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Abstract: Smart beta exchange-traded funds (SB ETFs) have caught the attention of investors due
to their supposed ability to offer a better risk–return trade-off than traditionally structured passive
indices. Yet, research covering the performance of SB ETFs benchmarked to traditional cap-weighted
market indices remains relatively scarce. There is a lack of empirical evidence enforcing this phe-
nomenon. Extending the work of Glushkov (“How Smart are “Smart Beta” ETFs? . . . ”, 2016), we
provide a quantitative analysis of the performance of 145 EU-domicile SB ETFs over a 12 year period,
from 30 December 2005 to 31 December 2017, belonging to 9 sub-categories. We outline which criteria
were retained such that the investigated ETFs had at least 12 consecutive monthly returns data. We
consider three models: the Sharpe–Lintner capital asset pricing model, the Fama–French three-factor
model, and the Carhart four-factor model, discussed in the literature review sections, in order to
assess the factor exposure of each fund to market, size, value, and momentum factors, according to
the pertinent model. In order to do so, the sample of SB ETFs and benchmarks underwent a series
of numerical assessments in order to aim at explaining both performance and risk. The measures
chosen are the Annualised Total Return, the Annualised Volatility, the Annualised Sharpe Ratio, and
the Annualised Relative Return (ARR). Of the sub-categories that achieved greater ARRs, only two
SB categories, equal and momentum, are able to certify better risk-adjusted returns.

Keywords: smart beta; exchange-traded funds; Sharpe–Lintner capital asset pricing model; Fama–
French three-factor model; Carhart four-factor model

JEL Classification: G12; G23

1. Introduction
1.1. Historical Context

Since the roaring 1920s, assets under risk management of global financial corporations
have grown exponentially, as has the range of financial products available to investors. In
the early 20th century, closed-ended funds (CEFs) were a particularly popular investment
vehicle designed to allow investors to collectively pool sums of cash together into one
portfolio. CEFs were revolutionary in their ability to provide significant diversification
advantages and considerably lower the cost of solo investing (Rouwenhorst 2004). Though
proving fatal to its success story, CEFs place restrictions on the redemption of shares,
making it difficult for investors to sell out of positions in a timely fashion. Consequently,
significant losses were recorded by CEF holders as a result of the Great Depression in the
1930s (Galbraith 1963). This subsequently led to the rise of open-ended funds (OEFs). An
OEF allows for the regular creation and redemption of shares. This means that shares of
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OEFs can be bought or sold more easily, and thus in times of hardship, investors are able to
liquidate their holdings with ease. As a result, ownership of OEFs grew in popularity.

It can be admitted that financial innovation is often a product of financial crisis.
Shortly after the financial crash of 1987, the exchange-traded fund (ETF) was developed
(Deville 2008; Morningstar 2012). Fundamentally, ETFs and mutual funds (MFs) are anal-
ogous. Both products are investment vehicles that invest collective sums of capital in a
diversified portfolio of securities based upon a particular underlying investment strategy
(Bahadar et al. 2020). An ETF differs from an MF in its ability to be bought and sold
on an intraday basis while MFs trade only once a day, typically at market closure. This
exchange-traded product (ETP) meets investors’ demands for greater market liquidity and
enables funds to be traded more flexibly (Vanguard 2016).

With large pools of capital at the hands of the masses of investment professionals,
many formulated unique investment styles and strategies to meet the requirements and
objectives of their customers. Broadly speaking, these can be categorised as either active or
passive strategies. While active fund managers attempt to outperform a given benchmark,
the latter simply aim to replicate its performance (Vanguard 2017). Promising higher returns
than the market average, active fund managers charge a significant premium for their
service relative to their passive counterparts. While there is an ongoing debate residing
in the investment community regarding the superiority of active versus passive fund
management strategies, the empirical evidence clearly highlights the poor performance
record of active fund managers (MSCI 2013; Financial Times 2017). Capital outflows from
active funds have escalated due to underperformance and unjust fees. In return, passively
managed funds have seen a corresponding rise in capital inflows as a result of their ability
to offer superior returns at less of an expense. The net inflow into US-based passively
managed funds from active funds is estimated to follow approximately a cubic law (found
from data Source: Bloomberg 2017).

Passive instruments such as index funds (e.g., HSBC FTSE 100 Index) aim to fully
replicate the performance of a particular market. The fund manager can achieve this by
buying all or a sample of the securities in the market or index they seek to track in their
respective proportions. Traditionally, this involves weighting the index constituents by
market capitalisation, that is, according to total market value of their outstanding shares.
This enables the value of the fund to coincide with the changes in the stock prices of its
constituents over time.

In recent years, one has seen some considerable growth in the variation and complexity
of ETPs (Deloitte 2017). Driven by academic developments in financial theory, the smart
beta (SB) ETF is fashioned (Sivaprakash 2015; Krkoska and Schenk-Hoppé 2019). SB is a
factor-based approach, not weighted according to a classical market cap, but weighted by
factors which are share exposures: size, price, dividend, value growth, momentum, returns,
etc. Notice that Wiggins (2018) considers that one could invent strategies based on more
than 300 different factors!

SB ETFs represent a more sophisticated range of passively managed financial prod-
ucts that move away from traditional portfolio construction methods by incorporat-
ing technicalities of active management (Haakana 2014). Under ‘laboratory’ conditions,
the theory underlying the existence of SB ETFs has proven encouraging in terms of its
ability to offer investors optimised risk-adjusted returns relative to traditional index
funds (Arnott et al. 2005). However, in reality, there is a lack of evidence to support
this case. Therefore, the aim of this paper is to supplement current research, as that of
Glushkov (2016) and Thomann and Safoschnik (2019) by providing a European perspective
on the performance of SB ETFs.

1.2. Research Questions

In fact, empirical analysis concerning the performance of SB ETFs remains in its
infancy. To date, academic studies typically focus on US-domicile equity SB ETFs; this
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may be explained by the high concentration of SB products domicile in the region and the
availability of data.

Our investigation aims to complement work by Glushkov (2016), “How Smart are
“Smart Beta” ETFs? Analysis of Relative Performance and Factor Exposure”, who suggests
in fact to extend the analysis to SB ETFs benchmarked against indices outside the USA. Our
aim, by considering a sample of EU-domicile SB equity ETFs (as a complementary study
to Glushkov on U.S. domiciled domestic equity SB ETFs) is to expand upon past develop-
ments and answer the overriding question ‘Do Smart Beta Exchange-Traded Funds Truly
Revolutionise Passive Investment Strategies?’. In so doing, we also progress from Thomann
and Safoschnik (2019), “Is European Smart Beta smart?”. We intend on answering the ques-
tion with a particular focus on European SB ETFs: Can EU-domicile SB ETFs generate
greater risk-adjusted returns than traditional market capitalisation-weighted indices?

1.3. Paper Overview

After reviewing the key literature principally covering the theoretical framework
relevant to this investigation, and pointing out some empirical applications and somewhat
still theoretical considerations, but as for practitioners, along portfolio management, we
outline the research methodology in a brief section. Thereafter, we provide a comprehensive
analysis of the performance of the sample of EU-domicile smart beta ETFs based upon a
variety of quantitative assessments. Finally, we deliver concluding remarks regarding the
results of this investigation, and touch upon its limitations.

2. Literature Review

This section provides some insight into significant developments in financial risk
theory and academic discoveries in chronological order up to the present date, with the
aim of providing the basic theoretical framework underpinning theoretical and empirical
considerations of SB ETFs. We also point to pertinent applications of such theories or
models along portfolio management considerations, with an optimisation perspective, of
course.

2.1. Markowitz Modern Portfolio Theory

A theory central to economic and financial academia is Markowitz (1952) Modern Port-
folio Theory (MPT). MPT is concerned with the relationship between expected return and
risk (as measured by standard deviation) of a portfolio, and theorises how an investor can
construct an ‘optimal portfolio’ based on a combination of these components. Markowitz
demonstrates how risk-averse investors can alter the constituents of their portfolio in such
a way as to maximise the expected return while minimising risk inherent in the portfolio.

Importantly, Markowitz defines the elements of risk that an investor is exposed to:
diversifiable and non-diversifiable. Diversifiable or idiosyncratic risk, that is, risk specific
to individual securities, is a component of risk that can be eliminated through the process
of diversification. In its simplest form, diversification can be explained as a method used by
investors to reduce the volatility of returns of a portfolio by allocating capital to a variety
of securities, i.e., not placing all of your eggs in one basket. Markowitz expands on this
notion of diversification by signifying that it should not solely depend on the number of
different securities held within the portfolio, but investors must rather pay considerable
attention to the covariance of the returns of the constituents of the portfolio. By pooling
securities whose returns do not move in lock-step and possess a correlation coefficient
of less than 1, one can significantly reduce the volatility of the returns of the portfolio
(Fisher and Lorie 1970).

Non-diversifiable risk is the element of risk that cannot be eliminated through diver-
sification. Markowitz states, “the returns from securities are too intercorrelated, [thus]
diversification cannot eliminate all variance” (Markowitz 1952). Therefore, providing finan-
cial markets are efficient, investors are risk averse and hold well-diversified portfolios, the
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portfolio that seemingly offers the highest Sharpe ratio (the average return earned in excess
of the risk-free rate per unit of volatility) is the capitalisation-weighted market portfolio.

2.2. The Sharpe–Lintner Capital Asset Pricing Model

Building upon Markowitz MPT, the capital asset pricing model (CAPM) was devel-
oped as a product of the combined efforts of Treynor (1962); Sharpe (1964); Lintner (1965)
and Mossin (1966). They extended upon the principles of MPT by providing the intuition
for non-diversifiable risk, defined in their work as “market risk”. A market risk can be
described as the sensitivity of a portfolio to overall market movements, and can be mea-
sured by the “market beta” (β1); the latter “beta”, as for any security, being the ratio of the
covariance between the return of the security (Re) and the return of the market (RM) to the
variance of the market returns (Black 1992):

β = Covariance (Re, RMt)/Variance (RMt).

The CAPM offers a more refined understanding of expected return of a portfolio as a
function of its risk. It can be formulated as:

Rt = RFt + β1(RMt − RFt)

where

- Rt: Return on portfolio at time t,
- RFt: Return on risk-free interest rate at time t,
- β1: Market beta, and
- RMt: Return on the market portfolio at time t.

The CAPM equation can also be re-written in terms of the excess return (Rt − RFt)
and the risk premium β1(RMt − RFt):

Rt − RFt = β1(RMt − RFt) .

Notably, the CAPM prescribes beta as an alternative measure of volatility to standard
deviation, as guided by MPT. By considering that the market portfolio has a beta equal to
one, a portfolio with a beta coefficient greater than one (β1 > 1) assumes higher volatility
than the market, while a beta of less than one (β1 < 1) assumes lower volatility; a beta of
one assumes a portfolio of equal volatility to that of the market. Under the assumption
that investors hold well-diversified portfolios, the CAPM considers that the risk premium
demanded by investors is proportional to the assumed value of beta, which is the average
beta of the securities included in the portfolio (Brealey et al. 2017).

In summary, the CAPM assumes a linear relationship between the expected return of a
portfolio and beta. Therefore, an investor holding a portfolio with a beta above the market
portfolio will demand higher returns than the market average. The CAPM advises that
holding a portfolio of risky assets is mean-variance optimal (Sharpe 1964; Lintner 1965).
This forms the ideology that a risk-averse investor cannot outperform the market portfolio
on a risk-adjusted basis unless additional risk is assumed.

With this in mind, investment professionals have endorsed the use of broad market-
cap-weighted stock indices such as the FTSE-All Share Index, the S&P 500 Index, and
MSCI World Index as adequate proxies of the CAPM market portfolio. This would also
consider such indices as optimal portfolios and thus mean-variance efficient. For a passive
investor, the validity of this philosophy by the finance industry eliminates the complexities
of optimal portfolio construction and promotes a painless strategy of investing in cap-
weighted indices (Arnott et al. 2005).

However, the composition of the CAPM market portfolio is a topic of controversy.
By definition, the market portfolio is a cap-weighted index of all available risky assets,
though some critics believe this to be a theoretical concept and impossible to achieve in
reality (Roll 1977). As a result, practitioners have no alternative other than to use proxies
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deemed as a sufficient representation of the market. It is argued by Roll (1977) that this
empirical failure of the CAPM and the use of proxies, not the true market portfolio, render
CAPM application invalid. However, in support of its practical use, Fama and French
(2004) argue that as long as the market proxy sits on the minimum variance frontier, it
provides a sufficient application in describing the differences in expected returns.

2.3. The Fama–French Three-Factor Model

As with any academic developments, further research highlights a number of pitfalls
and empirical failures rejecting the CAPM financial risk model (Shefrin 2002).

The accumulation of research confirms that the positive linear relationship between
beta and average return is somewhat flatter than by the CAPM. Initially documented by
the likes of Black et al. (1972), and more recently confirmed by Fama and French (1992,
2004). The implication of such a dispute is that the CAPM overestimates expected returns
of high-beta stocks and underestimates expected returns of low-beta stocks (Black 1992).
Furthermore, experts began to discover market anomalies left unexplained by the CAPM,
such as the size effect (Banz 1981) and the value effect (Rosenberg et al. 1985). By ranking
firms according to size (the price multiplied by the number of shares outstanding) and
book-to-market equity (the ratio of the book value of a common stock to its market value),
the authors were able to illustrate these phenomena that contradict the CAPM. Collectively,
these factors provide a more comprehensive explanation for the cross-sectional variation in
average stock returns and reject the notion of the market beta as a single driver of stock
returns as promoted by the CAPM (Fama and French 1993).

The amalgamation of the research sceptical of the CAPM’s validity sparked both
controversy and innovation. The initial response perceived on Fama and French (1992)
proposed that their results could have potentially been arisen due to “data mining”. The
existence continuation of certain market anomalies led to the belief that risk could be
expressed in a multidimensional form.

Consequently, the empirical contradictions of the CAPM led to the expansion of the
single-factor model to include additional risk factors that help to explain the differences
in expected returns across stock portfolios that the single market beta cannot. The Fama–
French three-factor model builds upon the CAPM to consider multiple factors, the size
factor (SMB, “small minus big”) and the value factor (HML, “high minus low”) in addition
to the market factor. The size factor aims to capture the risk factor in returns related to
market capitalisation (Fama and French 1996). The value factor attempts to capture the
risk factor in returns related to book-to-market equity. This factor can be defined as the
difference between the returns on portfolios of high and low book-to-market stocks (Fama
and French 1996).

The three-factor model can be written as

Rt − RFt = β1(RMt − RFt) + β2SMBt + β3HMLt

with notations as before plus

β2: Size beta,
SMBt: Return on small minus big portfolio at time t,
β3: Value beta, and
HMLt: Return on high minus low portfolio at time t.

2.4. The Carhart Four-Factor Model

The revolutionary multifactor model helps to capture a large majority of the cross-
sectional variation in expected returns on stock portfolios that the CAPM ultimately fails
to deliver (Fama and French 1993). However, as recognised by Fama and French (1996),
a shortcoming of this model is its inability to provide an explanation for the momentum
effect, as documented by Jegadeesh and Titman (1993). Momentum can be described as the
propensity for an upward or downward trend in an asset price to continue over a short
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to intermediate time horizon (Jegadeesh and Titman 1993). The three-factor model has
since been extended by Carhart (1997) to incorporate momentum (WML—“winner minus
loser”), such that

Rt − RFt = β1(RMt − RFt) + β2SMBt + β3HMLt + β4WMLt

where in addition to the previous notations, therefore one defines

WMLt: Return on winner minus loser portfolio at time t, and
β4: Momentum beta.

2.5. Exploring Cap-Indifferent Indices

Refuting the notion that indices aimed to be representative of the CAPM market
portfolio are mean-variance optimal would intuitively suggest the existence of other “more
efficient” indices. Likewise, this would support the view that passive investors could in fact
do better than to hold what is deemed to be the market portfolio and thus achieve superior
risk-adjusted returns (Arnott et al. 2005). Reflecting upon this argument, Arnott et al. (2005)
tested a sample of stock market indices whose underlying weighting methodology were
based on fundamental factors, or non-market capitalisation measures of firm size, such
as book value, revenue, and dividends amongst others as a means of seeking more effi-
cient indices.

Interestingly, over a 43 year observation period, Arnott et al. (2005) revealed that
the fundamentals-based portfolios outperformed the S&P 500 Index by 1.97 percentage
points per year on average, on a risk-adjusted basis. Therefore, Arnott et al. (2005)
evidenced that cap-indifferent indices are more mean-variance efficient than their cap-
weighted counterparts. More recently, Arnott et al. (2010) were able to provide evidence
to support the superiority of alternative (market-cap-indifferent) weighting methodology
over traditional weighting methods as a means of index construction, ultimately forging a
new passive investing strategy.

2.6. Smart Beta

The pioneering work of Arnott et al. (2005) led to the conceptualisation of factor-based
investing. In the world of finance, a factor can be defined as a macroeconomic, statistical
or fundamental characteristic of a financial asset that provides some explanation of their
returns and risk (MSCI 2013). For example, the CAPM prescribes the use of the market
factor (or market beta). Over the years, researchers have made continuous attempts to
uncover other factors that persist throughout time and exist across a range of asset classes.
Several have been previously discussed, i.e., size, momentum, and value, as documented
by Banz (1981); Jegadeesh and Titman (1993); or Rosenberg et al. (1985). These empirical
studies suggest that those factors have exhibited consistent excess returns relative to the
market. Such factors are considered as ‘risk premia factors’; this means that they have
consistently earned a premium over sustained periods of time “as a result of” exposure to
sources of systematic risk (MSCI 2013).

Collectively, factor-based investing and cap-indifferent weighting methodology un-
derpin the relatively new strategy in the investment industry, the so called “smart beta”.
Notice that there is no unanimously agreed upon definition of smart beta (SB); thus, it
remains an ambiguous term used to describe an “innovative, transparent and low-cost
rules-based index construction process” (Morningstar 2014) that “employs alternative
weighting and security selection with the goal of outperforming a market-cap-weighted
benchmark, reducing portfolio risk, or both” (Mikalachki 2017). In principle, indices or
exchange-traded funds (ETFs) formed on the premise of a SB strategy are passive products,
which maintain many of the benefits of passive investing (Arnott et al. 2005). However,
with the intention to capitalise on factors that are considered to be key drivers of return, SB
products also adopt an element of active management. Therefore, SB is often referred to as
a hybrid of both active and passive strategies (Financial Times 2017). Nevertheless, “Smart
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Beta ETFs may underperform cap-weighted benchmarks and/or increase the portfolio
risk.” (Mikalachki 2017).

Thus, the construction of an index encompassing an SB strategy involves utilising
alternative weighting methodology or screening method such as dividends, volatility, or
quality. This ingenious technique enables the fund manager to actively tilt the portfolio
towards particular factors that have shown empirical tendency to provide lower risk or
higher returns than traditional indices, or provide a combination of the two. Categorically,
SB products can be considered as either return or risk-oriented (Morningstar 2014).

At present, research covering the performance of SB ETFs benchmarked to tradi-
tional cap-weighted market indices remains relatively scarce. In 2016, a comprehensive
study—“How Smart are “Smart Beta” ETFs?” was released by Glushkov (2016). With an
investigation spanning an 11 year period (2003–2014), Glushkov attempted to document
the superior performance of a sample of 164 US-domicile equity SB ETFs relative to their
cap-weighted counterparts. Discouragingly, the results of Glushkov’s study provide no
definitive evidence that the sample of SB ETFs were able to deliver superior risk-adjusted
returns than their benchmarks over the investigation period. Glushkov reported a mediocre
60% of the sampled SB ETFs to deliver superior risk-adjusted returns by outperforming
their respective benchmarks, on average, by 1.16% per year. The remainder underper-
formed their benchmarks by an average of −1.82% per year. Disturbingly, Glushkov
documented that the most widely held SB ETF, the dividend-oriented SB ETF, significantly
underperformed by an average of −3.90% annually. Therefore, Glushkov (2016) found no
clear evidence to support the notion that SB ETFs outperform their risk-adjusted bench-
marks in practice. Furthermore, Johnson (2017a, 2017b) held a similar investigation based
upon a sample of US-domicile SB ETFs covering a 10 year period ending March 31st 2017.
Consistent with Glushkovs’ findings, Johnson (2017a, 2017b) also concludes that the sample
of SB ETFs offers no definitive improvement upon their cap-weighted counterparts on a
risk-adjusted basis. Rompotis (2019) also found that SB ETFs cannot outperform the mar-
ket, maybe because ETFs move contrary to the growth or decay tendencies of the market.
However, Mateus et al. (2020) found that as per the risk-adjusted performance on 152 US
equity smart beta ETFs over the period June 2000–May 2017 outperformed their related
traditional ETFs, even after expenses. In fact, through a practical argument, di Renzo (2020)
considered that one should distinguish active from passive strategies: being flexible might
be one (or « the »?) solution for better returns.

2.7. Portfolio Management along Smart Beta Strategies

Within this literature review, in addition to addressing models in order to sustain our
study, one should also consider the practical objective of this paper. We can mention a
few papers, among a huge literature base, where analyses have been implemented, for
portfolio management. As recalled above, theories underlying the existence of SB ETFs
have proven encouraging in terms of their ability to offer investors optimised risk-adjusted
returns (Arnott et al. 2005). Let us point to Pachamanova and Fabozzi (2014)’s review about
some widely used approaches to portfolio analytics, discussing traditional and new uses
for factor models, investment methodologies of recent interest (such as smart beta).

In fact, a swath of strategies have been designed to provide access to a wide array of
return-enhancing risk in the market place for investors and practitioners Many strategies
claim to provide access to the same factors, and one might reasonably expect that they
would be similar. However, the ways they are constructed can vary widely. Seemingly small
distinctions in index construction can lead to portfolios that have differential drivers of risk
and return and unequal exposures to factor and sector biases (Ung and Luk 2016). Ung
and Luk review some typical strategies that seek to track common factors (i.e., volatility,
momentum, quality, growth, value, dividend yield, and size) in the U.S. market. However,
Blitz (2016) stresses that many smart beta strategies do not offer maximum factor exposure
but still contain a significant amount of market index exposure as well, or some unexpected
exposures to other factors. Yet, the inclusion of the momentum and size factors, and
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the selectiveness in stock screening, on the performance and implementation cost of a
multifactor strategy, improve the performance and coverage of the multifactor strategy
(Chow et al. 2018; Li and Shim 2019).

More globally, since it appears that there is a need for guidance on how to allocate
across the ever-increasing array of smart beta products, Dopfel and Lester (2018) developed
a framework for investors to blend single-factor and multifactor smart beta within a
total portfolio context. Dopfel and Lester (2018) also provided a case study in order to
demonstrate how the methodology can be applied to attain better portfolios. In the same
line of thoughts, Lee and Kim (2018) provided a review of diverse perspectives from
both practitioners and researchers on smart beta strategies. They illustrated their concern
by performing empirical and theoretical investigations on the efficiency of smart beta
strategies as portfolio management approaches.

Previously, Amenc and Goltz (2007) had outlined the possible uses of ETFs in core
satellite portfolio management. With concrete examples, Amenc and Goltz had showed
that both the efficient use of ETFs for sub-segments of the bond or equity markets allows
investors to create portfolios that beat broad market indices in terms of their risk/return
properties, and a dynamic allocation strategy between the core and the satellite portfolio
allow investors to gain access to the outperformance of the satellite, while controlling the
risk of underperformance.

Thereafter, Kula et al. (2017)’s book digs into every aspect of exchange-traded funds
(ETFs) and provides accessible guidance on utilising the indices as part of a productive
investment strategy. Very recently, Mateus et al. (2020) analysed smart beta ETF perfor-
mance of 152 US equity smart beta ETFs over the period June 2000–May 2017 and provided
evidence on the funds’ performance persistence. They found that the performance of
winners and losers does persist in the year ahead.

One cannot end this brief focus on applications without pointing out Maguire et al.
(2018) who detailed the construction of a portfolio involving two independent smart
beta strategies; the first is a long-short beta-neutral strategy derived from running an
adaptive boosting classifier on a suite of momentum indicators, while the second is a
minimised volatility portfolio which exploits the observation that low-volatility stocks tend
to yield higher risk-adjusted returns than high-volatility stocks. The results reinforce the
effectiveness of smart beta strategies, and demonstrate that combining multiple strategies
simultaneously can yield better performance than that achieved by any single component
in isolation.

3. Methodology

The following section outlines the research methodology of this paper. The content
includes a description of the data sample used, how it was collected, and the method of
analysis. Let us emphasise that the chosen measures are the Annualised Total Return (ATR),
the Annualised Volatility (AV), the Annualised Sharpe Ratio (ASR), and the Annualised
Relative Return (ARR), based on 12 months time intervals. We follow a classical route for
performing monthly returns-based regression analyses using the CAPM, Fama–French
three-factor model and Carhart four-factor model, previously outlined. The mathematical
formulae used in the investigation have been presented when outlining the relevant models.
It is to be noted that, all data acquired for this paper are in the public domain.

3.1. Data Sample

The data sample produced for the purpose of this investigation was generated using a
Bloomberg Terminal. The application of predetermined criteria discussed further below
enabled us to create a rather large sample of SB ETFs suitable for this study, 145 SB ETFs,
obtained from 7564 at first, through the filters explained here below.

The Bloomberg Terminal contains financial and non-financial information for 7564
primary share class ETFs. First, based on asset class and country of domicile, equity and
European Union (EU), respectively, the sample was immediately reduced to 1760 equity
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ETFs domicile in the EU. Here, we must point out that there was no restriction placed on
the geographic orientation of the markets in which the ETF is benchmarked against or
tracks, both domestic and global were included.

Next, by adopting Morningstar’s (Morningstar 2014) definition of SB (see Section 2.6
Smart Beta above) and screening criteria as prescribed by their “Strategic Beta Guide”, the
EU-domicile equity ETFs were categorised in our investigation according to SB attributes,
as displayed in Table 1, with emphasis on factors to be discussed below.

Table 1. Smart beta sub-categories; used factors in this study are underlined.

Return Oriented Risk Oriented Other

Dividend
Screened/Weighted *
Value *
Size
Growth
Fundamentals Weighted *
Multifactor *
Earnings Weighted
Quality *
Expected Returns
Revenue Weighted
Momentum *
Buyback/Shareholder Yield *

Low/Minimum
Volatility/Variance *
Low/High Beta
Risk Weighted

Non-Traditional Commodity
Equal Weighted *
Non-Traditional Fixed Income
Multiasset

Those that possess a targeted factor exposure or features deemed characteristic of
SB, such as dividend screened/weighted, low volatility, and fundamentals weighted,
were retained, but the remainders were discarded. Due to data availability (or rather
restrictions), those 9 SB that are applicable to this investigation are highlighted with an
asterisk (*) and underlined in Table 1. For completeness, it is also important to make the
reader aware that in some instances, SB ETFs have been strictly defined as indices that are
constructed based upon an alternative index weighting methodology to traditional market
capitalisation (Morningstar 2014). However, the comprehensive definition considered by
Morningstar is also inclusive of those that have style “tilts”, i.e., those with targeted factor
exposure or particular characteristics, and subsequently weight the constituents according
to their market capitalisation. Therefore, criteria displayed in Table 2 were also applied
simultaneously to those of Table 1.

Table 2. Smart beta screening criteria.

Excluded Included

Market capitalisation-weighted sector indices
Market capitalisation-weighted country indices
Thematic indices: for example, clean energy or cloud
computing
Indices that screen constituents strictly on the basis
of sector membership or geography
Volatility indices
Indices that employ options strategies
Indices that underlie products in our “trading” categories,
such as leveraged and inverse funds
Indices that mimic quantitative tactical strategies

Non-cap-weighted sector indices
Non-cap-weighted country indices

Further amendments were also made to the sample in order to include those cases
with an inception date on or before 31 December 2016. This step was made to support a
robust investigation by retaining ETFs with at least 12 consecutive monthly returns data.
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Finally, only those actively trading were retained for the investigation. This meant
a rejection of the ETFs that are no longer trading, dissolved, or were liquidated at any
point during the time horizon of this investigation. In fact, Bloomberg Terminal simply
does not retain the data for ETFs of these classifications. This ultimately left us with a final
sample of 145 SB ETFs, belonging to 9 sub-categories, to be observed within this project
(see Tables 1 and 3 and their whole list in Appendix A), their number also depending on
the availability year: let us mention the 9 so kept factors with such notations: dividend,
low volatility, value, equal, fundamentals, multifactor, quality, momentum, and buyback.

Table 3. Data sample: number of investigated SB ETFs per SB sub-category per year available.

Factor 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Dividend 6 9 9 10 15 15 19 24 27 36 49 53
Low Volatility 3 10 11 13 14 19

Value 3 7 9
Equal 1 3 3 4 10 14 18

Fundamentals 4 7 7 9 9 9 11 11 11 14
Multifactor 1 1 1 1 1 1 1 6 19 21

Quality 1 2 4
Momentum 1 2 4

Buyback 3 3
Total 6 9 14 18 23 26 35 47 54 81 121 145

Each ETF had been directly assigned a benchmark by Morningstar Inc. upon inception,
based upon an examination of each ETFs respective prospectus and factsheet. Using this
independent source for benchmark allocation mitigates the possibility of a favourable
benchmark being chosen by the fund founder for supposed marketing purposes (see
Appendix B for the list of benchmarks).

3.2. Method of Analysis

Once we produce this sample of EU-domicile equity SB ETFs and their declared
benchmarks, we extract the necessary data for this investigation. The soft data obtained
included fund name, ticker, index weighting methodology, SB feature, and inception date.
Next, we harvested the historical monthly net asset values (NAVs) of each SB ETF as well
as its respective benchmark, and the historical yield of the 10 year German government
bund to act as a proxy for the risk-free interest rate. The time horizon chosen for this project
is 30 December 2005 to 31 December 2017, mostly due to the lack of available data for the
SB ETFs prior to that date.

The sample of SB ETFs and benchmarks underwent a series of numerical assessments
in order to aim at explaining both performance and risk. The measures chosen were the
Annualised Total Return (ATR), the Annualised Volatility (AV), the Annualised Sharpe
Ratio (ASR) and the Annualised Relative Return (ARR)—all of which were calculated based
on 12 months time intervals, both since the first year of 12 consecutive monthly returns for
SB ETFs and since the corresponding year of the respective benchmarks, going back as far
as 30th December 2005. Finally, a monthly returns-based regression analysis was performed
using the CAPM, the Fama–French three-factor model and the Carhart four-factor model,
as discussed in the literature review sections, to assess the factor exposure of each fund to
market, size, value and momentum factors. The data required for each of the factors had
been obtained from the Fama–French online data library1.

3.3. Quantitative Measurements

Table 4 presents which measurements, calculations, and regression models are used in
this study.
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Table 4. Quantitative measurements and their definition.

Measurement Definition

Annualised Total Return

Annualised Total Return (ATR) is the geometric average of the return of the fund or benchmark
each year over a given time horizon and is a simple measure of absolute performance
(Investopedia). As this investigation considers periods of one year, the ATR is calculated by
first computing the monthly NAV returns (Rm) of each fund or benchmark and then
compounding 12 consecutive monthly returns to reach an annualised figure.

Mathematical Expression Monthly Return, Rmt =
NAVi+t−NAVi,t

NAVi,t

Excel Function Annualised Total Return, ATRt = PRODUCT (1 + Rmt:Rmt−11) – 1

Annualised Volatility

Annualised Volatility (AV) is the standard deviation of the fund returns on an annual basis. It
provides a measure of the fluctuation of the funds returns over a given period, and hence how
volatile or risky it may be (Morningstar 2014). The AV is calculated as the standard deviation of
12 consecutive monthly returns multiplied by square root of 12.

Excel Function Annualised Volatility, σt = STDEV (Rmt:Rmt−11) × SQRT (12)

Annualised Sharpe Ratio

The Sharpe Ratio (Sharpe 1966, 1994) is described as a measure of risk-adjusted performance.
The Annualised Sharpe Ratio (ASR) is calculated as the ATR of the fund returns less the
annualised risk-free interest rate (RF), over the AV of the fund. In essence, the ASR determines
the return per unit of risk endured. When making a comparison between two funds, a higher
ASR indicates a superior risk-adjusted performance.

Excel Function Annualised Sharpe Ratio, ASRt = ATRt−RFt
σt

Annualised Relative Return
Annualised Relative Return (ARR) is defined as the excess return of the SB ETF relative to a
specified benchmark. The ARR is calculated as the difference between the ATR of the SB ETF
and the ATR of its benchmark.

Excel Function

Annualised Relative Return, ARRt = ATRSB ETF,t − ATRBM,t
where

- ATRETF,t: ATR of a SB ETF at time t
- ATRBM,t: ATR of the prescribed benchmark at time t

CAPM

RmSB ETF,t − RFt = αt + β1(RmBM,t − RFt) + εt
where

- RmSB ETF,t: Monthly absolute return of a SB ETF at time t
- RFt: Risk-free interest rate at time t
- αt: Alpha at time t
- β1: Market beta
- RmBM,t: Monthly absolute return of a benchmark at time t
- εt: Error term

Three-Factor Model

RmSB ETF,t − RFt = αt + β1(RmBM,t − RFt) + β2SMBt + β3HMLt + εt
where

- β2: Size beta
- SMBt: Return on small minus big portfolio at time t
- β3: Value beta
- HMLt: Return on high minus low portfolio at time t

Four-Factor Model

RmSB ETF,t − RFt = αt + β1(RmBM,t − RFt) + β2SMBt + β3HMLt + β4WMLt + εt
where

- WMLt Return on winner minus loser portfolio at time t
- β4: Momentum beta
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4. Analysis of Results

This section contains a descriptive analysis of the empirical results generated from
the quantitative metrics discussed in Sections 3.2 and 3.3, starting with the Annualised
Relative Return (ARR), the Annualised Volatility (AV), the Annualised Sharpe Ratio (ASR),
and the regression analysis performed using the CAPM, the three-factor model, and the
four-factor model.

For most of this section, we have decided to focus the analysis on either dividend-
oriented SB ETFs or fundamentals-weighted SB ETFs, due to the data best availability, and
appropriate meaning.

4.1. The Annualised Relative Return (ARR)

From a marketing perspective, SB ETFs have been largely sold upon their ‘ability’ to
achieve returns greater than traditional cap-weighted indices. The Annualised Relative
Return (ARR) quantifies the difference between the Annualised Total Return (ATR) of the
SB ETF and the ATR of the corresponding benchmark, hence providing an indication of
outperformance (highlighted in bold face) or underperformance. Tables 5 and 6 provide
the results of either the dividend or the fundamentals-weighted SB ETFs, respectively,
over time; both ATRs and ARRs have been averaged across each annual period and thus
incorporate the respective figures for each SB ETF and benchmark actively trading in that
year (see Table 3 for the information on respective years).

Table 5. Average ARR of dividend-oriented SB ETFs versus respective benchmarks.

Date
SB ETF ATR Benchmark ATR ARR

Average Median Average Median Average Median

2006 21% 21% 22% 22% −1% +3%
2007 −1% −2% 9% 8% −10% −12%
2008 −50% −48% −41% −42% −9% −12%
2009 29% 27% 30% 27% −2% −0%
2010 8% 6% 9% 11% −1% −2%
2011 −11% −13% −9% −15% −2% −2%
2012 8% 6% 18% 18% −10% −11%
2013 13% 15% 21% 23% −8% −10%
2014 5% 4% 2% 2% +2% +2%
2015 −2% 0% 1% −2% −2% −2%
2016 11% 7% 8% 7% +4% +1%
2017 6% 7% 17% 16% −11% −9%

Table 6. Average ARR of fundamentals-weighted SB ETFs versus respective benchmarks.

Date
SB ETF ATR Benchmark ATR ARR

Average Median Average Median Average Median

2008 −31% −33% −45% −45% +14% +16%
2009 30% 26% 40% 34% −10% −6%
2010 15% 18% 11% 11% +4% +4%
2011 −14% −16% −10% −10% −4% −3%
2012 13% 10% 15% 15% −3% −1%
2013 17% 17% 18% 20% −1% −2%
2014 6% 7% 2% 2% +4% +5%
2015 −1% 0% −3% −3% +2% +0%
2016 23% 20% 7% 6% +17% +12%
2017 12% 10% 17% 20% −5% −7%

By first considering Table 5, one observes that the average ARR of the dividend-
oriented SB ETFs provides a clear evidence of a continuing poor performance relative to
their benchmarks indices over the years. As can be seen also from Table 5, the maximum
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positive average ARR is +4% in 2016, while the maximum negative average ARR is −11% in
2017. Thus, dividend-oriented SB ETFs failed to outperform their benchmarks on average,
in 10 out of the 12 years here studied. For more information, notice that amongst this
SB category, the maximum annualised outperformance recorded was +36% achieved by
WisdomTree Emerging Markets SmallCap Dividend UCITS ETF in 2016 versus an average
of +4% and a median of +1%. In contrast, the maximum annualised underperformance
recorded was −34% by iShares Dow Jones Asia Pacific Select Dividend 3 UCITS DE in 2017
versus an average of –11% and median of −9%.

Next, consider Table 6. In comparison to the dividend-oriented SB ETFs, the
fundamentals-weighted SB ETFs signal outperforms on 50% of the years considered versus
17% for dividend-oriented SB ETFs. However, over the time period here considered, 50%
of cases also present years of underperformance. From a glance, it can be admitted that
fundamentals-weighted SB ETFs provide greater returns than dividend-oriented SB ETFs
when considering similar time periods. In 2016, fundamentals-weighted SB ETFs provide
an ARR of +17% versus +4% dividend-oriented SB ETFs, and only −5% versus −11%
in 2016.

However, there is no conclusive evidence to suggest that either category of SB ETFs
predictably provide greater returns than their cap-weighted benchmarks. Table 7 provides
an overview of the average ARR for each SB category over time. Table 7 evidences that
5 of the 9 SB categories were successful in achieving an average ARR greater than their
benchmarks in more than 50% of the observation periods.

Table 7. Average ARR for each SB category over the investigated time interval.

Date Dividend Low
Volatility Value Equal Fundamentals Multifactor Quality Momentum Buyback

2006 −1% - - - - - - - -

2007 −10% - - - - - - - -

2008 −9% - - - +14% +19% - - -

2009 −2% - - - −10% −16% - - -

2010 −1% - - - +4% +3% - - -

2011 −2% - - +24% −4% −8% - - -

2012 −10% −6% - −26% −3% −6% - - -

2013 −8% −3% - −26% −1% +6% - - -

2014 +2% +6% - +7% +4% +3% - - -

2015 −2% +5% +9% +4% +2% +4% +3% +4% -

2016 +4% −4% +2% +7% +17% +4% −3% −3% −2%

2017 −11% −6% −2% −8% −5% −4% +2% +10% −5%

4.2. The Annualised Volatility (AV)

The next step of the investigation involved testing the volatility of returns of the SB
ETFs—as measured by standard deviation. The Annualised Volatility (AV) is calculated
as the annualised standard deviation of the returns of the SB ETF and the corresponding
benchmark. The AV hence provides a measure of dispersion of the returns of the SB
ETF or benchmark from the mean value of returns across rolling windows of 12 months.
Figures 1 and 2 provide a graphical representation of the results of the dividend-oriented
and fundamentals-weighted SB ETFs, to which we add low volatility-weighted SB ETFs,
respectively, over time (Figure 3). The AVs have then been averaged across each annual
period to incorporate the respective figures for each SB ETF and benchmark actively trading
in that year; see Table 3 for recalling the years.
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Figure 1. Average AV of dividend-oriented SB ETFs versus respective benchmarks.

It is evident to see in all three cases that there are not many notable differences in
volatility of returns across the time horizons studied. Figure 1 shows that in 2010, the
dividend-oriented SB ETFs experience a volatility of 0.04 less than their benchmarks; the
maximum recorded positive difference in the average AV. On the contrary, the fundamentals
weighted SB ETFs (Figure 2) experienced an average AV of 0.30 versus the benchmarks
0.26 in 2009, thus 0.04 more volatile; the maximum negative difference in the average AV.
More generally, or 60% of the time, the dividend-oriented SB ETFs experience a higher
average volatility than their respective benchmarks.

Figure 3 provides a graphical representation of the AV of returns of the low volatility-
weighted SB ETFs. Low volatility SB ETFs are categorised as a risk-oriented strategy
by Morningstar (2012). Recall that this SB category weights their constituents based on
historical volatility and, as the name implies, objectively intends to reduce volatility (or
risk) while maintaining or enhancing returns. Interestingly, on average, 67% of the low
volatility SB category exhibits a lower AV of returns than their corresponding benchmarks.
However, the difference is negligible, in the years in which the low volatility SB ETFs reflect
a higher volatility than their benchmarks.

In summary, it can be said that low volatility-weighted SB ETFs certainly provide
lower risk relative to their benchmark indices and thus meet its objective. However, as
seen in the other cases there is no clear evidence to suggest that either category of SB ETFs
provide lower volatility of returns than their cap-weighted benchmarks. Overall, three out
of nine SB categories exhibit lower volatilities than their benchmarks more often than not,
while six out of nine SB categories experience higher volatility than their benchmarks (see
Appendix C for the complete results).

With reference to Figure 2, in the year 2011, the fundamentals-weighted SB ETFs
exhibited a volatility of 0.15 versus the benchmarks 0.20. The difference of 0.05 was the
maximum recorded difference in volatility across the study period (2008–2017). However,
in 2009 the fundamentals-weighted SB ETFs also experienced a period of higher volatility
than their prescribed benchmarks, 0.30 versus 0.27, respectively. In summary, out of 5 of
the 10 years studied the fundamentals-weighted SB ETFs experienced a higher average
volatility than their respective benchmarks, and vice versa, therefore ensuring lower
volatility of returns than the dividend-oriented SB ETFs. Notably in both cases, in times
of abnormally high market volatility (see illustration through VIX display, Figure A1, in



J. Risk Financial Manag. 2021, 14, 283 15 of 30

Appendix D), i.e., 2009 during the financial crash 2010 flash crash, 2011 European sovereign
debt crisis, SB ETFs experience the biggest differences in volatility, both positive and
negative.
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Figure 2. Average AV of fundamentals-weighted SB ETFs versus respective benchmarks.
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4.3. The Annualised Sharpe Ratio (ASR)

After calculating both the ATRs and AVs of each SB ETF and the respective bench-
marks, we can compute the Annualised Sharpe Ratio (ASR). The risk-free interest rate
used in this process was an annualised version of the 10 year German government bund
(sourced from Bloomberg). As previously mentioned, the ASR provides a measure of
risk-adjusted returns, and hence the amount of returns achieved per unit of risk. An
ASR < 1 shows that the returns on the SB ETF or benchmark are less than the risk taken,
while an ASR > 1 signals that the returns achieved are greater per unit of risk; an ASR = 1
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indicates that the returns generated are proportional to the risk endured. Additionally, a
negative ASR suggests that either the SB ETF or benchmark generate returns less than the
risk-free interest rate. SB ETFs pride themselves on offering greater risk-adjusted returns
than traditional cap-weighted indices; hence, we would expect to see better risk-adjusted
results from the sample than the passive benchmarks. Again, we decided to use a bold face
to signal those SB ETFs providing higher risk-adjusted returns relative to their benchmarks
and a red highlighter to signal lesser risk-adjusted returns relative to their benchmarks.
Each ASR is calculated with rolling windows of 12 months since inception for each SB ETF
and since the corresponding year of the respective benchmarks. Averages were then taken
across each yearly period to express the results for each SB ETF and benchmark actively
trading in that year (see Table 3 for the year details).

Tables 8 and 9 provide an example of the results of the dividend-oriented and
fundamentals-weighted SB ETFs, respectively, over time. The yearly better performances
are emphasised.

Table 8. Average ASR of dividend-oriented SB ETFs and the respective benchmarks; better perfor-
mance is highlighted in bold faced.

Date
SB ETF ASR Benchmark ASR

Average Median Average Median

2006 1.81 2.02 2.43 1.98
2007 −0.51 −0.48 0.42 0.35
2008 −1.94 −1.99 −1.78 −1.84
2009 0.85 0.88 1.06 1.05
2010 0.46 0.20 0.37 0.46
2011 −0.81 −1.00 −0.62 −0.67
2012 0.44 0.41 1.18 1.29
2013 1.03 1.03 1.69 1.84
2014 0.52 0.29 0.18 0.14
2015 −0.13 −0.06 −0.02 −0.15
2016 0.81 0.53 0.64 0.39
2017 0.80 0.68 2.89 2.34

Table 9. Average ASR of fundamentals-weighted SB ETFs and the respective benchmarks; better
performance is highlighted in bold faced.

Date
SB ETF ASR Benchmark ASR

Average Median Average Median

2008 −1.35 −1.22 −1.90 −1.88
2009 0.88 0.78 1.37 1.32
2010 0.73 0.76 0.38 0.45
2011 −1.11 −1.25 −0.62 −0.61
2012 0.96 0.83 1.01 0.90
2013 1.27 1.46 1.65 1.77
2014 0.58 0.77 0.00 −0.49
2015 −0.05 −0.09 −0.29 −0.33
2016 1.81 1.59 0.51 0.45
2017 1.58 1.27 3.55 3.33

Table 8 shows that in 2014, the dividend-oriented SB ETFs generate a maximum
outperformance relative to their benchmarks of 0.35, on average. In 2017, the dividend-
oriented SB ETFs not only achieve an ASR < 1, but underperform their benchmarks on
average by 2.09, a significantly large underperformance (see Table 10). In summary, the
dividend-oriented SB ETFs fail to outperform their cap-weighted benchmarks on a risk-
adjusted basis in 9 of the 12 years studied.

With reference to Table 9, in 2016 fundamentals-weighted SB ETFs achieved an average
ASR of 1.81 versus the benchmarks 0.51; also a relative outperformance of 1.30 (see Table 10).
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On the other hand, in 2017 the SB ETFs also underperformed their benchmarks on average
by 1.97. Therefore, the fundamentals-weighted SB ETFs generated greater risk-adjusted
returns than their benchmarks 50% of the years studied, while underperforming the
remainder. Consistent with the previous performance indicators, we can conclude that
fundamentals-weighted SB ETFs provide greater risk-adjusted returns than dividend-
oriented SB ETFs. However, the overall results do not provide sufficiently convincing
evidence to suggest that fundamentals-weighted SB ETFs can consistently outperform their
benchmarks.

Table 10 provides the complete overview of the difference between the average ASR
of each SB category and their benchmarks over time. Disappointingly, alas, it is clear to see
that only 2 out of 9 SB categories are able to provide superior risk-adjusted returns than
their benchmarks over 50% of the periods studied. Of the five categories that achieved
greater ARRs, only two SB categories, equal and momentum, are able to certify better
risk-adjusted returns.

Table 10. Summary of the average ASR for each SB category relative to their respective benchmarks over time; best
performances are highlighted in bold faced.

Date Dividend Low
Volatility Value Equal Fundamentals Multifactor Quality Momentum Buyback

2006 −0.62 - - - - - - - -
2007 −0.93 - - - - - - - -
2008 −0.17 - - - 0.55 0.88 - - -
2009 −0.22 - - - −0.49 −0.64 - - -
2010 0.09 - - - 0.35 0.29 - - -
2011 −0.19 - - 0.11 −0.49 −0.41 - - -
2012 −0.74 −0.35 - −0.75 −0.05 −0.30 - - -
2013 −0.66 −0.41 - −0.72 −0.38 −1.52 - - -
2014 0.34 0.99 - 0.89 0.59 0.05 - - -
2015 −0.10 0.28 0.52 0.34 0.24 0.31 0.23 0.33 -
2016 0.17 −0.28 −0.01 0.02 1.30 0.30 −0.34 −0.15 −0.12
2017 −2.09 −1.47 −1.10 −1.64 −1.97 −1.49 −0.89 0.12 −2.28

4.4. Regression Analysis

This section contains the results of the regression analysis carried out using the CAPM,
the three-factor model and the four-factor model. The regression analysis highlights
each SB ETFs exposure to particular risk premia and helps to identify whether they have
successfully taken advantage of particular factors as strategically intended. In order to
perform a monthly returns-based regression analysis, we require five key items: the factor
model, SB ETF monthly returns data, benchmark monthly returns data, monthly risk-free
interest rate, and monthly returns data of the size, value and momentum factors.

Once one gathers all of these relevant data, one can perform a monthly returns-based
regression for each SB ETF since its inception. We report such an average, and the median,
across those particular variables to construct a consolidated summary output per SB
category, in Table 11, for the CAMP, and in Tables A1 and A2, in Appendices E and F for
the two other models.

4.4.1. The CAPM

The first regression analysis was conducted using the single-factor model, the CAPM.
Table 11 provides the regression summary outputs of the CAPM regression analysis by
taking averages of key variables previously mentioned.

As can be seen from Table 11, 4 averages of the 9 SB categories, value, fundamentals,
quality, and buyback, display an R-square equal to or above 70%, thus exhibiting a good cor-
relation within this CAPM. The remaining 5 categories display an R-square between 40 and
70% and thus reveal an average correlation with the CAPM. For example, the results show
that dividend-oriented SB ETFs have an R-square of 59%, and hence 59% of movements in
the SB ETF can be explained by movements in the CAPM, versus fundamentals-weighted
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SB ETFs with an R-square of 70%, which suggests 70% of movements in these SB ETFs can
be explained by the CAPM. In terms of significant F, all values are ≤0.05. This suggests
that all of the results did not occur by chance.

Table 11. Consolidated single-factor (CAPM) regression summary output.

Factor R2 Signif. F Alpha × 103 p-Value Market Beta × 103 p-Value

Dividend
Average 59% 5.4425 × 10−2 −2.5073 0.40200 0.76831 5.4425 × 10−2

Median 65% 4.9376 × 10−14 −2.0656 0.33695 0.86109 4.9376 × 10−14

Low Volatility Average 68% 1.3572 × 10−3 −1.3367 0.48181 0.77383 1.3572 × 10−3

Median 74% 6.6007 × 10−13 −0.3914 0.50615 0.76988 6.6007 × 10−13

Value
Average 77% 3.3920 × 10−6 0.3216 0.39178 1.11720 3.3920 × 10−6

Median 84% 1.2000 × 10−8 0.3290 0.25519 1.04040 1.2000 × 10−8

Equal Average 60% 2.1809 × 10−2 −1.6266 0.45101 0.87565 2.1809 × 10−2

Median 57% 2.8740 × 10−6 −1.1959 0.44041 0.91573 2.8740 × 10−6

Fundamentals
Average 70% 2.0000 × 10−7 −0.4324 0.50792 0.87367 2.0000 × 10−7

Median 76% 1.1624 × 10−24 −0.4060 0.48797 0.81113 1.1624 × 10−24

Multi−Factor
Average 61% 4.9362 × 10−2 2.0413 0.48525 0.75180 4.9362 × 10−2

Median 83% 4.0647 × 10−11 0.6536 0.51467 0.81153 4.0647 × 10−11

Quality Average 89% 1.9310 × 10−6 −1.5455 0.52674 1.03810 1.9310 × 10−6

Median 89% 2.5000 × 10−8 −1.2821 0.51401 0.98164 2.5000 × 10−8

Momentum
Average 63% 2.4992 × 10−2 4.1446 0.36675 0.80678 2.4992 × 10−2

Median 72% 2.0207 × 10−4 3.0030 0.36774 0.84088 2.0207 × 10−4

Buyback Average 75% 1.3100 × 10−7 −2.1195 0.38517 1.16660 1.3100 × 10−7

Median 80% 7.3323 × 10−13 −3.2950 0.39883 1.22030 7.3323 × 10−13

Recall that an alpha is considered to be a measure of the difference between the SB ETFs
actual returns and its expected performance, given its level of risk as measured by a beta.
An alpha is typically used as a measure of performance of active fund managers. As SB
ETFs are passive instruments, alpha is expected to be close to or equal to zero. Interestingly,
alpha is negative in most cases, thus except for value, multifactor, and momentum, thereby
suggesting that the ETF has underperformed the benchmark given its level of risk. In other
cases, alpha has been recorded, but is negligible as anticipated. However, reflecting on the
P-values for each alpha would suggest that most results are due to complete randomness
(all values are ≥ 0.05).

The final step of this regression analysis involved studying the market beta of each SB
ETF category. Generally speaking, passive instruments seek to mimic the movements of
a broader benchmark. That being said, the market beta of passive instruments should be
equal to 1 to replicate that of the market. Table 11 shows that 6 out of 9 SB categories have
a market beta of less than or close to 1, while the remainder have a market beta ≥1. The
p-value also confirms that these results did not occur by chance as each value is ≤0.05.

4.4.2. The Three-Factor Model

The next regression analysis was performed using the Fama–French three-factor model
which incorporates the size factor and the value factor along with the market factor. As
can be seen from Table A1 (Appendix E), 6 of the 9 SB categories display an R-square of
above 70% exhibiting a good correlation with the three-factor model; this is a marginal
increase from what is seen in the CAPM regression analysis. The remaining 4 categories
display an R-square between 40 and 70% and thus reveal some auto-correlation within
this three-factor model. Using the same examples, the dividend-oriented SB ETFs and
fundamentals-weighted SB ETFs, the results show an R-square of 65% and R-square of 74%,
respectively. The significant F values remain ≤0.05, while the generated alpha remains
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close to zero or “increase further negatively”. However, reflecting on the p-values again for
each alpha shows that most results suggest a completely random process (≥0.05).

Appendix E (Table A1) shows that the market beta remains at similar levels (≤1),
albeit increased slightly, from what can be seen in Table 11, the CAPM regression analysis.
The p-value also confirms that these results did not occur by chance as each value is ≤0.05,
other than the multifactor model.

From these results, it can be concluded that the large majority of SB ETFs show no
exposure towards the size factor or value factor as most of the values computed are negative.
Of those that are positive, the P-values shown are (≥0.05) and thus have likely to have
occurred due to randomness. Interestingly, the value-weighted SB ETFs show a positive
beta coefficient, but again, the p-value confirms its likely random occurrence.

4.4.3. The Four-Factor Model

As can be seen from Table A2 in Appendix F, 7 of the 9 SB categories now display
an R-square of above 70% exhibiting a good correlation with the four-factor model. The
remaining 2 categories, dividend-oriented SB ETFs and equal-weighted, display an R-
square between 40 and 70%, close to 70%, and thus reveal an average correlation with the
four-factor model. Significance F and alpha remain almost unchanged.

Finally, it is of interest to analyse the exposure to the market beta, size, value and
momentum factor of each SB ETF category. Displayed values in Appendix F show that
almost all of the SB categories exhibit a negative exposure to these additional three factors
while the market beta coefficient has increased marginally. The p-values also confirm that
these results likely occurred by chance as each value is significantly greater than 0.05, with
the exception of the momentum-oriented SB ETFs which exhibit a momentum beta of 0.005
and a p-value ≤ 0.05.

5. Conclusions
5.1. Recalling Research Questions

To conclude, let us begin by restating the questions of this investigation and follow
each with a summary of the findings.

(1) Can EU-domicile SB ETFs generate greater risk-adjusted returns than traditional
market capitalisation-weighted indices?

According to the ARRs computed, as reported in Table 7, five of the nine SB categories
can be considered to have been able to achieve greater returns than their benchmarks over
the time horizon studied. However, once some risk is taken into account, it is easy to see
that SB ETFs fail to outperform their benchmarks on average. This is largely as a result
of a combination of low levels of returns as well as a higher volatility relative to their
cap-weighted counterparts. These results allow us to conclude that cap-weighted indices
would have been a better investment than the SB ETFs studied when considering risk and
achieved returns.

(2) Do Smart Beta Exchange-Traded Funds Truly Revolutionise Passive Investment Strate-
gies?

To provide an answer to this crucial question, one can say, based upon the selection of
data acquired and subsequently analysed, that the sample of EU-domicile SB ETFs here
studied does not seem to enhance the capabilities of traditional cap-weighted investment
products by tilting the index towards particular factors in attempt to harvest risk premiums,
in brief, therefore not providing a superior performance. In light of this, we have to suggest
that investors should keep holding funds in traditional cap-weighted indices to achieve
broad diversification and greater returns than for both actively managed ETFs and active-
passive hybrids of the SB sort.

In fine, these answers extend the findings of Glushkov (2016) and the conclusions in
the thesis of Thomann and Safoschnik (2019) because our quantitative analysis is based on
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the performance of 145 EU-domicile SB ETFs, belonging to 9 sub-categories, over a long
(and rather recent) lapse of time, 12 years.

5.2. Limitations of Analysis and Suggested Further Research

Even though we conclude with a significant answer to three crucial questions, it is fair
to admit that there are limitations to the present analysis. A brief note follows:

First of all (as pointed out by a reviewer who we thereby acknowledge for insisting
that we mention the point) not all examined ETFs have been built in order to consider the
hereby examined factors. For examples, the suite of BMO MSCI Income Leaders ETFs were
(are) built combining two factors: quality and yield strategies. Yet, we do not use quality
and yield as the only pertinent factors to assess whether such ETFs effectively capture
intended factor-risk premiums, since we insist on market, size, value, and momentum only.
In order to coherently assess whether the intended factor-risk premiums are effectively
capturing the intended factor-risk premiums, one might have to reconsider each ETFs with
respect to the truly intended factor-risk premiums on which the SB ETF strategies were
(are) actually built. In such a sense, one could avoid reaching a misleading conclusion,
resulting from a deduction based on a non-actively pursued strategy.

5.2.1. Lack of Data

Most of the sample SB ETFs have an inception date within the last 5 years. As a
consequence, much of the calculations could be skewed by an inadequate data set. As
usual, a continuous examination of the market is a relevant suggestion. Error bars are
always indicative of risk and inherent reliability of risk management.

5.2.2. Inconsistent Time Intervals

In addition, we find it difficult to provide a comparison of the performance between
SB categories over time due to an inconsistency in the availability of data for each SB ETF
relative to another. Should this not have been the case, it would have allowed us to make
an even better comparison of the effectiveness of each SB category relative to another over
the same time period. However, with such a variance in the amount of observable data
for each SB ETF and SB category as a whole, a performance comparison between two SB
categories over time is not realistically possible.

5.2.3. Survivorship Bias

It was impossible to remove survivorship bias from the sample chosen by including
inactive ETFs.

5.2.4. Exchange Rate

Recently, it was asked whether exchange-traded funds are influenced by exchange rate
fluctuations. Currency exchange rate fluctuations impact stock markets, and are expected
to influence the sensitivity of ETFs. In a recent study, Geetha et al. (2020) utilise the
currency rate data from 2013 to 2018 of USD, GBP, and INR and examine its effect on the
NDX (NASDAQ). The study emphasises that the ETF as a basket of securities is insensitive
to currency rate fluctuations. Geetha et al. (2020) found that the response of the ETF to the
currency movements is likely due to its underlying index. The study concludes that there is
no direct impact between ETF and index performance through exchange rate fluctuations.

5.2.5. Further Perspective

The next generation of investigations is the five-factor model (Fama and French
2015). The five-factor model incorporates profitability and investment patterns to size and
book-to-market equity ratio factors in addition to the market factor. It has been expressed
that the five-factor model performs better than the Fama–French three-factor model or
the Carhart four-factor model in explaining the cross-section of average stock returns
(Artmann et al. 2012). Blitz (2012) argued for allocating strategically to value, momentum,
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and low volatility equity factor portfolios, and also found some added value for these two
new factors in Fama and French (2015)’s five-factor model (Blitz 2015).
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Appendix A. List of All Studied SB ETFs per SB Sub-Category

Dividend (53 Cases)

PowerShares FTSE UK High Dividend Low Volatility UCITS ETF
PowerShares FTSE Emerging Markets High Dividend Low Volatility UCITS ETF
THINK Morningstar High Dividend UCITS ETF
First Trust US Equity Income UCITS ETF
ComStage 1 DivDAX UCITS ETF
WisdomTree Emerging Asia Equity Income UCITS ETF
WisdomTree UK Equity Income UCITS ETF
AMUNDI ETF MSCI Europe High Dividend Factor UCITS ETF—D
AMUNDI ETF MSCI EMU HIGH DIVIDEND UCITS ETF—D
Deka EURO iSTOXX ex Fin Dividend + UCITS ETF
First Trust Global Equity Income UCITS ETF
LYXOR SG Global Quality Income NTR UCITS ETF—Monthly Hedged C-GBP
PowerShares S&P 500 VEQTOR UCITS ETF
WisdomTree Japan Equity UCITS ETF—USD Hedged
WisdomTree Europe Equity UCITS ETF—USD Hedged
WisdomTree Germany Equity UCITS ETF—GBP Hedged
PowerShares S&P 500 High Dividend Low Volatility UCITS ETF
WisdomTree Emerging Markets Equity Income UCITS ETF
WisdomTree Emerging Markets SmallCap Dividend UCITS ETF
WisdomTree Europe SmallCap Dividend UCITS ETF
WisdomTree Europe Equity Income UCITS ETF
WisdomTree US SmallCap Dividend UCITS ETF
WisdomTree US Equity Income UCITS ETF
iShares MSCI USA Quality Dividend UCITS ETF
iShares Swiss Dividend ETF CH
db x-trackers MSCI North America High Dividend Yield Index UCITS ETF DR
Lyxor SG European Quality Income UCITS ETF
SPDR S&P Pan Asia Dividend Aristocrats UCITS ETF
SPDR S&P Global Dividend Aristocrats UCITS ETF
Lyxor UCITS ETF SG Global Quality Income NTR C-GBP
Lyxor SG Global Quality Income NTR UCITS ETF—D- EUR
LYXOR UCITS ETF SG GLOBAL QUALITY INCOME
SPDR S&P Euro Dividend Aristocrats UCITS ETF
SPDR S&P UK Dividend Aristocrats UCITS ETF
iShares EM Dividend UCITS ETF
SPDR S&P US Dividend Aristocrats UCITS ETF

https://www.bloomberg.com/europe
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SPDR S&P Emerging Markets Dividend UCITS ETF
ComStage ETF DivDAX TR UCITS ETF
iShares STOXX Global Select Dividend 100 UCITS DE
Deka EURO STOXX® Select Dividend 30 UCITS ETF
Deka DAXplus Maximum Dividend UCITS ETF
AMUNDI ETF MSCI Europe High Dividend Factor UCITS ETF—C
Amundi ETF MSCI Emu High Dividend UCITS ETF
ComStage ETF EURO STOXX Select Dividend 30 NR UCITS ETF
LYXOR STOXX EUROPE SELECT DIVIDEND 30 UCITS ETF
iShares Asia Pacific Dividend UCITS ETF
iShares Dow Jones Asia Pacific Select Dividend 3 UCITS DE
iShares UK Dividend UCITS ETF
iShares Euro Dividend UCITS ETF EUR Dist
iShares Dow Jones U.S. Select Dividend UCITS ETF DE
iShares EURO STOXX Select Dividend 30 UCITS ETF DE
iShares STOXX Europe Select Dividend 30 UCITS ETF DE
iShares DivDAX UCITS ETF DE

Low Volatility (19 cases)

DB X-Trackers MSCI USA Minimum Volatility UCITS ETF (DR) 1D
db x-trackers MSCI EMU Minimum Volatility UCITS ETF (DR) 1D
Source RBIS Equal Risk Equity US UCITS ETF
BNP PARIBAS EASY Equity Low Vol US UCITS ETF
BNP PARIBAS EASY Equity Low Vol Europe UCITS ETF
Source RBIS Equal Risk Equity Europe UCITS ETF
OSSIAM US Minimum Variance NR UCITS ETF 1D
db x-trackers MSCI World Minimum Volatility UCITS ETF DR
OSSIAM ETF EUROPE MINIMUM VARIANCE NR 2C
iShares Edge S&P 500 Minimum Volatility UCITS ETF
iShares Edge MSCI Europe Minimum Volatility UCITS ETF
iShares Edge MSCI World Minimum Volatility UCITS ETF
iShares Edge MSCI Europe Minimum Volatility UCITS ETF
OSSIAM ETF EMERGING MARKETS MINIMUM VARIANCE USD
OSSIAM ETF EMERGING MARKETS MINIMUM VARIANCE EUR
OSSIAM ETF FTSE 100 MINIMUM VARIANCE
OSSIAM US MINIMUM VARIANCE ESG NR UCITS ETF 1C USD
OSSIAM US MINIMUM VARIANCE ESG NR UCITS ETF 1C EUR
OSSIAM ETF EUROPE MINIMUM VARIANCE NR 1C

Value (9 cases)

iShares Edge MSCI USA Value Factor UCITS ETF
BNP PARIBAS EASY Equity Value Europe UCITS ETF
First Trust US IPO Index UCITS ETF
OSSIAM SHILLER BARCLAYS CAPE US SECTOR VALUE TR USD
OSSIAM SHILLER BARCLAYS CAPE US SECTOR VALUE TR EUR
iShares Edge MSCI Europe Value Factor UCITS ETF
Ossiam Shiller Barclays Cape Europe Sector Value TR
iShares Edge MSCI World Value Factor UCITS ETF
Lyxor UCITS ETF SG Global Value Beta
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Equal (18 cases)

iShares Edge MSCI USA Size Factor UCITS ETF
iShares Ageing Population UCITS ETF
iShares Healthcare Innovation UCITS ETF
iShares Digitalisation UCITS ETF
THINK MORNINGSTAR NORTH AMERICA EQUITY UCITS ETF
VanEck Vectors Morningstar US Wide Moat UCITS ETF
db x-trackers FTSE 100 Equal Weight UCITS ETF DR
iShares Europe Size Factor UCITS ETF
iShares Edge MSCI World Size Factor UCITS ETF
Think European Equity UCITS ETF
db x-trackers S&P 500 Equal Weight UCITS ETF DR—1C
LYXOR PEA WORLD WATER UCITS ETF
LYXOR PEA NEW ENERGY UCITS ETF
ETFS US Energy Infrastructure MLP GO UCITS ETF
THINK Sustainable World UCITS ETF
OSSIAM Stoxx Europe 600 Equal Weight NR
Think Global Equity UCITS ETF
ComStage ETF NYSE Arca Gold BUGS UCITS ETF

Fundamentals (14 cases)

WisdomTree Eurozone Quality Dividend Growth UCITS ETF
WisdomTree Global Quality Dividend Growth UCITS ETF
WisdomTree US Quality Dividend Growth UCITS ETF
First Trust United Kingdom AlphaDEX UCITS ETF
First Trust US Large Cap Core AlphaDEX UCITS ETF
PowerShares FTSE RAFI Emerging Markets UCITS ETF
PowerShares FTSE RAFI All World 3000 UCITS ETF
Deka STOXX Europe Strong Growth 20 UCITS ETF
Deka STOXX Europe Strong Value 20 UCITS ETF
Deka STOXX Europe Strong Style Composite 40 UCITS ETF
PowerShares FTSE RAFI Europe Mid-small UCITS ETF
PowerShares FTSE RAFI UK 100 UCITS ETF
PowerShares FTSE RAFI Europe UCITS ETF
PowerShares FTSE RAFI US 1000 UCITS ETF

Multifactor (21 cases)

Lyxor J.P. Morgan Multifactor World Index UCITS ETF
PowerShares EURO STOXX High Dividend Low Volatility UCITS ETF
BMO MSCI USA Income Leaders GBP Hedged UCITS ETF
BMO MSCI Europe ex-UK Income Leaders (GBP Hedged) UCITS ETF
BMO MSCI UK Income Leaders UCITS ETF
BMO MSCI USA Income Leaders UCITS ETF
BMO MSCI Europe ex-UK Income Leaders UCITS ETF
Lyxor JP Morgan Multifactor Europe Index UCITS ETF -C- EUR
iShares Edge MSCI Europe Multifactor UCITS ETF EUR Acc
iShares Edge MSCI USA Multifactor UCITS ETF USD Acc
iShares Edge MSCI World Multifactor UCITS ETF
MS Scientific Beta US Equity Factors UCITS ETF
First Trust Japan AlphaDEX UCITS ETF
Source Goldman Sachs Equity Factor Index Europe UCITS ETF
First Trust Large Cap Core AlphaDEX UCITS ETF
First Trust Eurozone AlphaDEX UCITS ETF



J. Risk Financial Manag. 2021, 14, 283 24 of 30

Amundi ETF Global Equity Multi Smart Allocation Scientific Beta UCITS ETF-B USD
Amundi ETF Global Equity Multi Smart Allocation Scientific Beta UCITS ETF-A EUR
MS Scientific Beta Global Equity Factors UCITS ETF
Source Goldman Sachs Equity Factor Index World UCITS ETF
PowerShares Dynamic US Market UCITS ETF

Quality (4 cases)

iShares Edge MSCI USA Quality Factor UCITS ETF
BNP PARIBAS EASY Equity Quality Europe UCITS ETF
iShares Edge MSCI Europe Quality Factor UCITS ETF
iShares Edge MSCI World Quality Factor UCITS ETF

Momentum (4 cases)

iShares Edge MSCI USA Momentum Factor UCITS ETF
BNP PARIBAS EASY Equity Momentum Europe UCITS ETF
iShares Edge MSCI Europe Momentum Factor UCITS ETF
iShares Edge MSCI World Momentum Factor UCITS ETF

Buyback (3 cases)

AMUNDI ETF MSCI EUROPE BUYBACK UCITS ETF
Amundi ETF S&P 500 Buyback UCITS ETF—EUR
Amundi ETF S&P 500 Buyback UCITS ETF—USD

Appendix B. List of Cap-Weighted Benchmarks

Benchmark (40 cases)

MSCI USA Index
MSCI EMU Index
MSCI World Index
MSCI World Health Care Index
MSCI World Information Technology Index
Russell 1000 Index
MSCI Europe Index
MSCI UK Value Weighted Index
MSCI Emerging Markets Index
MSCI World Value Index
MSCI Europe High Dividend Yield Index
FSE DAX
MSCI Europe ex-UK Index
MSCI UK Index
MSCI AC Asia Ex Japan Index
FTSE All-Share Index
MSCI World High Dividend Yield Index
FTSE 100 Index
Topix
MSCI ACWI ex USA Index
MSCI Europe SMID Cap Index
MSCI Europe Value
MSCI Emerging Markets SMID Cap Index
MSCI Europe Small Cap Index
Russell 2000 Index
Russell 1000 Value Index
MSCI World Small Cap Index
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S&P Global Water Index
S&P Global Clean Energy Index
MSCI World Energy Index
MSCI Switzerland Index
MSCI North America
MSCI AC Asia Pacific Index
EMIX Global Mining Global Gold Index
FTSE Emerging All Cap Index
FTSE Global All Cap Index
MSCI Europe Growth Index
MSCI Europe Value Index
FTSE RAFI Developed ex US Mid Small 1500 Index
FTSE 350 ex Investment Trusts Index

Appendix C. Summary of the Average AV for Each SB Category Relative to Their
Respective Benchmarks over Time

Date Dividend
Low

Volatility
Value Equal Fundamentals Multifactor Quality Momentum Buyback

2006 0.0159 - - - - - - - -

2007 0.0160 - - - - - - - -

2008 0.0322 - - - 0.0067 0.0061 - - -

2009 0.0375 - - - 0.0303 −0.0454 - - -

2010 −0.0417 - - - −0.0380 −0.0266 - - -

2011 −0.0299 - - −0.3264 −0.0489 0.0221 - - -

2012 −0.0058 −0.0197 - −0.0332 −0.0325 −0.0222 - - -

2013 0.0051 0.0005 - 0.0421 0.0100 0.0888 - - -

2014 0.0049 −0.0143 - 0.0283 0.0015 0.0148 - - -

2015 0.0027 −0.0163 0.0375 0.0635 −0.0153 −0.0230 −0.0026 −0.0152 -

2016 −0.0002 −0.0265 0.0212 0.0229 −0.0015 0.0075 −0.0042 −0.0134 0.0499

2017 0.0211 0.0074 0.0169 0.0084 0.0228 0.0193 0.0121 0.0182 0.0349

This table quantifies the relative differences in the average AV of the SB ETFs versus
their benchmarks. In this instance, bold faced values show that the average AV is less than
the benchmarks, otherwise the average AV is greater than the benchmarks.
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Appendix E

Table A1. Consolidated three-factor model regression coefficients.

Factor R2 Sig. F Alpha × 103 p-Value Market Beta p-Value Size Beta × 103 p-Value Value Beta × 103 p-Value

Dividend Average 65% 2.5731 × 10−2 −1.4757 0.33182 0.76790 4.3626 × 10−2 −2.7964 0.2191 −0.18148 0.3258

Median 68% 5.2683 × 10−12 −1.6847 0.27788 0.89628 1.1753 × 10−12 −1.6180 0.1275 −0.16832 0.2954

Low
Volatility Average 77% 2.5818 × 10−4 0.21095 0.42892 0.75183 5.4104 × 10−4 −3.1493 0.2153 −2.8586 0.1398

Median 82% 3.6311 × 10−15 0.18720 0.31310 0.75254 2.3480 × 10−14 −2.5926 0.0433 −3.3469 0.0056

Value Average 80% 5.2755 × 10−5 0.36021 0.35655 1.10650 1.0215 × 10−5 −0.56776 0.2435 0.035878 0.4263

Median 86% 2.6200 × 10−7 2.2631 0.23135 1.08080 5.2000 × 10−8 0.58598 0.1958 −0.61481 0.3796

Equal Average 66% 4.1294 × 10−2 −0.91903 0.40276 0.85002 2.7165 × 10−2 −0.45539 0.2702 −1.0061 0.4299

Median 66% 3.9420 × 10−6 −0.61255 0.42503 0.86665 1.3810 × 10−6 −0.67843 0.1230 −0.21864 0.4900

Fundamentals Average 74% 4.3400 × 10−7 0.39484 0.41610 0.81593 1.1590 × 10−6 −0.55701 0.1945 0.72174 0.1780

Median 77% 7.9717 × 10−25 0.24952 0.31640 0.74982 3.4825 × 10−20 −1.3613 0.0981 1.1243 0.0169

Multifactor Average 68% 1.2645 × 10−2 2.7242 0.35363 0.77439 5.6590 × 10−2 −1.5965 0.1995 −0.82381 0.3500

Median 84% 1.0000 × 10−9 −0.59370 0.32870 0.88051 5.2228 × 10−11 −0.03807 0.1220 −1.2253 0.3417

Quality Average 93% 3.0770 × 10−6 −0.77241 0.65472 1.03230 1.0160 × 10−6 −0.51532 0.5506 −2.2643 0.0793

Median 93% 2.8900 × 10−7 −0.60921 0.67508 0.99748 1.7000 × 10−7 −0.05868 0.6196 −2.0221 0.0630

Momentum Average 74% 1.6335 × 10−2 5.9749 0.25621 0.78741 3.4174 × 10−2 −1.6776 0.3877 −3.5268 0.0848

Median 78% 1.5878 × 10−4 3.5512 0.27313 0.85953 1.0606 × 10−4 −1.1620 0.3942 −3.3563 0.0705

Buyback Average 78% 3.2320 × 10−6 −2.3925 0.60037 1.17260 1.3940 × 10−6 0.91185 0.1701 1.3891 0.4419

Median 83% 9.3960 × 10−12 −2.0408 0.74141 1.15150 1.1444 × 10−12 2.8096 0.1876 0.81777 0.4114
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Appendix F

Table A2. Consolidated four-factor model regression coefficients.

Factor R2 Sig. F Alpha × 103 p-Value Market
Beta p-Value Size Beta × 103 p-Value Value Beta ×

103 p-Value Momentum
Beta × 103 p-Value

Dividend Average 68% 2.327 × 10−2 −0.932 0.3956 0.7476 7.308 × 10−1 −2.9524 0.2225 −0.5677 0.3492 −0.7386 0.3609

Median 71% 4.737 × 10−11 −1.188 0.2980 0.8396 8.251 × 10−1 −1.7104 0.1483 −0.8338 0.2864 −0.7156 0.2840

Low Volat. Average 79% 1.220 × 10−4 0.1031 0.4772 0.7438 5.132 × 10−4 −2.9419 0.2461 −2.5918 0.2051 −0.3209 0.3393

Median 85% 1.149 × 10−14 0.0843 0.3150 0.7770 2.078 × 10−14 −2.2873 0.0433 −2.8711 0.0258 0.4957 0.2568

Value Average 80% 1.145 × 10−4 1.0366 0.3424 1.0760 7.925 × 10−5 −0.4991 0.2648 −0.2465 0.4369 −0.9609 0.6552

Median 86% 1.449 × 10−6 2.7936 0.2427 1.0863 2.680 × 10−7 0.5416 0.1938 −0.6911 0.4466 −0.6613 0.6468

Equal Average 69% 4.254 × 10−2 0.7658 0.4103 0.8054 3.503 × 10−2 −0.7602 0.2573 −2.1760 0.3787 −1.3795 0.3404

Median 69% 3.012 × 10−6 0.5285 0.3700 0.8030 1.852 × 10−5 −1.7596 0.1471 −1.3058 0.2798 −0.9692 0.2886

Fundamentals Average 75% 7.080 × 10−7 0.1231 0.4226 0.8140 2.480 × 10−7 −0.6468 0.1768 0.5463 0.1989 0.0180 0.3223

Median 77% 5.831 × 10−24 0.3039 0.3748 0.7501 4.766 × 10−19 −1.6124 0.1121 1.0678 0.1322 −0.4850 0.3092

Multifactor Average 71% 1.566 × 10−2 2.3309 0.4066 0.7950 3.769 × 10−2 −1.5053 0.2153 −0.5418 0.3889 0.4299 0.5122

Median 85% 7.310 × 10−9 −0.583 0.4103 0.8453 1.000 × 10−9 −0.2428 0.1260 −0.8303 0.3691 0.2694 0.4935

Quality Average 94% 1.649 × 10−5 −0.762 0.5320 1.0375 4.026 × 10−6 −0.4856 0.4378 −2.3343 0.1252 0.0997 0.2758

Median 93% 4.090 × 10−7 −0.225 0.5214 1.0365 1.370 × 10−7 −0.2337 0.4166 −1.9437 0.1165 −0.6339 0.2467

Momentum Average 85% 2.797 × 10−3 2.8302 0.5022 0.9505 5.352 × 10−3 −1.5571 0.3111 −2.2107 0.2635 4.9015 0.0076

Median 86% 1.994 × 10−5 0.4764 0.4976 0.9790 4.626 × 10−6 −0.4453 0.2926 −1.2446 0.2762 4.9683 0.0052

Buyback Average 78% 1.232 × 10−5 −1.589 0.6885 1.1460 9.713 × 10−6 0.8281 0.1756 0.8437 0.6202 −0.8735 0.6462

Median 83% 6.623 × 10−11 −0.851 0.8998 1.1167 2.431 × 10−11 2.7471 0.2045 0.4599 0.7019 −0.7398 0.6600
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Note
1 The Fama–French online data library can be found at http://mba.tuck.dartmouth.edu/pages/faculty/ken.French/data_library.

html (accessed on 21 February 2021).
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