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Abstract: This paper proposes a conceptual modeling framework based on category theory that serves
as a tool to study common structures underlying diverse approaches to modeling credit default that
at first sight may appear to have nothing in common. The framework forms the basis for an entropy-
based stacking model to address issues of inconsistency and bias in classification performance. Based
on the Lending Club’s peer-to-peer loans dataset and Taiwanese credit card clients dataset, relative
to individual base models, the proposed entropy-based stacking model provides more consistent
performance across multiple data environments and less biased performance in terms of default
classification. The process itself is agnostic to the base models selected and its performance superior,
regardless of the models selected.

Keywords: credit default; category theory; enriched structures; entropy; stacking

1. Introduction

Credit risk assessment is a critical component of a lender’s loan approval, monitoring
and pricing process. It is achieved through the application of statistical models that provide
estimates of the probability of default (PD) of the borrower, usually over a one-year period.
Default risk is typically treated as a dichotomous classification problem, distinguishing
potential defaulters (payers) from non-defaulters (non-payers) with information about
default status contained within a set of features of the parties involved in the transaction.
Altman (1968) provided the first formal approach towards corporate default modeling,
reconciling accounting-based ratios often used by practitioners with rigorous statistical
techniques championed by researchers. He applies a statistical technique called Multivari-
ate Discriminant Analysis (MDA) to construct discriminant functions (axes) from linear
combinations of the selected covariates. A major drawback of MDA is the large number
of unrealistic assumptions imposed, which frequently results in biased significance tests
and error rates (Joy and Tollefson 1978; Mcleay and Omar 2000). This has led many re-
searchers to propose logistic models as the next best alternative, requiring fewer restrictive
assumptions and allowing for more general usage without loss in performance (Altman
and Sabato 2007; Lawrence et al. 1992; Martin 1977; Ohlson 1980).

Whilst there have been several attempts to put the field of credit risk modeling on a
more concrete theoretical foundation (Asquith et al. 1989; Jonkhart 1979; Santomero and
Vinso 1977; Vassalou and Xing 2004), supported by advances in computing power, the
literature has more recently moved to techniques employed in the field of machine learning
(ML). Essentially, it consists of statistical models that require less restrictive assumptions
regarding the data, providing more flexibility in model construction and usage. It has
made this approach the fastest growing research area in credit risk modeling. Among
supervised machine learning methods, Artificial Neural Network (ANN) has received
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most attention, offering improved prediction accuracy, adaptive capability and robustness
(Dastile et al. 2020; Tam 1991).

Since its inception, the number of studies using ML techniques has increased nearly
exponentially, focusing primarily on benchmarking state of the art individual classifiers.
Lessmann et al. (2015) is the first study to benchmark a wide range of supervised ML
classifiers not investigated previously. It has become a key reference for other researchers
on model comparison. Also notable is the study of Teply and Polena (2020), applying ML
to peer-to-peer loan dataset provided by the Lending Club. Of particular interest has been
the construction of ensembles of credit risk models (Abellán and Mantas 2014; Ala’raj and
Abbod 2016b; Finlay 2011; Hsieh and Hung 2010) and meta-classifiers trained on combined
outputs of groups of base models (Doumpos and Zopounidis 2007; Lessmann et al. 2015;
Wang et al. 2018; Wolpert 1992; Xia et al. 2018).

Despite the increasing sophistication in how individual base models are put together in
an ensemble (stacking) or how the various outputs are combined to achieve final prediction,
all face a critical issue. Essentially, there is a lack of a sound conceptual framework
to guide the ensemble or stacking process. Each study specifies their own method of
selecting base models for combination and generating combined outputs. As a result, the
recommendations made have been highly sensitive to the data environments examined,
making it difficult to perform sound comparative performance analysis. This explains why
each study tends to conclude that their combination method is the best performer among
competing models.

Motivated by a lack of consistency in model selection, this paper outlines a conceptual
framework concerned with the design of structures in credit risk modeling within a classi-
fication context. Based on the framework, various computational approaches are proposed
that solves the above noted problem of inconsistency in results. First, category theory is
introduced to help design common structures underlying seemingly unrelated credit risk
models. These structures reveal deep connection between seemingly unrelated models,
thus providing a powerful tool to study their relationships without being distracted by
details of their implementation. Second, a stacking model is constructed to address issues of
inconsistent and biased performance in model benchmarking. Typically, a model’s predic-
tive value exhibits inconsistent performance when there are changes in data scope within
an environment or changes in the environment itself, with the underlying model essentially
remaining unchanged. Complicating this issue is a tendency for models to be biased in
their prediction due to the subjective selection of performance criteria. It is not unusual
to observe a model delivering an impressive overall performance, while failing to detect
any credit default at all. In order to address this issue, two new structures—Shannon’s
information entropy and enriched categories—are introduced. The focus of attention is
on demonstrating the benefit of having a sound conceptual framework to enable optimal
construction of models that minimise performance inconsistency and bias.

The proposed modeling framework is applied to the Lending Club’s peer-to-peer
loans dataset from 2007–2013 as well as to Taiwanese credit card clients dataset for 2005.
The empirical results show that the proposed entropy-based stacking approach results
in more consistent performance across multiple data environments as well as less biased
performance. The process itself is agnostic as to which base model is selected. The
conceptual framework developed provides an explanation as to why various ensemble
and stacking models proposed in the literature arrive at different conclusions regarding
classification performance—they are caught in an equivalence trap. Ensemble models,
despite their seemingly sophisticated assembling process, fuse the outputs of base models
either by majority voting or by some type of linear weighted combination. In doing so,
no new instance of data structure is created; all that has been achieved is an extension
of the operation to cover the output combination process. As a result, the categorical
structure of the modeling approach is the same as that of any other credit risk model with
equivalent performance.
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This paper is organized as follows. Section 2 describes in detail the modeling frame-
work proposed, including key elements of a category and how the representation of current
approaches to modeling credit risk can be built within the context of frames. Section 3
presents the data, whilst Section 4 presents the empirical results. A discussion of the
empirical findings is presented in Section 5. Finally, Section 6 concludes the paper.

2. Modeling Framework
2.1. Categorial Equivalence

Whilst at a first glance, the many statistical approaches to credit risk modeling may
seem radically different from one another, with each model constructing its own relation
between the various covariates, common features exist which can be integrated into a
conceptual framework that captures the essence of the credit modeling process. This
framework can be built on the concept of category theory, which is the abstract study of
process first proposed by Eilenberg and MacLane (1945). Category theory concerns itself
with how different modeling approaches relate to one another and the manner in which
they relate to one another is related to the functions between them. Instead of focusing on
a particular credit risk modeling approach A and asking what its elements are, category
theory asks what all the morphisms from A to other modeling approaches. Arguably,
this mindset could be extremely useful as it suppresses unimportant details, allowing the
modeler to focus on the important structural components of credit risk assessment.

The structure of the credit risk modeling process underlying current approaches is
represented in Figure 1 (for the key definitions in category theory see Appendix A).
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Object D represents a data structure that forms the basis of which specific data are
collected, processed, analyzed and used in both the testing and training process. Object
M represents model choice with the morphism m between D and M defined by a com-
putational process that optimally maps the specific training dataset to a unique model
(Aster et al. 2018). Object C represents modeling outcomes with the morphism c between
M and C defined by a two-stage process: (i) the testing dataset is applied to the model
to obtain predictions of default; and (ii) these predictions are compared to the actual
outcomes observed in the data and the results are mapped into a compressed structure
such as a confusion matrix or vectors of PDs from which various performance metrics are
constructed (Dastile et al. 2020). Object P represents performance criteria, i.e., agreement
between prediction and observation. This measurement process defines the morphism p in
the structure above. The morphisms m, c and p are well-defined computational processes
in the sense that they are finite and generate unique results. Consequently, m, c and p are
injective morphisms.

At this stage, four more morphisms, denoted with dD, idM, idC and idP, are introduced
into the structure, as shown in Figure 2 below. They essentially send each object to itself,
thus representing the objects’ identity morphisms. For example, the replacement operator
which replaces one instance of an object with another instance can be used as an identity
morphism. The resulting category R, represents the process underlying current approaches
to credit risk modeling.
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From this structure, a specific approach to credit risk modeling is just a C-Instance
of the category R (R-instance I1), represented by four elements and seven morphisms as
shown in Figure 3.
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D1 consists of the training and testing dataset sharing the same structure
{

f I1
n → cI1

m

}d

1
,

with d being the number of sample points and f I1
n representing n features associated with

one of m credit classes cI1
m . M1 is a symbolic expression of the model’s structure in the

form SI1
(

SI1
1

(
αI1

1

)
. . . SI1

k

(
αI1

k

))
. Here αI1

i is one of the k parameters obtained during the

training process represented by the morphism m1, SI1
i specifies the symbolic expression

of αI1
i and S describes how SI1

i

(
αI1

i

)
are structured together. C1 consists of the modeling

results with structure
(

PI1 , TPI1 , FPI1 , FN I1 , TN I1
)

where P is a set of PDs obtained during
the testing process, TP, FP, FN, TN are elements of the confusion matrix (see Table A1)
that are generated by the testing process c1, where TN is a true positive, FP is a false
positive, FN is a false negative and TN is a true negative. P1 consists of performance
metrics

(
mI1 , . . . , mIl

)
generated by the morphism p1, which is a specific implementation

of p. Since the morphisms always generate unique results, they serve as the functional
mapping between the set D1, M1, C1 and P1. Figure 4 summarises the set-valued functor
I1, performing the mapping process of the first R-instance.
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Now suppose there is a second approach to credit risk modeling that can be represented
as another R-instance I2, represented by four elements and seven morphisms (Figure 5).

J. Risk Financial Manag. 2021, 14, x FOR PEER REVIEW 4 of 21 
 

 

From this structure, a specific approach to credit risk modeling is just a C-Instance of 
the category 𝑅 (R-instance 𝐼 ), represented by four elements and seven morphisms as 
shown in Figure 3. 

 
Figure 3. A specific credit risk model is a C-Instance of category 𝑅. 𝐷𝟏  consists of the training and testing dataset sharing the same structure 𝑓 → 𝑐 , with d being the number of sample points and 𝑓  representing n features 
associated with one of m credit classes 𝑐 . 𝑀𝟏 is a symbolic expression of the model’s 
structure in the form 𝑆 𝑆 𝛼 … 𝑆 𝛼 . Here 𝛼  is one of the k parameters ob-
tained during the training process represented by the morphism 𝑚𝟏, 𝑆  specifies the 
symbolic expression of 𝛼  and 𝑆  describes how 𝑆 𝛼  are structured together. 𝐶𝟏 
consists of the modeling results with structure (𝑃 , 𝑇𝑃 , 𝐹𝑃 , 𝐹𝑁 , 𝑇𝑁 ) where 𝑃 is a 
set of PDs obtained during the testing process, 𝑇𝑃, 𝐹𝑃, 𝐹𝑁, 𝑇𝑁 are elements of the confu-
sion matrix (see Table A1) that are generated by the testing process 𝑐𝟏, where 𝑇𝑁 is a true 
positive, FP is a false positive, FN is a false negative and TN is a true negative. 𝑃𝟏 consists 
of performance metrics (𝑚 , … , 𝑚 ) generated by the morphism 𝑝𝟏, which is a specific 
implementation of 𝑝. Since the morphisms always generate unique results, they serve as 
the functional mapping between the set 𝐷𝟏, 𝑀𝟏, 𝐶𝟏 and 𝑃𝟏. Figure 4 summarises the set-
valued functor 𝐼 , performing the mapping process of the first R-instance.  

 
Figure 4. The mapping process of the first R-instance. 

Now suppose there is a second approach to credit risk modeling that can be repre-
sented as another R-instance 𝐼 , represented by four elements and seven morphisms (Fig-
ure 5). 

 
Figure 5. A specific credit risk model is a C-Instance of category 𝑅. Figure 5. A specific credit risk model is a C-Instance of category R.

Assume the set-valued functor I2 performs the mapping as set out of Figure 6.
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Since both R-instances have unique objects and morphisms that share the same ex-
act structure, it follows that there is a natural transformation between them. Essentially,
this natural transformation can be constructed as a term rewriting operation T that re-
places specific elements of one object in I1 with a corresponding object in I2 that satisfies
the following {

f I1
n → cI1

m

}d

1

T→
{

f I2
n → cI2

m

}d

1
,

SI1
(

SI1
1

(
αI1

1

)
. . . SI1

k

(
αI1

k

))
T→ SI2

(
SI2

1

(
αI2

1

)
. . . SI2

p

(
αI2

p

))
,(

PI1 , TPI1 , FPI1 , FN I1 , TN I1
) T→

(
PI2 , TPI2 , FPI2 , FN I2 , TN I2

)
,(

mI1 , . . . , mIl
) T→

(
mI2 , . . . , mI2

)
.

(1)

The existence of T is warranted by the fact that any modeling approach would result
in the same structures of their corresponding category and with the uniqueness of m1, c1
and p1, while the operation T ensures that the naturality condition holds for both I1 and
I2. More specifically, there is a natural isomorphism between the two instances I1 and I2
(Figure 7).
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The beauty of category theory thus comes from its design-as-proof feature. That is,
given a proposition regarding relations between objects, as soon as a structure is properly
constructed, the structure itself becomes a proof. The power lays in its capability to
construct simple representations that captures the essence of credit risk modeling in a
single concrete formalization (category), which may yield powerful insights into credit risk
modeling that are difficult to identify using traditional comparative analysis of individual
models usually seen in the literature. That is, different models and their underlying
processes are just instances of the same modeling structures represented by a category. As
a result, there is an equivalence between the various modeling processes that creates a
performance boundary: Generalization power has meaning only within the categorical
frame representing the modeling process. Consequently, two different credit risk models
having the same categorical structure will on average deliver the same result if tested over
all possible instances of the category. In practice, this process could go on indefinitely as
new datasets would create new instances. Thus, representing credit risk modeling as a
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category yields a compact method to arrive at the equivalence concept without the burden
of going through all possible empirical verifications.

2.2. Model Combination

A natural consequence of categorial equivalence is that combining different types
of models can result in better and more consistent forecasting performance. Empirically,
this has been observed in the literature (Dastile et al. 2020). Conceptually, for model
combination to be effective, two conditions must be satisfied. First, since an instance of
D determines C, the combination process must generate a new data instance having a
structure different from the data initially used in the combination process. Second, the
classification method adopted in the combination process must have a categorical structure
different from the modeling process without combination. In this category, M is decoupled
from C. Instead, it is mapped to D twice with the first morphism m describing the usual
process of individual model construction, as shown in Figure 8.
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The second morphism, d, represents the process of generating a new data structure
by using model combination. Performance is measured by applying a new morphism c,
which is essentially a computational process, that maps the new data structure in D to C
without going through any specific model. The morphism d does not necessarily generate
a unique instance of D since its construction depends on how the output of the individual
models are combined, thus reducing the likelihood of categorical equivalence.

From a practical point of view, the main purpose of combining models based on the
categorical framework is to address inconsistency and bias in classification performance.
Inconsistency arises when models are sensitive to changes in the data structure, with their
performance being valid only within specific contexts shaped by the structure and scope
of the data. Bias is a result of the credit risk models used being sensitive to imbalance in
default classes in the data. More specifically, models tend to be biased towards non-default
prediction, generating performance that at first glance seems to be satisfactory overall but
are poor in terms of capturing actual default outcomes. Bias is also a result of the tendency
of modelers to focus on good overall prediction outcomes, with more attention paid to
non-default outcomes and less attention to stability in performance (Abdou and Pointon
2011; Dastile et al. 2020; Lessmann et al. 2015). Unfortunately, it is common to find models
showing high accuracy while failing to capture actual default outcomes.

The conceptual framework based on category theory provides an explanation as to
why various ensemble (stacking) models proposed in the literature arrive at different
conclusions regarding classification performance. Essentially, these models are caught in
an equivalence trap. Ensemble models, despite their seemingly sophisticated assembling
process, fuse the outputs of the base models either by majority voting or some type of linear
weighted combination. In doing so, no new instance of the data structure D is created;
all that has been achieved is an extension of the operation of the morphism c to cover the
output combination process. As a result, the categorical structure remains the same as that
of any other credit risk model with equivalent performance. In contrast, the stacking model
proposed in this paper creates a new data structure D and at the same time a new instance
of model choice M as a meta-classifier. It is the creation of M that effectively provides
stacking models with a categorical structure that is identical to that of the typical credit
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risk model. However, the concept of an equivalence trap also applies in the situation, as
shown in Figure 9.
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It is a category representing the equivalence trap often observed in typical stacking
models. Essentially, the new data instance created by d can be used to train a new meta-
classifier MS, which in turn brings the combination process back to the original structure
of the modeling process.

The combination process proposed addresses this issue by considering two key issues.
First, combining models, as the theoretical framework suggests, should first transform the
initial feature space into a new data instance D with a structure different from the initial
dataset, whilst still capturing information representing outcomes in the initial modeling
phase. Second, the new data instance D should be transformed into PDs in a coherent
and transparent manner without creating any new classifiers that puts the process into
an equivalence trap. These considerations are supported by two conceptual constructs:
Shannon’s information entropy and enriched categories, which are discussed next.

2.3. Shannon’s Information Entropy

Shannon (1948) proposed a concept called entropy to measure the amount of informa-
tion created by an ergodic source and transmitted over a noisy communication channel.
Noises here reflect uncertainty in how signals arrive at the destination and, for finite
discrete signals, they are represented by a set of probabilities p1, p2, . . . , pn. Entropy H is
defined as follows.

H(p1, p2, . . . , pn) = −
n

∑
i=1

pi log2 pi (2)

Judged by its construction, Shannon’s information entropy captures uncertainty in
the communication as it deals with noise. Shannon (1948) considered this uncertainty to be
the amount of information contained in the signals, thus conceptually establishing a link
between uncertainty and information. Essentially, the entropy value tells us how much
uncertainty must be removed by some process to obtain information regarding which
signals arrive at the destination. Thus, it can said that the amount of information received
from progressing through the process, results from the removal of the uncertainty that
existed before the modeling process begun. The notion of the communication channel can
be generalized to a finite event space that consists of n mutually exclusive and exhaustive
events with their probabilities. The connection between entropy and information enables
the creation of structures that effectively capture the information contained in the modeling
process, a feature that will be exploited in the stacking model as a new data structure D
used to enhance prediction. Other studies that similarly exploit the concept of entropy
in risk assessment are Gradojevic and Caric (2016); Lupu et al. (2020) and Pichler and
Schlotter (2020).

2.4. Enriched Categories

Another important construct used in the post-stacking classification process is the
concept of enriched categories (Kelly [1982] 2005). Enriched categories replace the category
of sets and mappings, which play a crucial role in ordinary category theory, by a more
general symmetric monoidal closed category, allowing the results of category theory to be
translated into a more general setting. Enriched categories are potentially an important
analytical tool for classifying default outcomes. Essentially, the paired data of entropy
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value H and prediction output for the training data can be separated into two groups
according to the classification class associated with each output. Each group can be viewed
as a set of objects that is enriched in (B,≤, true, f), with their hom-object values, defined by
whether they belong in the same group or not. A computational process is then constructed
to obtain a borrower’s PD employing the following formula:

PD =
Ld

Ld + Lnd
, (3)

where Ld is the likelihood that the applicant belongs to the default group and Lnd is
the likelihood that the applicant belongs to the non-default group. Both Ld and Lnd are
computed using the Hamming and Manhattan distance. Thus, the combination model not
only provides a new classification process but also a new method of estimating PD.

2.5. The Stacking Process

With the concepts of information entropy and enriched categories defined above, the
stacking model is constructed as follows (see Figure A1 for a flow chart). First, several
of the nine classifiers, consisting of a logistic regression and eight of the most popular
supervised ML methods, are selected as the base models. Second, during the training and
testing phases, the estimated PDs are used to compute the classifiers’ Shannon information
entropy (H). The entropy value and the default classifications generated will then be paired
to form a new (restructured) training dataset (D2). Next, employing the concept of enriched
categories, final predictions are formed by assigning new testing samples into either the
default group or the non-default group just constructed. Finally, the performance results of
the stacking model are subjected to location tests to check for consistency and biasedness.

Several considerations differentiate the entropy-based stacking model proposed in
this paper from the stacking models proposed by others (Doumpos and Zopounidis 2007;
Wang et al. 2018). First, instead of selecting and processing the datasets carefully before
training and testing a model only once on the dataset, as is usually done by others, the
performance of the proposed entropy-based stacking model is assessed repeatedly on small
randomly chosen non-overlapping subsets of the original dataset. Inherent class imbalance
is utilized to make model comparison more realistic (Lessmann et al. 2015), enabling the
construction of different data environments, and thus tests of performance inconsistency
and bias. The data process ensures that each subsample will have a different structure
regarding class ratio (default/non-default) and feature availability, especially categorical
features. Further, performing many simulations allows for significance testing, which
is preferred over making ad hoc judgements about average performance outcomes over
limited rounds of tests. Thus, significance tests are a necessary complement to the usual
average performance results reported by others. Statistical analyses of model performance
are also proposed in Lessmann et al. (2015), but their non-parametric tests are performed
on a sample of just 10.

The second consideration concerns model selection. Typically, the combination models
proposed in the literature carefully select base models according to their performance on
some testing data. Some combination of these models will then be benchmarked against
all other models. The fact that their selection greatly determines the combination model’s
overall performance suggests that the base model selection process is more critical than
the combination process itself. In contrast, the entropy-based stacking model proposed
in this paper seeks to prove that the combination process likely offers more consistent
and less biased performance results, regardless of which base models are selected. In
order to achieve this goal, the simulation process is carried out over 100 different data
environments, with a different number of base models used in each simulation. Moreover,
in each scenario, each sample is trained and tested on a different set of base models.
Thus, the only element that remains invariant in each simulation is the reasoning process
underlying the stacking model.
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A final consideration is on demonstrating how a sound conceptual framework may
enable quality model combination that both improves consistency and reduces bias in
performance. It follows that the method can be applied to various situations without
having to worry about the selection of the base models employed. Essentially, the approach
avoids making any a priori judgments as to which combination of base models performs
best. Comparison of this type often has little meaning since each study has its own unique
data and optimization process (hyperparameters), both of which are difficult to replicate
across data environments.

2.6. Base Models

Nine classifiers are used as the base models in the stacking process. Whilst not ex-
haustive, the models chosen are currently the most popular ones in the literature, covering
most aspects of statistical and ML approaches, either as a standalone classifier or as part of
a combination framework (Dastile et al. 2020; Lessmann et al. 2015; Teply and Polena 2020).
Their key structures are discussed next.

i. Artificial Neural Networks

An Artificial Neural Network (ANN) is essentially a nested construct with each layer
being represented by the same or a different function. In a mathematical form, a typical
ANN model can be defined as follows (Barboza et al. 2017):

y = fANN(x) = fo
(
fn
(
fn−1 . . . (f1(x))

))
(4)

where n is the number of layers that transform the input feature x into a final set of
output features from which classification results are obtained by using the operation of fo.
Typically, the inner nested function possesses the following form:

fi(z) = gi(Wiz + bi) (5)

where i is the layer index spanning from 1 to n. The gi function is called an activation
function, which usually has a non-linear form. Gradient descent techniques are used
to obtain the parameter matrix Wi and the vector bi through optimization processes
constrained by some cost function (such as Mean Square Errors). The function fo is
usually a scalar or a vector function that transforms previous layers’ output into the final
classification results.

ii. Support Vector Machine

Support Vector Machine (SVM) is a parametric method that essentially puts the input
features into a multi-dimension space and separates them into classes by a hyperplane
wx− b, where w is the parameter vector and x is the feature vector. The classification
decision has the following construct (Cortes and Vapnik 1995):

y =

{
1, i f wx− b ≥ 1
−1, i f wx− b ≤ −1

(6)

under the constraint of maximizing the distance or margin between the closest examples of
two classes. In order to achieve this, the Euclidean norm of w, which is

√
∑n

1 wi
2, must be

minimized, where n is the number of features.

iii. Logistic Regression

In a logistic regression model, the PD is computed as (Altman and Sabato 2007):

Pr(yi = 1) = Pi =
1

1 + e−Wi
(7)

where Wi = θ0 + ∑n
j=1 θjxij, with xij representing a feature in the feature vectors and θ is

the set of the model’s parameters obtained by the maximum likelihood estimation on the
training dataset.
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iv. Decision Trees

A decision tree is a kind of acyclic graph in which splitting decisions are made at
each branching node where a specific feature of the feature vector is examined. The left
branch of the tree will be followed if the value of the feature is below a specific threshold;
otherwise, the right branch will be followed. At each split, the process calculates two
entropy value (Safavian and Landgrebe 1991) described as follows:

H(S+) = − f S+
D ln f S+

D −
(

1− f S+
D

)
ln
(

1− f S+
D

)
H(S−) = − f S−

D ln f S−
D −

(
1− f S−

D

)
ln
(

1− f S−
D

) (8)

where S+ and S− are two sets of split labels and fD is the decision tree with the initial value
defined as f S

D = 1
S ∑(x,y)∈S y. For each case, the process will go through all pairs of features

and thresholds and it will choose the ones that minimize the split entropy:

H(S−, S+) =
|S−|
|S| H(S−) +

|S+|
|S| H(S+) (9)

which is the weighted average entropy at a leaf node. The classification will then be made
using the average value of the chosen labels along the selected nodes.

v. Random Forest

This is essentially an ensemble of decision trees, with each tree built on bootstrapped
samples of the same size (Breiman 2001). Each tree works on a set of features chosen
randomly and classes are the generated for these features. The overall classification
is obtained through majority voting of the trees’ decisions. This approach reduces the
likelihood of correlation of the trees since each tree works on a different set of features.
Correlation will thus make majority voting more effective. By using multiple samples
of the original dataset, variance of the final model is reduced. As a result, overfitting is
also reduced.

vi. Gradient Boosted Tree

This method uses an adaptive strategy that starts with a simple and weak model
and then the method learns about its shortcomings before addressing them in the next
model, which is often more sophisticated (Chen and Guestrin 2016). Examples incorrectly
classified by the previous classifier would be assigned larger weights in the next classifier.
The classifiers’ outputs will then be ensembled in the following construct to yield the final
classification result:

y = sign

(
n

∑
i=1

αiφi(x)

)
(1)

where n is the total number of classifiers and αi, which is learned during the training
process, is the weight of the classifier φi.

vii. Naïve Bayes

In a default classification problem, Naïve Bayes (NB) is essentially a decision process
based on the following construct (Rish 2001):

y =

{
1, P(y = 1|x) ≥ P(y = −1|x)
−1, P(y = 1|x) < P(y = −1|x) (11)

where 1 represents non-default status and −1 default status. The conditional probability
is computed according to the Bayesian rule with p(x|y = 1 ) and p(x|y = −1 ), which is
assumed to follow a normal distribution with mean and covariance matrices computed
on the default and non-default sample groups constructed from the training dataset. The
model assumes that the features are mutually independent.
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viii. Markov model

In a Markov model, each feature vector x is treated as a member in a sequence and the
probability distribution for the feature vectors given a credit classification class could be
estimated from the training data as described as follows:

P(xi|xi, c) (12)

where xi is the feature vector that requires probability estimation, xi is the set of the feature
vectors preceding xi and c is a credit classification class. The cardinality of xi determines
how far the model would look back to obtain information for the next prediction. In this
context, a cardinality of n would result in a so called n-gram Markov model (Brown et al.
1992). If n = 0, a Naïve Bayes model is generated, which will be discussed shortly. At test
time, the probability for each class given a feature vector is computed according to Bayes’
theorem P

(
c
∣∣xj
)

∝ P
(
xj
∣∣c)P(c), where P

(
xj
∣∣c) is computed from the Markov model that

is just derived in the training process and P(c) is a class defined prior to the start of the
modeling process.

ix. k-Nearest Neighbor

This is a non-parametric method in the sense that no functional form needs to be
constructed for the classification purpose (Henley and Hand 1996). The process learns
how to assign a new sample point to a group of known examples and then to generate
classification based upon a majority voting of the classes observed in the group. The
modeling process is represented by the following constructs:

y =
majority
{1,−1}

[
min

i
‖{xi}n

i=1 − x‖
]

(13)

where ‖{xi}n
i=1 − x‖ denotes the distance between elements in the group and the new

example. Typically, the Euclidean or Mahalanobis distance is used in the model.

2.7. Method of Comparison

Before discussing the relative performance of the proposed stacking model, it is
desirable to consider an appropriate method of gauging agreement between prediction and
observation. The first performance metric employed is the Matthew Coefficient Correlation
(MCC). It is the preferred benchmarking criteria for binary confusion matrix evaluation as
it avoids issues related to asymmetry, loss of information and bias in prediction (Matthews
1975). MCC computed as follows:

MCC =
TP× TN − FP× FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
, (14)

A key advantage of MCC is that it immediately provides an indication as to how
much better a given prediction is than a random one: MCC = 1 indicates perfect agreement,
MCC = 0 indicates a prediction no better than random, whilst MCC = −1 indicates total
disagreement between prediction and observation.

In addition to MCC, Accuracy is employed as an overall classification performance
metric that captures consistency of the model in terms of overall predictive capability. It is
computed as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
. (15)

This metric avoids the class asymmetry issue by looking at overall prediction per-
formance, but often suffers from prediction bias caused by the imbalance problem with
non-default predictions likely to account for most of the results. A very high TN with low
TP results in high Accuracy without accurately capturing poor prediction outcomes for the
default class.
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The final performance metric is Extreme Bias, which captures the situation in which a
model fails to generate a correct classification of a credit class. It is described as follows:

Extreme Bias = (C1 . . . + Cn), (16)

where

Ci =

{
1, MCC = 0 in the ith simulation,

0, otherwise.

Essentially, the Extreme Bias of a model is the number of times the model generates an
MCC = 0 (no better than random). This measure reveals situations in which mean Accuracy
is high, but the prediction is extremely biased.

3. Data

Credit risk analysis is performed on two major datasets (see Table 1). The first is
the peer-to-peer loans dataset of the Lending Club (Lending Club 2020). The scale of the
platform’s dataset and the maturity of loan portfolios (212,280 loans from 2007 to 2013)
makes it an ideal sample for testing various types of credit risk models (Chang et al. 2015;
Malekipirbazari and Aksakalli 2015; Teply and Polena 2020; Tsai et al. 2009).

Table 1. Data Description.

Descriptive Lending Club Peer-to-Peer Loans Dataset Taiwanese Credit Card Clients Dataset

Period 2007–2013 2005
Original Sample Size 226,151 30,000

Filtered Samples 13,871 0

Filtering Criteria
Current loans, loans in grace period and
loans with training missing features or

abnormal values.
None

Final Sample Size 212,280 30,000
Non-Default Sample 178,500 23,364

Default Sample 33,780 (16%) 6636 (20%)
Classes Default and Non-Default Default and Non-Default

Number of Original Features 115 25
Number of Final Features 22 24

Although much smaller in size (~30,000 loans for 2005), the second is the credit card
clients dataset from Taiwan (Yeh 2006) used by Yeh and Lien (2009) to benchmark the
predictive power of various credit classification models.

4. Empirical Results

Tables 2 and 3 summarize the relative performance of the proposed stacking model
for the Lending Club’s peer-to-peer loans dataset and the Taiwanese credit card clients
dataset, respectively. Reported are the mean values of MCC and Accuracy as well as Extreme
Bias count (zero value MCC count) over 100 simulations. Also reported is the standard
deviation of the MCC values, giving an indication of performance consistency, and the
significance test of differences (p < 10%) in mean MCC values (equal to or greater than)
between the stacked model and the base models selected. The prediction statistics reported
for the stacking models are for two to nine base models, where both the subsets of the
original dataset and the base models are chosen at random (non-overlapping).
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Table 2. Modeling Results for the Lending Club Peer-to-Peer Loans Dataset.

Number of Base
Models Performance Nearest

Neighbours Markov Model Gradient
Boosted Trees Naive Bayes Support Vector

Machine Decision Tree Neural Network Random Forest Logistic
Regression Stacking Model

2

MCC Mean 0.05 */* 0.00 */* 0.15
MCC Std 62% 499% 26%

Accuracy Mean 0.83 0.84 0.79
Extreme Bias 0 96 0

3

MCC Mean 0.00 */* 0.14 */* 0.07 */* 0.19
MCC Std 35% 509% 67% 15%

Accuracy Mean 0.84 0.80 0.84 0.74
Extreme Bias 96 0 4 0

4

MCC Mean 0.06 */* 0.06 */* 0.14 */* 0.08 */* 0.19
MCC Std 46% 48% 82% 32% 15%

Accuracy Mean 0.83 0.84 0.80 0.84 0.76
Extreme Bias 0 17 0 0 0

5

MCC Mean 0.00 */* 0.06 */* 0.06 */* 0.14 */* 0.07 */* 0.19
MCC Std 59% 32% 689% 59% 73% 14%

Accuracy Mean 0.84 0.83 0.84 0.80 0.84 0.77
Extreme Bias 95 0 15 0 1 0

6
MCC Mean 0.07 */* 0.14 */* 0.00 */* 0.08 */* 0.06 */* 0.07 */* 0.17

MCC Std 69% 75% 35% 56% 37% 499% 20%
Accuracy Mean 0.84 0.81 0.84 0.76 0.84 0.84 0.80

Extreme Bias 12 0 81 0 4 1 0

7

MCC Mean 0.00 */* 0.05 */* 0.06 */* 0.00 */* 0.07 */* 0.06 */* 0.06 */* 0.15
MCC Std 67% 45% 78% 1316% 436% 85% 72% 23%

Accuracy Mean 0.84 0.83 0.84 0.84 0.77 0.84 0.84 0.80
Extreme Bias 97 0 20 74 0 4 2 0

8

MCC Mean 0.00 */* 0.06 */* 0.06 */* 0.13 */* 0.07 */* 0.09 */* 0.06 */* 0.07 */* 0.18
MCC Std 55% 842% 57% 74% 46% 48% 32% 86% 17%

Accuracy Mean 0.84 0.83 0.84 0.81 0.76 0.83 0.84 0.84 0.79
Extreme Bias 95 0 11 0 0 0 7 4 0

9

MCC Mean 0.00 */* 0.06 */* 0.07 */* 0.14 */* 0.01 */* 0.07 */* 0.09 */* 0.06 */* 0.07 */* 0.19
MCC Std 64% 53% 80% 34% 322% 44% 43% 62% 59% 17%

Accuracy Mean 0.84 0.83 0.84 0.80 0.84 0.77 0.84 0.84 0.84 0.79
Extreme Bias 94 0 13 0 75 0 0 1 0 0

Notes: The numbers reported are the average values over 100 simulations. */* indicates non-parametric significance test for MCC-greater/MCC-equal (Lessmann et al. 2015). The base models and subsets of the
original dataset are chosen randomly.
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Table 3. Modeling Results for Taiwanese Credit Card Clients Dataset.

Number of Base
Models Performance Nearest

Neighbours Markov Model Gradient
Boosted Trees Naive Bayes Support Vector

Machine Decision Tree Neural Network Random Forest Logistic
Regression Stacking Model

2 MCC Mean 0.11 */* 0.31 0.32
MCC Std 109% 40% 38%

Accuracy Mean 0.78 0.80 0.77
Extreme Bias 45 6 5

3 MCC Mean 0.08 */* 0.33 0.30 */* 0.34
MCC Std 22% 26% 143% 20%

Accuracy Mean 0.79 0.80 0.80 0.79
Extreme Bias 54 0 0 0

4 MCC Mean 0.31 */* 0.23 */* 0.29 */* 0.31 0.33
MCC Std 28% 35% 27% 41% 21%

Accuracy Mean 0.80 0.74 0.79 0.80 0.78
Extreme Bias 0 0 0 8 0

5 MCC Mean 0.08 */* 0.27 */* 0.18 */* 0.27 */* 0.32 0.34
MCC Std 34% 25% 77% 35% 146% 21%

Accuracy Mean 0.79 0.76 0.79 0.78 0.80 0.78
Extreme Bias 50 0 25 0 5 0

6 MCC Mean 0.09 */* 0.31 */* 0.21 */* 0.22 */* 0.28 */* 0.31 */* 0.35
MCC Std 40% 28% 126% 30% 70% 42% 21%

Accuracy Mean 0.78 0.80 0.79 0.74 0.80 0.80
Extreme Bias 48 0 19 0 0 8 0

7 MCC Mean 0.12 */* 0.03 */* 0.28 */* 0.24 */* 0.24 */* 0.30 */* 0.31 0.32
MCC Std 41% 28% 26% 109% 273% 27% 59% 24%

Accuracy Mean 0.79 0.66 0.75 0.80 0.74 0.78 0.80 0.77
Extreme Bias 44 1 0 16 0 0 0 0

8 MCC Mean 0.08 */* 0.03 */* 0.32 */* 0.28 */* 0.21 */* 0.22 */* 0.28 */* 0.33 0.36
MCC Std 65% 26% 37% 29% 232% 32% 127% 26% 20%

Accuracy Mean 0.78 0.66 0.80 0.76 0.80 0.74 0.78 0.80
Extreme Bias 51 0 0 0 20 0 0 4 0

9 MCC Mean 0.10 */* 0.04 */* 0.30 */* 0.28 */* 0.23 */* 0.25 */* 0.28 */* 0.33 0.30 */* 0.35
MCC Std 124% 171% 38% 23% 57% 36% 30% 33% 27% 19%

Accuracy Mean 0.79 0.66 0.80 0.76 0.80 0.75 0.78 0.80 0.80 0.79
Extreme Bias 47 0 6 0 12 0 0 5 0 0

Notes: The numbers reported are the average values over 100 simulations. */* indicates non-parametric significance test for MCC-greater/MCC-equal (Lessmann et al. 2015). The base models and subsets of the
original dataset are chosen randomly.



J. Risk Financial Manag. 2021, 14, 298 15 of 21

Distinctly, the proposed stacking model delivers better performance in default pre-
diction, relative to the individual base models, and for both data sets. The mean MCC
is always higher for the stacking model that for the individual base models, with sig-
nificance tests strongly supporting this conclusion. Most notably, the stacking model
achieves consistently better performance across the various data environments as indicated
by the low standard deviation of MCC. In contrast, the performance of the individual
base models is highly inconsistent, as indicated by the high standard deviation of MCC.
Amongst the nine individual base models, Naïve Bayes provides the best average prediction
performance (MCC = 0.14) for the Lending Club peer-to-peer loans dataset, whilst Random
Forest provides the best average performance (MCC = 0.33) for the Taiwanese credit card
clients dataset.

Compared to the individual base models, the stacking model provides the best overall
performance, with the mean MCC value exceeding that of any of the individual base models
selected, with an overall agreement between prediction and observation twice as high for
the Taiwanese credit card clients dataset compared to the Lending Club’s peer-to-peer
loans dataset. While in a few cases the performance of the stacking model appears similar
to the base model selected (as indicated by the mean MCC value), the individual base
models always experience high Extreme Bias. For example, for the Taiwanese credit card
clients dataset, while the mean MCC (about 0.32) for the Random Forest model is similar to
that of the proposed stacking model, the Random Forest model experiences high Extreme
Bias (4–8%), with the prediction of the base model no better than random.

Again, in terms of Accuracy, the stacking model delivers highly and consistent per-
formance across all data environments. Mean Accuracy of the stacking model tends to
fluctuate close to 0.79 across all data environments. In contrast, for the individual base
models, mean Accuracy fluctuates significantly between 0.66 to 0.84. None of the individual
base models show consistency in performance across the data environments.

Whilst the stacking model does not provide the highest mean Accuracy in all cases,
in all cases it experiences the lowest Extreme Bias. This renders the Accuracy measure
somewhat inapt in terms of judging prediction performance. At best, Accuracy should
be used as a complement to MCC, with its usefulness viewed in terms of satisfactory
consistency. That is, a good model should deliver relatively stable Accuracy.

5. Discussion

The computational effort in this paper has been in running a large number of simu-
lations to capture different data environments. The results of the simulations presented
in the previous section support the proposed stacking model in terms of providing more
consistent performance across data environments and less biased performance in terms of
default classification. Unlike previous studies, which have been unable to settle which base
model exhibits superior default classification performance across multiple data environ-
ments (Ala’raj and Abbod 2016a; Lessmann et al. 2015; Li et al. 2018; Xia et al. 2018), this
paper shows that careful selection of base models is not necessary. The performance of the
proposed stacking model remains high and consistent despite changes in the number and
type of base model used or the data used to train the model on. In other words, the reason-
ing process itself is somewhat agnostic as to which base model is selected, thus enabling
replication of the stacking method in a wide range of situations, allowing meaningful
comparative analysis across multiple data environments.

In essence, the power of the conceptual construct based on category theory lies in
its capability to construct simple representations that captures the essence of credit risk
modeling in a single concrete formalization (a category). It yields powerful insights into
credit risk modeling that are difficult to identify using traditional comparative analysis of
individual base models frequently adopted in the literature. That is, different models and
their underlying processes are just instances of the same modeling structures represented
by a category. As a result, there is an equivalence (trap) between the various modeling
processes, creating a performance boundary. That is, generalization power has meaning
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only within the categorical frame representing the modeling process. Consequently, two
seemingly different credit risk models that have the same categorical structure will on
average produce identical results if tested over all possible instances of the category. In
practice, this process could continue indefinitely as new datasets create new instances.
This has been clearly demonstrated by the empirical results, showing poor performance
persistence of the base models selected across different data environments. It follows that
representing credit risk modeling as a category yields a compact method to arrive at the
equivalence concept without the burden of having to go through all possible empirical
verifications, as revealed by the literature.

6. Conclusions

Two motivations underly the use of category theory to credit risk modeling. First, it
serves as a powerful tool to construct an inward view of our own reasoning processes in
credit risk modeling. By using this view, invariant structures emerge and form a basis on
which construction of the relationship between seemingly unrelated models can be created.
Furthermore, category theory enables these structures to form relationships with new
conceptual constructs in fields unrelated to credit risk modeling. This unique capability
enlarges the space of potential modeling solutions, resulting in improved default prediction
performance. Second, categorical constructs result in new perspective on the meaning of
risk beyond PDs. From this perspective, credit risk is not just a quantification of specific
features but also a property emerging out of a network of relationships between various
modeling processes represented by enriched categories. Thus, credit risk assessment is
no longer an endeavor carried out with an isolated model; it has become as a network
phenomenon. Creating the theoretical framework is, therefore, a novel contribution to the
current body of literature.

By focusing on credit risk through these structures, the equivalence implication was
better understood and a stacking model was introduced with two new structures, enriched
categories and information entropy. The empirical results showed that the stacking frame-
work’s performance remained robust despite changes in data environments and selection
of the base models, thus enabling more objective replication. The conceptual structures,
seemingly disconnected, turned out to be perfect companions in the stacking model.

That said, there are some limitations to the paper. The first issue relates to substantial
computational overhead associated with implementing the proposed stacking model.
Whilst there is no doubt that keeping the per-unit processing cost low is an important
concern to credit providers, advances in supercomputing are likely to push computational
costs down considerably soon. The second issue relates to the performance of the stacking
model which could be tested more extensively by application to more datasets and by
comparing with a larger number of base models, including deep learning and unsupervised
learning. This could not only create a more dynamic testing environment but also provide
more transparency for replication purposes. A unified stacking and dynamic model
selection framework would enable more extensive statistical tests of performance, an
objective that has so far been absent from the literature but could be a fruitful avenue for
further research. A final issue of concern is that the focus on constructing classification
models has value only at the time of application. The focus of risk managers is undoubtedly
on the development of credit risk models that provide lenders with on-going predictive
diagnosis of clients’ credit risk status. However, this would require a richer dataset.

While the approach embraced in this paper is essentially exploratory in its nature, it is
likely to raise more questions than provide answers on sound credit risk modeling.
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Appendix A. Key Definitions in Category Theory

Definition A1. A category C has the following elements:

A collection of objects denoted as Ob(C);
For every two objects c and d, there is a set C(c, d) that consists of morhphims from c to d or
f : c→ d ;

For every object c ∈ Ob(C), there is a morphism Idc ∈ C(c, c), called the identity morphism on
c. For convenience, c ∈ C is used instead of c ∈ Ob(C);
For every three objects c, d, e ∈ Ob(C) and morphisms f ∈ C(c, d) and g ∈ C(d, e), there is a
morphism f ◦ g ∈ C(c, e), called the composite of f and g.
These elements are required to satisfy the following conditions:
For any morphism f : c→ d , with idc ◦ f = f and f ◦ idd = f , which is called the unitality condition;
For any three morphisms f : c0 → c1 , g : c1 → c2 and h : c2 → c3 , the following are equal:
( f ◦ g) ◦ h = f ◦ (g ◦ h). This is called the associativity condition.

Definition A2. The category Set is defined as follows:

Ob(Set) is the collection of all sets;
If S and T are sets, then Set(X,Y) = { f : X → Y}, where f is a function;
For each set S, the identity function idx : X → Y is given by idx(s) := x for each x ∈ X;
Given f : X → Y and g : Y → Z , their composite function is ( f ◦ g)(x) ◦ g( f (x)).
Since these elements satisfy the unitality and associativity conditions, Set is indeed a category.

Definition A3. A functor between two categories C and D, denoted F : C → D , is defined
as follows:

For every object c ∈ Ob(C), there is an object F(c) ∈ Ob(D);
For every morphism f : c0 → c1 in C, there is a morphism F( f ) : F(c0)→ F(c1) in D.
These elements are required to satisfy the following conditions:
For every object c ∈ Ob(C), F(idc) = idF(c);
For any three objects c0, c1 and c2 ∈ C and two morphisms, f : c0 → c1 , and g : c1 → c2 , the
equation F( f ◦ g) = F( f ) ◦ F(g) holds in D.

Definition A4. A C-instance of the category C is functor I : C → Set .

Definition A5. Let C and D be categories and F, G : C → D be functors. A natural transforma-
tion α : F→ G is defined as follows:

For each object c ∈ Ob(C), there is a morphism αc : F(c)→ G(c) in D, called the c-component of
α, that satisfies the following naturality condition;
For every morphism f : c→ d in C, the following equation holds.

F( f ) ◦ αd = αc ◦G( f ).

A natural transformation α : F→ G is called a natural isomorphism if each component αc is
an isomorphism in D. The naturality condition can be represented as follows.
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The concept of natural transformation plays an important role in understanding relations
between two categories. It describes how the two functors F and G can be used to as two representa-
tions of category C inside D with the natural transformation connecting these two representations
using the morphisms in D.

In order to arrive at enriched categories, the following definitions apply.

Definition A6. Let X and Y be sets. A relation between X and Y is a subset R ⊆ X×Y. A binary
relation on X is a relation between X and X, i.e. a subset of R ⊆ X× X.

Definition A7. A preorder relation on a set X is binary relation on X, denoted as ≤, that satisfies
the following two properties:

Reflexivity: x ≤ x; and
Transitivity: If x ≤ y and y ≤ z, then x ≤ z.
The preorder can be denoted as (X,≤).

Definition A8. A symmetric monoidal structure on a preorder (X,≤) has the following two elements:

An element I ∈ X, called the monoidal unit;
A function ⊗ : X× X → X , called the monoidal product.
These elements must satisfy the following four properties:
Monotocity: for all x1, x2, y1, y2 ∈ X, i f x1 ≤ y1 and x2 ≤ y2, then x1 ⊗ x2 ≤ y1 ⊗ y2;
Unitality: for all x ∈ X, the equations I ⊗ x = x and x⊗ I = x hold;
Associativity: for all x, y, z ∈ X, the equation (x⊗ y)⊗ z = x⊗ (y⊗ z) holds;
Aymmetry: for all x, y ∈ X, the equation x⊗ y = y⊗ x holds.
This structure is called a symmetric monoidal preorder and is denoted as (X,≤, I,⊗).

Definition A9. A symmetric monoidal structure on a preorder (X,≤) has the following two elements:

An element I ∈ X, called the monoidal unit;
A function ⊗ : X× X → X , called the monoidal product.
These elements must satisfy the following properties:
Monotocity: for all x1, x2, y1, y2 ∈ X, i f x1 ≤ y1 and x2 ≤ y2, then x1 ⊗ x2 ≤ y1 ⊗ y2;
Unitality: for all x ∈ X, the equations I ⊗ x = x and x⊗ I = x hold;
Associativity: for all x, y, z ∈ X, the equation (x⊗ y)⊗ z = x⊗ (y⊗ z) holds;
Symmetry: for all x, y ∈ X, the equation x⊗ y = y⊗ x holds.
This structure is called a symmetric monoidal preorder denoted as (X,≤, I,⊗). Let
B = ( f alse, true) and f alse ≤ true, the structure (B,≤, true, f) cam be developed with f
representing the AND operation defined in the following matrix.

f false true
false false false
true false True

It is trivial to show that this structure forms a symmetric monoidal structure.
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Definition A10. Let V = (V,≤, I, ⊗) be a symmetric monoidal preorder. A V-category X has
the following two elements:

A set Ob(X ), elements of which are called objects;
For every two objects x, y ∈ Ob(X ), there is an element X (x, y) ∈ V , called the hom-object.
These elements must satisfy the following two properties:
For every object x ∈ Ob(X ), I ≤ X (x, x);
For every three objects x, y, z ∈ Ob(X ), all X (x, y)⊗X (y, z) ≤ X (x, z).
Hence, it can be said that X is enriched in V .

Table A1. Confusion Matrix.

Prediction

Default Non-Default

Actual
Default TP FN

Non-Default FP TN

Notes: “Positive (P)” is the term used to describe a prediction of default and “Negative (N)” for
a prediction of non-default outcome. “True (T)” means the actual data agrees with the prediction,
whilst “False (F)” means the data does not agree with the prediction.
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