
Szepannek, Gero

Article

An overview on the landscape of R packages for open
source scorecard modelling

Risks

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Szepannek, Gero (2022) : An overview on the landscape of R packages for open
source scorecard modelling, Risks, ISSN 2227-9091, MDPI, Basel, Vol. 10, Iss. 3, pp. 1-33,
https://doi.org/10.3390/risks10030067

This Version is available at:
https://hdl.handle.net/10419/258377

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/risks10030067%0A
https://hdl.handle.net/10419/258377
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


����������
�������

Citation: Szepannek, Gero. 2022. An

Overview on the Landscape of R

Packages for Open Source Scorecard

Modelling. Risks 10: 67. https://

doi.org/10.3390/risks10030067

Academic Editors: Krzysztof Jajuga

and Józef Dziechciarz

Received: 16 February 2022

Accepted: 14 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

An Overview on the Landscape of R Packages for Open Source
Scorecard Modelling
Gero Szepannek

Institute of Applied Computer Science, Stralsund University of Applied Sciences, Zur Schwedenschanze 15,
18435 Stralsund, Germany; gero.szepannek@hochschule-stralsund.de

Abstract: The credit scoring industry has a long tradition of using statistical models for loan default
probability prediction. Since this time methodology has strongly evolved, and most of the current
research is dedicated to modern machine learning algorithms which contrasts with common practice
in the finance industry where traditional regression models still denote the gold standard. In addition,
strong emphasis is put on a preliminary binning of variables. Reasons for this may be not only the
regulatory requirement of model comprehensiveness but also the possibility to integrate analysts’
expert knowledge in the modelling process. Although several commercial software companies offer
specific solutions for modelling credit scorecards, open-source frameworks for this purpose have been
missing for a long time. In recent years, this has changed, and today several R packages for credit
scorecard modelling are available. This brings the potential to bridge the gap between academic
research and industrial practice. The aim of this paper is to give a structured overview of these
packages. It may guide users to select the appropriate functions for the desired purpose. Furthermore,
this paper will hopefully contribute to future development activities.

Keywords: credit scorecard development; open source; R

1. Introduction

In the credit scoring industry, there is a long tradition of using statistical models for
loan default probability prediction, and domain specific standards were established long
before the hype of machine learning. An overview of the historical evolution of credit risk
scoring can be found in Kaszynski (2020) and Anderson (2019). A comprehensive descrip-
tion of the corresponding methodology is given in Thomas et al. (2019) and Kaszynski et al.
(2020). The different subsequent steps during the scorecard modelling process are worked
out in Anderson (2007), Finlay (2012) and Siddiqi (2006) where the latter is closely related
to the credit scoring solution as implemented by the SAS Enterprise Miner software1. The
typical steps in credit risk scorecard modelling refer to the general process definition for
data mining as given by KDD, CRISP-DM or SAS’s SEMMA (cf. Azevedo and Santos 2008).
It turns out that strong emphasis is laid on possibilities for manual intervention after each
modelling step. Therefore, functions to summarize and visualize the intermediate results
of each single step are of great importance. The typical development steps are denoted by:

1. Binning and Weights of Evidence (Section 3)
2. Preselection of Variables (Section 4)
3. Multivariate Modelling (Section 5)
4. Performance Evaluation (Section 6)
5. Reject Inference (Section 7)

In contrast, the typical scorecard modelling process is rarely taken into account in
current academic benchmark studies (for an overview cf. Louzada et al. 2016). An exception
is given in Bischl et al. (2016), where both approaches are covered. A reason for this gap
between academic research and business practice may be due to the lack of open source
frameworks for scorecard modelling.
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Although several commercial software companies, such as SAS, offer specific solutions
for credit scorecard modelling (cf. footnote 1), explicit packages for this purpose in R
have been missing for a long time and in the CRAN task view on Empirical Finance2 the
explicit topic of scorecard modelling is not covered. A “Guide to Credit Scoring in R” can
be found among the CRAN contributed documentations (Sharma 2009) being dedicated to
describing the application of different (binary) classification algorithms to credit scoring
data rather than to emphasizing the common subsequent modelling stages that are typical
for scorecard modelling processes. This can be a result of the circumstances: at that time,
no explicit packages were available in R for undertaking this kind of task.

In recent years this has changed, and several packages have been submitted to
CRAN with the explicit scope of credit risk scorecard modelling, such as creditmodel
(Fan 2022), scorecard (Xie 2021), scorecardModelUtils (Poddar 2019), smbinning (Jopia
2019) woeBinning (Eichenberg 2018), woe (Thoppay 2015), Information (Larsen 2016),
InformationValue (Prabhakaran 2016), glmdisc (Ehrhardt and Vandewalle 2020), glmtree
(Ehrhardt 2020), Rprofet (Stratman et al. 2020) and boottol (Schiltgen 2015).

Figure 1 gives an overview of the packages and their popularity in terms of the number
of their CRAN downloads as well as their activity and existence as observable by their
CRAN submission dates. It can be seen that the packages smbinning, InformationValue
and Information are among the most popular, and they have been available for quite some
time. Another popular toolbox is provided by the package scorecard, which has been
frequently updated in the recent past as has also happened with the package creditmodel.

Figure 1. CRAN release activity and download statistics (as returned by cranlogs, Csárdi 2019) of
packages available on CRAN.

In addition, some packages are available on Github but not on CRAN, such as creditR
(Dis 2020), riskr (Kunst 2020), and scoringTools (Ehrhardt 2018).

As all of these packages have become available during the last few years, this paper
is dedicated to the question of whether recent developments have made it possible to
perform all steps of the entire scorecard development process within R. For this reason,
the presentation of the package landscape will be guided by these steps. One section will be
dedicated to each stage. In each section, the available packages will be presented together
with their advantages and disadvantages. The aim of the paper is to give a structured
overview of existing packages. It may guide users in selecting the appropriate functions
for the desired purpose by working out pros and cons of existing functions.

As an open source programming language, the R universe is extended by a large
community with currently more than 19,000 contributed packages. It is impossible for
a single user to know all of them which in turn leads to some redundant development
activities by programming multiple solutions for the same task. Moreover, sometimes
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contributed packages for a similar purpose provide different desirable functionalities but
are not compatible with each other because they rely on different kind of input objects. By
working out the pros and cons of the functions provided by the aforementioned packages,
this paper aims to analyze existing gaps and provide several remedies in the supplementary
code (cf. corresponding footnotes).

Note that this paper focuses on the open source statistical programming language
R. Within the data science industry other open source frameworks such as python have
increased in popularity during the last few years, which is beyond the scope of this
paper. For interested readers, some useful python functions for scorecard development are
mentioned in Kaszynski et al. (2020), and some websites are dedicated to this purpose3,4.
In particular, a python implementation of the scorecard R package (Xie 2021) is available5

which means that some of the results as worked out in this paper are directly transferable
into the python world. Nonetheless as R denotes the lingua franca of statistics Ligges (2009),
it provides access to a huge number of contributed packages and functionalities from the
field of statistics outside the aforementioned ones. For this reason, the paper concentrates
on R and investigates whether scorecard development can be improved by access to other
already existing packages that have initially been designed for other purposes but can
improve the analyst’s life. If available, such functionalities will also be mentioned in the
corresponding sections.

Note that, traditionally, logistic regression is used for credit risk scorecard modelling
despite the current hype around modern machine learning methods as they are provided by
frameworks such as e.g., mlr3 (Lang et al. 2019, 2021) or caret (Kuhn 2008, 2021). Studies
have investigated potential benefits from using modern machine learning algorithms
(Baesens et al. 2002; Bischl et al. 2016; Lessmann et al. 2015; Louzada et al. 2016; Szepannek
2017), but regulators and the General Data Protection Regulation (GDPR) require models
to be understandable (cf. Financial Stability Board 2017; Goodman and Flaxman 2017). The
latter issue can be addressed by methodologies of explainable machine learning (for an
overview Bücker et al. 2021), e.g., using frameworks as provided by the packages DALEX
(Biecek 2018) or iml (Molnar et al. 2018) while taking into account to what extent a model
actually is explainable (Szepannek 2019). It further turned out that the use of current
state-of-the-art ML algorithms is not necessarily always beneficial in the credit scoring
context (Chen et al. 2018; Szepannek 2017), and they should be rather carefully analyzed
in each specific situation, rather than relying on preferred preferred models (Rudin 2019).
For this reason this paper focuses on the traditional way of scorecard modelling as briefly
described above.

2. Data

Probably the most common credit scoring data are the German Credit Data provided by
Hoffmann (1994) that are contained in the UCI Machine Learning Repository (Dua and Graff
2019). The data consist of 21 variables: a binary target (creditability) and 13 categorical
as well as seven numeric predictors, and 1000 observations in total with 300 defaults
(level == “bad”) and 700 nondefaults (level == “good”). The data are provided by
several R packages such as klaR (Roever et al. 2020), woeBinning, caret or scorecard.
For the examples in this paper, the data from the scorecard package are used where
in addition the levels of the categorical variables such as present.employment.since,
other.debtors.or.guarantors, job or housing are sorted according to their expected
order w.r.t. credit risk. Note that Groemping (2019) compared the data from the UCI
repository to the original papers and made a corrected version of itavailable6 (cf. also
Szepannek and Lübke 2021). Other (partly simulated) example data sets (amongst others
loan data of the peer-to-peer lending company Lending Club7) are contained within the
packages creditmodel, scoringTools and smbinning and riskr.

It is common practise to use separate validation data which are not used for model
training but only for validation purposes. The manual interventions between the different
modelling steps do not allow for repetitive resampling strategies such as k-fold cross
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validation or bootstrapping for model validation as they are, e.g., provided by the package
mlr3 (see Section 6). Instead, usually one single holdout set is used. The package scorecard
has a function split_df() that splits data according to a prespecified percentage into
training and validation sets. For the examples in the remainder of the paper, the following
data are used:

### example 1: load data
library(scorecard)
data(germancredit)
# transform character variable purpose into factor
germancredit$purpose <- as.factor(germancredit$purpose)

tv <- split_df(germancredit, y = ‘‘creditability’’, ratio = c(0.7, 0.3),
seed = 42, no_dfs = 2, name_dfs = c(‘‘train’’, ‘‘valid’’))

train <- tv$train
valid <- tv$valid

# several packages require the target variables to take values 0/1
train2 <- train; valid2 <- valid
train2$creditability <- as.integer(train2$creditability == ‘‘good’’)
valid2$creditability <- as.integer(valid2$creditability == ‘‘good’’)

# the package creditmodel does not support variables of type Factor
train3 <- as.data.frame(train2)
valid3 <- as.data.frame(valid2)
for (j in which(sapply(train3[,-21], is.factor))) {
train3[,j] <- as.character(train3[,j])
valid3[,j] <- as.character(valid3[,j])

}

Note that some of the packages (smbinning, woe, creditR, riskr, glmdisc, scoring-
Tools, scorecardModelUtils and creditmodel8) do require the target variable to take only
values 0 and 1 as in the example’s data sets train2 and valid2. Although this is of course
easily obtained, the package scoringModelUtils contains a function fn_target() that
does this job and replaces the original target variable with a new one of name Target.

3. Binning and Weights of Evidence
3.1. Overview

Binning of numeric variables is often considered the most relevant step in scorecard
development. An initial automatic algorithm-based binning is manually checked and—
if necessary—modified by the analyst variable by variable. On the one hand, this is a
very time-consuming task, but, on the other hand, this ensures the dependencies between
the explanatory variables and the target in the final model to be plausible and helps
detect sampling bias (Verstraeten and den Poel 2005). Furthermore, it allows modelling
of nonlinear dependencies by linear logistic regression in the subsequent Multivariate
Modelling step. The loss of information by aggregation turned out to be comparatively
small while this kind of procedure does not take into account for interactions between
several variables and the target variable (Szepannek 2017). The identification of relevant
interactions typically needs a lot of business experience, and Sharma (2009) suggests using
random forests to identify potential interaction candidates.

3.2. Requirements

It is important to note that binning corresponds not just to exploratory data analysis,
but its results have to be considered an integral part of the final model, i.e., the resulting
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preprocessing has to be applied to new data to be able use the resulting scorecard for
business purposes. For this reason, important requirements on an implementation of the
binning step are the possibility to: (i) store the binning results for all variables, and (ii)
apply the binning to new data with some kind of predict() function.

The importance of an option to: (iii) manually modify an initial automatic binning
has already been emphasized. This leads to the requirement for a separate function to
manipulate an object that stores the binning results. In order to support this: (iv) summary
tables and (v) visualizations of the intermediate binning results are helpful. In addition,
application of binning in practice has to: (vi) deal with missing data or new levels of
categorical variables that did not occur in the training data as, e.g., by regulation it may be
required that holding back information (and the resulting missing values) must not lead to
an improvement of the final score. Both missing data and new levels should be taken into
account by the implemented binning function.

Often, binning is followed by subsequent assignment of numeric weights of evidence
to the factor levels x of the binned variable which are given by:

WoE(x) = log
(

f (x|y = 1)
f (x|y = 0)

)
. (1)

Note that just like the bins, the WoEs, as computed on the training data are part of the
model. Furthermore, an implementation of WoE computation has to account for potentially
occurring bins that are empty w.r.t. the target level y = 0 (typically by adding a small
constant when computing the relative frequencies f ()). By construction, WoEs are linear in
the logit of the target variable and thus well suited for subsequent use of logistic regression.
The use of WoEs is rather advantageous for small data sets, and directly using the bins may
increase performance if enough data are available (Szepannek 2017). On the other hand,
using WoEs fixes mononty between the resulting scorecard points and the default rates of
the bins, such that only the sign of the monotonicity has to be checked. It is also usual to
associate binned variables with an information value (IV)

IV = ∑
x
( f (x|y = 1)− f (x|y = 0))WoE(x) (2)

based on the WoEs which describe the strength of a single variable to discriminate between
both classes.

3.3. Available Methodology for Automatic Binning

Several packages provide functions for automatic binning based on conditional in-
ference trees (Hothorn et al. 2006) from the package partykit (Hothorn and Zeileis 2015):
scorecard::woebin(), smbinning::smbinning(), scorecardModelUtils::iv_table()
and riskr::superv_bin(). The implementation in the scorecardModelUtils package
merges the resulting bins to ensure monotonicity in default rates w.r.t. with the origi-
nal variable which might or might not be desired. For the same purpose, the package
smbinning offers a separate function (smbinning.monotonic()). In contrast to all previ-
ously mentioned packages, the package woeBinning implements its own tree algorithm
where either initial bins of similar WoE are merged (woe.binning()), or the set of bins is
binary split (woe.tree.binning()) as long as the IV of the resulting variables decreases (in-
creases) by a percentage less (more) than a prespecified percentage (argument stop.limit)
while the initial bins are created to be of minimum size (min.perc.total). The function
creditmodel::get_breaks_all() uses classification and regression trees (Breiman et al.
1984) of the package rpart (Therneau and Atkinson 2019)9 to create initial bins. An ad-
ditional argument, best = TRUE, merges these bins subsequently according to different
criteria such as the maximum number of bins, the minimum percentage of observations
per bin, a threshold for the χ2 test or odds, a minimum population stability (cf. Section 4)
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or monotonicity of the default rates across the bins (all of these can be specified by the
argument bins_control).

In addition to tree-based binning, the scorecard package offers alternative algorithms
(argument method) for automatic binning based on either the χ2 statistic or equal width or
size of numeric variables.

An alternative concept for automatic binning is provided by the package glmdisc,
which is explicitly designed to be used in combination with logistic regression modelling
for credit scoring (Ehrhardt et al. 2019). The bins are optimized to maximize either AIC,
BIC or the Gini coefficient (cf. Section 6) of a subsequent logistic regression model (using
binned variables, not WoEs) on validation data (argument criterion=). Second order
interactions can also be considered (argument interact = TRUE). Note that this approach
is comparatively intense in terms of computation time and does not take variable selection
into acount (cf. Section 5).

Some packages do not provide their own implementations of an automatic binning
but just interface to discretization functions within other packages. Rprofet::BinProfet()
uses the function greedy.bin() of the package binr (Izrailev 2015). The package scoring-
Tools contains a variety of functions (chiM_iter(), mdlp_iter(), chi2_iter(),
echi2_iter(), modchi2_iter() and topdown_iter()) which provide interfaces to binning
algorithms from the package discretization (Kim 2012). The dlookr package (Ryu 2021),
which is primarily designed for exploratory data analysis, has an implemented interface
(binning_by()) to smbinning::smbinning().

3.4. Manipulation of the Bins

As outlined before, manual inspection and manipulation of the bins is considered a
substantial part of the scorecard development process. Two of the aforementioned packages
provide functions to support this. Scorecard::woebin() allows passing an argument
breaks_list. Each element corresponds to a variable with manual binning and must be
named like the corresponding variable. For numeric variables, it must be a vector of break
points, and for factor variables, it must be a character vector of the desired bins given
by the merged factor levels, separated by “%,%” (cf. output from Example 3 for variable
purpose). In addition, a function scorecard::woebin_adj() allows for an interactive
adjustment of bins. The package smbinning provides two functions, smbinning.custom()
and smbinning.factor.custom().

Manipulation of the bins should be based on an analysis of the binning results.
For this purpose, most of the packages provide result tables on a variable level. The subse-
quent code example illustrates the step of an initial automatic binning as created by the
package scorecard:

### Example 2: automatic binning
library(scorecard)
bins <- woebin(train, y = ‘‘creditability’’, method = ‘‘tree’’)

# binning results table for variable purpose
options(digits = 3)
bins$purpose[,c(2,4,5,6,7,8)]

# visualize bins for variable purpose
woebin_plot(bins, x = ‘‘purpose’’, line_value = ‘‘woe’’)
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most of the packages provide result tables on a variable level. The subsequent code example illustrates202

the step of an initial automatic binning as created by the package scorecard:203

### example 2: automatic binning

library(scorecard)

bins <- woebin(train, y = "creditability", method = "tree")

# binning results table for variable purpose

options(digits = 3)
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# visualize bins for variable purpose

woebin_plot(bins, x = "purpose", line_value = "woe")

## bin count_distr neg pos posprob woe204

## 1: business%,%car (new) 0.3211 148 79 0.348 0.213205

## 2: car (used) 0.1089 67 10 0.130 -1.061206
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## 5: radio/television%,%repairs%,%retraining 0.3140 165 57 0.257 -0.222209

The resulting table contains several key figures for each bin, such as the distribution (absolute and210

relative frequency of the samples given the level of the target variable), default rate and the bin’s WoE.211

The information value of the binned variable (cf. Sec. 4) is given in a column total_iv (not shown212

here).213
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which simultaneously visualizes default rates as well as size of the bins, is offered by the package217

glmdisc (Fig. 2, right) while the names of the bins after automatic binning are not self-explanatory.218

Figure 2. Visualization of the bins for the variable purpose as created by the package scorecard (left)
and mosaicplot of the binning result by the package glmdisc (right).

The resulting table contains several key figures for each bin such as the distribution
(absolute and relative frequency of the samples given the level of the target variable),
default rate and the bin’s WoE. The information value of the binned variable (cf. Section 4)
is given in a column total_iv (not shown here).

In addition to summary tables, many packages (glmdisc, riskr, Rprofet, scorecard,
smbinning, woeBinning) provide a visualization of the bins on a variable level. Figure 2
(left) shows the binning resulting from code in Example 2 which is similar for most packages.
A mosaic plot of the bins, which simultaneously visualizes default rates and the size of the
bins, is offered by the package glmdisc (Figure 2, right) while the names of the bins after
automatic binning are not self-explanatory.

Figure 2. Visualization of the bins for the variable purpose as created by the package scorecard (left)
and mosaicplot of the binning result by the package glmdisc (right).

3.5. Applying Bins to New Data

It has been emphasized that the bins as they are built on training data constitute the
first part of a scorecard model. For this reason, it is necessary to store the results of the
binning and to have functions to apply it to a data set.

Most of the packages such as scorecard (woebin_ply()), smbinning (smbinning.gen()
and smbinning.factor.gen()), woeBinning (woe.binning.deploy()), creditmodel
(split_bins_all()), glmdisc (discretize()) and scorecardModelUtils (num_to_cat())
provide this functionality. Example 3 illustrates the application of binning results to a data
set. Via the to = “bin” argument, either bins or WoEs can be assigned:

### Example 3: apply binning to data
train_bins <- scorecard::woebin_ply(train, bins, to = ‘‘bin’’)
valid_bins <- scorecard::woebin_ply(valid, bins, to = ‘‘bin’’)

For ctree-based binning (cf. above) a workaround using the partykit::predict.party()
method for bin assignment can be obtained if the tree model is stored within the results object10.
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More generally, binned variables can be created via the function cut() for numeric
variables or by using lookup tables for factor variables (cf. Zumel and Mount 2014, p. 23)11.
It is worth mentioning that several packages (smbinning and riskr) implement binning
only on a single variable level but not simultaneously for several selected variables or all
variables of a data frame12.

3.6. Binning of Categorical Variables

For categorical variables, initially, each level can be considered as a separate bin, but
levels of similar default rate and/or meaning could be grouped together. As an additional
challenge, there is no natural order of the levels. For these reasons, only some of the
packages offer an automatic binning of categorical variables. For example, the package
smbinning does not offer an automatic merging of levels for factor variables, and its
function smbinning.factor() only returns the figures similar to the table resulting from
Example 2. However, each original level corresponds to only one bin. The bins can be
manipulated afterwards via smbinning.factor.custom() and further be applied to new
data via smbinning.factor.gen(). An automatic binning of categorical variables based
on conditional inference trees is supported by the packages riskr and scorecard (method
= “tree”). Additional merging strategies are provided by the packages glmdisc and
creditmodel (as described above), scorecard (method = “chimerge”) and woeBinning
(according to similar WoEs).

Generally, merging levels with a similar default rate should only be done if the level’s
frequency is large enough to result in a reliable default rate estimate on the sample. By using
woeBinning’s woe.binning() function this can be ensured: Initial bins of a minimum size
(min.perc.total) are created and smaller factor levels are initially bundled into a positive
or negative ’miscellaneous’ category according to the sign of the corresponding WoE which
is desirable to prevent overfitting. The package scorecardModelUtils offers a separate
function cat_new_class() for this. All levels less frequent than specified by the argument
threshold are merged together, and a data frame with the resulting mapping table is stored
in the output element $cat_class_new13. The package creditmodel provides a function
merge_category which keeps the m most frequent categories and merges all other levels in
a new category of name “other” but no function is available to apply the same mapping to
new data.

Similar to woeBinning‘s woe.binning(), the functions scorecard::woebin()14 and
creditmodel::get_breaks_all()15 also merge adjacent levels of similar default rates for
categorical variables. An important difference between both implementations consists in
how they deal with the missing natural order of the levels and thus the notion of what
’adjacent’ means: In woe.binning() the levels are sorted according to their WoE before
merging. This is not the case for the other two functions where levels are merged along
their natural order which is often alphabetical 16. This might lead to an undesired binning,
and as an important conclusion an analyst should think about manually changing the level
order for factor variables when working with the package scorecard17.

3.7. Weights of Evidence

Most of the abovementioned packages provide WoEs of the bins within their bin-
ning summary tables. To use WoEs within the further modelling steps, it needs a func-
tionality to assign the corresponding WoE value for each bin to the original (/or binned)
variables as given by scorecard::woebin_ply() (with argument to = “woe”), woeBin-
ning::woe.binning.deploy() (with argument add.woe.or.dum.var = “woe”) and cred-
itmodel::woe_trans_all().

A general way of training, storing and assigning WoEs independently of the package
used for binning is given by the function woe() in the klaR package, probably the first
and most comprehensive implementation of WoE computation in R. WoEs for binned
variables are computed on the training data and stored in an S3 object of class woe with a
corresponding predict.woe() method that allows application to new data. Furthermore,
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via an argument ids, a subset of the variables can be selected for which WoEs are to be
computed (default: all factor variables) and a real value zeroadj specified and added
to the frequency of bins with empty target levels for computation of f () in Equation (1)
to prevent WoEs from resulting in ±∞. In contrast to other implementations, it allows
observation weights which can be necessary for reject inference

Reject Inference to be assigned. The subsequent code shows its usage:

### Example 4: computing and applying WoEs (based on Example 3)
library(klaR)
# woe() requires variable type factor
train_bins <- dplyr::mutate_if(train_bins, sapply(train_bins, is.character),

as.factor)
valid_bins <- dplyr::mutate_if(valid_bins, sapply(valid_bins, is.character),

as.factor)

# Compute WoEs on training data
woe_model <- woe(creditability ~ ., data = train_bins)
# ...woes for variable purpose
woe_model$woe$purpose_bin

# apply WoEs
train_woes <- data.frame(creditability = train_bins$creditability,
woe_model$xnew)
valid_woes <- predict(woe_model, valid_bins)

3.8. Short Benchmark Experiment

The example data has been used to compare the performance of the different available
packages for automatic binning. For reasons explained above, binning of categorical
variables requires expert knowledge on the meaning of the levels. Thus the benchmark is
restricted to a comparison for the seven numeric variables in the data set. Note that four of
these variables contain small numbers of distinct numeric values such as the number of
credits (cf. 2nd column of Table 1). Therefore, the remaining three variables age, amount
and duration are the most interesting ones. Further note that (although it is by far the most
popular data set used in literature) for reasons of its size and the balance of the target levels,
the German credit data might not be representative of typical credit scorecard developments
(Szepannek 2017). For this reason, the results should not be overemphasized but rather
used to give an idea on differences in performance of the various implementations.

Table 1. Number of bins after automatic binning. Abbreviations of package names: sc = scorecard;
woeB = woeBinning using woe.binning(); woeB.T = woeBinning using woe.tree.binning(); sMU
= scorecardModelUtils; Rprof = Rprofet; smb = smbinning and cremo = creditmodel.

Unique sc woeB woeB.T Glmdisc sMU Rprof smb Cremo Riskr

Avg. # bins 6.33 4.33 6 2.67 3.67 11 2.67 2 2.67

duration 32 5 5 5 3 5 13 3 2 3
amount 663 7 4 6 1 3 11 3 2 3
instRate 4 4 4 4 1 4 4 4 2 1

residence 4 4 4 4 3 2 4 4 3 1
age 52 7 4 7 4 3 9 2 2 2

numCredits 4 2 3 3 2 2 3 4 2 1
numLiable 2 2 3 3 2 1 2 2 2 1

Table 1 shows the number of bins resulting from automatic binning as implemented
by the different packages. The first row summarizes the average number of bins for the
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three variables age, amount and duration. The package Rprofet (which interfaces to
binr::bins.greedy(), cf. above) returns the largest numbers of bins. The number of bins
as returned by the tree-based binning via smbinning and riskr as well as glmdisc and
creditmodel are comparatively small.

Table 2 lists the performance of the different binning algorithms. To prevent analyzing
the overfitting of the training data (as it would be obtained by increasing the number of
bins), the validation data is used for comparison (cf. Example 1). To ensure a fair comparison
of all packages, the performance is computed using the same methodology. First, WoEs are
assigned to the binned validation data using the package klaR. Afterward, univariate Gini
coefficients (as one of the most commonly used performance measures for performance
evaluation of credit scoring models, cf. Section 6) of the WoE variables are computed
using the package pROC (Robin et al. 2021). Note that some of the introduced functions
for automatic binning allow for a certain degree ofhyperparameterization which could be
used to improve the binning results. However, as the scope of automatic binning does
not provide a highly tuned perfect model but rather a solid basis for a subsequent manual
bin adjustment, all results in the experiment are computed using default parameterization.
Further note that, for the package Rprofet, no validation performance is available as there
exists no predict() method. For the packages riskr, the workaround has been used
as described above to assign bins to validation data18. Concerning the results, it also
has to be mentioned that the package glmdisc optimizes bins w.r.t. subsequent logistic
regression based on dummy variables on the bins which further takes into account the
multivariate dependencies between the variables and not just discriminative power of the
single variables19.

Table 2. Gini coefficient of WoE transformed variables on validation data.

LCL sc woeB woeB.T Glmdisc sMU smb Cremo Riskr

duration 0.170 0.297 0.259 0.264 0.265 0.299 0.248 0.162 0.248
amount 0.116 0.251 0.179 0.227 0.000 0.196 0.219 0.069 0.219

age 0.078 0.179 0.169 0.222 0.189 0.200 0.187 −0.003 0.187
numLiable 0.000 0.006 0.006 0.006 0.006 0.000 0.006 0.006 0.000

numCredits 0.000 0.068 0.068 0.068 0.068 0.068 0.061 0.068 0.000
residence 0.000 0.006 0.017 0.017 0.017 0.029 0.006 0.017 0.000

instRate 0.000 0.108 0.103 0.103 0.000 0.108 0.108 0.104 0.000

The first column (LCL) of the results contains a 95% lower confidence level of the best
binning for each variable using bootstrapping (Robin et al. 2011). Only for the package
creditmodel results of the automatic binning for the variables age, amount and duration
were significantly worse (below LCL) than the best method. In summary, none of the
packages clearly dominates the others, and at first glance the choice of the algorithm
does not seem to be crucial. In practice, it might be worth trying different algorithms
and comparing their results to support the subsequent modelling step of their manual
modification (cf. above).

3.9. Summary of Available Packages for Binning

Table 3 summarizes the functionalities for variable binning and WoE assignment that
are provided by the different packages as they have been worked above.
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Table 3. Summary of the functionalities for binning and WoEs provided by the different packages
where Xdenotes available and 7 not available. An empty field means that this is not relevant w.r.t.
the scope of the package. (1): workaround available (cf. above); (2) separate bin (00.NA) is created—
binning of new data (split_bins_all()) possible but no WoE assignment ((woe_trans_all)); (3)
always bin 1 assigned; (4) separate function missing_val() for imputation; (5) additional function
cat_to_new() merges levels smaller than threshold (cf. above).

sc smb woeB Cremo Riskr Glmdisc sMU Rprof klaR

automatic binning of numerics X X X X X X X X 7
automatic binning of factors X 7 X 7 X X 7 7 7

store and predict numerics X X X X (1) X X 7 7
store and predict factors X X X 7 (1) X 7 7 7
supports bin prediction X X X 7 (1) X X 7 7

supports WoE prediction X 7 X X 7 7 7 7 X

summary table X X X X X 7 X 7 X
plot X X X 7 X X 7 X X

manual modification X X 7 7 7 7 7 X 7

multiple variables X 7 X 7 7 X X X X
supported target levels X 7 X X 7 7 7 7 X

adjust WoEs X 7 X 7 7 X X
NAs X X X (2) 7 (3) (4) X

new levels 7 7 X 7 (3)
level order irrelevant 7 X X X

min. level size 7 X 7 7 7 (5) 7

For an initial automatic binning of variables, most of the packages have implemented
strategies based on decisions trees. A short benchmark experiment on the German credit
data shows only small differences in performance depending on the package used. Only for
the package creditmodel using default parameters was a significantly worse performance
used. However, because the resulting automatically generated bins should be analyzed
and modified if necesseray, the choice of an explicit algorithm for the initial automatic
binning becomes less important. In summary, the package woeBinning offers quite a
comprehensive toolbox with many desirable implemented functionalities, but unfortunately
no manual modification of the results from automatic binning is supported. For the latter
the scorecard package can be used, but it must be used with care for factor variables
because its automatic binning of categorical variables suffers from dependence on the
natural order of the factor levels. As a remedy, a function has been suggested in the
supplementary code (cf. footnote 17) to import the results of woeBinning’s automatic
binning into the result objects from the scorecard package for further processing.

4. Preselection of Variables
4.1. Overview

As outlined above, a major aspect of credit risk scorecard development is to allow for
the integration of expert domain knowledge at different stages of the modelling process. In
statistics, traditionally criteria such as AIC or BIC are used for variable selection to find a
compromise between a model’s ability to fit the training data’s parsimony in terms of the
number of trainable model parameters (cf. Section 5). For scorecard modelling, typically a
variable preselection is made, which allows for a plausibility check by analysts and experts.
Apart from plausibility checks, several analyses are carried out at this stage, typically
consisting of:

• Information values of single variables;
• Population stability analyses of single variables on recent out-of-time data
• Correlation analyses between variables.
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4.2. Information Value

Variables with small discriminatory power in terms of their IV (cf. Section 3) are
candidates for removal from the development process. While the interpretation ‘’small” in
the context of IV slightly varies depending on who is asked, an example is given in Siddiqi
(2006) by IV < 0.02. As an important remark and in contrast to a common practice in credit
scorecard modelling, in business not just the IV of a variable should be taken into account
but rather how much different information a variable will contribute to a scorecard model
that is not already included in other variables. For this reason, IVs should be analyzed
together with correlations (cf. this Section below). If not just validation data but also an
independent test data set is available, a comparison of the IV on training and validation
data can be used to check for overfitting of the binning.

Table 4 lists packages that provide functions to compute information values of binned
variables. As usual, these packages differ by the type of the target variable that is required.
Some allow for factors; others require binary numerics that take the values 0 and 1. An im-
portant difference consists in whether (and how) they do WoE adjustment in case of bins
where one of the classes is empty. In creditR no adjustment is completed, and the result-
ing IV becomes ∞. Some packages (creditmodel, Information, InformationValue and
smbinning) return a value different from ∞, but from the documentation it is not clear how
it is computed. For the packages scorecard and scorecardModelUtils, the adjustment is
known, and for the package klaR the adjustment can be specified in an argument. Note that,
depending on the adjustment, the resulting IVs of the affected variables may differ strongly.

Table 4. Packages and functions for computation of IVs.

Package Function Target Type Multiple Variables WoE Adjustment

creditR IV.calc.data() both, levels 0/1 yes no
creditmodel get_iv_all() both, levels 0/1 yes yes
Information create_infotables() numeric 0/1 yes yes
InformationValue IV() numeric 0/1 no yes
klaR woe() factor yes argument
riskr pred_ranking() numeric 0/1 yes no
scorecard iv() both yes 0.99
scorecardModelUtils iv_table() numeric 0/1 yes 0.5
smbinning smbinning.sumiv() numeric 0/1 yes yes

Example 5 shows how IVs can be computed using the package klaR with zero adjust-
ment (which in fact is not necessary here.) The function woe() (cf. Example 4) automatically
returns IVs for all factor variables.

### Example 5: computing IVs (based on Example 4)
library(klaR)
woe_model <- woe(creditability ~ ., data = train_bins, zeroadj = 0.5)
# ...the IVs are automatically computed and can be assessed via:
woe_model$IV

The package creditR also offers a function IV_elimination() that allows an iv_
threshold and returns a data set with a subset of variables with IV above threshold for the
training data. Similarly, the package scorecardModelUtils offers a function iv_filter()
that returns a list of variable names that pass (/fail) a prespecified threshold.

Beyond computation of IVs, the package creditR can be used to compute Gini co-
efficients for simple logistic regression models on each single variable via the function
Gini.univariate.data(), and just as for IVs, this can be used for variable subset pres-
election (Gini_elimination()). The function pred_ranking() from the package riskr
returns a summary table containing IV as well as the values of the univariate AUC and KS
statistic and an interpretation.
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4.3. Population Stability Analysis

To take into account the sample selection bias that results from a customer portfolio
shift (e.g., due to new products or marketing activities), the stability of the distribution
of the variable’s bins over time is considered. For this purpose, typically, the population
stability index (PSI) is computed between the (historical) development sample data and
a more recent out-of-time (OOT) sample (where typically performance information is
not yet available). Basically, the PSI is just the IV (cf. eqn. (2)). While the IV compares
two data sets given by the development sample which are split according to the levels
of the target variable (y = 1 vs. y = 0), the PSI compares the entire development sample
(y ∈ {0, 1}) with an entire out-of-time sample. A large PSI indicates a change in the
population w.r.t. the bins. A small PSI close to 0 indicates a stable population and (again
referring to Siddiqi (2006)) PSI < 0.1 can be interpreted as stable while a PSI > 0.25 is an
indicator of a population shift. Of course, a decision of inclusion or removal of variables
from the development sample should take into account both population stability and the
discriminatory power (i.e., IV) of a variable. With reference to the analogy for PSI and IV,
the formerly presented functions of IV calculation can also be used for population stability
analysis. The function SSI.calc.data() from the package creditR returns a data frame of
PSIs for all variables. The corresponding code (here, for a computation of PSIs between
training and validation—not OOT—set) is given in Example 6.

### Example 6: population stability analysis for all variables
library(creditR)
SSI.calc.data(train_bins, valid_bins, ‘‘creditability’’)

The function riskr::psi() calculates the PSI for single variables and also provides a
more detailed table on the bin-specific differences (cf. Example 7 for the variable purpose).
It does contain the absolute and relative distribution of the bins (for reasons of space two
columns with the absolute frequencies have been discarded from the output). The PSI of
the variable as given by the value element of the output corresponds to the sum of the
column index:

### Example 7: PSI for single binned variable purpose (based on Example 3)
library(riskr)
psi(train_bins$purpose_bin, valid_bins$purpose_bin)

Version March 10, 2022 submitted to Risks 14 of 34

the absolute and relative distribution of the bins (for reasons of space two columns with the absolute402

frequencies have been discarded from the output). The PSI of the variable as given by the value403

element of the output corresponds to the sum of the column index:404

### example 7: PSI for single binned variable purpose (based on example 3)

library(riskr)

psi(train_bins$purpose_bin, valid_bins$purpose_bin)

## $value405

## [1] 0.00792406

##407

## $label408

## [1] "Insignificant change"409

##410

## $table411

## # A tibble: 5 x 7412

## class act_percent new_percent diff_percent coefficient woe index413

## <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>414

## 1 business%,%c~ 0.321 0.355 0.0339 1.11 0.100 3.40e-3415

## 2 car (used) 0.109 0.0887 -0.0202 0.815 -0.205 4.13e-3416

## 3 domestic app~ 0.0622 0.0614 -0.000801 0.987 -0.0130 1.04e-5417

## 4 furniture/eq~ 0.194 0.191 -0.00265 0.986 -0.0138 3.65e-5418

## 5 radio/televi~ 0.314 0.304 -0.0102 0.967 -0.0332 3.40e-4419

Alternatively, the package smbinning comes along with a function smbinning.psi(df, y, x)420

which requires both development and OOT sample to be in one data set (df) and an variable y that421

indicates the data set where an observations originates from. In addition to a function get_psi_all()422

for PSI calculation, the package creditmodel provides a function get_psi_plots() to visualize423

stability of the bins for two data sets using barplots with juxtaposed bars. The packages creditR and424

scorecard further offer functions which can be used for an OOT stability analysis of the final score425

(cf. Sec. 5).426

4.4. Correlation Analysis427

In order to avoid variability of the estimates of a regression model, its regressors should be of428

low correlation (cf. e.g. Hastie et al. 2009, ch. 3,4). As per construction, WoE transformed variables are429

linear in the logit of the target variable a natural approach consists in analyzing correlations between430

these variables. For this purpose, the caret package (Kuhn 2021, Kuhn (2008)) offers a function431

findCorrelation() that automatically identifies among any two variables of strong correlation the one432

that has larger average (absolute) correlation to all other variables. A major advantage of performing433

correlation analysis in advance for variable preselection is that it can be used as another way to434

integrate expert’s experience into the modelling: Among variable clusters of high correlations, experts435

can choose which of these variables should be used or discarded for further modelling. There are436

some packages which are not originally intended to be used for credit scorecard modelling but that437

offer functions that can be used for this purpose: The package corrplot corrplot offers a function438

to visualize the correlation matrix and resort it such that groups of correlated variables are next to439

each other (cf. Figure 3, left). An alternative visualization is given by a phylogenetic tree of the clustered440

variables using the package ape (Paradis et al. 2021, Paradis and Schliep (2018)), where the variable441

clustering is obtained using the package ClustOfVar (Chavent et al. 2017, Chavent et al. (2012)),442

cf. Figure 3, right). The code for creation of both plots is given in the following example (note that443

the choice of the hclust.method = "complete" in the left plot guarantees for a minimum correlation444

among all variables in a cluster but all correlations on the training data are below 0.35 in this example):445

Alternatively, the package smbinning comes along with a function smbinning.psi(df,
y, x) which requires both development and OOT sample to be in one data set (df) and
a variable y that indicates the data set where an observations originates. In addition to a
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function get_psi_all() for PSI calculation, the package creditmodel provides a function
get_psi_plots() to visualize stability of the bins for two data sets using bar plots with
juxtaposed bars. The packages creditR and scorecard further offer functions that can be
used for an OOT stability analysis of the final score (cf. Section 5).

4.4. Correlation Analysis

To avoid variability of the estimates of a regression model, its regressors should be of
low correlation (cf. e.g., Hastie et al. 2009, chps. 3, 4). As per construction, WoE transformed
variables are linear in the logit of the target variable, providing a natural approach in
analyzing correlations between these variables. For this purpose, the caret package (Kuhn
2008, 2021) offers a function findCorrelation() that automatically identifies among any
two variables of strong correlation the one that has the larger average (absolute) correlation
to all other variables. A major advantage of performing correlation analysis in advance for
variable preselection is that it can be used as another way to integrate expert’s experience
into the modelling. Among variable clusters of high correlations, experts can choose which
of these variables should be used or discarded for further modelling. There are some
packages that are not originally intended to be used for credit scorecard modelling but that
offer functions that can be used for this purpose. The package corrplot corrplot offers
a function to visualize the correlation matrix and resort it such that groups of correlated
variables are next to each other (cf. Figure 3, left). An alternative visualization is given by a
phylogenetic tree of the clustered variables using the package ape (Paradis and Schliep 2018;
Paradis et al. 2021), where the variable clustering is obtained using the package ClustOfVar
((Chavent et al. 2012, 2017), cf. Figure 3, right). The code for creation of both plots is given in
the following example (note that the choice of the hclust.method = “complete” in the left
plot guarantees a minimum correlation among all variables in a cluster, but all correlations
on the training data are below 0.35 in this example).

### Example 8: visualizing correlations (based on Example 4)
# reordered correlation matrix
library(corrplot)
# crop redundant prefixes from variable names for plot
X <- train_woes
names(X) <- substr(names(X), 5, 12)
cmat <- cor(X[,-(1:2)])
corrplot(cmat, order = ‘‘hclust’’, method = ‘‘ellipse’’,
hclust.method = ‘‘complete’’)

# phylogenetic tree
library(ClustOfVar)
library(ape)
vctree <- hclustvar(X.quanti = X[,-(1:2)])
plot(as.phylo(vctree), type = ‘‘fan’’)
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Figure 3. Reordered correlation matrix (left) and phylogenetic tree of the clustered variables (right).

The package clustVarLV (Vigneau et al. 2015, 2020) offers variable clustering such that
the correlation between each variable and the first latent principal component of its variable
cluster is maximized. The number of clusters K has to be prespecified. As it can be seen in
the output from Example 9 (only cluster 1 is shown), for each variable the correlation to the
cluster’s latent component as well as the correlation to the ‘closest’ next cluster are shown.

### Example 9: variable clustering using ClustVarLV (based on Example 4)
library(ClustVarLV)
clverg <- CLV(train_woes[,-(1:2)], method = 1)
plot(clverg)

summary(clverg, K = 3)
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### example 9: variable clustering using ClustVarLV (based on example 4)

library(ClustVarLV)

clverg <- CLV(train_woes[,-(1:2)], method = 1)

plot(clverg)

summary(clverg, K = 3)

## cor in group |cor|next group451

## woe_savings.account.and.bonds_bin 0.73 0.05452

## woe_status.of.existing.checking.account_bin 0.72 0.17453

## woe_purpose_bin 0.51 0.11454

Among the aforementioned packages dedicated to credit scoring, creditR contains a function455

variable.clustering() that performs cluster’s pam (Maechler et al. 2021) on the transposed data456

for variable clustering. The (sparsely documented) function correlation.cluster() %data, output,457

“variable”, “Group”)} can be used to compute average correlations between the variables of each cluster.458

20
459

The package Rprofet provides two functions WOEClust_hclust() and WOEClust_kmeans() that460

do perform stats::hclust() on the transformed data or ClustOfVar::kmeansvar() and return a461

data frame with variable names and cluster index together with the IV of the variable, which may help462

to select variables from the clusters. Unfortunately, they are only designed to work with output from463

the package’s function WOEProfet() and require a list of a specific structure as input argument. In464

addition to functions cor_plot() for visualzation of the correlation matrix, char_cor() to compute465

a matrix of Cramer’s V between or set of categorical variables and get_correlation_group() for466

detection fo groups of correlated (numeric) variables, the package creditmodel also contains a function467

fast_high_cor_filter() for an automatic correlation based variable selection: In a group of highly468

correlated variables the one with the highest IV is selected as it is shown in example 10:469

### example 10: Automatic correlation-based variable selection (based on example 4)

library(creditmodel)

# create list of variables sorted according to IV

iv_list = feature_selector(dat_train = train_woes, dat_test = NULL,

target = "creditability",

filter = "IV", iv_cp = 0.02, vars_name = FALSE)

iv_list

# select variables

fast_high_cor_filter(dat = train_woes, com_list = iv_list, p = 0.15,

cor_class = TRUE ,vars_name = TRUE)

Similarly, the package scorecardModelUtils offers an alternative for an automatic variable470

preselection based on Cramer’s V using the function cv_filter(): Among two (categorical) variables471

of V > threshold the one with lower IV is automatically removed (cf. example 11). Lastly, two472

functions iv_filter() and vif_filter() can be used for variable preselection based on IVs only473

(w/o taking into account for correlations between the explanatory variables) and based on variance474

inflation (cf. also Sec. 5).475

20 Its argument data denotes the training data, output is a data frame with two variables specifiying the variable names of the
training data (character) and the corresponding cluster index, as given e.g. by the result from variable.clustering().
Finally, its arguments variables and clusters denote the names of these two variables in the data frame from the output
argument where the clustering results are stored.

Among the aforementioned packages dedicated to credit scoring, creditR contains
a function variable.clustering() that performs cluster’s pam (Maechler et al. 2021)
on the transposed data for variable clustering. The (sparsely documented) function
correlation.cluster() %data, output, “variable”, “Group”)} can be used to compute
average correlations between the variables of each cluster. 20

The package Rprofet provides two functions WOEClust_hclust() and
WOEClust_kmeans() that perform stats::hclust() on the transformed data or
ClustOfVar::kmeansvar() and return a data frame with variable names and cluster index
together with the IV of the variable, which may help to select variables from the clusters.
Unfortunately, they are only designed to work with output from the package’s function
WOEProfet() and require a list of a specific structure as input argument. In addition to func-
tions cor_plot() for visualization of the correlation matrix, char_cor() computes a matrix
of Cramer’s V between or a set of categorical variables and get_correlation_group()
for detection of groups of correlated (numeric) variables. The package creditmodel also
contains a function fast_high_cor_filter() for an automatic correlation- based variable
selection. In a group of highly correlated variables, the one with the highest IV is selected
as shown in Example 10.
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### Example 10: Automatic correlation-based variable selection
(based on Example 4)
library(creditmodel)
# create list of variables sorted according to IV
iv_list = feature_selector(dat_train = train_woes, dat_test = NULL,
target = ‘‘creditability’’,
filter = ‘‘IV’’, iv_cp = 0.02, vars_name = FALSE)
iv_list

# select variables
fast_high_cor_filter(dat = train_woes, com_list = iv_list, p = 0.15,
cor_class = TRUE ,vars_name = TRUE)

Similarly, the package scorecardModelUtils offers an alternative for an automatic
variable preselection based on Cramer’s V using the function cv_filter(). Among two
(categorical) variables of V > threshold, the one with lower IV is automatically removed
(cf. Example 11). Finally, two functions, iv_filter() and vif_filter() can be used for
variable preselection based on IVs only (w/o taking into account for correlations between
the explanatory variables) and based on variance inflation (cf. also Section 5).

### Example 11: Cramer's V based variable selection (based on Example 3)
library(scorecardModelUtils)
# package requires 0/1 target:
train_bins2 <- train_bins
train_bins2$creditability <- as.integer(train_bins2$creditability==‘‘good’’)

# first data frames of IVs and Cramer's V have to be computed
ivtable <- iv_table(train_bins2, ‘‘creditability’’,
cat_var_name = names(train_bins2)[-1])
cvtable <- cv_table(train_bins2, names(train_bins2)[-1])
selection <- cv_filter(cvtable$cv_val_tab, ivtable$iv_table,threshold = 0.3)
selection

4.5. Further Useful Functions to Support Variable Preselection

The package scorecard contains a function var_filter() that performs an automatic
variable selection based on IV and further allows for specifying a maximum percentage
of missing or identical values within a variable, but it does not account for correlations
among the predictor variables. Alternatively, the package creditmodel has a function
feature_selector() for automatic variable preselection based on IV, PSI, correlation and
xgboost variable importance (Chen and Guestrin 2016).

The package creditR has two functions to identify variables with missing values
(na_checker()) and compute the percentage of variables with missing values
(missing_ratio()). For imputation of numeric variables in a data set with mean or median
values, a function na_filler_contvar() is available. Of course, this has to be handled
with care as the mean or median value will typically not be the same on training and
validation data. The package mlr (Bischl et al. 2016, 2020) offers imputation that can be
applied to new data.

For an assignment of explicit values to missing the package scorecardModelUtils
also provides a function missing_val(). This can be either a function such as “mean”,
“median” or “mode” or an explicit value such as -99999 which can be meaningful before
binning to assign missing values to a separate bin. Similarly, for categorical variables the
assignment of a specific level such as “missing_value” can be meaningful. A function
missing_elimination() removes all variables with a percentage above
missing_ratio_threshold from training (but not from validation) data. The package
creditmodel offers a convenient function data_cleansing() that can be used for auto-
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matic deletion of variables with low variance and a high percentage of missing values,
to remove duplicated observations and reduce the number of levels of categorical variables.
The package riskr provides two functions select_categorical() and select_numeric()
to select all (non-/) numeric variables of a data frame.

A univariate summary of all variables is given by the function univariate() of
the scorecardModelUtils package. A summary for numeric variables can be computed
using the function ez_summ_num() from the package riskr. A general overview of pack-
ages explicitly designed for exploratory data analysis that provide further functionali-
ties are given in Staniak and Biecek (2019). The packages scorecard (one_hot() and
var_scale()) and creditmodel (\texttt{one_hot_encoding(), de_one_hot_encoding(),
min_max_norm()) provide functions for one-hot-encoding of categorical and standard-
ization of numeric variables.

5. Multivariate Modelling
5.1. Variable Selection

Traditionally, credit risk scorecards are modelled using logistic regression (cf. e.g., An-
derson 2019; Siddiqi 2006; Thomas et al. 2019; Wrzosek et al. 2020), which is in R performed
via glm() (with family = binomial). In addition to the manual variable preselection as
described in the former section, typically, a subsequent variable selection is performed
which can be completed by the step() function. Common criteria for variable selection are
AIC (k = 2) or BIC (k = log(nrow(data))). Example 12 gives an example for BIC based
variable selection.

### Example 12: BIC variable selection (based on Example 4)
# column 2 (variable foreign.worker_bin excluded as it has only one level)
null <- glm(creditability ~ 1, data = train_woes[,-2], family = binomial)
full <- glm(creditability ~ ., data = train_woes[,-2], family = binomial)
bicglm <- step(null, scope=formula(full), direction=‘‘both’’,
k=log(nrow(train_woes)))

Note that an initial model (here: null) and the scope for the search have to be specified.
This offers another possibility for expert knowledge integration. After each step the criteria
of all candidates are reported and can be used to decide among several variable candidates
of similar performance for the one that is most appropriate from a business point of view.
The corresponding variable can be manually added to the formula of a new initial model in
a subsequent variable selection step.

The function smbinning.logitrank() of package smbinning runs all possible com-
binations of a specified set of variables, ranks them according to AIC and returns the
corresponding model formulas in the result data frame. Depending on the size of the
preselected set of variables (cf. Section 4), this can be time-consuming.

As an alternative to AIC and BIC, Scallan (2011) presents how variables can be selected
in line with the concept of information values (cf. Section 3) using so-called marginal
information values, but currently none of the presented packages offers an implementation
of this strategy.

It is also common to consider the variance inflation factor of the explanatory variables
of a final model given by:

VIF(Xi) =
1

1− R2
i

(3)

where R2
i is the R2 of a linear regression model with Xi as dependent variable and all other

explanatory variables except Xi as regressors. Large values of VIF(Xi) denote that this
variable can be explained by the other regessors and are an indication of multicollinearity.
Both the packages car (Fox and Weisberg 2019; Fox et al. 2021) and scorecard offer a
function vif() that can be used for this purpose as well as the functions vif.calc() and
lr_vif() of the packages creditR and creditmodel (cf. Example 13).
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### Example 13: VIF (based on Example 11)
car::vif(bicglm)
scorecard::vif(bicglm)
creditR::vif.calc(bicglm)
creditmodel::lr_vif(bicglm)

Not only variable selection during the scorecard development but also the question of
segmentation may arise, i.e., whether one single model or several separate models should
be used for different subsets of the population. For this purpose, the package glmtree
offers a function glmtree() that computes a potential segmentation scheme according to a
tree of recursive binary splits where each leaf of the tree consists in a logistic regression
model. The resulting segmentation optimizes AIC, BIC or alternatively the likelihood or
the Gini coefficient on validation data. Note that this optimization does not account for
variable selection as described above.

5.2. Turning Logistic Regression Models into Scorecard Points

>From the coefficients of the logistic regression model, the historical shape of a score-
card is obtained by assigning the corresponding effect (aka points) to each bin (such that
the score of a customer is the sum over all applicable bins and can easily be calculated by
hand). Typically, the effects are scaled to obtain some predefined points to double the odds
(pdo, cf. e.g., Siddiqi 2006) and rounded to integers.

The package scorecard offers a function scorecard() that translates a glm object into
scorecard points as described above and in addition returns key figures such as frequencies,
default rates and WoE for all bins. A function scorecard_ply() is available that can
be used to assign scores to new data. In addition to the glm object, the bins as created
by scorecard’s woebin() (cf. Section 3) have to be passed as an input argument. Further
arguments do specify the (pdo) as well as a fixed number of points points0 that corresponds
to odds of odds0 and whether the scorecard should contain an intercept or whether the
intercept should be redistributed to all variables (basepoints_eq0). The function requires
WoEs (not just the binned factors) and the variable names in the coef(glm) to match the
convention of variable renaming as it is done by scorecard’s woebin_ply() function (i.e., a
postfix _woe)21.

Alternatively, a function scorecard2() is available that directly computes a scorecard
based on bins and a data frame of the original variables. Here, in addition, the name of the
target variable (y) and a named vector (x) of the desired input variables have to be passed22.
Example 14 illustrates the usage of scorecard2() and its application to new data (here
represented by the validation set) as well as its output for the variable duration.in.month.

### Example 14: calculation of scores (based on Example 2)
# note: variable 20 (foreign.worker) not used (cf. also Example 12)
sc <- scorecard2(bins, train, y = 'creditability', x = names(train)[1:19])
# scorecard points table for the variable 'duration.in.month'
sc$duration.in.month[,c(1,2,4,5,6,7,8,13)]
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## variable bin count_distr neg pos posprob woe points558

## 1: duration.in.month [-Inf,8) 0.08062 51 6 0.1053 -1.2988 65559

## 2: duration.in.month [8,16) 0.35785 194 59 0.2332 -0.3491 18560

## 3: duration.in.month [16,34) 0.37907 179 89 0.3321 0.1425 -7561

## 4: duration.in.month [34,44) 0.10467 44 30 0.4054 0.4583 -23562

## 5: duration.in.month [44, Inf) 0.07779 26 29 0.5273 0.9504 -48563

train_scored <- scorecard_ply(train, sc, only_total_score = FALSE)

valid_scored <- scorecard_ply(valid, sc, only_total_score = FALSE)

In addition, the package further contains a function report() which takes the data, the (original)564

names of all variables in the final scorecard model and a breaks list (cf. Sec. 3 which can be obtained565

from the bins) as input arguments and generates an excel report summary of the scorecard model.566
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21 A remedy how it can be used in combination with WoE assignment using the package klaR as shown in example 4 is given
in snippet 9 of the supplementary code.

22 Snippet 10 of the supplementary code illustrates how the vector x of the names of the input variables in the original data
frame can be extracted from the bicglm model after variable selection from example 12.
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train_scored <- scorecard_ply(train, sc, only_total_score = FALSE)
valid_scored <- scorecard_ply(valid, sc, only_total_score = FALSE)

In addition, the package further contains a function report() that takes the data,
the (original) names of all variables in the final scorecard model and a breaks list (cf. Section 3
that can be obtained from the bins) as input arguments and generates an excel report sum-
mary of the scorecard model. Different sheets are reported with information and figures on
the data, model, scorecard points, model performance and the binning figures for all vari-
ables of the model which can be used for model development documentation in practice.

To translate a glm based on factor variables (bins instead of WoEs) into scorecard
points, the package scorecardModelUtils provides a function scalling(). Its output can
be used to predict scores for new data by function scoring() (cf. Example 15).

### Example 15: score points for a model based on bins, not WoEs
(based on Example 4)
library(scorecardModelUtils)
# create glm using factor variables -- foreign worker excluded (cf. above)
full_bins <- glm(creditability~.,data = train_bins[,-21], family = binomial)
# calculate scorecard points from effects
sc2 <- scalling(train_bins, ‘‘creditability’’, full_bins, point = 15,
factor = 2)
sc2
# apply scorecard to new data
scoring(valid_bins, target = ‘‘creditability’’, sc2)

The package creditmodel transforms a glm object into scorecard points via a function
get_score_card(), which requires a bin table created by creditmodel::get_bins_table_all()
and thus is restricted to application within its own universe. In addition, if a table of score-
card points is not required, it offers a function score_transfer() that directly applies the
glm object to data and scales the resulting points accordingly (cf. Example 16) and another
function p_to_score to turn posterior probabilities into score points.

### Example 16: directly predict score points from a glm object
(based on Example 12)
library(creditmodel)
train_scored_3 <- score_transfer(bicglm, train_woes, a = 500, b = 20)
valid_scored_3 <- score_transfer(bicglm, valid_woes, a = 500, b = 20)

Another implementation of calculating scorecard points from a glm object based on
bins and not WoEs is given by the function smbinning.scaling(), which comes with a
predict function smbinning.scoring.gen() that can be used to score new observations
but that requires the binned variables have been generated with smbinning.gen() or
smbinning.factor.gen() (cf. Section 3). A function smbinning.scoring.sql() is avail-
able that transforms the resulting scorecard into SQL code.

The package Rprofet also contains a function ScorecardProfet() for this purpose,
which calculates a glm with corresponding scorecard points but only based on binning and
WoEs as calculated by functions from the package itself (cf. Section 3), and no function is
available for application of the scorecard points to new data. The function scaled.score()
of the package creditR transforms posterior default probabilities into scores where any
increase points double the odds (of nondefault), and odds of increase correspond to
ceiling_score points. In addition, the package creditR offers a function that can be
used to recalibrate an existing glm on calibration data. A simple logistic regression is fit
on the calibration_data with only one input variable: the predicted log odds by the
current model.
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5.3. Class Imbalance

In credit scorecard modelling, the class typically is highly unbalanced in the training
sample. This issue has been addressed in several papers (Brown and Mues 2012; Crone and
Finlay 2012; Vincotti and Hand 2002). Usual remedies are oversampling, undersampling,
synthetic minority over-sampling (SMOTE, Chawla et al. 2002) or simply reweighing obser-
vations. A comprehensive benchmark study of these techniques as well as overbagging is
undertaken in Bischl et al. (2016), and it turns out that logistic regression is less sensitive to
class imbalance than tree-based classifiers. Furthermore, note that different from, e.g., the
accuracy of the two most commonly used performance measures in credit scorecard mod-
elling, the Gini coefficient and the KS statistic (cf. Section 6) do not depend on the class
imbalance ratio.

The package klaR allows for specifying observation weights for WoE computation (see
Section 3.7). Within the mlr3 framework, imbalance correction can be performed using
mlr3pipelines (Binder et al. 2021). Several resampling algorithms are implemented in
the packages imbalance (Cordón et al. 2020, 2018) and unbalanced (Pozzolo et al. 2015).
The SMOTE algorithm is also implemented in the smotefamily package (Siriseriwan 2019).

6. Performance Evaluation
6.1. Overview

In credit scoring modelling, performance evaluation is used not only for model selec-
tion but also for third-party assessments of an existing model by auditors or regulators
and to drive future management decisions about whether an existing model should be
kept in place or whether it should be replaced by a new one. Note that, as opposed to
common practice in machine learning, hyperparameter tuning typically has no separate
validation data used for model selection (cf. e.g., Bischl et al. (2012), Bischl et al. (2021)), but
in credit scorecard modelling, the validation data serves for independent model validation
(corresponding to test data in frameworks such as mlr3). While this is less critical in the
case of simple models such as logistic regression, it should still be kept in mind, especially if
the model is benchmarked against more flexible machine learning models such as support
vector machines, random forests or gradient boosting (cf. e.g., Hastie et al. (2009)).

6.2. Discrimination

The two most popular performance metrics for credit scorecards are the Gini coefficient,
Gini = 2(AUC− 0.5) and the Kolmogorov–Smirnov test statistic. While for the latter, R
provides the function ks.test(), one of the most popular ways to compute the AUC in
R is given by the package ROCR (Sing et al. 2005, 2020). Nonetheless, for the purpose of
credit scorecard modelling, it is referred to the package pROC at this point for the following
three reasons:

1. Different from standard binary classification problems, credit scores are typically
supposed to be increasing if the event (= default-) probability decreases. The function
roc() of the package pROC has an argument direction that allows for specifying this.

2. In credit scoring applications, it may be given that not all observations of a data set
are of equal importance, e.g., it may not be as important to distinguish which of two
customers with small default probabilities has the higher score if his or her application
will be accepted anyway. The package’s function auc() has an additional argument
partial.auc to compute partial area under the curve (Robin et al. 2011).

3. Finally, its function ci() can be used to compute confidence intervals for the AUC
using either bootstrap or the method of DeLong (DeLong et al. 1988; Sun and Xu
2014), e.g., to support the comparison of two models.

Example 17 demonstrates how pROC can be used for performance analysis.

### Example 17: Gini coefficient using {pROC} (based on Example 13)
library(pROC)
curve <- roc(valid$creditability, valid_scored$score,
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levels = c(‘‘good’’,‘‘bad’’), direction = ‘‘>’’)
# levels = c(‘‘controls’’, ‘‘cases’’),
# direction = controls > cases
plot(curve)

auc(curve)
# gini coefficient:
2 * (auc(curve) - 0.5)
# confidence limits for the auc:
ci(auc(curve), method = ‘‘bootstrap’’)

Among the packages enumerated above, creditR offers a function Kolmogorov–Smirnov(),
and riskr has two functions, ks() and ks2(), for computation of the Kolmogorov–Smirnov
test statistic. In addition, riskr provides a function divergence() to compute the diver-
gence between two empirical distributions as well as gg_dists() and gg_cum() to visualize
the score densities for defaults and nondefaults and their empirical cumulative distribution
functions. To compute the Gini coefficient, the package riskr provides functions aucroc
(AUC), gini (Gini coefficient), gg_roc() (visualization of the ROC curve), gain() (gains
table for specified values on the x-axis) and gg_gain() /gg_lift() (for visualization of
the gains-/lift-chart).

In the package creditmodel, two functions ks_value() and auc_value() are avail-
able as well as a model_result_plot() to visualize the ROC curve, cumulative score
distributions of defaults vs. nondefaults, lift chart and the default rate over equal-sized
score bins. A table with respective underlying numbers can be obtained via perf_table().

The package InformationValue contains two functions, ks_stat() and ks_plot(),
for Kolmogorov-Smirnov analysis and several functions: AUROC(), plot_ROC(), Concor-
dance() and SomersD() (Gini coefficient) to support analyses with regard to the Gini coef-
ficient. Additionally, the confusionMatrix() and derivative performance measures mis-
ClassError(), sensitivity(), specificity(), precision(), npv(), kappaCohen() and
youdensIndex() (cf. e.g., Zumel and Mount (2014) chp. 5 for an overview) can be computed
for a given cut off by the corresponding functions. Note that these measures are computed
with respect to the nondefault target level (supposed to be coded as ‘1’ in the target variable)
as well as a cut off optimization w.r.t. the misclassification error, Youden’s Index or the
minimum (/maximum) score such that no misclassified defaults (/non-defaults) occur in the
data (function optimalCutoff()).

Similar measures (accuracy, precision, recall, sensitivity, specificity, F1) are computed
by the function fn_conf_mat() of the scorecardModelUtils package. Numeric differences
between the (0/1-coded) target and the model’s predictions in terms of MSE, MAE and
RMSE can be computed by its fn_error() function. The package boottol contains a
function boottol() to compute bootstrap confidence intervals for Gini, AUC and KS, where
subsets of the data above different cut off values are also considered. It may be desirable
to analyze the (cumulative) frequencies of the binned scores. A table of such frequencies
is returned by the function gini_table() in the scorecardModelUtils package. Example
18 shows selected columns for a binned score using the function gains_table() from the
scorecard package.

### Example 18: score bin frequencies (...for valid_scored from Example 14)
library(scorecard)
gt <- gains_table(valid_scored$score, valid$creditability, bin_num = 8)
gt[,c(2,4,5,6,7,8,10,11)]

## bin cum_count neg cum_neg pos cum_pos posprob approval_rate
## 1: [628, Inf) 37 37 37 0 0 0.00000 0.1263
## 2: [575,628) 76 36 73 3 3 0.07692 0.2594
## 3: [529,575) 112 34 107 2 5 0.05556 0.3823
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## 4: [492,529) 148 30 137 6 11 0.16667 0.5051
## 5: [448,492) 185 26 163 11 22 0.29730 0.6314
## 6: [399,448) 222 21 184 16 38 0.43243 0.7577
## 7: [353,399) 257 14 198 21 59 0.60000 0.8771
## 8: [-Inf,353) 293 8 206 28 87 0.77778 1.0000

Note that although the Gini coefficient is generally bounded by −1 and 1, the value it
can take for a specific model strongly depends on the discriminability of the data. For this
reason, it is suitable to compare performance on different models on the same data rather
than comparing performance across different data sets. Consequently, for the purpose
of an out-of-time monitoring of a scorecard, it is advisable to compare an existing score-
card’s performance against a recalibrated version of it rather than to compare it with its
performance on the original (development) data. Drawbacks of the Gini coefficient as
a performance measure for binary classification are discussed in (Hand 2009), and the
H-measure is proposed as an alternative which is implemented in the package hmeasure
(Anagnostopoulos and Hand 2019). The expected maximum profit measure (Verbraken
et al. 2014) as implemented in the package EMP (Bravo et al. 2019) further takes into account
the profitability of a model.

6.3. Performance Summary

Many of the functionalities as provided by the packages for scorecard modelling in
the previous subsection already exist in other packages and are thus not indispensable.
In addition to these, however, some of the package provide performance summary reports
of several performance measures. These functions are listed in the following table.

In Example 19, computation of a scorecard performance summary is demonstrated
using the package smbinning (which returns the largest number of performance measures
of the four functions from Table 5) as well the function riskr::gg_perf() that can be
used to produce several graphs on the scorecard’s performance (cf. Figure 4). Note that
although ROC curves are one of the most popular tools for performance visualization
of binary classifiers, they are hardly suited to visualize the performance difference of
several competitive models. One reason for this is that large areas of the TPR-FPR plane
(e.g., everything below the main diagonal) are typically of no interest given a specific data
situation. For this reason, in practice, ROC curves are not very useful for model selection.

### Example 19: scorecard performance summary (based on Example 13)
library(smbinning)
perf_dat <- data.frame(‘‘creditability’’ = as.integer
(valid$creditability == ‘‘good’’), ‘‘score’’ = valid_scored$score)
smbinning.metrics(perf_dat, ‘‘score’’, ‘‘creditability’’, cutoff = 450)

# roc curve, ecdf, score distribution and gain chart
library(riskr)
gg_perf(as.integer(valid$creditability == ‘‘good’’), valid_scored$score)
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Table 5. Overview of scorecard performance summary functions.

Package RiskrRiskrRiskr ScorecardScorecardScorecard ScorecardModelUtilsScorecardModelUtilsScorecardModelUtils SmbinningSmbinningSmbinning
Function Perf()Perf()Perf() Perf_Eva()Perf_Eva()Perf_Eva() Gini_Table()Gini_Table()Gini_Table() Smbinning.Metrics()Smbinning.Metrics()Smbinning.Metrics()

KS X X X X
AUC X X X
Gini X X X

Divergence X
Bin table X
Confusion matrix X X
Accuracy X X
Good rate X
Bad rate X
TPR X
FNR X X
TNR X
FPR X X
PPV X
FDR X
FOR X
NPV X

ROC curve X X X X
Score densities | y X
ECDF X X X
Gain chart X

gain roc curve

cumulative distributions
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Figure 4. Scorecard performance graphs: ECDF (top left); score densities (top right); gains (bottom
left); ROC (bottom right).
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6.4. Rating Calibration and Concentration

>From a practical point of view, it is often desirable to aggregate scorecard points into
classes (rating grades) of similar risk, which is once again a binning task (cf. Section 3).
The package creditR contains a function master.scale() that takes a data frame with
scores and corresponding default probabilities as input and uses the function
woeBinning::woe.binning() to group scores of similar WoE (cf. Example 20). The function
odds_table() of the riskr package allows setting a breaks argument with arbitrary bins.

Rating classes should be appropriately calibrated in the sense that the predicted
and observed default probabilities match for all rating grades. In order to check this,
the package creditR contains three functions (chisquare.test(), binomial.test() and
adjusted.binomial.test()) that provide a table with indicators for each rating grade
(cf. Example 19). Another function, binomial.point(), compares the observed average
predicted default probability on the data with prespecified boundaries around some desired
central tendency default probability. Bootstrap confidence intervals for default probabil-
ities of rating grades can be computed using the function vas.test() of the package
boottol. A Hosmer–Lemeshow goodness-of-fit test (Hosmer and Lemeshow 2000) is,
e.g., implemented by the function hoslem.test() in the resourceselection package
(Lele et al. 2019).

### Example 20: rating calibration analysis (based on Example 14)
library(creditR)
# calculate PDs from scores
odds <- 1/19 * 2ˆ(-(valid_scored$score - 600)/50)
pd <- odds / (1 + odds)
pd.dat <- data.frame(pd = pd,
creditability = as.integer(valid$creditability == ‘‘bad’’))
# aggregate scores to rating grades
mscale <- creditR::master.scale(pd.dat, ‘‘creditability’’, ‘‘pd’’)
# transform $Bad.Rate into numeric
mscale$Bad.Rate <- as.numeric(gsub(‘‘%’’,‘‘’’,mscale$Bad.Rate))/100
# test calibration of the rating grades
# chisquare.test(mscale, ‘‘PD’’, ‘‘Bad.Count’’, ‘‘Total.Observations’’)
bintest <- binomial.test(mscale,‘‘Total.Observations’’,‘‘PD’’,‘‘Bad.Rate’’)
bintest[,c(1,3,8,9,14)]

## Final.PD.Range Total.Distr Bad.Rate PD Test_Result
## 1 <= 0.0692759267 25.9% 0.039 0.03835 Target Value Correct
## 2 <= 0.1477666759 17.4% 0.078 0.11149 Target Value Correct
## 3 <= 0.1904265313 7.2% 0.190 0.17482 Target Value Correct
## 4 <= 0.275937974 9.6% 0.321 0.23297 Target Value Correct
## 5 <= 0.3709582356 7.5% 0.364 0.32236 Target Value Correct
## 6 <= 0.4365863463 5.1% 0.467 0.41036 Target Value Correct
## 7 <= 0.4605851205 3.1% 0.333 0.45143 Target Value Correct
## 8 <= 0.5695614029 9.2% 0.630 0.51257 Target Value Correct
## 9 <= Inf 15.0% 0.727 0.72768 Target Value Correct

According to regulation, ratings must avoid risk concentration (i.e., a majority of
the observations being assigned to only a few grades). The Herfindahl–Hirschman index
(HHI = ∑j f̂ (j)2, with the empirical distribution f̂ of the rating grades j) can be considered
to verify this, as e.g., implemented by creditR’s Herfindahl.Hirschman.Index() or Ad-
justed.Herfindahl.Hirschman.Index(). Small values of HHI indicate low risk concentration.

6.5. Cross Validation

Some of the mentioned packages also provide functions for cross-validation. As both
binning and variable selection are interactive, they are not suited for cross-validation (cf.
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Sections 3 and 4). For this reason it should be used on the training data and restricted
to analyzing overfitting of the logistic regression model. There are already several pack-
ages available that provide general functionalities for execution of cross-validation anal-
yses (e.g., mlr3 or caret). The function k.fold.cross.validation.glm() of the creditR
package computes cross-validated Gini coefficients, while the function perf_cv() of the
scorecard package offers an argument to specify different performance measures such as
“auc”, “gini” and “ks”. Both functions allow setting seeds to guarantee reproducibility
of the results. The function fn_cross_index() somewhat more generally returns a list of
training observation indices that can be used to implement a cross-validation and compare
models using identical folds.

7. Reject Inference
7.1. Overview

Typically, the final stage of scorecard development consists of reject inference. The
scorecard model is based on historical data but already in the past, credit applications of
customers that were assumed to be high risk were rejected, and thus for these data only, the
predictor variables are available from the application but not the target variable. The use of
these observations with unknown performance is commonly referred to as reject inference.

The benefits of using reject inference in practice still remains questionable. It has been
investigated by several authors (cf. e.g., Crook and Banasik (2004), Banasik and Crook
(2007), Verstraeten and den Poel (2005), Bücker et al. (2013), Ehrhardt et al. (2019)) and is
nicely discussed in Hand and Henley (1993). The appropriateness of different suggested
algorithms for reject inference depends on the way the probability of being rejected can
be modelled, i.e., whether it is solely a function of the scorecard variables (MAR) or not
(MNAR) (for further details cf. also Little and Rubin (2002)). A major issue is that, especially
for the most relevant MNAR situation, the inference entirely relies on expert judgments.
For this reason the appropriateness of the model cannot be tested anymore. In consequence,
reject inference should be used with care.

In R, the only package that offers functions for reject inference is the package scoring
Tools, which is available on Github but not on CRAN. It provides five functions for reject
inference: augmentation(), fuzzy_augmentation(), parcelling(), reclassification()
and twins(), which correspond to common reject inference strategies of the same name
(cf. e.g., Finlay (2012)). In the following, two of the most popular strategies, namely
augmentation and parcelling are briefly explained as they are implemented within the
package, completed by an example of their usage.

7.2. Augmentation

An initial logistic regression model is trained on the observed data of approved credits
(using all variables, i.e., variable selection has to be done in a preceding step). Afterward,
weights are assigned to all observations of this sample of accepted credits, according to their
probability of being approved. For this purpose, all observations (accepted and rejected)
are scored by the initial model. Then, score-bands are defined and within each band23

the probability of having been approved is computed by the proportion of observations
with known performance in the combined sample from both accepted and rejected credits.
Finally, the logistic regression model is fitted again on the sample of the accepted loans
with only observed performance but reweighted observations24.

7.3. Parcelling

Based on an initial logistic regression model which is trained on the observed data
of approved credits, only score-bands are defined, and the observed default rate P̂Dj of
each score-band j is derived. The observations of the rejected subsample are then scored
by the initial model and assigned to each score-band. Labels are randomly assigned to the
rejected observations such that they will have a default probability of P̂Dj × αj

25 in each
band where αj are user-defined factors to increase the score-bands’ default rates which have
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to be specified by expert experience. Typically the αj are set to be increasing for score-bands
with larger default probabilities. Note that accepting these credit applications in the past
might have happened for reasons beyond those that were reflected by the score variables
but which led to a reduced risk for these observations in the observed sample compared
to observations with a similar score in the total population. For this reason, parcelling is
suitable for the MNAR situation.

Example 21 illustrates parcelling using the scoringTools package. Note that all other
functions of this package are of similar syntax and output. For parcelling in particular,
the probs argument specifies quantiles w.r.t. the predicted default probabilities (i.e., from
low risk to high risk). Although in the example the factor vector alpha is constantly set to 1
for all bands, in practice it will be chosen to be increasing, at least for quantiles of high PDs.

### Example 21: reject inference using parcelling (based on Example 4)
library(scoringTools)
# use validation data as 'rejects' for this example
# ...remove target variable and constant variable foreign.worker_bin
reject_woes <- valid_woes[,-(1:2)]
# apply parcelling
set.seed(42) # reproducibility
ri_parc <- parcelling(xf = train_woes[,-(1:2)], xnf = reject_woes,
yf = ifelse(train_woes[,1] == ‘‘bad’’, 1, 0),
probs = c(0, 0.25, 0.5, 0.7, 0.8, 0.9, 1),
alpha = rep(1, 6))
# final model after reject inference
class(ri_parc@infered_model)
# observations weights
ri_parc@infered_model$weights
# combined sample after parcelling (note automatically renamed variables)
str(ri_parc@infered_model$data)

# recompute WoEs on combined sample using weight (cf. also Example 4)
combined_bins <- rbind(train_bins, valid_bins)
combined_bins$creditability <- ifelse(ri_parc@infered_model$data$labels==1,
‘‘bad’’, ‘‘good’’)
combined_bins$creditability <- as.factor(combined_bins$creditability)

library(klaR)
woe_model_after_ri <- woe(creditability ~ ., data = combined_bins,
weights = ri_parc@infered_model$weights)
combined_woes <- data.frame(creditability = combined_bins$creditability,

woe_model_after_ri$xnew)

The initial model and the final model are stored in the result object’s slots financed_model
and infered_model. Both are of class glm. Note that both models are automatically
calculated without any further options of parameterization such as variable selection or a
recomputation of the WoEs based on the combined sample of accepted applications and
rejected applications with inferred target. For this purpose, the woe() function of the klaR
package can be used, which supports the specification of observation weights as the only
one among all presented packages. Finally, the combined sample can be used to rebuild the
scorecard model as described in Sections 4–6.

8. Summary and Discussion

For a long time in the R universe, no packages were available that were explicitly
dedicated to the credit risk scorecard development process, while during the last few years
a simultaneous growth of several packages on this task has been observed. Some of these
packages are available on CRAN, while some are only available on Github.



Risks 2022, 10, 67 27 of 33

This paper aims to give a comparative overview on the different functionalities of
currently available packages guided by the sequence of steps along a typical scorecard
development process. At the same time, any required functionality is available, which
makes it easy to develop scorecards using R. As a conclusion of this systematic review,
currently the most comprehensive implementations are given by the packages scorecard,
scorcardModelUtils, smbinning and creditmodel. With regard to the important mod-
elling step of variable binning and WoE computation, the package woeBinning provides an
implementation that reflects a broad range of practical issues (cf. Section 3). The package
creditmodel comes with a whole set of additional functionalities such as cohort analysis,
correlation based variable preselection or Cramer’s V. It further allows for an easy develop-
ment of challenging models using xgboost (Chen et al. 2021), gradient boosting (Greenwell
et al. 2020) or random forests (Liaw and Wiener 2002). In turn, it does not support manual
modification of the bins but rather claims to make the development of binary classification
models simple and fast. Unfortunately, its functions are poorly documented, and for the
user it is not clear what exactly many of the functions do without looking into the source
code. While it seems based on individual experiences, the package scorecard is close to
the methodology as described in literature (Siddiqi 2006).

Thanks to its large developing community and the huge amount of freely available
packages, developers have access to many additional packages that are not explicitly
designed for the purpose under investigation but that still provide valuable tools and
functions to facilitate and improve the analyst’s life, making R a serious alternative to
commercial software on this topic.

An investigation of the functionalities provided by the different packages concludes
that the packages seem to have been developed quite independently of one other. Some
steps of the developments are addressed in many packages, especially the important one
of binning variables. However, links between the packages are mostly missing,26 and
many packages are not flexibly designed in the sense that their functions require input
arguments and variable naming conventions restricted to results from functions of the
same package, which makes it somewhat difficult to benefit from advantages of different
packages at the same time. The paper’s supplementary code provides several remedies
for this issue27. Some of the packages are missing predictive functionalities to apply the
results of the modelling to new data. It would be desirable, if package developers in the
future would check thoroughly for existing implementations and take these into account
before generating new code. In particular, respecting existing naming conventions and
output objects of other packages may help users simultaneously use different packages and
maximally profit from the advantages provided by the R package system.

To summarize the results as they have been worked out in the previous sections,
Table 6 lists the presented packages with an explicit scope of scorecard modelling together
with the stages of the development process that are addressed.

Finally, and with regard to the title of the paper, Figure 5 aims to visualize the ‘land-
scape’ of R packages dedicated to scorecard development using logistic principal com-
ponent analysis (Landgraf and Lee 2015) as implemented in the logisticPCA package
(Landgraf 2016) on the binary data given by Table 6.
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Table 6. Overview of R packages with the explicit scope of scorecard modelling and addressed stages
of the development process.

Package Binning & WoEs Preselection Scorecard Performance Reject Inference

boottol X
creditmodel X X X X
creditR X X X X
glmdisc X X
glmtree X
Information X
InformationValue X
riskr X X X
Rprofet X X
scorecard X X X X
scoringTools X X
scorecardModelUtils X X X X
smbinning X X X X
woe X X
woeBinning X
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Figure 5. Landscape of R packages for scorecard modelling using logistic PCA.

The future will show to what degree the traditional process of credit risk scorecard
development will stay as it is or whether or up to what extent the use of logistic regression
will be replaced by more recent machine learning algorithms such as those offered by
the recent powerful mlr3 framework in combination with explainable ML methodology
to fulfill regulatory requirements (Bücker et al. 2021). The availability of open source
frameworks for scorecard modelling as described above may help bridge the gap between
academic advances in machine learning research and the traditional modelling process in
the financial industry.
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Notes
1 https://www.sas.com/en_us/software/credit-scoring.html (accessed on 15 February 2022).
2 https://cran.r-project.org/web/views/Finance.html (accessed on 15 February 2022).
3 https://www.openriskmanual.org/wiki/Credit_Scoring_with_Python (accessed on 15 February 2022).
4 https://towardsdatascience.com/how-to-develop-a-credit-risk-model-and-scorecard-91335fc01f03 (accessed on 15 February

2022).
5 https://github.com/ShichenXie/scorecardpy (accessed on 15 February 2022).
6 https://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29 (accessed on 15 February 2022).
7 https://www.lendingclub.com/ (accessed on 15 February 2022).
8 Note that the package creditmodel supports a pos_flag to define the level of the positive class which currently does not work

for Binning and Weights of Evidence.
9 Argument equal_bins = FALSE or initial bins of equal sample size otherwise.

10 An example code for the package riskr is given in Snippet 2 of the supplementary code.
11 An example using a lookup table for the variable purpose is given in Snippet 3 of the supplementary code.
12 A code example of looping through all (numeric) variables for the package smbinning is given in Snippet 4 of the supplementary

code.
13 An example code for application of this mapping to new data is given in Snippet 5 of the supplementary code. The names of the

resulting new levels are the concatenated old levels, separated by commas. Note that the function cannot deal with commas in
the original level names: a new level <NA> will be assigned

14 Using method = “chimerge”.
15 Using best = TRUE.
16 This can be easily checked using the variable purpose, cf. e.g., Snippet 6 of the supplementary code.
17 A code snippet for creating a breaks_list (cf. above) from a binning result using the package woeBinning that can be im-

ported for further use within the package scorecard, e.g., for manual manipulation of the bins is given by the function
woeBins2breakslist() in Snippet 7 of the supplementary code

18 See footnote 10.
19 Note that the call of glmdisc() ran in an internal error (incorrect number of subscripts on matrix) for more than 10

iterations. For this reason the number of iterations has been reduced to 10 which is much smaller than the default of 1000
iterations and the reported Gini coefficient does still strongly vary among subsequent iterations. For larger numbers of iterations
better results might have been possible.

20 Its argument data denotes the training data, output is a data frame with two variables specifying the variable names of the
training data (character) and the corresponding cluster index, as given, e.g., by the result from variable.clustering(). Finally,
its arguments variables and clusters denote the names of these two variables in the data frame from the output argument
where the clustering results are stored.

21 A remedy how it can be used in combination with WoE assignment using the package klaR as shown in Example 4 is given in
Snippet 9 of the supplementary code.

22 Snippet 10 of the supplementary code illustrates how the vector x of the names of the input variables in the original data frame
can be extracted from the bicglm model after variable selection from Example 12.

23 For the function augmentation(), this is obtained by rounding the posterior probabilities to the first digit.
24 Here, the augmented weights within each score-band are computed by 1 + nrejected

naccepted
.

25 Within the function parcelling() this is done by sampling the labels from a binomial distribution.
26 As an exception, the package creditR has been developed as an extension of the package woeBinning.

https://github.com/g-rho/CSwR
https://github.com/g-rho/CSwR
https://www.sas.com/en_us/software/credit-scoring.html
https://cran.r-project.org/web/views/Finance.html
https://www.openriskmanual.org/wiki/Credit_Scoring_with_Python
https://towardsdatascience.com/how-to-develop-a-credit-risk-model-and-scorecard-91335fc01f03
https://github.com/ShichenXie/scorecardpy
https://archive.ics.uci.edu/ml/datasets/South+German+Credit+%28UPDATE%29
https://www.lendingclub.com/
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27 Cf. corresponding footnotes in the paper. Supplementary code is available under https://github.com/g-rho/CSwR (accessed on
15 February 2022).
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