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Abstract: This paper considers investors who are looking to maximize their probability of remaining
solvent throughout their lifetime by using an algorithm that aims to optimize their investment
allocation strategy and optimize their tax strategy for withdrawal allocations between tax deferred
accounts (TDAs), Roth accounts, and taxable stock and bond accounts. This optimization works with
stochastic investment returns and stochastic mortality, extending and combining different investment
and tax-efficiency paradigms. We find that optimizing the investment strategy has a much larger
impact on the investor remaining solvent than optimizing the tax strategy. This result is key to
effectively optimizing both strategies simultaneously. This optimized investment strategy soundly
beats a standard target date fund strategy, and the novel optimized tax strategy displays optimal
desired properties suggested by non-stochastic tax optimization research.

Keywords: goals-based wealth management; dynamic programming; retirement planning; taxes;
Monte Carlo methods; mortality; optimal strategy; tax deferred accounts; Roth accounts; taxable

accounts

1. Introduction

This paper offers four main contributions for long-term retirement planning, with
a goal to maximize the likelihood of solvency during the lifetime of the investor: (i) The
model in the paper combines dynamic portfolio optimization (Merton 1969, 1971; Browne
1995; Dammon et al. 2004; Horan 2006a, 2006b; Das et al. 2019; Jaconetti and Bruno 2008;
Spitzer and Singh 2006; Wang et al. 2011) and tax optimization over multiple retirement (and
possibly non-retirement) accounts (Brown et al. 2017; Cook et al. 2015; Sumutka et al. 2012;
DiLellio and Ostrov 2017, 2018) into one algorithm, whereas these have been handled as
separate problems in the literature. (ii) Unlike most tax optimization papers, we include
the effect of annual stochastic stock returns, as opposed to using fixed returns. (iii) We also
consider optimization that takes into account mortality risk and its concomitant uncertain
portfolio horizon, which is more realistic and useful than assuming a known terminal
date or looking to optimize portfolio longevity. (iv) The analyses in the paper determine
that portfolio optimization has first-order consequences on lifetime portfolio solvency,
whereas the impact of tax optimization has second-order consequences. This insight means
algorithms may ignore all but the most important features of the tax code when they
are considering how to optimize lifetime solvency, making the optimization algorithm
computationally feasible. The less important features of the tax code can then be considered
independently for each individual and their specific circumstances. Some of the additional
results in the paper show that this paper’s approach clearly outperforms a target date fund
strategy, that it can determine the optimal time to initiate the collection of social security, and
that it can determine whether or not any given annuity should be purchased by an investor.
The algorithm also accommodates required minimum distributions (RMDs), infusions
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to the various accounts, and how to exploit conversions between retirement accounts.
The approach shown here extends the academic literature and offers a comprehensive
algorithm for practical retirement planning.

The innovations in this approach are timely. Over the coming decades, the United
States will see a considerable increase in the percent of its population that is retired. For
this coming generation of retirees, there has been a strong shift away from defined benefit
plans like pensions in favor of tax deferred accounts (TDAs), such as traditional 401(k)s
and IRAs, and Roth accounts (see, for example, Department of Labor (2019), Table E7). In
general, the move away from pensions has led to fewer saved resources for these retirees,
but more flexibility in how these resources may be used.

This means that many individuals in the coming wave of retirees will need to be more
careful and clever than their predecessors if they hope to remain solvent throughout their
retirement, but these individuals will also have more tools at their command than previous
generations. In particular, to help attain the goal of staying solvent, investors will have
the ability to change the investments in their portfolio and to determine how to allocate
withdrawals between three types of accounts (TDAs, Roth accounts, and taxable accounts)
in order to meet annual consumption needs while adhering to the different tax regulations
governing these accounts.

There are key differences in the main features of how a TDA, a Roth account, and a
taxable account are taxed in the current American tax system. For TDAs, contributions, in
the year they are made, are deductible from taxable income, but withdrawals, in the year
they are made, are taxed as income. For Roth accounts, the opposite holds in the sense
that contributions are not deductible from taxable income, so they are taxed as income in
the year they are made, but then the Roth account is not subject to tax after that. For both
TDAs and Roth accounts, we assume that withdrawals are not made before an investor
is 59.5 years old, since those withdrawals may be subject to penalties. Starting at age 72,
TDAs (though not Roth accounts) are subject to required minimum distributions (RMDs)
to avoid penalties. In taxable accounts, bonds and cash are subject to different rules than
stock. The interest from cash and bonds is taxed as income. There is no tax on stock, except
when it is sold, at which point the stock’s gains are subject to capital gains taxes.

Sources that are taxed as income, such as TDA withdrawals, bond and cash interest,
as well as earned income from work, are subject to a progressive tax system with rates
ranging from 10% to 37%. Long term capital gains (for stock sold more than a year after
being purchased, as we will always assume) are subject to a progressive tax system with
rates that are 0%, 15%, or 20%, depending on both income and gains. Wealthier investors
may also be subject to a 3.8% Net Investment Income Tax. There are complicated rules
to determine what portion of Social Security payments are taxed as income. This paper
incorporates those Social Security rules, and the current rules for all the features described
above for TDAs, Roth accounts, taxable accounts, and earned income. Since it is unclear
how legislation might change the tax structure in the future, we assume the current tax
structure holds throughout our calculations in this paper, although we can also incorporate
stochastic models for evolving tax structures, as discussed at the end of this paper in the
conclusions section.

Determining the optimal investment strategy and determining the optimal tax strategy
for allocating withdrawals involve different, complex issues. In part because of this, these
two strategic questions are generally separated from each other in the literature, which
will be discussed in the next two sections. In one branch of the literature, the optimal
investment strategy is explored, but usually the portfolio is considered to be tax free, or,
on occasion, the entire portfolio is a taxable account. In the other branch, tax optimization
via withdrawal allocations between accounts is considered, but significant assumptions
about the investments are made, such as a projected, generally constant, rate of return.
The tax code, by necessity, is also simplified, but how much impact do these simplifying
assumptions create?
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In this paper, we consider both investment optimization and tax optimization' to-
gether, using ideas from both branches of the literature. Instead of the two creating a more
complicated optimization when they are combined, we find that they lead to important
simplifications instead.

The approach to optimally attaining the investor’s goal of staying solvent will start
with determining investment optimization on a post-tax basis using dynamic programming.
This computes the optimal dynamic investment portfolio strategy by working chronolog-
ically backwards in time. We note that in addition to using the stochastic nature of the
investments, we also account for the stochastic nature of mortality, which is uncommon in
the literature. However, working with the mortality distribution is crucial for optimizing
the probability that the investor will remain solvent until their death. We will compare this
to the far more common, but far less realistic, assumption of a projected date of death for
the investor. In addition, note that the model is superior to the typical approach of looking
to optimize portfolio longevity, since, for example, a 100-year-old investor with significant
money should be in a conservative portfolio for their remaining years, not an aggressive
one in the hopes of having it last another 100 or more years.

Having obtained the optimal investment strategy, the algorithm optimizes the tax
strategy using Monte Carlo simulation, which works chronologically forwards in time. We
determine annual taxes by carefully following the progressive taxation rules in America
for the two main sources of tax revenue from individuals: Income taxes, which includes
tax generated by Social Security income, and capital gains taxes. Within this framework,
we look to optimize two variables numerically. The first variable is the level of TDA
consumption, which is the key scalar quantity for tax optimization when withdrawal
allocations are structured correctly. The theory for this structure is a generalization, and
improvement, on what is known as the “informed strategy” in the literature. The second
variable is a correction factor that accounts for the fact that we must approximate the
portfolio’s overall post-tax worth by using the current pre-tax worth of the three accounts
(TDA, Roth, and taxable), and we cannot be certain how much tax will be levied on future
withdrawals in the TDA and future realized capital gains in the taxable account.

We find the following key result: The probability that the investor remains solvent is
strongly affected by their investment strategy, but the effect of the taxation optimization,
while present, is much weaker. For example, for the three investors analyzed in this
paper, we will see that investment optimization increases their solvency probability by
16.5, 16.6, and 4.7 percentage points over a standard target date fund strategy, whereas tax
optimization increases their solvency probability by, at most, 1.7, 1.2, and 2.8 percentage
points respectively. This suggests that adding further complicated details of the tax code or
the withdrawal allocation structure between accounts is not worthwhile, as it will not have
a meaningful effect on the solvency probability.

This is not to say that tax optimization is not important, of course. Investment
optimization may have a far larger effect on the probability of solvency, but tax optimization
generates far more stable sources of additional money. So, for example, an investor may
have consumption needs of $80,000 every year, while tax optimization may generate an
extra $50,000 over the course of retirement. The ability to fund an extra 5/8 of a year will
not have much of an effect on their probability of remaining solvent until their death, but
no wealth manager should leave an extra $50,000 in tax savings on the table.

In this paper we assume we know the following information about investors: Their
current age, the current amount of money in their TDA and Roth accounts, and, for their
taxable account, the current amount in bonds (and cash), as well as the current amount
in stock and its cost basis. We also assume we are given projections which can vary
over time for: (1) the time they will retire and, prior to that, the amount of money they
would like to contribute to their TDA and the amount to their Roth in each year they are
working, (2) the amount of earned income they will receive each year, (3) standard or
itemized deductions for income tax each year, (4) the amount of Social Security income
for each year, (5) additional after-tax income each year that is neither earned nor derived
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from the investor’s three accounts, such as projected inheritance money, for example,
(6) the investor’s mortality table, and (7) perhaps most importantly, projected after-tax
consumption needs each year, which, if desired, can also be made to depend on the
investor’s wealth since investors with less wealth may wish to reduce their consumption
and investors with more wealth may wish to increase their consumption. We also assume
an annual rate of inflation, the interest rate for the bonds/cash, and the expected return
and the covariance matrix for the stochastic stock investments. Since these projections and
circumstances will change over time for investors, the algorithm we describe in this paper
should be periodically rerun to incorporate any updated information.

A summary of the main contributions of this paper is as follows: (1) The paper
develops an approach where dynamic programming for investment optimization can be
combined with numerical methods for tax optimization. (2) The optimization approach for
the combined investment and tax strategy is extended to the context where both investment
returns and mortality are stochastic. (3) The implementation here expands and improves
previous tax efficiency approaches, obtaining a simple, but effective, approach to tax
optimization. (4) Our results show that investment optimization is far more important
than tax optimization for maximizing the probability that an investor can remain solvent.
This means that more complicated taxation models with more variables are unlikely to
generate meaningful and improved results for a retiree’s solvency probability. (5) The new
investment optimization approach in this paper leads to a much higher solvency probability
than using a target date fund or a static portfolio if the likelihood of an investor’s death is
determined by a mortality table. Furthermore, these advantages become even stronger if
the mortality table is replaced with the more common, though unrealistic, assumption of a
projected date of death for the investor. (6) The combined optimization algorithm in this
paper can be used to determine (a) when an investor should optimally start collecting Social
Security, (b) the price at which an annuity transitions from increasing to decreasing the
investor’s solvency probability, and (c) how changes in the investors’ saving or spending
behavior over time will affect their optimal probability of solvency.

The rest of the paper proceeds as follows. Section 2 briefly relates the new approach
shown here to the investment optimization literature, while Section 3 compares this paper’s
approach with extant methods in the tax optimization literature. Our model and its
assumptions are presented in Section 4. Section 5 contains extensive numerical analyses
showcasing the main results in the paper. Discussion and conclusions are in Section 6.

2. Investment Optimization: Past Approaches and Our Approach

Since the optimal choice for investments in a portfolio at any given time depends on
considering all potential future investment choices, the optimal choice must be computed
by working backwards chronologically. A classic example of this is in Merton (1969) and
Merton (1971), which optimized the expected utility of an investor’s terminal wealth by
dynamically altering the investor’s fraction of wealth in stocks versus bonds. Merton
determined this evolving optimal fraction by solving a Hamilton—Jacobi-Bellman par-
tial differential equation that evolved backwards in time. This was later expanded in a
series of papers, Browne (1995), Browne (1997), and Browne (1999), to optimally obtain
a goal. Applying dynamic programming instead of partial differential equation meth-
ods, Das et al. (2019) showed how to quickly determine the dynamic investment strategy
that optimizes the probability of achieving a goal, even when the investor has projected
infusions or withdrawals at future times.

In the above literature, the portfolio either had a fixed time horizon or was intended to
generate money indefinitely. Since our goal is to optimize the probability of staying solvent
throughout an investor’s lifetime, our portfolio horizon is neither fixed nor infinite. It is
stochastic, with a probability distribution defined by the appropriate mortality table for
the investor.

The above literature assumes the investor’s portfolio is not subject to taxes.
Dammon et al. (2004) shows how to optimize utility in a taxable stock portfolio, subject to
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capital gains being determined by the average cost basis method. By using the average cost
basis method, their state space must accommodate three variables: Time, wealth, and the
amount of money in the basis. Attempting to expand this method to our situation would
require six state space variables: Time, wealth in the TDA, wealth in the Roth, wealth in
the taxable bond account, wealth in the taxable stock account, and amount of money in the
taxable stock basis. The so-called “curse of dimensionality” makes this approach with six
state variables computationally infeasible.

We therefore must use a different approach involving approximations: We treat the
three accounts as a combined portfolio, using just two state space variables, time and
the post-tax worth of the combined portfolio. This means we generate a single optimal
investment strategy for the entire portfolio. This can be accomplished by either applying
this optimal investment strategy to each of the three accounts or, if desired, by using
different investments in the three accounts in a manner that combines into the desired
optimal investment allocations. This latter approach can be used to minimize taxes by,
for example, shifting more bonds into the TDA which shields investors from annual taxes
on interest that they would be subject to in a taxable account. While this should be done
because it will typically benefit investors, it is also a minor effect, so for our calculations we
use the same investment allocation in all three accounts.

3. Tax Optimization: Past Approaches and Our Approach

It is quite common for retirement planning books (e.g., Lange (2009), Rodgers (2009),
Solin (2010), and Larimore et al. (2011)) and major investment firms (e.g., Fidelity (2015),
Jaconetti and Bruno (2008), and Vanguard (2016)) to recommend a “common strategy” for
withdrawal sequencing during retirement; that is, after taking out the required minimum
distributions (RMDs) from the TDA account, the retiree should satisfy their remaining
consumption needs by first draining their taxable account, then their TDA, and finally their
Roth (see the upper left panel in Figure 1).

On occasion, a variation of the common strategy is recommended where the Roth is
drained before the TDA instead of the other way around. There is a reason for the uncer-
tainty in the sequencing of the TDA and Roth: In a constant (flat) tax rate environment for
the TDA, the order in which the TDA and the Roth are removed actually makes no differ-
ence. Compelling examples of this were shown in Horan (2006a) and Spitzer and Singh
(2006). A short, but very general proof of this fact is given in DiLellio and Ostrov (2018).
This means that for TDA and Roth decumulation, the optimal strategy for investors is solely
to reduce the tax rate for their TDA distributions, meaning they should take advantage of
the lowest income tax brackets as much as possible.

Given this, Horan, in Horan (2006a) and Horan (2006b), proposed an “informed
strategy” for TDA and Roth decumulation. In the informed strategy, distributions are
taken from the TDA up to the top of a specific tax bracket and the Roth account is used for
any additional consumption that needs to be satisfied. Should the Roth or TDA become
exhausted, the other account must be used to cover all consumption needs in future years.
This was expanded in Sumutka et al. (2012) to include taxable accounts. This expanded
informed strategy is, as before, to take distributions from the TDA up to the top of a specific
tax bracket, but to satisfy any additional consumption, the investor drains the taxable
account first, then the Roth, then the TDA. We note that since our goal is to optimize the
probability of investor solvency, draining the taxable account first is desirable because that
minimizes capital gains taxes. If our goal was to optimize a bequest, we would need to
consider the fact that capital gains are forgiven at death, which can make the optimal tax
strategy far more complicated (e.g., see DiLellio and Ostrov (2018)).

A question that naturally arises with the informed strategy is which tax bracket to
choose. If the tax bracket is too low, TDA distributions in later years will be at high tax
rates (see the upper right panel in Figure 1). If the tax bracket is too high, the TDA will
be exhausted early and therefore unable to take advantage of lower tax brackets in later
years (see the lower left panel in Figure 1). We note that tax bracket limits are adjusted by
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inflation in the tax code, therefore we use real dollars in Figure 1, which means the TDA
consumption is constant over time in the graph when the consumption level stays at the
top of the chosen tax bracket.

The optimal strategy that we propose and use here is to move beyond the tax bracket
limitations in the informed strategy and simply choose the optimal constant TDA con-
sumption level, L, leading to the lower right panel in Figure 1. This is akin to the approach
taken in DiLellio and Ostrov (2017), where L is found analytically for deterministic returns,
a known time of death, and no taxable account. In this paper, we have stochastic returns,
a distribution for the time of death, and a taxable account, so the optimal constant TDA
level, L, must be determined numerically. Since this is just a single number, as opposed to a
function over time, we can use standard optimization techniques to find the optimal value
of L. Even better, the assumption of a constant L, even in our current stochastic context, is
quite reasonable: Once L is optimized, we maintain results that look like the lower right
panel in Figure 1 over a rather wide range of typical investor outcomes, as we will see later.

Common Strategy Informed Strategy: TDA drains too slowly

Yearly Consumption (in real, post-tax dollars)
Yearly Consumption (in real, post-tax dollars)

59.5 72 Age

Informed Strategy: TDA drains too quickly An Optimal Strategy

Yearly Consumption (in real, post-tax dollars)
Yearly Consumption (in real, post-tax dollars)

59.5 72 Age 59.5 72 Age

Figure 1. Four tax strategies. All consumption amounts are in real, post-tax dollars. Upper left panel: The common strategy,
withdrawing from the taxable account (plus TDA RMDs), then the TDA, then the Roth account. Upper right panel: The
informed strategy for withdrawing TDA money through the 12% bracket. Lower left panel: The informed strategy for
withdrawing TDA money through the 22% bracket. Lower right panel: Our strategy for optimizing the TDA withdrawal
rate. The height of the blue TDA rectangle corresponds to the value of L.

We are also able to accommodate other sources of income. Sources subject to no tax
can simply be subtracted from the (post-tax) consumption needs of the investor. Sources
subject to income tax can be added to the bottom of the graph in Figure 1 before the
TDA is considered. One can think of these sources subject to income tax as looking like
a sandy shore with the blue water of the TDA then being poured on top of the shore
until the water level reaches L. We note that while we think of L as a post-tax level in the
context of Figure 1, in this paper we report L in terms of its corresponding pre-tax value
since we normally think about income tax brackets and sources subject to income tax in
pre-tax terms.

We further tweak our withdrawal sequencing in two other ways. The first is that
we always make certain that RMDs are distributed from the TDA each year, which can
force the TDA distributions to rise above level L in some years. The second is that we
take advantage of Roth conversions as was done in Cook et al. (2015). That is, as soon as
possible, we convert all of the TDA distribution except for RMDs to the Roth account (since
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RMDs cannot legally be converted) and address the resulting additional consumption need
this leaves by using withdrawals from the taxable account. This drains the taxable account
more quickly, further reducing capital gains.

4. The Model and Assumptions

In this section, we detail our model. As discussed in Section 2, we determine the
optimal investment strategy first, using dynamic programming. The details of this ap-
proach, including how to accommodate the mortality table, are contained in Appendix A.
We note again that dynamic programming computes the optimal investment strategy by
evolving it chronologically backwards in time. This is important because the optimal
strategy depends on future choices, which only a backwards-in-time method has access to.

This is followed by determining the optimal tax strategy. Since we must consider
the different taxation rules that apply to each of the three different accounts, and these
can become complicated and depend on knowledge of past choices, we employ Monte
Carlo methods, which evolve forwards in time so that we can account for path dependence.
That is, our overall scheme for investment optimization followed by tax optimization is a
“backwards-forwards” algorithm.

After the investment optimization is performed in the backwards part of the algorithm,
we know the optimal investment allocation at any time ¢, given the post-tax worth of the
overall portfolio at that time. Unfortunately, since we employ Monte Carlo methods for
tax optimization, which evolve forwards in time, we can only know the pre-tax worth of
the three accounts, not their post-tax worth, since the tax rates that will be applied in the
future are not known in the present. Therefore, we must estimate the post-tax worth from
our knowledge of the present. This estimate is accomplished in two phases.

Phase 1 of the post-tax estimate: In the first phase we determine an initial estimate
for the post-tax worth of the overall portfolio by adding the pre-tax worth of each account,
after removing an estimate of the taxes that will be levied on each account. Specifically, we
sum: (1) The worth of the Roth, which has no taxes, (2) the worth of taxable bonds, after
income taxes have been removed from any interest generated that year, (3) the worth of
taxable stock, after applying a capital gains rate (usually 15%) to all capital gains currently
in the taxable stock account, and (4) the worth of the TDA, after taking out taxes from the
entire TDA at the overall rate calculated for that year’s TDA distribution.

Phase 2 of the post-tax estimate: Since our initial approximation for the post-tax worth
of the portfolio is imperfect, we add a second phase to form our final approximation. In this
second phase, we simply multiply the initial approximation generated in the first phase
by a constant conversion correction factor, -y, that we will look to optimize. The product
of v with our initial approximation forms our final approximation for the overall post-tax
worth of the portfolio, which is then used to generate the optimal investment selection for
the investor from our dynamic programming results.

This means we have two numbers, L and 7, to optimize. Were the initial post-tax
approximation perfect, we would find that ¢ = 1. In practice, we see optimum numbers
like v = 0.95 more often.

Within our optimization algorithm for L and 7, we need a model for computing
taxes. Our taxation model is an extensive mathematization of the federal tax code for
computing income taxes and capital gains taxes. This includes laws for taxation on the
following sources:

e  Earned income, TDA withdrawal income, and interest income from the taxable bond
account, all of which are taxed as regular income using federal income tax brackets
and rates;

e  TDA contributions, which are deducted from regular income, and annual standard
deductions or projected itemized deductions;

¢ Income from realized capital gains from the taxable stock account, which is taxed using
capital gains tax brackets and rates that are affected by the investor’s regular income;

¢ Net investment income tax (NIIT) for wealthier investors;
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e  Social Security income, which has particularly complicated taxation rules in that the
amount that is subject to being taxed as regular income depends on the other sources
of regular income and sources of capital gains income listed above, which then affects
the overall taxation rates for these other sources of income.

As they vary, we do not include state or local taxes in this paper, although these generally
can be easily accommodated for any specific locality.

We make a number of simplifying assumptions that, for most investors, involve
taxation effects that are much smaller than those determined by the taxation model for
income and realized capital gains above:

1.  We assume all capital gains are long term. We ignore capital losses. We ignore the
effect of dividends;

2. For simplicity, we calculate gains using the average cost basis method. Although LIFO
(Last In, First Out) is more tax efficient, the difference is small (see Das et al. (2017),
for example);

3.  We allow no withdrawals from the TDA nor Roth before age 59.5, even though
withdrawals of contributions to Roth accounts can often be made without a penalty.

As stated earlier, investors can and should take advantage of these smaller features of
the tax code (e.g., they should harvest capital losses, they should make withdrawals from
the taxable stock account using LIFO, etc.). However, we will show that even the larger
tax effects we do consider only have a second-order impact on the optimized strategy
when compared to the first-order tax effects of the investment strategy. Therefore, it makes
little sense to worry about the effect of these smaller aspects of the tax code, since they are
third-order effects in the context of this paper.

We assume, as in Figure 1, that current tax bracket rates will continue to hold and
that the bracket limits will continue to be adjusted by inflation, as current tax law requires.
Of course tax bracket rates and limits may be changed by subsequent legislation, as we
discuss in the conclusions section.

We consider the effect of our taxation model on 10,000 Monte Carlo trials, subject to
optimized investments as they evolve chronologically forwards in time. The values of
L and 7y maximizing the probability of remaining solvent for these trials are determined
using the Nelder-Mead algorithm, with the constraint that L > 0. While this constraint is
rarely needed, there are cases where the constraint keeps the algorithm from straying and
wasting computational time.

5. Results
5.1. Available Investments

For the examples in this section, we have used daily historical returns from the 20-year
period between January 1998 to December 2017 for index funds representing U.S. Bonds,
International Stocks, and U.S. Stocks” to determine the expected returns and covariance
matrix for these three index funds. These are given in Table 1, and are then used to
determine the efficient frontier for these three index funds.

Table 1. Summary statistics on returns from January 1998 to December 2017 for our three index funds.

Index Fund Category Mean Return Covariance Matrix of Returns

U.S. Bonds 0.0493 0.0017 —0.0017 —0.0021
International Stocks 0.0770 —0.0017 0.0396 0.03086
U.S. Stocks 0.0886 —0.0021 0.0309 0.0392

The range for y is restricted so that pimin < # < #max. We have chosen pimin = 0.0526
to correspond to the lowest possible portfolio standard deviation on the efficient frontier,
which is o = 0.0374. We have chosen pimax = 0.0886, the highest mean return of the three
index funds, so as to discourage long-short portfolios. This corresponds to o = 0.1954 on
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the efficient frontier. These numbers are realistic, matching those in related research (see,
for example, Exhibit 5 in Wang et al. (2011)).

We consider 15 portfolios on the efficient frontier whose y values are equally spaced
over the interval [Mmin, #max]. The weights for the three index funds in each of these
investment portfolios, labeled portfolio 0 to portfolio 14, are given in Table 2. At each year
and each value of the post-tax portfolio worth in the discrete state space, the dynamic
strategy determines which of these 15 portfolios is optimal.

Table 2. The portfolio weights in the three index funds for our 15 portfolios on the efficient frontier,
from the most conservative (portfolio 0) to the most aggressive (portfolio 14). Both long-only and
long-short portfolios are permissible.

Portfolio Weights
Portfolio Number U.S. Bonds International Stocks U.S. Stocks
0 0.9098 0.0225 0.0677
1 0.8500 0.0033 0.1467
2 0.7903 —0.0160 0.2257
3 0.7305 —0.0352 0.3047
4 0.6707 —0.0545 0.3837
5 0.6110 —0.0737 0.4628
6 0.5512 —0.0930 0.5418
7 0.4915 —0.1122 0.6208
8 0.4317 —0.1315 0.6998
9 0.3719 —0.1507 0.7788
10 0.3122 —0.1700 0.8578
11 0.2524 —0.1892 0.9368
12 0.1927 —0.2085 1.0158
13 0.1329 —0.2277 1.0948
14 0.0731 —0.2470 1.1738

5.2. Three Example Investors

We consider three individual investors who have considerably different financial
circumstances. Unless otherwise specified, for all three investors:

. The current age of the investor, defined as time ¢ = 0, corresponds to the year 2020.

®  The rate of inflation is assumed to be 3% each year. Note: All monetary values
throughout the remainder of this paper, unless specified as being nominal, will be
expressed in t = 0 dollars.

*  We assume the investor elects to use the standard deduction for income taxes each year.

*  We assume that the investor retires at age 65 and then immediately starts to collect
Social Security.

¢  The investor’s mortality probability is determined by the 2020 IRS unisex mortal-
ity table.’

¢  We use a maximum age of 110. That is, we assume that the probability of surviving
past 110 is sufficiently small that it can be ignored.

Specific parameter values for each of the investors are given in Table 3. In the interest
of simplicity, each investor uses annual quantities that are constants (in real dollars) that
only change at retirement. However, our program is able to optimize for any desired
functions of time in place of these.
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Table 3. Parameter values for the three example investors. All monetary values are in t = 0 dollars.
All annual amounts adjust with inflation, which is assumed to be 3%.

Parameter Investor #1 Investor #2 Investor #3

Current age (t = 0) 40 55 65

Initial (+ = 0) TDA worth $30,000 $100,000 $5,000,000

Initial Roth worth $20,000 $50,000 $2,500,000

Initial taxable stock worth $5000 $50,000 $1,000,000

Initial basis in taxable stock $3000 $40,000 $200,000

Initial taxable bond worth $5000 $30,000 $1,000,000

Annual pre-retirement (age 65) income (in pre-tax dollars) $60,000 $100,000 N/A
Annual pre-retirement consumption (in post-tax dollars) $50,000 $80,000 N/A
Annual pre-retirement TDA contribution AU $5000 N/A

Annual pre-retirement Roth contribution $0 $5000 N/A

Annual post-retirement income (in pre-tax dollars) $0 $20,000 $0
Annual post-retirement consumption (in post-tax dollars) $40,000 $80,000 $400,000
Annual Social Security (starting at age 65)° $18,132 $25,956 $34,284

5.3. Optimal Investment Strategy for the Three Example Investors

The optimal investment strategies determined with dynamic programming for our
three example investors are shown as heat maps in Figure 2. These results show important
qualitative behavior. Prior to retirement at age 65, an investor with a lot of money and
time simply needs to make sure they do not lose too much of their wealth in order to stay
solvent during their lifetime. Therefore, they choose conservative investments, represented
by the light colors. As their wealth decreases or their time until retirement decreases, they
optimally select progressively more aggressive investments. After retirement at age 65,
a similar philosophy holds, except that the need to be more aggressive decreases as life
expectancy decreases. This decrease is reflected by the slope of the dark region at the top
of the graph becoming increasingly negative as time progresses past retirement.

The white region that starts in the lower part of each graph at age 65, the first year
of retirement, corresponds to cases where the investor does not have enough money to
cover that year’s consumption costs, which are taken out at the beginning of the year. Since
they go bankrupt immediately, the investment portfolio choice is irrelevant, and we get
random results for the optimal portfolio. Since these random results are both distracting
and meaningless, they are covered in white, except for a small band just above the white
region where random colors can be seen.

Just above the random band is a dark band that corresponds to being able to afford
the current year’s consumption, but having so little left that an aggressive portfolio is the
only hope of attaining the amount needed for next year’s consumption. The small light
colored blocks from ages 60 to 64 correspond to the investor needing to stay in conservative
portfolios so as to ensure they will have enough money to be able to afford a single year
of consumption at age 65 and not end up below the dark band. The light band just above
the dark band that starts at age 65 corresponds to the need for a conservative portfolio to
ensure maintaining enough funds for both the current year and the next year. With a little
more money, the investor is likely to be able to maintain enough money for both years’
consumption needs, and possibly attain a third year of consumption, with an aggressive
portfolio, so we see another dark band. This pattern continues for yet another year of
meeting consumption needs as we get to higher wealth values. We note that the positive
slope of these bands corresponds to the fact that consumption needs increase by the rate of
inflation and the graph is in nominal dollars. We also note that all of these light colored
lines and blocks result from the fact that our model removes consumption needs all at once
at the beginning of each year. In a more realistic scenario, money would be continuously
withdrawn, in which case these light colored lines and blocks would disappear from
Figure 2.
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Figure 2. Optimal investment strategies. Top panel: The optimal investment strategy for Investor #1 as a function of the
investor’s age on the horizontal axis and wealth, in nominal post-tax dollars, on the logarithmic scaled vertical axis. The
potential investment portfolios on the efficient frontier are numbered 0 to 14, in order of increasing aggressiveness. The
darker the color in the figure, the higher the number of the optimal portfolio investment. Note that a white region starting
at age 65 has been inserted to cover low wealth values where bankruptcy is guaranteed at the beginning of the year, making

the investment choice during the year irrelevant. Lower left panel: The optimal investment strategy for Investor #2. Lower
right panel: The optimal investment strategy for Investor #3 with small wealth values that correspond to the white region
removed. Note that all three panels show similar patterns of behavior.

5.4. Optimal Tax Strategy for the Three Example Investors

The optimal tax strategies for the three example investors are given in Table 4, along
with the optimal probability of solvency that is determined from combining the optimal
investment strategy in Figure 2 with the optimal tax strategy. The results in Table 4 reflect
expected qualitative behavior. Table 5 gives the tax brackets used by the model at ¢t = 0,
which corresponds to the year 2020. For Investor #1, the optimal L value, $11,912, is just
above the 10% tax bracket. This corresponds to the fact that after the standard deduction
of $12,400 (in t = 0 dollars) is taken into account, the investor’s consumption will never
push the investor past the 12% tax bracket. That is, the 10% bracket is taken full advantage
of here, knowing that the maximum tax rate will be 12%. For Investor #2, the optimal L
is near the middle of the 12% tax bracket, which means rarely entering the 22% bracket
later while maintaining a continued ability to take advantage of the 10% bracket. For
Investor #3, the optimal L is just above the 32% bracket, which minimizes the effect of the
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35% and 37% brackets. As stated earlier, the optimal values of -y, our pre-tax to post-tax
conversion correction factor, typically range between 0.90 and 1.00, as we see with all three
investors here.

Table 4. Optimal tax strategies for the three example investors, along with the optimal probability of
solvency found using both the optimal investment strategy given in Figure 2 and the optimal tax
strategy given here. L is the desired amount of consumption (in pre-tax, ¢ = 0 dollars) from sources
subject to income tax, such as the TDA, earned income, Social Security, and taxable bond interest.
is a pre-tax to post-tax conversion correction factor.

Parameter Investor #1 Investor #2 Investor #3

Optimal L value (in pre-tax dollars) $11,900 $21,400 $220,000
Optimal y value 0.935 0.971 0.949
Optimal Probability of Solvency 68.3% 40.5% 90.6%

Table 5. 2020 tax brackets for a single investor. The income range for these brackets is adjusted by
our inflation rate of 3% in later years, reflecting current tax law.

Tax Bracket Income Range (in Pre-Tax Dollars)
10% $0-$9875
12% $9875-$40,125
22% $40,125-$85,525
24% $85,525-$163,300
32% $163,300-$207,350
35% $207,350-$518,400
37% >$518,400

5.5. Two Example Paths Demonstrating the Properties of the Optimal Investment and Optimal
Tax Strategies

A Monte Carlo path that remains solvent. In Figure 3 we analyze one of the 10,000
Monte Carlo trials for Investor #1 under the optimal strategy to better understand the
optimal strategy’s features. The top panel in Figure 3 shows the worth of each of the
three accounts over time. The middle panel shows the annual consumption from the three
accounts. The bottom panel shows how the optimal investment portfolio used for all
three accounts evolves over time. The middle panel exhibits “negative TDA consumption”
values prior to age 65, which are actually the TDA contributions that are made from any
unconsumed income during these years. From age 65 to age 67, the TDA withdrawals
needed to attain the optimal level L = $11,912 (in t = 0 dollars) are converted to the Roth
account, which creates “negative Roth consumption” in these years, while the investor’s
consumption needs are addressed using the taxable account. After age 67 this is no longer
possible since the taxable account is drained. From age 68 to age 71, we consume from
the TDA to attain level L, with the remainder of the consumption coming from the Roth.
Note the straight line segments during this period in the middle panel, where the slight
positive slopes are due to inflation. From age 72 on, TDA consumption is driven by the
RMDs, since RMD consumption is higher than level L. Again, the remaining consumption
needs are addressed with the Roth. Due to generally good stock returns in this case, the
investor has plenty of money to remain solvent, even though they live to age 98. This is
reflected in the bottom panel by the optimal investment strategy being highly aggressive at
first and then becoming very conservative by the time the investor reaches their late 40s.
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Figure 3. An example path for Investor #1 under the optimal strategy. Age is on the horizontal axis. For this example

path, the investor was solvent when they died at age 98. In the top two panels, the dollar values on the vertical axes are

in nominal, pre-tax dollars. Top panel: The wealth in the TDA, Roth, and taxable accounts over time. Middle panel: The

annual consumption in the three accounts, where negative consumption corresponds to a contribution. Bottom panel: The

optimal investment strategy over time, where portfolio 0 is the most conservative investment portfolio, portfolio 14 is the

most aggressive investment portfolio, and “portfolio -1” is used to indicate the investor has passed away.

A Monte Carlo path that ends in bankruptcy. We next consider how our optimal tax
strategy fits with the desired lower right panel of Figure 1, in which we have a horizontal
line over time that corresponds to a constant taxable withdrawal level in real dollars, and,
should the investor become bankrupt, money in the TDA and the Roth account runs out
at the same time. With our optimal tax strategy, this generally holds in the years when
bankruptcy is most likely. To see this we consider Investor #3, but with a single projected
time of death at age 90 in the place of our mortality distribution, so bankruptcy, when it
happens, is most likely just before age 90, since the investor normally remains solvent. By
changing to this projected death at age 90, the optimal L becomes $262,000 and the optimal
¥ becomes 0.977. We show the optimal results for one of our 10,000 Monte Carlo trials in
Figure 4.

The behavior in Figure 4 has qualitative similarities to Figure 3 in its initial years. We
see a conversion from the TDA to the Roth from age 65 until age 69, when the taxable stock
needed to cover the investor’s consumption needs runs out. Again, this conversion helps
drain the taxable account early, minimizing capital gains taxes. From age 70 onwards, the
investor consumes TDA so as to attain L = $262,000, with the remainder of the investor’s
consumption needs addressed by the Roth. This corresponds to the smooth curves in
the consumption graph from age 70 to age 84, reflecting the desired constant taxable
withdrawal level in real dollars. During this period, we see the investor’s TDA worth
going down, not up as in Figure 3, reflecting poorer returns in this case. This means smaller
RMDs, so that L, as opposed to the RMDs, is driving TDA consumption during these
years, unlike in Figure 3. The diminishing overall wealth of the investor leads, as it should,
to more aggressive investments to maintain solvency, as shown in the bottom panel of
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Figure 4. As desired, we note that we essentially run out of the TDA and Roth at the same
time. Only in the year before bankruptcy at age 86 do we have TDA funds, but no Roth
money. In general, we find that that these two accounts generally become depleted within
a year or two of each other over a rather wide range of bankruptcy times, conforming well
to the desired behavior shown in the lower right panel of Figure 1.
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Figure 4. An example path for Investor #3 under the optimal strategy. In this case, instead of using mortality tables, it has
been assumed that the investor’s date of death is projected to be at age 90. For this example path, the investor becomes
bankrupt at age 86. As in Figure 3, age is on the horizontal axis, and in the top two panels, the dollar values on the vertical

axes are in nominal, pre-tax dollars.

5.6. Comparing Our Optimal Investment Strategy to a Target Date Fund and a Static Portfolio

To judge the effect of our optimized investment strategy on the probability solvency,

we compare it (1) to a standard target date fund strategy shown in Table 6, which uses the
same three index funds that were available to our optimized investment strategy and (2) to
a static portfolio strategy that annually rebalances the three index funds so as to maintain
60% U.S. Bonds, 10% International Stocks, and 30% U.S. Stocks.

Table 6. The standard glide path strategy used for the target date fund in this section.

Age Range 40-44 45-49 50-54 55-59 60-64 65-69 70-74 >75
U.S. Bonds 9% 17% 27% 34% 42% 53% 67% 70%
International Stocks 36% 33% 29% 26% 23% 19% 13% 12%
U.S. Stocks 55% 50% 44% 40% 35% 28% 20% 18%

For each of these three investment strategies, with each of our three example investors,

we can determine and apply the optimal tax strategy, which allows us to compare the effect
of the investment strategies on the probability of solvency. The results of this comparison
are given in Table 7. We see from this table that our approach significantly outperforms both
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the target date fund and static portfolio strategies, leading to noticeably higher likelihoods
that the investor remains solvent throughout their lifetime.

Table 7. The effect of the investment strategy on the optimal probability of solvency. In each of the nine cases shown here,
we present the optimal solvency probability after determining and applying the optimal tax strategy. The values of L and 7y
in the optimal tax strategy are not strongly affected by which investment strategy is selected. Parameter values for Investors
#1, #2, and #3 are given in Table 3.

Investment Strategy Investor #1 Investor #2 Investor #3
Our optimal dynamic programming investment strategy 68.3% 40.5% 90.6%
Target date fund investment strategy from Table 6 51.8% 23.9% 85.9%

Static portfolio strategy (60% U.S. Bonds,
10% Intl. Stock, 30% U.S. Stock) 43.2% 19.8% 87.2%

If we again replace our mortality distribution table with a projected time of death at
age 90, the outperformance of our optimal investment strategy becomes even more striking,
as we see in Table 8. The dynamic programming approach is able to take advantage
of the certainty of the portfolio horizon here, in contrast to the uncertainty inherent in
the mortality distribution, which means more information for dynamic programming to
exploit. The target date fund and the static portfolio strategies, on the other hand, are not
altered by changing from a mortality distribution to a specific date, so it is unsurprising
that we see more outperformance when applying our method to this case.

Table 8. The effect of the investment strategy on the optimal probability of solvency when the investor is projected to die at

age 90. As before, in all cases we determine and apply the optimal tax strategy.

Investment Strategy Investor #1 Investor #2 Investor #3
Our optimal dynamic programming investment strategy 63.9% 32.2% 96.6%
Target date fund investment strategy from Table 6 33.9% 4.0% 84.6%

Static portfolio strategy (60% U.S. Bonds,
10% Intl. Stock, 30% U.S. Stock) 18.3% 0.9% 85.8%

5.7. The Robustness of Our Optimal Tax Strategy to Changes in L and vy

In Table 9, we see the effect on the three example investors of altering L and vy away
from their optimal values, which are in bold. The range of v goes from 0.88 to 1.00 for
Investor #1 and from 0.90 to 1.00 for Investor #2 and Investor #3. The range of L goes from 0
to full consumption for Investor #1 and Investor #2 and from 0 to near full consumption for
Investor #3. The key observation is how small the solvency probability variation is in each
case. The solvency probabilities for Investor #1 stay within a 1.7 percentage point range,
for Investor #2, it is a 1.2 percentage point range, and for Investor #3, it is a 2.8 percentage
point range.

Some of the lack of variation in Table 9 is due to RMDs supplanting the relevance of
the L value after age 72 in many cases. However, even for Investor #3 with a projected
death at age 90, which governs the path exhibited in Figure 4 where RMDs never supplant
the L value, we still only have a 4.6 percentage point range, as shown in Table 10. For
Investor #1 and Investor #2 with projected deaths at age 90, the percentage point range
also increases to 7.0 and 2.0 percentage points respectively. Therefore, the tax optimization
strategy is quite robust to changes in L and +.
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Table 9. The effect of varying the values of L and vy from their optimal (in bold) values on the solvency

probability for each of our three example investors.

Investor #1 Value of v
Value of L 0.88 0.90 0.92 0.935 0.94 0.97 1.00
$0  67.4% 67.4% 67.3% 67.3% 67.2% 66.9% 66.6%
$5000  67.6% 67.7% 67.7% 67.6% 67.5% 67.3% 66.9%
$10,000  67.9% 68.1% 68.2% 68.2% 68.1% 67.9% 67.6%
$11,900 67.9% 68.0% 68.2% 68.3% 68.0% 67.8% 66.9%
$20,000  66.9% 67.1% 67.2% 67.4% 67.4% 67.4% 67.2%
$30,000  67.0% 67.3% 67.4% 67.6% 67.7% 67.5% 67.4%
$50,000  66.8% 66.9% 67.1% 67.2% 67.2% 67.1% 67.0%
Investor #2 Value of ¢
Value of L 0.90 0.93 0.96 0.971 0.98 0.99 1.00
$0  40.3% 40.2% 40.2% 40.2% 40.2% 40.1% 40.1%
$10,000  40.3% 40.2% 40.2% 40.2% 40.2% 40.1% 40.1%
$20,000  40.3% 40.2% 40.2% 40.2% 40.2% 40.1% 40.1%
$21,400 40.3% 40.4% 40.4% 40.5% 40.4% 40.3% 40.2%
$25,000 40.1% 40.1% 40.3% 40.4% 404.% 40.3% 40.2%
$50,000  40.0% 40.1% 40.3% 40.4% 40.4% 40.3% 40.2%
$100,000  39.3% 39.4% 39.6% 39.6% 39.6% 39.6% 39.4%
Investor #3 Value of v
Value of L 0.90 0.92 0.94 0.949 0.96 0.98 1.00
$0  89.2% 89.1% 89.0% 89.0% 88.8% 88.7% 88.7%
$100,000  89.9% 90.0% 90.0% 89.9% 89.8% 89.8% 89.7%
$200,000  90.1% 90.4% 90.4% 90.4% 90.4% 90.2% 90.1%
$220,000 90.1% 90.5% 90.5% 90.6% 90.4% 90.4% 90.2%
$250,000  89.9% 90.1% 90.4% 90.5% 90.5% 90.3% 90.3%
$350,000  88.7% 89.0% 89.4% 89.4% 89.5% 89.5% 89.6%
$500,000  87.8% 88.1% 88.3% 88.4% 88.5% 88.5% 88.6%

Table 10. The effect of varying the values of L and -y from their optimal (in bold) values on the

solvency probability for Investor #3 if the investor’s date of death is projected to be at age 90.

Investor #3,

Age 90 Death Value of vy
Value of L 0.90 0.93 0.96 0.977 0.98 0.99 1.00

$0  952% 95.1% 94.3% 93.5% 93.3% 92.7% 92.0%
$100,000  95.5% 95.7% 95.1%  94.5% 94.3% 93.8% 93.3%
$200,000  95.8% 96.2% 95.9% 95.3% 95.2% 94.8% 94.2%
$262,000  94.5% 95.7% 96.2%  96.6% 96.6% 96.5% 96.5%
$300,000  93.9% 95.2% 95.9% 96.0% 96.1% 96.2% 96.2%
$400,000  92.9% 94.0% 95.0%  95.2% 95.2% 95.3% 95.3%
$500,000  92.1% 93.3% 94.5% 94.6% 94.7% 94.7% 94.8%
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Comparing this exhibited range for varying the tax strategy, which is, at most, 7.0 per-
centage points, with Tables 7 and 8, where the exhibited range for varying the investment
strategy is as high as 45.6 percentage points, clearly establishes our key finding that opti-
mizing the investment strategy is far more important to maximizing an investor’s solvency
probability than optimizing their tax strategy. Again, this should not be interpreted to
mean that tax strategy optimization is unimportant. Investment strategy optimization
increases the probability of a better outcome, whereas the better outcomes generated by
tax strategy optimization are generally far more stable, directly creating additional money
for an investor. While the amount of this additional money is generally not large enough
to provide the investor with the additional resources needed to avoid a bankruptcy that
would otherwise occur during the investor’s lifetime, there is no reason to ignore the
arbitrage-like possibilities that improved tax strategies can provide investors.

That being said, our analysis makes it clear why it is important to first worry about
determining the optimal investment strategy, since it has such a big effect, and then worry
about finding the optimal tax strategy that conforms to this optimal investment strategy.
This further justifies our algorithm’s approach, since we first use dynamic programming to
determine the optimal investment strategy and, only after that, do we move on to using
Monte Carlo simulation and numerical optimization to determine the optimal tax strategy.

5.8. Comparative Statics with the Three Example Investors

In this subsection we consider the effect on the optimal probability of solvency when
we alter some of the example investors’ parameters, one at a time.

Effect of varying the initial worth of the TDA: In Table 11 we look at how Investor
#1’s optimal probability of solvency changes if they saved different amounts of TDA
money prior to t = 0. This is tabulated both for the normal mortality table and when the
investor is projected to die at age 90. We note that changes in TDA savings as small as
$30,000-$40,000 can change the optimal probability of solvency by more than 10 percentage
points. By comparison, recall that our tax optimization generates, at most, 7.0 additional
percentage points for the optimal solvency probability. From Table 11 we can see that this
corresponds to about $15,000-$20,000 additional initial TDA dollars. That is, for Investor
#1, tax optimization generates a certainty equivalent in the range of $15,000-$20,000 pre-tax
dollars at t = 0.

Table 11. The effect on Investor #1 of varying the initial worth of the TDA from its normal value
(in bold).

Initial Optimal Probability of Solvency Optimal Probability of Solvency

TDA Worth (Mortality Table) (Projected Death at Age 90)
$0 57.3% 50.5%

$15,000 63.3% 58.0%
$30,000 68.3% 63.9%
$50,000 73.6% 71.2%
$75,000 79.3% 78.0%
$100,000 84.1% 84.0%
$200,000 95.3% 96.8%
$300,000 99.3% 99.5%
$500,000 100.0% 100.0%

Effect of varying income: We look at the effect on Investor #2 of having their pre-
retirement income vary in Table 12 and their post-retirement income vary in Table 13.
Since these are annual amounts—over 10 years in the case of pre-retirement income, and
generally more than that for post-retirement income—they have a significant effect on the
optimal solvency probability. In the pre-retirement income case in Table 12, the optimal
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value of L decreases from $47,300 when the pre-retirement income is $80,000 to L = $14,100
as the pre-retirement income increases to $150,000. This follows from the drastic change
in the optimal solvency probability. When this probability is small (e.g., 8.1%), the early
bankruptcies mean the age intervals shown on the horizontal axes in Figure 1 are small. To
maintain the desired constant withdrawal level corresponding to L in the lower right panel
of Figure 1, we require L to be high. On the other hand, when the solvency probability
is large, the age intervals become longer, so L needs to decrease to maintain a constant
withdrawal level over the investor’s lifetime.

Table 12. The effect on Investor #2 of varying the pre-retirement income, in ¢t = 0 pre-tax dollars,
from its normal value (in bold).

Annual Pre-Retirement Income Optimal Probability of Solvency
$80,000 8.1%

$90,000 27.8%

$100,000 40.5%

$110,000 52.6%

$125,000 67.8%

$150,000 85.2%

Table 13. The effect on Investor #2 of varying the post-retirement income, in t = 0 pre-tax dollars,
from its normal value (in bold).

Annual Post-Retirement Income Optimal Probability of Solvency
$0 25.3%

$10,000 31.6%

$20,000 40.5%

$30,000 52.8%

$40,000 71.1%

$50,000 94.3%

Effect of varying consumption: The flip side of varying income is to alter consumption.
The effect on Investor #2 of changing their pre-retirement consumption is shown in Table 14,
and the effect of changing their post-retirement consumption is shown in Table 15. We
note that dollar changes in the consumption have a stronger effect than equivalent dollar
changes to income. This is because consumption dollars are post-tax while income dollars
are pre-tax, and therefore worth less after taxes are subtracted.

Table 14. The effect on Investor #2 of varying the pre-retirement consumption, in t = 0 post-tax
dollars, from its normal value (in bold).

Annual Pre-Retirement Consumption Optimal Probability of Solvency
$60,000 69.0%
$70,000 55.9%
$75,000 48.8%
$80,000 40.5%
$90,000 23.9%

$100,000 4.8%
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Table 15. The effect on Investor #2 of varying the post-retirement consumption, in t = 0 post-tax
dollars, from its normal value (in bold).

Annual Post-retirement Consumption Optimal Probability of Solvency
$60,000 84.1%

$70,000 57.5%

$75,000 48.3%

$80,000 40.5%

$90,000 29.2%

$100,000 22.7%

Effect of varying the starting date for collecting Social Security: When is it optimal to
start collecting Social Security? The general wisdom is that an unmarried investor should
wait as long as possible, even though fewer than 5% of retirees actually do wait until
the maximum age of 70.° However given that our algorithm optimally invests money,
perhaps it is better to take money out from Social Security earlier, because that allows the
money to be optimally invested earlier. In Table 16, we have used Social Security’s website
(https:/ /www.ssa.gov, accessed on 17 August 2020) to generate the optimal probability
of solvency for Investor #1 should they decide to begin collecting Social Security at any
year between the minimum age, 62, and the maximum age, 70. We see from this table that
the general wisdom still holds for Investor #1. That is, the optimal Social Security strategy
is still to wait as long as possible, even when exploiting the optimal investment strategy
and the optimal tax strategy. Of course, this assumes our current, standard mortality table.
Should an investor have health issues that correspond to a mortality table where an earlier
death is more likely, our algorithm may indicate that the optimal Social Security starting
age is earlier.

Table 16. The effect on Investor #1 of varying the start of collecting Social Security from its normal

age (in bold).

Social Security Annual Social Security Optimal Probability
Starting Age (t = 0 dollars) of Solvency
62 $14,088 66.2%

63 $15,204 66.7%

64 $16,536 67.2%

65 $18,132 68.3%

66 $19,752 68.6%

67 $21,504 68.7%

68 $23,472 69.3%

69 $25,476 69.9%

70 $27,516 70.5%

5.9. Pricing Annuities

How much, at most, should Investor #3 pay in post-tax dollars at age 65, which is
t = 0, for an annuity that, starting at age 80, pays out $100,000 post-tax t = 0 dollars every
year they remain alive? Since the purpose of an annuity is to increase the probability that
the investor will remain solvent, we look to find what amount of money spent at t = 0 for
this annuity will lead to the same 90.6% optimal solvency probability that we have without
the annuity. We find that if we lower the consumption from $400,000 to $300,000 starting
at age 80 to reflect the $100,000 annual payout, we must reduce the initial Roth worth
from $2,500,000 to $1,660,000 to maintain the 90.6% probability of solvency we had before.
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Therefore, the investor should pay no more than $2,500,000 — $1,660,000 = $840,000 for
this annuity.

Qualified Longevity Annuity Contracts (QLACs) can be purchased from within a TDA
without an immediate tax consequence, although the payouts are then taxed as income. We
can therefore pose a similar question in this context. How much, at most, should Investor
#3 pay in pre-tax TDA dollars at t = 0 for an annuity that, starting at age 80, provides
$100,000 of taxable income in ¢t = 0 dollars every year they remain alive? In this case
we give the investor an income of $100,000 (in ¢+ = 0 dollars) starting at age 80 and find
that we must reduce their initial TDA worth from $5,000,000 to $4,160,000 to maintain the
desired 90.6% probability of solvency. Therefore, the investor should pay no more than
$5,000,000 — $4,160,000 = $840,000 for this annuity, the same value we found in the post-tax
case above. In other words, at least for the case presented here, the taxation structure for
the pre-tax TDA used to purchase the QLAC and the taxation structure for the income
provided by the annuity are nearly identical, so the cost in pre-tax dollars of the QLAC is
identical to the post-tax cost of the annuity, where the tax structure of the payment and the
payouts have to be identical since neither is subject to tax.”

6. Conclusions

Both investment optimization and tax optimization are important for retirees, but they
have very different mechanisms and implications. Investment optimization is probabilistic
in nature, balancing risk and return. Tax optimization is path-dependent and far more
deterministic, making choices that have known tax consequences. Investment optimization
and tax optimization have generally been performed independently of each other, despite
the fact that they affect each other. In this paper we have shown that the effect of investment
optimization on the probability that an investor will remain solvent throughout their life-
time is significantly higher than the effect of tax optimization. This means that investment
optimization can reasonably be done with little or even no thought to tax optimization, but
tax optimization should then be done in the context of this optimized investment strategy.
Tax optimization is still important, because the money generated by tax optimization is
generally stable and would be foolish to ignore.

This paper presents an investment and tax optimization scheme based on this premise.
In the first stage, the algorithm optimizes the investment strategy using dynamic program-
ming in post-tax dollars, which is computed backwards in time. This optimal investment
strategy is then incorporated into a second stage that optimizes the tax strategy using
Monte Carlo simulation, which evolves forwards in time. The model carefully computes
taxes from all typically significant sources of income and capital gains for American in-
vestors. It accommodates infusions into TDAs, Roth accounts, and taxable stock and bond
accounts, and then it optimizes withdrawal allocations from these accounts to meet con-
sumption needs. The model incorporates Social Security, standard or itemized deductions,
and required minimum distributions (RMDs) from the TDA. It also minimizes capital
gains taxes by using early non-RMD TDA money for Roth conversions instead of for
consumption, so the taxable stock account must be drained earlier to address the investor’s
consumption needs.

The sensitivity of the investor’s optimal solvency to variations in a number of pa-
rameters is explored, including pre- and post-retirement income, pre- and post-retirement
consumption needs, and the initial worth of the TDA. The model may be used to compute
the appropriate price for purchasing annuities using either pre-tax or post-tax money. It
shows that even under the optimized investment and tax strategy, it is still generally best
for unmarried investors to put off collecting Social Security as long as possible.

Of course, this assumes that Social Security payout rules are not changed by legislation
in the future, and it assumes that the Social Security Trust Funds do not become depleted,
resulting in lowered payouts. As stated in the introduction, for the sake of simplicity we
have assumed that the tax structure does not change over time. Of course, the tax structure
can and often does change over time. For example, Croce et al. (2012) and Pastor and
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Veronesi (2012) studied how tax changes can be triggered by changes to macroeconomic
factors. It is difficult to use dynamic programming to study how to optimally invest with
potential tax structure changes. This is due to the need both for an accurate stochastic
model for how tax parameters, such as tax bracket limits and rates, change in the future
and for the additional state space variables needed to accommodate these parameters,
which quickly slows the dynamic programming calculation via the so-called “curse of
dimensionality” (see Brown et al. (2017), however, for a dynamic programming approach
over two periods that explores how to best allocate funds between a TDA and a Roth
account). Fortunately, our method only uses dynamic programming on a post-tax basis, so
it is not subject to these computational problems. Indeed, the Monte Carlo nature of our
forwards-in-time tax calculations can easily be extended to accommodate just about any
stochastic model for changing tax parameters over time without a change in computational
speed. Furthermore, our model is particularly well suited to accommodating models
such as Hassett and Metcalf (1999), where the distribution for tax parameter changes is
correlated to stock returns.

This paper’s model can also be extended in a variety of other different directions. For
example, the investor’s consumption needs can be made to depend on both the investor’s
wealth and age, instead of just the age as we have in this paper. The dependence on wealth
makes intuitive sense since an investor will generally reduce their consumption as their
wealth decreases. As another example, the investor’s consumption needs can be made to be
stochastic instead of deterministic to reflect any uncertainty that investors have about their
future consumption needs. Another optional extension is to consider different investment
portfolios in each of the investor’s three accounts to allow further tax optimization. We
can also consider how to optimize the probability of being able to make a desired bequest,
taking advantage of the fact that capital gains are forgiven at death. As a final example, it
is possible to expand the model to married couples in addition to single investors. This
requires considering the mortality distribution for the death of either spouse at first, and
then the mortality distribution for the surviving spouse, as well as switching from the tax
brackets for married couples to those for single individuals after the first spouse dies.
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Appendix A. The Dynamic Programming Algorithm

The dynamic programming section of our algorithm determines the optimal invest-
ment strategy at a given wealth, W, and time, t. We note that W is the post-tax worth of all
the investor’s accounts (TDA, Roth, and taxable) combined.

We consider a variety of possible investment portfolios indexed by I. These may be
chosen, for example, to lie on the efficient frontier, as we do in this paper. Define y; and o;
to be the mean and volatility of investment portfolio /. Let W; be a grid of potential wealth
values, W, indexed by i = 0,1, ..., imax, Wwhere Wy = 0 represents bankruptcy, Wj is a very
small amount, and the logarithm of the W; are equally spaced as i increases from 1 to imax.
We consider times ¢t = 0,1,..., T, where t is assumed to be in years, although it can be
other units of time, and t = T corresponds to a time when the probability that the investor
is still alive is extremely small, such as T corresponding to the investor being 110 years old,
as we use for our examples in this paper.

The state space is a rectangular grid of (W, t) points over the range of i and t. Our
goal is to find the optimal value of | at each point in the state space. By using the optimal /,
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we determine the value function V(W;, t), which is the optimal probability of remaining
solvent if the investor is worth W; at time .

We begin with the small assumption that the few investors that have not already died
or become insolvent by t = T will die at t = T, which implies the final time condition
V(W;, T) = 1foralli > 0 (and V(Wy, T) = 0, since the investor is bankrupt in this case).
We then iteratively evolve the value function backwards in time using three stages for each
year. In Stage 1, we consider the possibility of death during the year, which, for simplicity,
we address only here, at the end of the year. In Stage 2, we consider the evolution of the
investment portfolio during the year, which is where we determine the optimal /. In Stage 3,
we consider the consumption, which, again for simplicity, we address only here, at the
beginning of the year. We detail these three stages more concretely:

Stage 1: Mortality. Let pp(t) be the probability that an investor dies during year f,
as determined by the investor’s mortality table. Since, for our model, we combine these
deaths so they occur at the end of year ¢, the first intermediate value function, V3 (W, t),
just prior to these end-of-the-year deaths is:

1x 4+ VW, t+1) x (1— t ifi>0

This simply reflects the fact that should the investor die with W > 0, they remained solvent
throughout their lifetime.

Stage 2: Investment evolution. We now look at the probability that a portfolio worth
W; at the beginning of year ¢ will transition to being worth W; at the year’s end if it is in
portfolio I. For this paper, we assume geometric Brownian motion, although any other
Markovian evolution model can be used instead if desired. For geometric Brownian motion,
the probability density, f, for transitioning from wealth grid point W; if i > 0 to wealth
grid point W; if j > 0 is:

. 0-2
FOwj W 1) = "’(é (m(x]) - (ul - ;)))

where ¢(z) is the value of the probability density function of the standard normal random
variable at Z = z. If i = 0 and j > 0 or vice versa, then f(W;|W;,I) = 0. Finally,
f(Wo|Wp, 1) = 1, since an investor that starts bankrupt stays bankrupt. Normalizing these
probability density function values yields the desired transition probabilities:

fFOW;IW;, 1)
P(Wj\Wi,l) = #

Y f(Wi[W;, 1)
k=0

This in turn gives the Bellman equation for the second intermediate value function V,(W;, f):

Imax

Vo (W;, t) = max Y Vi(W, t)p(Wi[w;, D) |.
j=0

The | that maximizes the right hand side in this Bellman equation is the optimal portfolio
for the investor to select if they are worth W; at this stage during the beginning of year ¢.

Stage 3: Consumption. Assume that C(t) is the investor’s desired post-tax consump-
tion in year t. We model this by taking out all of C(f) at the very beginning of the year.
Ideally, this would mean:

(o if W, — C(t) <0
V(Wi t) = { Vo(W; — C(t),t) if W; —C(t) > 0.
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However, W; — C(t) is not generally a grid point, so if W; — C(t) > 0, we determine V (W, t)
by interpolating the values of V; at the grid points just below and above W; — C(t). Should
the investor contribute more than they consume during year ¢, we just have C(f) < 0 and
follow the same process.

Notes
1

7

Throughout this paper, as in other papers on these financial subjects, terms like “optimization” or “optimize,”
etc. mean to better attain the theoretical optimum, as opposed to actually attaining the theoretical optimum, which
is not possible for subjects this complex. Therefore, in our context, “optimizing” means determining models and
approximations that better allow us to sufficiently track as many key features as possible, while discarding less
important effects that can make our problem computationally impractical while not meaningfully improving results.
2 The three index funds used are (i) Vanguard Total Bond Market II Index Fund Investor Shares (VIBIX) as the
representative of U.S. Bonds (Intermediate-Term Bond), (ii) Vanguard Total International Stock Index Fund Investor
Shares (VGTSX) as the representative of International Stocks (Large Cap Blend), and (iii) Vanguard Total Stock
Market Index Fund Investor Shares (VISMX) as the representative of U.S. Stocks (Large Cap Blend). These three
index funds have been chosen only as representatives of their respective asset categories for illustrative purposes.
This is available at https:/ /www.irs.gov /pub/irs-drop /n-19-26.pdf (accessed on 17 July 2020).

AUI = All Unconsumed Income.

These values were determined using the calculators and data available from the Social Security Administration at
ssa.gov (accessed on 13 August 2020).

https:/ /www.usatoday.com/story/money/personalfinance /retirement/2018/06 /19 /whats-most-popular-age-to-
take-social-security /35928543 / (accessed on 28 October 2020)

Note that the annuity in this case could not actually be purchased as a single QLAC, since QLACsSs are limited to
being no larger than whichever is smaller, $135,000 or 25% of the TDA account’s worth.
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