as forcefully as the COVID-19 pandemic. Most empirical studies agree that previous
pandemics greatly affected stock market volatility, but only had a mild impact in terms of
stock market contagion. The proposed methodological approach is the third contribution
of the paper. The paper builds on previous works by Mensi et al. (2017), where wavelet
methods and copulas were applied to commodity markets (see also Jiang et al. 2018, Ji
et al. 2018), and Shahzad et al. (2016), who examined the interdependence of stock markets
using wavelet and variational mode decomposition techniques. However, our procedure
differentiates from the methods used in the related literature, since we combine wavelet
decomposition with GARCH-copula models to be able to distinguish between different
types of contagion between stock markets. The combination of wavelet decomposition
and GARCH-copula models allows us to analyse the evolution of the correlation in the
time–frequency space. Consequently, this paper freshly characterises the short-term and
long-term dependencies between stock market returns.

The remainder of this study is organised as follows: Section 2 describes market
contagion from a theoretical perspective. Section 3 presents the WC-GARCH model,
whereas in Section 4 the estimation results are reported. Finally, Section 5 contains some
concluding remarks.
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2. Theoretical Considerations

Financial contagion as a result of a global event originating from a country and
spreading to other countries or regions has long been an object of interest to economists. The
consensus in the literature agrees on two main channels for the propagation of contagion:
physical exposure, and asymmetric information. Contagion through physical exposure
occurs when, after a negative shock in one market, investors rebalance their portfolios and
sell assets in other markets. Therefore, a shock in one market causes instability in others,
regardless of the underlying fundamentals (see Kyle and Xiong 2001). Contagion may also
result from asymmetric information in financial markets; King and Wadhwani (1990) argue
that traders in international financial markets face “signal extraction problems”. Traders
from one country are only imperfectly informed about the situation in other countries;
therefore, agents extract further information from observable stock price movements,
reflecting other traders’ behaviour. However, imperfect information sparks confusion
between price movements related to idiosyncratic shocks in a foreign country and price
movements that also reveal changes in information about their home country. As a result,
asymmetric information can trigger excessive price spillovers across borders, including
stock market crashes.

In the literature, contagion has been empirically identified through the propagation
of extreme negative returns and the related increase in market correlation with respect
to normal times. A large body of research suggests that international financial market
contagion has occurred in various economic and financial crises. For example, King
and Wadhwani (1990) find evidence of an increase in stock returns’ correlation in the
1987 crash (see also Bekaert et al. 2005). Similarly, Calvo and Reinhart (1996) report
evidence of contagion during the Mexican Crisis, and Baig and Goldfajn (1999) reach
similar conclusions after investigating the stock market correlation during the East Asian
Crisis. Hon et al. (2004) find evidence of contagion between the Nasdaq and the other
stock markets after the dotcom bubble collapse in the United States. In the wake of the U.S.
subprime market crisis in 2005, several papers have assessed the existence of contagion
in financial markets. For example, Park and Shin (2020) investigated the foreign banks’
exposure during the crisis, and found that emerging market economies were more exposed
to banks in the crisis-affected countries, suffering more capital outflows during the global
financial crisis. Evidence of contagion was also found in developed economies by Dungey
and Gajurel (2015) (see also Zhang et al. 2020). Mohti et al. (2019) investigated the impact
of the U.S. subprime market crisis on the Eurozone debt crisis (see also Bashir et al. 2016).

Although recent research has greatly improved our understanding of contagion, scarce
attention has been devoted to the impact of infectious disease outbreaks on stock markets.
Most empirical works related to the impact of epidemics focus on disease-associated
economic costs as a result of morbidity and mortality. For example, Siu and Wong (2004)
provided evidence of the economic impact of the SARS epidemic in China, Hong Kong,
and Taiwan. When we study financial markets, there is remarkably little literature on the
subject. Notably, most of the available evidence reports the negligible impact of infectious
diseases such as SARS, Ebola, swine flu, and Zika on stock markets.1 For example, Nippani
and Washer (2004) examined the effect of the SARS outbreak on financial markets, and
detected no evidence of contagion in stock markets in Canada, Hong Kong, Indonesia, the
Philippines, Singapore, and Thailand. Similarly, Koo and Fu (2003) argue that despite the
serious emotional distress caused by the SARS outbreak, the disease had limited impact in
the affected regions (see also Siu and Wong 2004; Chen et al. 2007, 2018; Baker et al. 2012; Del
Giudice and Paltrinieri 2017; Ichev and Marinč 2018). Macciocchi et al. (2016) investigated
the effects of the Zika virus outbreak in several affected countries, and concluded that the
impact of the virus on stock markets was only marginal.

Few studies have investigated the impact of the COVID-19 pandemic on financial
market volatility. Attempts to understand the effects of COVID-19 on market volatility
include a study by Baker et al. (2020), which identifies the current pandemic as having the
greatest impact on stock market volatility in the whole history of pandemics. Similarly,
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Zaremba et al. (2020) examined the impact of government policy measures on stock market
volatility (see also Goodell 2020); the authors suggest that stock market volatility increased
more in countries where governments took strict policy actions—such as information
campaigns and cancellation of public events—to curb the spread of disease. Furthermore,
Zhang et al. (2020) found significant increases in volatility for U.S. stock markets in response
to reports of COVID-19 cases and deaths in multiple countries.

3. The WC-GARCH Procedure

The proposed WC-GARCH procedure can easily be carried out in two steps: In the
first step, a type of discrete wavelet transform (DWT) is applied to the stock market indexes
in order break down the raw stock market returns into sub-returns series with different
time-scales. Following this, in the second step, for each time bracket, sub-returns series
of the obtained filtered series can be used to analyse correlations between stock markets
using a copula-GARCH-GJR (1,1) model. The resulting procedure allows us to examine the
correlation structure between stock markets at different timescales.

The two-step procedure to estimate the correlation in the time–frequency domain is
described below in more detail.

Step 1: The Wavelet Series Expansion

The first step for implementing the WC-GARCH procedure involves applying the
wavelet series expansion to the stock market return series. Wavelet analysis is a technique
that decomposes a time series into small waves that begin at a specific point in time
and end at a later specific point in time. In other words, the wavelet is a small wave or
“wavelet” that can be manipulated to extract frequency components from a complex and
non-stationary signal. Broadly speaking, the wavelet decomposition methodology involves
recursively applying a succession of low-pass and high-pass filters to the stock market
return series. This process allows the separation of its high-frequency components from the
low-frequency ones (for more details see, for example, Benhmad 2013). The decomposition
of the series can be obtained using a wavelet transform that is based on two filters, which
are respectively called the “mother wavelet”:∫

φ(t)dt = 1,

and the “father wavelet”: ∫
ψ(t)dt = 0.

From the theoretical point of view, the wavelet series expansion methodology is
closely related to spectral analysis, where a time series is decomposed into a spectrum of
cycles of varying lengths of a Fourier transform. Using spectral analysis, it is possible to
identify the most important features of a time series, such as trends, business cycles, and
seasonality (see Priestly 1981 for a review). Spectral analysis is therefore an important tool
that can be used to extract the main oscillatory components of a series; however, a possible
drawback of the methodology is the underlying assumption of stationarity of a series. This
strong assumption is counterfactual in most applications to financial series. In this respect,
wavelet analysis does not require any assumptions about the data-generation process for
the return series under investigation, thus overcoming the limitations of techniques such
as spectral and Fourier analysis (for more details see Ramsey 2002).

Since the use of wavelets is a well-established methodology, in this section we only
introduce the concepts and definitions useful for our purposes. For a review of the theory
and use of wavelets, see Percival and Walden (2000), Gençay et al. (2001), and Daubechies
(1992).
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If f (t) ∈ L2(R) is a function (for t = 1, . . . , T), the time dimensions can be expressed
as a linear combination of a wavelet function:

f (t) = ∑
k

sj,kφj,k(t) + ∑
k

dj,kψj,k(t) + ∑
k

di−1,kψj−1,k(t) + . . . + ∑
k

d1,kψj−1,k(t), (1)

where the orthogonal basis functions φj,k and ψj,k are defined as:

φj,k = 2−j/2φ

(
t− 2jk

2j

)

ψj,k = 2−j/2ψ

(
t− 2jk

2j

)
.

In Equation (1), the representation j is the number of multiresolution components, sj,k
are called the smooth coefficients, and dj,k are called the detailed coefficients. They are
defined by:

sj,k =
∫

f (t)φj,k(t)dt, (2)

dj,k =
∫

f (t)ψj,k(t)dt for j = 1, 2, . . . J. (3)

The magnitude of these coefficients reflects a measure of the contribution of the
corresponding wavelet function to the total signal. The scale factor 2j is also called the
dilation factor, and controls the length of the wavelet (window), whereas the translation
parameter 2jk refers to the location, and indicates the nonzero portion of each wavelet
basis vector. The basis wavelet function is stretched (or compressed) according to the
scale parameter to extract frequency information (a wide window yields information on
low-frequency movements, while a narrow window yields information on high-frequency
movements), and moved on the timeline (from the beginning to the end) to extract time
information from the signal in question.

The expression in Equation (2) presents the long-scale smooth components that are
used to generate the scaling coefficients, whereas the differencing coefficients are generated
by the wavelets in Equation (3). The resulting multiscale decomposition of Equation (1)
can be simplified as:

F(t) = SJ + DJ + DJ−1 + . . . + Dj + . . . + D1 , j = 1, . . . , J (4)

where Dj is the jth level wavelet and SJ represents the aggregated sum of variations at
each detail of the scale.

In Equations (1) and (4), the father wavelet reconstructs the smooth and low-frequency
parts of a signal, whereas the mother wavelet function describes the detailed and high-
frequency parts of a signal. In empirical applications to financial data, the father wavelet
can be interpreted as the trend (smooth component) that is the longest timescale component
of the series, and mother wavelets can be interpreted as the cyclical components around
the trend. Therefore, the expression in Equation (4) provides a complete reconstruction
of the signal partitioned into a set of j frequency components, so that each component
corresponds to a particular range of frequencies. The low-frequency part can detect what
in the literature has been referred to as “interdependence”, whereas the high-frequency
part may reflect “pure” contagion. A similar interpretation was suggested in Gallegati
(2012) (see also Huang et al. (2015)).

Step 2: WC-GARCH Model

The second step of the suggested procedure involves using the filtered series obtained
from the j-level multiresolution decomposition to estimate the copula functions in the time–
frequency framework. This second stage requires: (a) estimating the marginal distributions
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of the decomposed stock market series, (b) specifying the copula function, and (c) estimating
the copula.

(a) Marginal Distributions

The copula estimation procedure used in this paper heavily relies on the results
of Sklar’s theorem (see Sklar 1959). According to Sklar’s theorem, a two-dimensional
joint distribution function G with continuous marginals FX and FY has a unique copula
representation, so that:

G(x, y) = C
(

Fx(x), Fy(y)
)
,

and for a joint distribution function, the marginal distributions and the dependence struc-
ture described by a copula can be separated.{

Dj,A
}

and
{

Dj,B
}

represent the stochastic processes denoting the j decomposed sig-
nal obtained from the wavelet transform in Equation (4) for the stock market returns {RA}
and {RB}, respectively. Note that to simplify the notation, the t subscription is omitted
wherever possible, at no detriment to the analysis. Their conditional cumulative distri-
bution functions (CDFs) are FDj,A(RA; θA) and FDj,B(RB; θB), respectively. The conditional
copula function is defined as C(ut, vt), where the frequency component u = FDj,A(RA; θA)

and v = FDj,B(RB; θB) are continuous variables in (0, 1).
Using Sklar’s theorem, for a given Dj in Equation (4), the bivariate joint conditional

CDF of {RA} and {RB} can be written as:

G(RA, RB) = C
(

FDj,A(RA, θA), FDj,B(RB, θB); π
)

(5)

where π is a parameter vector for the copula, θA, θB are parameter vectors for each marginal
distribution, and θ − (π′, θ′A, θ′p is a parameter vector for the joint distribution. The ex-
pression in Equation (5) decomposes the joint distributions into marginal distributions,
FDj,A , FDj,B , and a copula, C, representing the dependence structure among the frequency
components for the stock market indices under consideration. Therefore, the expression in
Equation (5) allows us to model marginal distributions and dependence structure sepa-
rately. However, to make the expression in Equation (5) operational, the estimation of the
marginal distributions is required. To obtain the marginal distributions of Dj in Equation
(4) the GARCH-GJR (1,1) model suggested by Glosten et al. (1993) can be used. Specifically,
the model for the margins can be expressed as:

Dj,t = µ + εt, (6)

εt = Zt
√

ht (7)

h2
t = δ+ αε2

t + γε2
t−1Mt−1 + β h2

t−1 (8)

Zt ∼ GHD(λ, χ)

where Zt is a generalized hyperbolic distribution with shape parameters λ and χ. Equation
(6) decomposes the returns into a constant, µ, and an innovation process, εt. The expression
in Equation (7) defines this residual as a product of conditional volatility and innovation.
Equation (8) describes the dynamics of conditional volatility, which is explained by the
coefficients α, β, and γ. The parameters measure the size effect and persistence of the
shocks on volatility, respectively. The impact of the shocks on the conditional volatility
is determined the sign of the parameter γ of the dummy variable, M, such that Mt = 1
if εt < 0 (bad news), and Mt = 1 otherwise. Note that the WC-GARCH procedure is
a general method that can be readily extended to any GARCH-type model. Therefore,
we suggest experimenting with several types of GARCH specifications and selecting the
model that best describes the data at hand.
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(b) Copula Function

The marginal GARCH-GJR(1,1)-GHD parameter estimates in Equation (6) provide
estimated values of the conditional cumulate distribution function for each frequency
component Dj. Therefore, the bivariate copula function with dependence parameter θ is
expressed by the following function:

c(ut, vt) =
(

max
{

uθ
t + vθ

t − 1, 0
}) 1

θ , (9)

where θ ≥ 1. Note that if θ → 0 , then {RA} and {RB} are independent in Dj, whereas they
are perfectly dependent in θ → ∞ . The expression in Equation (9) is the Clayton copula;
among different pair-copula families, the Clayton copula is preferred for financial data,
since it allows for more asymmetric tail dependence in the negative tail than in the positive
(for more details see, among others, Nikoloulopoulos et al. 2012).

(c) Estimation Method

Under the assumption that all condition CDFs are differentiable, from Sklar’s theorem
the joint density function of Dj,A and Dj,B can be expressed as:

G
(

Dj,A, Dj,B
)
=

∂G
(

Dj,A, Dj,B
)

∂Dj,A∂Dj,A
= C

(
FDj,A(RA, θA), FDj,B(RB, θB)

)
× fDj,A(RA, θA)× fDj,B(RB, θB), (10)

where c(ut, vt) is the conditional copula density function in Equation (8). Thus, for
each timescale Dj in Equation (4), the bivariate conditional density function of {RA} and
{RB} is represented by the product of the copula density and the two conditional marginal
densities fDj,A(RA, θA) and fDj,B(RB, θB). From Equation (9) the log-likelihood function,
log(θ), can be obtained as:

log
(
G
(

Dj,A, Dj,B
))

= log (c(ut, vt)) + log
(

fDj,A(RA, θA)
)
+ log

(
fDj,B(RB, θB)

)
(11)

To estimate Equation (10) we use the inference for the margin method suggested by
Joe (1997), which involves first estimating the parameters of each univariate model via
maximum likelihood, before the marginal CDFs are applied to the standardized residuals.

4. Data and Estimation Results

The data considered in this study are daily closing equity market price indices for six
markets. Particularly, we consider the S&P 500 Composite Index (S&P 500) for the United
States, the S&P TSX Composite Index, (S&P/TSX) for Canada, the FTSE 100 Price Index
(FTSE 100) for the UK, the Nikkei 225 Stock Average Index (N225) for Japan, the Hang
Seng Index (HIS) for Hong Kong, and the Shanghai Share Index (SSE) for China. These
were selected as being representative of the largest stock markets in the world; they are
therefore ideal for investigating the issue of contagion during the first COVID-19 wave.

The sample covers the period from 1 January 2014 to 8 August 2020. The period under
consideration allows us to isolate shocks due to the COVID-19 pandemic since, by 2014,
the impact of the Great Recession that started in 2005 with the subprime market crisis in
the U.S. had completely vanished in most of the world.

Stock returns are calculated as the difference between the logarithms of the price index.
Furthermore, the missing data arising from holidays and special events are bypassed by
assuming them to equal the average of the previously recorded price and the subsequent
one. Note that in this application, the U.S. stock market is used as a numeraire for the
correlations. Therefore, below we consider the level of co-movements between the S&P 500
and the other stock markets listed above.
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4.1. Multiscale Analysis of Correlation

In this section we present the results of estimating the WC-GARCH model. However,
as a preliminary investigation, we take advantage of the time-scale decomposition property
of the wavelet to calculate the multiscale correlation between the S&P 500 and other stock
markets. Specifically, we use the wavelet coefficients in Equation (4) to obtain the wavelet
variance, wavelet covariance, and wavelet correlation.

The wavelet variance decomposes the variance of a time series into components
associated with different scales. Similar to their classical counterparts, we define σ2

A
(

Dj
)

as the wavelet variance, at scale j, of the process {RA} with variance σ2
A , and σ2

B
(

Dj
)

as the wavelet variance, at scale j, of the process {RB} with variance σ2
B . We also define

the wavelet covariance between the processes {RA} and {RB}, at wavelet scale j, as the
covariance between scale-j wavelet coefficients of {RA} and {RB} given by:

σA,B (λj) ' Cov
{

DRA ,j, DRB ,j
}

.

Therefore, the correlation coefficient is obtained as:

ρA,B
(
λJ
)
≡

σA,B (λj)

σA
(
λj
)
σB
(
λj
)

The wavelet correlation coefficient ρA,B
(
λJ
)

provides a standardized measure of the
relationship between the two processes on a scale-by-scale basis and, as with the usual
correlation coefficient between two random variables, we assume that |ρA,B

(
λJ
)
| ≤ 1.

Since related empirical works have shown that a moderate-length filter of length eight
is adequate to deal with the characteristic features of financial data (see Gençay et al.
2001), we use the Daubechies compactly supported least asymmetric (LA) wavelet filter
(Daubechies 1992). Then, using the wavelet coefficients, we estimate the wavelet-unbiased
pairwise correlation coefficients. For the choice of φ and ψ in Equation (1), the doublet
wavelet function with length eight is used for this study.

For the multiresolution level j, this study sets j = 6; thus, the highest frequency
component D1 represents short-term variations due to shocks occurring at a timescale of 22

= 4 days, and the next highest component D2 accounts for variations at a timescale of 23

= 8 days, near the working days of a week. Similarly, components D3 and D4 represent
the midterm variations at timescales of 24 = 16 and 25 = 32 days, respectively. Finally,
components D5 and D6 represent the long-term variations at timescales of 26 = 64 and 27 =
128 days, respectively. S6 is the residual of the original signal after subtracting D1, D2, D3,
D4, D5, and D6.

In Figures 1–5, the correlation patterns between the S&P 500 and the other stock
market indexes are presented in a time–frequency domain on a scale-by-scale basis. For
ease of interpretation, the left-hand horizontal axis is transformed to show the number of
days in which the scale moves from low to high wavelengths. The heat maps indicate the
increasing strength of the correlation among the stock market indices as they move from
blue (lowest correlation) to red (highest correlation).

Before interpreting the results of the correlation analysis, one issue that still has to be
resolved is the following: for how many days should the increase in correlation between
two stock markets last to be classified as “pure” contagion? This, in turn, gives us a
definition of “interdependence”. Theoretical literature offers only limited help on this
matter. According to the market efficiency hypothesis (EMH), the stock market prices
should reflect all of the information made available to market participants at any given
time (see Fama 1970). The EMH, therefore, implies that the transmission of shocks due to
contagion in international financial markets should not exist in the long run. Based on these
considerations, several papers suggest that the transmission of shocks due to contagion in
international financial markets should be very fast, and should die out quickly. For example,
Gallegati (2012) suggests that to be classified as “pure” contagion, the increase of correlation
should generally not exceed one week (see also Dewandaru et al. 2016). However, in this
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paper, we argue that the COVID-19 pandemic spiked the uncertainty unseen in previous
crises. As argued by Baker et al. (2020), the period considered in this study was a time
of great uncertainty relating to almost every aspect of everyday life: the infectiousness
and lethality of the virus, the availability and deployment of antigen and antibody tests,
and the capacity of healthcare systems to meet an extraordinary challenge. In the light of
these arguments, we suggest that the definition of “pure” contagion adopted in the related
empirical studies should be taken more liberally. Hence, we assume that the first five
wavelet scales provide a realistic measure of contagion, as these scales are associated with
changes of up to 64 days in correlation shifts. Accordingly, in this paper, “pure” contagion
is measured by wavelet coefficients D1, . . . , D5, whereas “interdependence” is measured
by the D6 scale and the trend, S6.

From Figures 1–5, there is clear evidence of long-run interdependence between the
U.S. stock market and the other markets before the start of the COVID-19 pandemic in
December 2019. Specifically, starting with the correlation between the U.S. and the U.K.
markets, Figure 1 shows no sign of co-movements for the first 8–16 days (i.e., dark blue
colour indicates a correlation no greater than 0.2), but the correlation increases in the
time scale D6 between January 2014 and June 2017 (i.e., the red colour corresponds to a
correlation coefficient of 0.8). Similarly, in Figure 2, it appears that the U.S. and Japanese
stock markets have stronger long-term co-movements since, once again, we see the red
colour in the 64–128 timescale. As for the correlation between the U.S. and China, weak
correlation (dark blue and light blue colour) can be seen for the shortest timescale (i.e.,
D1–D3), as highlighted in Figure 3.

Signs of fundamental-based contagion between the U.S. and Chinese stock markets
can also be observed in Figure 4, where the estimated correlation coefficient is very high
only for the timescale D6 before 2016, and lower afterwards. The estimated correlation
coefficient during the COVID-19 outbreak is interestingly consistent with our definition of
“contagion” only for the timescale D5, but is a borderline case of “interdependence” since
in Figure 4 the red colour appears only for the longest timescales. Finally, the correlation
between the stock markets in the U.S. and Canada, shown in Figure 5, indicates persistent
co-movements between these financial markets, since Canada has close commercial and
financial ties to the U.S. economy.

Overall, the results in Figures 1–5 suggest that before the COVID-19 pandemic started,
the transmission mechanism of shocks was related to normal dependence between mar-
kets, due to trade links and geographical position. Therefore, the type of transmission
mechanism of shocks that characterised the period before the health crisis began seems
better described as “interdependence” (see Forbes and Rigobon 2002).
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Once the impact of the COVID-19 pandemic was felt worldwide, financial assets
were immediately repriced. Panic spread throughout all of the major financial markets, as
indicated by the wavelet power of pairwise analysis analysed in the lower scale brackets.
Put differently, the co-movements (either positive or negative) seem to have been stronger
during the COVID-19 pandemic in most of the series under consideration. Specifically,
with the notable exception of Japan, the financial markets under consideration showed
significant dominant signs of co-movement at periods of high frequency up to 64 days
in length. In the case of the UK–Canada correlation, the market contagion appears even
stronger, as indicated by the red colour in Figures 1 and 5.

The results of the wavelet analysis in Figures 1–5 reveal a degree of co-movement
between the U.S. and other financial markets, suggesting that a parametric analysis may
reveal more insights into the contagion effects during the COVID-19 outbreak.

4.2. WC-GARCH Procedure Estimation Results

Once the filtered series were extracted in the second step of our analysis, appropriate
univariate GARCH models were estimated for the six stochastic processes under consider-
ation. Comparing a number of GARCH-type models, we concluded that a GJR-GARCH
model with a GHD distribution for the innovation terms was the specification that best
fit the data under consideration. To investigate the effects of the COVID-19 pandemic,
the sample under consideration was split into two subperiods: the first with T = 1465
including data from 2 January 2014 to 29 November 2019; and the second subperiod with a
sample of T = 172 including observations from 2 December 2019 to 8 August 2020.

The WC-GARCH procedure suggested in Section 3 involves estimating a total of(
6× Dj

)
= 36 GARCH-GJR (1,1) models for each subperiod, generating a staggering total

of 72 models to be estimated. To save space, the estimation results are not reported here,
but they are available upon request. However, to give an idea of the magnitude of the
estimated coefficients for the conditional variance equations, the estimation results for the
marginal distributions for the six stock markets under consideration in the two subperiods
are reported in Tables 1 and 2.

Tables 1 and 2 present the GARCH-GJR (1,1) parameter estimates for models estimated
for the period before and during the COVID-19 outbreak, respectively. From Table 2,
it appears that stock market indices are highly persistent, since the magnitude of the
estimated parameters β is relatively high for all of the estimated series. In Tables 1 and 2,
bad news also appears to impact stock market volatility, since all of the estimated γ values
significantly differ from zero. Furthermore, the diagnostic tests included at the bottom of
Tables 1 and 2 reject the null hypothesis of autocorrelation up to the 10th lag order.

Table 1. Estimation results of the single-equation models for the stock market indices under consid-
eration before the COVID-19 outbreak.

GSPTSE GSPC FTSE 100 HIS SSE N225

α 0.145 ** 0.343 ** 0.324 * 0.107 * 0.077 * 0.201 *
(0.044) (0.167) (0.002) (0.049) (0.003) (0.011)

β 0.839 * 0.652 * 0.674 ** 0.881 * 0.907 * 0.791 **
(0.016) (0.109) (0.241) (0.203) (0.310) (0.360)

γ −0.708 * −0.325 ** −0.258 ** −0.526 * 0.301 ** −0.685 *
(0.154) (0.112) (0.159) (0.017) (0.171) (0.291)

ARCH Lag (10) 2.624 5.161 4.599 3.233 3.923 3.452
[0.417] [0.195] [0.257] [0.396] [0.403] [0.368]

Note: The table reports the estimation results of the GARCH-GJR (1,1) for the stock markets under consideration.
Squared brackets indicate the p-values; standard errors are reported below the estimated coefficients. Note that *
and ** indicate significance at 1% and 5%, respectively. The tests for autocorrelation for the estimated models are
also reported.
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Finally, in Table 2, all of the estimated β coefficients appear greater in magnitude than
those in Table 1, indicating that the COVID-19 outbreak increased persistence in the stock
markets. On the other hand, the estimated coefficients for α and γ in Table 2, on average,
do not vary much with respect to those in Table 1.

Table 2. Estimation results of the single-equation models for the stock market indices under consid-
eration after the COVID-19 outbreak started.

GSPTSE GSPC FTSE 100 HIS SSE N225

α 0.084 ** 0.034 ** 0.203 * 0.062 * 0.076 * 0.191 *
(0.033) (0.156) (0.013) (0.360) (0.008) (0.020)

β 0.902 * 0.905 * 0.705 * 0.917 * 0.920 * 0.814 **
(0.005) (0.098) (0.011) (0.214) (0.321) (0.371)

γ 0.636 * −0.397 * −0.330 ** −0.598 * 0.228 ** −0.757 **
(0.143) (0.101) (0.148) (0.028) (0.182) (0.301)

ARCH Lag (10) 2.364 4.649 4.144 2.913 3.534 3.110
[0.432] [0.235] [0.327] [0.476] [0.354] [0.308]

Note: The table reports the estimation results of the GARCH-GJR (1,1) for the stock markets under consideration.
Squared brackets indicate the p-values; standard errors are reported below the estimated coefficients. Note that *
and ** indicate significance at 1% and 5%, respectively. The tests for autocorrelation for the estimated models are
also reported.

Tables 3 and 4 present the results of the pairwise correlation in the time–frequency
domain between the S&P 500 and the other stock market returns obtained using the
suggested WC-GARCH procedure.

Table 3. WC-GARCH-GJR (1,1) estimation results before the COVID-19 outbreak.

D1
(2–4 Days)

D2
(4–8 Days)

D3
(8–16
Days)

D4
(16–32
Days)

D5
(32–64
Days)

D6
(64–128
Days)

FTSE 100 0.433 0.476 0.513 0.570 0.818 0.769
N225 0.056 0.114 0.178 0.359 0.456 0.782
SSE 0.062 0.067 0.041 −0.187 0.269 0.414
HIS 0.144 0.186 −0.331 −0.407 0.431 0.584

S&P TSX 0.596 0.674 0.563 0.631 0.762 0.863
Note: The table reports the WC-GARCH results that give the estimated correlations between the S&P 500 and the
other stock market indices by frequency. The timescales are 2–4, 4–8, 8–16, 6–32, 32–64, and 64–128 days—defined
as D1, D2, D3, D4, D5, and D6, respectively—between the U.S. and the other stock markets under consideration.

Table 4. WC-GARCH-GJR (1,1) estimation results during the COVID-19 pandemic.

D1
(2–4 Days)

D2
(4–8 Days)

D3
(8–16
Days)

D4
(16–32
Days)

D5
(32–64
Days)

D6
(64–128
Days)

FTSE 100 0.582 0.617 0.652 0.768 0.832 0.856
N225 0.172 0.148 0.209 0.226 0.212 0.219
SSE 0.271 0.228 0.370 0.352 0.417 0.433
HIS 0.191 0.216 0.257 0.242 0.245 0.237

S&P TSX 0.645 0.724 0.746 0.758 0.824 0.876
Note: The table reports the WC-GARCH results that give the estimated correlations between the S&P 500 and the
other stock market indices by frequency. The timescales are 2–4, 4–8, 8–16, 6–32, 32–64, and 64–128 days—defined
as D1, D2, D3, D4, D5, and D6, respectively—between the U.S. and the other stock markets under consideration.

In Table 3, the pairwise dynamic correlations for the pre-COVID-19 period are reported.
The results in Table 3 conform to the definition of “interdependence” (or fundamental-
based contagion) since, in general, looking at columns two, three, and four, it is clear that
during the pre-COVID 19-crisis period the tail dependence was relatively weak in the



J. Risk Financial Manag. 2021, 14, 329 14 of 18

short-run timescales, but increased with the timescale length (i.e., timescale D5 and D6).
Particularly, tail correlations are rather low up to 16 days, (timescales D1, D2, and D3), but
increase in the 32–128-day timescales (timescales D5 and D6). Strangely, for timescale D4,
in column five, the correlations appear higher for all of the markets.

Looking now, the tail dependence between different stock markets, contagion (timescales
D1–D3) during the pre-COVID 19 period between the S&P 500 and the other stock markets
was relatively low for the N225, SSE, and HIS, and higher for the FTSE 100 and SPTSX.
These results again conform to the definition of fundamental-based interdependence, where
a shock to the U.S. spreads to a neighbouring market—such as Canada—because of the
normal interdependence between these economies. The UK economy is also closely related
to the U.S. economy; therefore, shock transmissions are expected to be higher than for those
for Asian markets.

The interdependence-type of correlation during the pre-COVID-19 period is even
clearer when we examine the tail dependence in the longest timescales (D5 and D6). The
UK and Canada correlate highly with the U.S. for the longest timescale brackets. Looking
now at the remaining stock markets, in this case the correlation also increases with the
timescale. For example, the correlation between the U.S. and Japan’s stock markets was
approximately 0.5 in D5, and increased to approximately 0.8 in D6, whereas Hong Kong’s
correlation was approximately between 0.4 and 0.6. China’s correlation varied substantially,
and was eventually slightly lower than Japan’s, at approximately 0.4 in D6.

The picture dramatically changes during the COVID-19 period, since in Table 4 tail
dependency increases in the timescales D1 and D2 (i.e., 2–8 days) for all of the stock markets
under consideration, thus suggesting the existence of “pure” contagion even according
to the strict criteria adopted by Gallegati (2012) and Dewandaru et al. (2016). Looking
at longer time brackets (i.e., timescales D3 and D4), volatility spillovers are still evident
between the S&P 500 and the other stock markets after a shock for up to 32 days; this is
true for all of the markets except for the HIS. Looking at the long run (i.e., timescales D5
and D6), the picture completely changes, as for most pairwise stock market indices the
estimated correlation coefficients are smaller or approximately the same. Taken together,
these results confirm our hypothesis that the COVID-19 pandemic was a major source of
contagion between markets. The high increase in the market correlations was obviously
not linked to observed changes in macroeconomic fundamentals, but was mainly the result
of the behaviour of investors or other financial agents.

5. Discussion and Comparison with Previous Results

What do we learn from the WC-GARCH procedure? Stock market contagion has
important consequences for financial stability as well as portfolio management, since it
affects optimal asset allocation, risk measurement, and asset pricing. However, standard
time domain techniques can face problems in identifying contagion from other forms of
shock transmission, because of the inability of these methodologies to combine information
from both time and frequency domains. The modelling issues related to the analysis of co-
movements between financial markets are well documented by the variety of econometric
procedures used in empirical studies to investigate financial contagion. They include
testing for changes in correlation coefficients (King and Wadhwani 1990; Lee and Kim
1993), ARCH and GARCH models (Billio and Caporin 2010), co-integration- estimating
models (e.g., Chiang et al. 2007; Gallo and Otranto 2008; Voronkova 2004; Yang et al.
2003), limited dependent variable models (Eichengreen et al. 1996; Kaminsky and Reinhart
2000), nonlinear models (Gallo and Otranto 2008), and factor models (Corsetti et al. 2005).
This paper argues that most of these models can describe only the average behaviour of
the correlation patterns, since standard time-series models do not allow for more than
two timescales: the short run, and the long run. According to theoretical models, shock
transmission due to contagion should be rapid, and should die out quickly due to arbitrage
opportunities in different markets, but “how fast is fast?” is a fundamental question
in practical applications. In this respect, by applying a wavelet decomposition of the
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stochastic processes, the suggested procedure provides a complete reconstruction of the
signal partitioned into a set of j frequency components. Each component corresponds to
a particular range of frequencies. For example, the low-frequency part can be associated
with what the literature has defined “interdependence”, and the high-frequency part can
reflect “pure” contagion. Available literature confirms the effectiveness of adopting wavelet
analysis in accounting for the difference between short- and long-term investors (see, for
example, Yazgan and Özkan 2015; Yogo 2008; Gallegati 2012; Ranta 2013; Conlon et al.
2018).

Our main results have several implications: First, by analysing the tail correlation
between markets in the pre- and post-COVID-19 subperiods, we can argue that contagion
between the U.S. stock markets and the other five largest markets in the world peaked
during the pandemic. Similar results were also reported by Okorie and Lin (2021), where
fractal contagion effects were detected among major stock markets. Accordingly, portfolio
managers and investors can utilise the results of this study to inform their decisions
to monitor and manage portfolio risk effectively. Second, the results in Tables 3 and 4
suggest that portfolio risk evaluation should consider extreme tail dependence between the
stock markets during times of global distress, such as the COVID-19 pandemic. Ignoring
market risk due to contagion may underestimate the level of systematic risk and, thus,
mislead risk management strategies. In this respect, as the largest stock market in the
world, the U.S. can be considered to be a major player in transmitting marginal tail risk
to other markets during the COVID-19 subperiod, affecting the benefits of stock portfolio
diversification during stress periods. Third, although COVID-19 first spread in China, we
found that the contagion between the U.S. and the Chinese stock market was relatively
low. This was also the case for other major Asian stock markets. Accordingly, portfolio
managers seeking to minimise risk should consider these results when building portfolios.
Finally, our results may also inform regulators and policymakers, who should consider
the increase in dependence during times of market distress as a potential risk to financial
stability. Accordingly, supervisory policies should aim to prevent extreme risk shocks
from spreading to global stock markets in order to maintain domestic financial stability,
especially if future COVID-19 waves emerge.

6. Conclusions

In this study, we proposed a novel procedure to investigate the occurrence of cross-
market linkages during the COVID-19 pandemic. The predominant novelty of our model
lies in combining wavelet analysis with copula estimation. In other words, the decomposed
series obtained from the wavelet spectrum analysis is adopted in order to estimate a copula-
GARCH model. An interesting feature of the WC-GARCH procedure is its ability to unveil
relationships between stock market returns in the time–frequency domain, facilitating a
simultaneous assessment of the relationship between markets at different frequencies and
the evolution of these links over time. In this respect, the procedure provides an alternative
representation of the correlation structure of stock market returns on a scale-by-scale basis.

To investigate the market linkages, we distinguish between regular “interdependence”
and “pure” contagion, and associate changes in correlation between stock market returns
at higher frequencies with contagion—which is a form of dependence that does not exist in
tranquil periods, but occurs only during periods of turmoil. On the other hand, changes at
lower frequencies are associated with interdependence that relates to the impact of shocks
resulting from the normal dependence between markets, and refers to the dependence that
exists in all states of the world due to trade links and geographical position. The estima-
tion results reveal evidence of long-run “interdependence” between the markets under
consideration before the start of the COVID-19 pandemic in December 2019. However,
strong evidence of “pure” contagion between stock markets was detected as the health
crisis began.

A possible limitation of our study is that we consider only the univariate GARCH
model for our procedure. Future work should look at the multivariate GARCH in order to
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extend the analysis to volatility spillover among stock markets. Nevertheless, our results
carry important implications, since they reveal that despite the policy measures instituted
after the financial crisis of 2007–2008, measures are still required to mitigate the impact
of shocks on financial markets. The COVID-19 pandemic is the first health crisis that has
the potential to trigger devastating effects similar to those witnessed during the global
financial crisis, which was arguably the first truly major global financial crisis since the
Great Depression of 1929–1932. The subprime financial crisis originated in the United
States in a relatively small segment of the lending market, but it rapidly spread across
virtually all countries in the world. In this respect, if lessons have to be learned from past
experience, evidence of long- and short-run cross-market linkages constitutes a wake-up
call highlighting the need for policy measures to mitigate contagion.
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Note
1 In recent history, the World Health Organisation (WHO) has declared a global emergency six times due to the rapid spreading of

infectious diseases. Past examples include the outbreak of swine flu in 2009, Ebola—which mainly spread in the Democratic
Republic of Congo—in 2014, the Zika virus in 2016, and SARS. By assessing the risk of spread and severity of COVID-19 outside
China, the WHO declared this virus to be a pandemic on 11 March 2020.
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