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Abstract: We aim to assess the impact of a pandemic data point on the calibration of a stochastic
multi-population mortality projection model and its resulting projections for future mortality rates.
Throughout the paper, we put focus on the Li and Lee mortality model, which has become a standard
for projecting mortality in Belgium and the Netherlands. We calibrate this mortality model on annual
death counts and exposures at the level of individual ages. This type of mortality data are typically
collected, produced and reported with a significant delay of—for some countries—several years
on a platform such as the Human Mortality Database. To enable a timely evaluation of the impact
of a pandemic data point, we have to rely on other data sources (e.g., the Short-Term Mortality
Fluctuations Data series) that swiftly publish weekly mortality data collected in age buckets. To
be compliant with the design and calibration strategy of the Li and Lee model, we transform the
weekly mortality data collected in age buckets to yearly, age-specific observations. Therefore, our
paper constructs a protocol to ungroup the death counts and exposures registered in age buckets to
individual ages. To evaluate the impact of a pandemic shock, like COVID-19 in the year 2020, we
weigh this data point in either the calibration or projection step. Obviously, the more weight we
place on this data point, the more impact we observe on future estimated mortality rates and life
expectancies. Our paper allows for quantifying this impact and provides actuaries and actuarial
associations with a framework to generate scenarios of future mortality under various assessments of
the pandemic data point.

Keywords: COVID-19; pandemic shock; multi-population mortality model; stochastic mortality
modelling; calibration; forecasting; Li and Lee model; Lee and Miller model

1. Introduction

In December 2019, the coronavirus disease (COVID-19) originated in the Chinese
city Wuhan. In the months that followed, the virus spread across the world. At the time
of writing, about 87 million positive cases and 1,547,643 deaths have been identified in
Europe.! The United Kingdom has the highest absolute number of reported COVID-19
deaths in Europe (146,896), followed by Italy (134,831) and France (121,416). Belgium has
reported 27,504 deaths.” The announcements and roll-out of the four COVID-19 vaccines
approved by the European Medicine Agency (i.e., from BioNTech and Pfizer, Moderna,
AstraZeneca and Johnson & Johnson®) have led to a sharp decline in the number of COVID-
19 deaths in Europe. We aim to outline the impact of the COVID-19 pandemic on a
stochastic multi-population mortality projection model, such as IA|BE 2020 published by
the Institute of Actuaries in Belgium (Antonio et al. 2020) and AG2020 by the Royal Dutch
Actuarial Association (Koninklijk Actuarieel Genootschap 2020). Furthermore, we assess
the impact of the pandemic on scenarios generated for future mortality rates with such
multi-population mortality models.
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The COVID-19 pandemic has impacted mortality in multiple ways. The disease itself
has led to an increase in the number of deaths, especially at the higher ages. However,
measures taken by the governments worldwide also impacted mortality in a positive way,
leading to less traffic or work-related accidents in 2020 and an increased awareness of sani-
tary precautions leading to a mild flu season in the winter of 2020-2021. Vanella et al. (2021)
assess the excess mortality during the COVID-19 pandemic with a novel approach inspired
by principal component analysis. While this paper puts focus on the mortality projection
standard for the Belgian population, as documented in IA |BE 2020, we acknowledge some
other, recent contributions that aim at assessing the impact of COVID-19 on mortality fore-
casts. Koninklijk Actuarieel Genootschap (2020) performs a sensitivity analysis that shows
the impact of the pandemic on the Dutch cohort life expectancies in 2021 by feeding virtual
deaths and exposures in 2019-2020 to the AG2020 model. van Delft and Huijzer (2020) use
Koninklijk Actuarieel Genootschap (2018) as a starting point and investigate the impact of
four different COVID-19 scenarios on the Dutch best estimate mortality table published
in 2018. They create these COVID-19 scenarios by multiplying the mortality rates in 2020
(and later) with a shock factor. These shocks are defined for a particular age bucket as (a
fraction of) the ratio of the observed death rate in the first 23 weeks of 2020 to the average
of the observed death rates in the first 23 weeks in earlier years. Next, the Continuous
Mortality Investigations (CMI) in the UK provide regular updates on the excess of deaths
and mortality in the United Kingdom due to COVID-19.* In their updates (CMI working
papers 137, 143, 147), the calibration process of the CMI_2020 mortality model is adjusted
to enable the weighting of observations. In the core version of CMI_2020, a weight of zero
is attached to the 2020 data point and a weight of 100% to all other years. The CMI working
papers 157 and 159 sketch ideas for the CMI_2021 mortality model and intend to give the
2020 and 2021 data points both a weight of zero.

As outlined in Antonio et al. (2020), IA|BE 2020 calibrates a mortality model of type
Li and Lee (Li and Lee 2005) on the data set with the annual observed number of deaths,
dyt, and the corresponding exposures to risk, Ey;, registered at individual ages. More
specifically, IA|BE 2020 puts focus on a set of countries over the calibration period 1988
2018 (European trend) and 1988-2019 (Belgian trend) with age range 0-90. While data
collected in age buckets are swiftly available from the Short-Term Mortality Fluctuations
([STMF]) Data series or Eurostat, the publication of individual age statistics takes more time.
Therefore, we propose a protocol to move from weekly mortality data registered in age
buckets to annual mortality data at individual ages. This is a first contribution of our paper
to the existing literature on mortality modelling. Rizzi et al. (2015) use the composite link
model to ungroup coarsely grouped data, but their underlying smoothness assumption
would lead to a smooth exposure and death curve. However, our protocol attempts to
capture the age-specific pattern within such curves, based on historically observed data. We
use our protocol to create (virtual) exposures and deaths at individual ages for the year 2020
(or earlier if necessary), leading to an extended multi-population mortality data set until the
year 2020 on an individual age basis. In this paper, we then assess the impact of COVID-19
on the calibration of and projections with a stochastic multi-population mortality model
using this extended data set. Related work is in Schntirch et al. (2021), who investigate
the impact of COVID-19 on the parameters, forecasts and implied present values of life
contingent liabilities with the simple Lee and Carter mortality model (Lee and Carter 1992)
using mortality data collected in age buckets. Our work extends the current literature by
focusing on a multi-population instead of a single population mortality model, calibrated
on data collected at individual ages. Moreover, we investigate the COVID-19 impact on
future mortality rates and life expectancies by proposing ways to weigh the impact of this
pandemic data point in either the calibration or projection set-up.

This paper is organised as follows: first, Section 2 introduces some basic concepts and
discusses notation. Moreover, we list the data sources that provide us with weekly and an-
nual death counts and exposures at the level of individual ages or age buckets. In Section 3,
we then introduce the model specifications, the assumed time dynamics and the calibration
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and projection methodology of the stochastic multi-population mortality projection model
used in Antonio et al. (2020) and Koninklijk Actuarieel Genootschap (2020). In addition,
we specify the multi-population data set and the calibration period in the mortality model
for Belgium. In Section 4, we create the COVID-19 impacted data set of deaths and expo-
sures until the year 2020 by ungrouping the data collected in age buckets to data at the level
of individual ages. Next, we recalibrate the multi-population mortality model underlying
the IA|BE 2020 framework and present different methods to deal with the 2020 pandemic
data point in Section 5. We also assess the impact of COVID-19 on the cohort life expectancy
in 2020 using the different weighting scenarios for the pandemic data point. Section 6
provides a literature review of some alternative techniques to deal with mortality shocks in
the modelling process of a stochastic mortality model of type Lee and Carter. We conclude
in Section 7. Technical details are deferred to the Appendix. We list the data sources in
Appendix A. Appendix B describes the construction of the virtual exposure points Ey s
for ages 0-90 and years 2019-2020. In Appendix C, we construct the death counts dy ; for
the same set of ages and years. Appendix D then validates the proposed protocols from
Appendices B and C by comparing the virtual exposures and deaths in the year 2020 with
the actual observations for Belgium and Denmark.

2. Data and Notation
Basic concepts.

Let g, denote the mortality rate at exact age x in year f. This mortality rate g, ; refers
to the probability that an x year old person who was born on 1 January of year t — x and is
still alive at 1 January of year t dies within the next year. In addition, let j, ; denote the
force of mortality, i.e., the instantaneous rate of mortality at exact age x in year {. We assume
that the force of mortality is constant in between exact ages and years, i.e., pxisits = Mt
for s € [0,1). Under this piecewise constant force of mortality assumption, we obtain

Gt =1 —exp(—pxt)-

Stochastic mortality models, as mentioned in Section 1, often model a transformation
of the force of mortality jiy; or the mortality rate gy ;.

Data sources: annually, at individual ages.

Li and Lee’s stochastic multi-population mortality projection model (Li and Lee 2005),
as considered in this paper, models the logarithm of .,  using mortality data on a collection
of European countries. Hereto, mortality data are collected over a certain calibration period
T and a range of ages X'. We use annual mortality data consisting of the observed number
of deaths d,; and the observed exposures to risk E , as available from sources like the
Human Mortality Database ((HMD])’, Eurostat® or an official national statistics institute
like Statbel in Belgium.” The latter data source is typically used to extract the most recent
mortality information from the country of interest, in our case Belgium.

Data sources: weekly, in age buckets.

The data sources discussed above typically report annual mortality statistics at the
individual age level with a significant delay (for some countries with a delay of several
years). To evaluate the impact of a pandemic shock on a mortality projection model,
we therefore need other data sources that report mortality statistics in a more timely
manner. Hereto, we consult the Short-Term Mortality Fluctuations ([STMF]) Data series®
and Eurostat.” With only a minor delay of a few weeks, they provide weekly mortality data
registered in age buckets [x;, x;] rather than at the individual age level. To be compliant
with the design of a stochastic multi-population mortality model, Section 4 outlines a
protocol to transform these weekly mortality statistics in age buckets into annual death



Risks 2022, 10, 26

40f33

counts and exposures at individual ages. We use the following notations (for now, we leave
out gender ¢ in our notation):

d[xi,xj],t,w/ E[xi,xj],t,zo and m[xi,x/-],t,w'

for the death counts, exposures and (central) death rates in age bucket [x;, x;] in week w in

year t, respectively. Here, the week w € {1,2,3,...,52,(53) }.10 We now further explain the
weekly mortality information retrieved from the STMF data series and Eurostat:
STME. The STMF data series reports death counts d[x,',xj},t,w and death rates m

in age buckets. The weekly death rates Mx, ) b AT€ derived from the weekly death counts

xi,xj],t,zu

d [x;3,] b and exposures E (3] o using the following relationship:

m[xi,xj],t,zv = E[i 1)
x’

The STMF data series reports the weekly mortality statistics in large age buckets:
[0,14], [15,64], [65,74], [7584], 85+.

The exposures E [xg ) s used to calculate the death rates Mx, )] b in Equation (1),
are based on the observed annual exposures Ey  registered at individual ages, as reported
by the HMD. However, for the most recent years, the exposures are not available yet and
estimates have to be made. The STMF data series documentation explains the construction
of these unknown exposures at the level of individual ages.'! In addition, the STMF data
series assumes a constant weekly exposure per year, per age bucket and per gender. The
weekly exposure E[x,»,xj],t,w/ as reported in the STMF data series in age buckets, is the yearly
(estimated) exposure divided by 52 and aggregated over the individual ages in the age
bucket [x;, xj].

Eurostat. Next to the HMD and its STMF data series project, Eurostat lists valuable
data sets related to death counts, useful to assess the impact of COVID-19 on mortality
rates. Eurostat does not report any information about weekly exposures. From Eurostat,
we obtain the death counts 4 [xg% ) b0 by week, gender and 5-year age bucket.'? The 19
respective age buckets are

0,4, [59], [10,14], [15,19], ..., [85,89], 90+.

For many countries, the STMF reported death counts correspond to the aggregated
death counts reported by Eurostat. If this correspondence holds true, the data from Eurostat
is more preferable due to the smaller age buckets, which eventually leads to a more
accurate transition towards death counts at individual ages, necessary in the stochastic
multi-population mortality projection model. For data quality reasons, we only use the
Eurostat reported weekly death counts in the small age buckets whenever their aggregated
death counts correspond to the ones reported in the STMF data series. This is the case for
all countries, except Germany13, France and the United Kingdom.

Figure 1 illustrates the number of deaths per week for the years 20162021 for Belgium,
United Kingdom and Germany. We clearly observe (multiple) peaks corresponding to
various COVID-19 waves.
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Figure 1. Total weekly deaths in Belgium (left), United Kingdom (middle) and Germany (right)
in the years 2016-2020 and 2021 (first 27 weeks) for males (top) and females (bottom). Eurostat
(Belgium) and STMF (United Kingdom and Germany) data.

3. A Stochastic Multi-Population Mortality Standard of Type Li and Lee

Antonio et al. (2017) provide an in-depth discussion motivating the use of the Li
and Lee model as a mortality projection standard for the Dutch and Belgian population.
This motivation is threefold. First, a stochastic projection model is preferred thanks to
its ability to quantify the uncertainty in mortality and life expectancy forecasts and to
generate scenarios of future mortality. Second, by combining country-specific data with
data from other, similar European countries, the multi-population approach is more ro-
bust compared to the single population strategy. Third, the choice for the Li and Lee
model is based on an extensive, comparative analysis of the various mortality models
discussed in Cairns et al. (2009), Haberman and Renshaw (2011), Borger et al. (2014),
Van Berkum et al. (2016) and Haberman et al. (2014). Models in this comparative analy-
sis have been compared in terms of statistical criteria (in- and out-of-sample) and biological
reasonableness. The goal of this paper is to evaluate the impact of a pandemic shock on
mortality forecasts from this model of type Li and Lee. The tools and methods to achieve
this, as we develop in Section 5, can be generalized to other types of mortality models.

3.1. The Li and Lee Mortality Model
Specification.

The Li and Lee mortality model (Li and Lee 2005) structures the logarithm of the force
of mortality for a country of interest c as:

InpS, = Inpy, +Ingis,,
Inpul, = Ay + B:K; 2
Infis ; = ax + Bkt

We recognize two Lee and Carter specifications (Lee and Carter 1992), one to model a

common mortality trend (driven by yzlt) and one to model the country-specific deviation
from this common trend (driven by fi$ ;). This common trend reflects the global mortality
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trend over a collection of countries. We impose two sets of parameter constraints to avoid
identification problems:

Y Bi=Y pi=1 YK=Y =0 ®3)

xeX xeX teT teT

We deviate from the usual Lee and Carter constraints, i.e., ), By = )_, Bx = 1, to achieve
better numerical stability in the calibration process, as motivated in Antonio et al. (2015).

Calibration.

We calibrate the mortality model in Equation (2) on annual data with the observed
number of deaths, dy;, and the exposures to risk, Ey;, over a specified age range
X ={0,1,...,90} and over a specified calibration period 7 = {tmin,---,tmax}. We
hereby impose a Poisson distribution on the number of deaths random variable Dy
(Brouhns et al. 2002) and apply a conditional maximum likelihood approach (Li 2013). We
perform the calibration of the Li and Lee mortality model in Equation (2) separately on
male (M) and female (F) mortality data. This will result in calibrated Li and Lee parameters
A3, BY, K, &5, BS and ¢ for ¢ € {M,F}. We do not emphasize the dependence on g for
notational convenience.

1. In a first step, we calibrate the parameters Ay, By, and K; in the common mortality

trend by assuming that the total number of deaths random variable D;

; follows a
Poisson distribution with mean ],t;t : EL. Hereto, we maximize the following Poisson

log-likelihood:

max Y ) (d};,t log (V};t) - Eg,t#i,t)f
PR xe X teT

where d;t and E;t are the observed number of deaths and exposures, respectively,
aggregated over the collection of countries. Furthermore, Vz,t = exp(Ax + BxK}). In
this first calibration step, we impose the constraints in Equation (3) on By and K;.

2. In a second step, we calibrate the country-specific parameters ay, fx and «; by as-
suming that the number of deaths random variable ch,t, in the country of interest c,
follows a Poisson distribution with mean ¢ ; - E ;. Hereto, we maximize the Poisson
log-likelihood, conditional on the estimates obtained in step 1:

max Z Z (d5 1 log(us,) — Ex s e),

e

where df ;, and Ef; are the observed number of deaths and exposures in country
¢, respectively. Furthermore, we have pf, = yL -exp(ay + Bxx¢). In this second
calibration step, we impose the Lee and Carter constraints in Equation (3) on Sy and
Kt.

3.2. The Time Dynamics
Specification.

We model the time dynamics of the common period effect, i.e., K, and the country-
specific period effect, i.e., th , for males and females separately. Based on the discussion
in Li and Lee (2005) and on the work of Antonio et al. (2020) and Koninklijk Actuarieel

Genootschap (2020), we model Kf by a Random Walk with Drift ((RWD]) and the country-
specific period effect, x¢, with an AR(1) model. An AR(1) parameter lower than one
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1(Q) = log( ;

then ensures that the country-specific mortality trend does not diverge from the common
mortality trend in the long run. We denote:

KM oM 1 0 0 0 eM

M M M M

| x I 10 ¢ 0 0 K
i = KF |’ d=lgr ] ¥=10 0 1 ol E™ ef
K} cf 0 0 0 ¢f o6F

We can then express the four-dimensional vector of time series for (KM, xM, KF, «[) as
Y =d+YY;_ 1+ E for t € {tmin‘|‘1/-~/tmax}~ 4)

The four-dimensional vectors of noise terms E; are independent over time and follow
a four-dimensional Gaussian distribution with mean (0,0, 0,0) and covariance matrix C.
Calibration.

Let Q) be the unknown parameter vector, collecting the parameters used in d and ¥ as
well as in the covariance matrix C. Inspired by Koninklijk Actuarieel Genootschap (2020),
we estimate Q) on the calibrated K; and #; parameters jointly for males and females by

maximizing the four-dimensional Gaussian log-likelihood:'*

1 e—%m—d—‘m1)'Cl(vf—d—wt1)>
1V (20)4(C]
1 tmax _
—(|T| = 1)(2log 27 + 0.510g |C|) — 5 Y (Yi—d-¥Y, ) CH(Yi—d—YY, ) (5)
t=tmin+1

tmax

1
~(IT| = 1)(2log2m+05log|Cl) =5}, tr {C’l(Yt —d—¥Y, ) (Yi—d— ‘I’Yt,l)t},

t:tmin+1
with [ 7'| the number of years in the calibration period 7 and tr(-) the trace function applied
to a matrix. We denote the calibrated time series parameters as d and ¥ and the calibrated
covariance matrix as C.

Forecasting.

We now use these calibrated time dynamics to generate future paths for the country-
specific mortality rates 1§ ;. We consider a projection period f € {tmax +1,..., T}. Hereto,
we start from the calibrated period effects in the last year of the calibration period 7,
ie., (I%ﬁ’lnax Kﬁax Kfmax Ktma ). We then take random draws (e %, 5%,8“, ,i) fori € {1,...,n}
and t € {tmax + 1,..., T} from the fitted Gaussian distribution with mean (0,0,0,0) and
covariance matrix 6 We obtain future paths of the calibrated period effects for males
and females using Equation (4). Note that we generate future paths starting from Kg
and Kt for all i and each gender g. We obtain a best-estimate forecast for the cahbrated
period effects by taking the zero vector for the noise terms in Equation (4), i.e., using

Yt —d+‘Pyt 1 for t > tmax.

3.3. Generating Future Paths of Mortality Rates and Life Expectancies

Mortality rates.

Using Equation (2) and the calibrated Li and Lee parameters Ay, By, Ky, &y, ,Bx and
¢, we can now generate future paths for the country-specific mortality rates. Let us denote
q; and g, ; for the i-th generated value of the country-specific mortality rate 43 , and the
country-specific force of mortality fi{ ; respectively. Then, we obtain:

quc,t,i =1- exp(—ﬁ;t,i), (6)

withx € X, t € {tmax +1,..., T} and i € {1,...,n}. Having obtained a scenario for the
mortality rates for ages 0-90 in a future year, we close the generated mortality rates until



Risks 2022, 10, 26

8 of 33

age 120 using the method of Kannisto (1994). We refer to Antonio et al. (2020) for a detailed
explanation of this method.

Life expectancy.

We obtain future paths of the period and cohort life expectancies of an x year old in
year t (Pitacco et al. 2009) as:

R 1—exp(—1.:: k—1 ) 1 — exo (1 4
ei’,e;i = M + Z <H exp (_.ux-&-j,t,i)) p ( ,uerk,t,z) .

flxti k=1 \j=0 ﬁx+k,t,i
1 (—fxti) = 1 (—p ) 7
scoh — eXp(—Hati N — eXP (—Hatkttki
b = P + Y [Texp (—fixsjeri) - , .
Hoxti k>1 \j=0 Moxtk,t+k,i

We obtain best-estimate forecasts for the mortality rates and the period and cohort life
expectancies by using the best-estimate forecasts of the calibrated period effects Y;.

3.4. The Li and Lee Mortality Model for the Belgian Population

IA|BE 2020 is based on a mortality model of type Li and Lee and puts focus on Belgium
as the country of interest (¢ = BEL). The common trend in Equation (2) is a European
mortality trend calibrated on a set of countries with a Gross Domestic Product per capita
above the European average in 2018."> As such, the multi-population data set combines
mortality data from Belgium, The Netherlands, Luxembourg, Norway, Switzerland, Austria,
Ireland, Sweden, Denmark, Germany, Finland, Iceland, United Kingdom and France.
Furthermore, IA|BE 2020 calibrates the mortality model on annual data registered at the
level of individual ages, from the HMD, Eurostat and the Belgian statistical institute Statbel.

IA|BE 2020 calibrates the parameters in the European mortality trend Vz,t on a range

BEL
x,t

of years 1988-2018 and the Belgium-specific mortality trend u
1988-2019.

The aim of this paper is to recalibrate the Li and Lee mortality model on a multi-
population data set consisting of the same set of countries, but on a calibration period from
1988 to 2020. Hereto, we use the STMF data series and Eurostat, providing weekly mortality
statistics collected in age buckets. Neither the STMF data series nor Eurostat report granular
mortality information on Ireland. While Ireland is part of the set of countries defined in
IA|BE 2020 to calibrate the common European mortality trend, we exclude this country
in the COVID-19 impact assessment covered in this paper. However, given the exposure
size of the Irish population, we do not expect that this has a major impact on the results
obtained with the multi-population mortality model.

on the range of years

4. Transforming Weekly Mortality Data in Age Buckets to Annual Mortality Data at
Individual Ages

Our strategy to evaluate the impact of COVID-19 on a stochastic multi-population
mortality projection model of type Li and Lee adheres to the design principles of the model.
Therefore, we refrain from calibrating the multi-population model directly to a mortality
data set registered in age buckets, but make the transition to a data set at the level of
individual ages. In addition, this transition will facilitate a comparison between the results
from Section 5 and the ones from the original IA|BE 2020 model (Antonio et al. 2020).
As explained in Section 3.4, we have to supplement our multi-population data set with
mortality data for the most recent years 2019-2020. Hereto, we use the weekly mortality
statistics in age buckets, retrieved from the STMF data series and Eurostat. We propose a
protocol to make the transition from the weekly deaths d [, xi] b and exposures E[xi,xj],t,w
collected in age buckets to the required format. Section 4.1 discusses the transition from
weekly to annual deaths and exposures collected in age buckets. In Section 4.2, we convert

the annual deaths d[xi,xj],t and exposures E [, 1O data at the level of individual ages.
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4.1. From Weekly to Annual Mortality Data Registered in Age Buckets

STME

The Short-Term Mortality Fluctuations Data series, as discussed in Section 2, assume
a constant weekly exposure per year, per age bucket and per gender. When going from
the weekly exposures available from the STMF data series to annual exposures, we simply
multiply the weekly exposures with a factor 52, i.e., the number of weeks in a year:

E[xi,xj],t = 52E[xi,xj],t,w/

where E [x;,%), NOW denotes the total annual exposure in year t for age bucket [x;, x;].
STMF and Eurostat.

The weekly mortality data sources, i.e., the STMF data series and Eurostat, follow the
definition of ‘week’ given by the ISO week date system, which is part of the ISO-8601 date
and time standard.'® In this system, a year consists of 52 or 53 full weeks. When a year ¢
consists of 53 weeks instead of the usual 52 weeks,'” we adjust the calculation of the yearly
death counts to be compliant with the HMD and Eurostat individual death counts:

52
d[xi,xj],t = (51,t . d[xi,xj],t,l + Z d[xi,xj],t,w + 553,t : d[xi,xj],t,53/
w=2

where 61 ; and J53 ¢ are respectively the fraction of the first and 53rd ISO week that are part
of calendar year ¢. In addition, the STMF data series lists death counts and death rates for
Northern Ireland, England and Wales and Scotland separately. A simple aggregation of
their death counts leads to the death counts of the United Kingdom as a whole.

4.2. Ungrouping Data from Age Buckets to Individual Ages

We start from the annual deaths d 3] t and exposures E [y 1] t collected in age buckets,
as obtained from Section 4.1. We then define a protocol to ungroup the data in age buckets
to data at the level of individual ages. Rizzi et al. (2015) introduce a method that ungroups
histograms (or coarsely grouped data), using a composite link model with a penalty to
ensure the smoothness of the underlying distribution. Their strategy is not able to capture
the typical patterns in the evolution of the exposures or death counts over time. As an
example, Figures 3 and 5 in this paper clearly show the evolution of certain spikes in the
exposure and death curve over time, i.e., the spikes are moving to the right by one age
each subsequent year. These observed spikes or patterns within an age bucket cannot
be captured by the method of Rizzi et al. (2015). Therefore, we propose an alternative
strategy that is capable of picking up these spikes. At the same time, we ensure that the
sum of the individual, ungrouped number of deaths and exposures in an age bucket [x;, x;]
corresponds to the exposures and deaths in that age bucket, reported in the STMF data
series or by Eurostat. We call the newly created annual deaths and exposures at the level of
individual ages, virtual deaths and exposures.

Protocol to ungroup E [xi %]t

To obtain annual exposures at individual ages Ey in an unknown year t, we take the
STMF or Eurostat exposure data E| )t for the corresponding age buckets. We then allocate
these exposures E [x;,x,],t tO exposures at individual ages Ey ¢ by applying a piecewise scaling
of the known exposure curve from a previous year. Appendix B explains our approach in
full detail. Figure 2 visualizes the stacked exposures at ages 0-90 in the year 2020 for all
13 European countries under consideration for males (left) and females (right). Figure 3
shows the evolution of the (virtual) annual exposures for Belgium, the United Kingdom
and Germany. The exposures in the year 2020 (and 2019 for the United Kingdom) are
created using our approach.
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Figure 2. Stacked male (left) and female (right) exposure for the combined thirteen European
countries in 2020 as a function of age. Exposures for the year 2020 are directly available from the
HMD for Denmark. However, for Germany, United Kingdom, France, Netherlands, Belgium, Sweden,
Austria, Switzerland, Finland, Norway, Luxembourg and Iceland, we transform the weekly exposures
collected in age buckets from the STMF data series to exposures at individual ages for the year 2020.
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Figure 3. (Virtual) annual exposures Ey ; for males (top) and females (bottom) in Belgium (left), the
United Kingdom (middle) and Germany (right) as a function of age, years 2015-2020. Exposures for
the years 2015-2019 (Belgium), 2015-2018 (United Kingdom) and 2015-2019 (Germany) are directly
available from the HMD or Eurostat. However, for the year 2020 (Belgium and Germany) and the
years 2019-2020 (United Kingdom), we transform the weekly exposures collected in age buckets from
the STMF data series to exposures at individual ages.

Protocol to ungroup d [xixj] £

We create the annual death counts at individual ages dy; in year t for which the
statistics at individual ages have not yet been published. To do this, we take the raw
death counts d[xi,xj],t by age buckets reported by the STMF data series or Eurostat and
allocate these to individual ages. Hereto, we extrapolate a multi-population mortality
model (e.g., the IA|BE 2020 model) to obtain mortality rate estimates in year . Then, we
combine these estimates with the (virtual) exposures from year ¢ to obtain virtual death
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counts in year t. In this protocol, we make sure that the virtual death counts aggregated
over an age bucket [x;, x;] in year t correspond to the actual number of deaths in that age
bucket from the STMF data series or Eurostat. Appendix C provides the technical details.
Figure 4 shows the stacked European number of deaths in 2020 for males (left panel) and
females (right panel). Figure 5 shows the evolution of deaths over time for Belgium, the
United Kingdom and Germany. The excess of deaths in 2020 due to COVID-19 is clearly
visible at old ages.

Total male deaths 2020 Total female deaths 2020

60,000 4
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20,000+

Stacked death counts

0 10 20 30 40 50 60 70 8 9 0 10 20 30 40 50 60 70 80 90
Age
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Figure 4. Stacked male (left) and female (right) death counts for the combined thirteen European
countries in 2020 as a function of age. Death counts for the year 2020 are directly available from the
HMD and Statbel for Denmark and Belgium, respectively. However, for Germany, United Kingdom,
France, Netherlands, Sweden, Austria, Switzerland, Finland, Norway, Luxembourg and Iceland, we
transform the weekly deaths collected in age buckets from the STMF data series or Eurostat to deaths
at individual ages for the year 2020.
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Figure 5. (Virtual) annual death counts d, ; for males (top) and females (bottom) in Belgium (left),
the United Kingdom (middle) and Germany (right) as a function of age, years 2015-2020. Death
counts for the years 2015-2020 (Belgium), 2015-2018 (United Kingdom) and 2015-2019 (Germany)
are directly available from the HMD, Eurostat or Statbel. However, for the year 2020 (Germany) and
the years 20192020 (United Kingdom), we transform the weekly deaths collected in age buckets
from the STMF data series or Eurostat to deaths at individual ages.
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4.3. Applying the Protocol to the Multi-Population Data Set to Recalibrate the Li and Lee Mortality
Model for the Belgian Population

Table Al in Appendix A indicates for which countries and for which years the data set
must be supplemented with information from the weekly deaths and exposures registered
in age buckets from the STMF data series or Eurostat. For those years and those countries,
we apply the protocol from Sections 4.1 and 4.2 to move from the weekly deaths and
exposures in age buckets to annual data at an individual age level. We then recalibrate the
Li and Lee model for the Belgian population on an extended data set up to and including
the year 2020. The United Kingdom is the only country for which we have to create virtual
exposures and death counts at individual ages for both the years 2019 and 2020. Next, we
only have to create virtual exposures for the year 2020 for Belgium since we retrieve the
death counts in 2020 at individual ages from Statbel.!® Moreover, at the time of writing, the
HMD already provides deaths and exposures for Denmark in 2020 at the level of individual
ages. For all other considered European countries, we have to create virtual deaths and
exposures for the year 2020. Appendix D validates the protocols. We do this by comparing
the observed exposures from Denmark and the observed death counts from Denmark and
Belgium in the year 2020 with the virtual deaths and exposures constructed by using the
protocols in Appendices B and C.

5. Assessing the Impact of a Pandemic Shock on the Multi-Population
Mortality Model

The IA|BE 2020 mortality model (Antonio et al. 2020) is calibrated on data from 1988
2018 (European trend) and 1988-2019 (Belgium-specific trend). Using the protocol from
Section 4, we are able to collect data from 1988-2020 for all 13 countries under consideration
in this multi-population mortality model. As a starting point, we recalibrate the mortality
model on the data set up to and including the pandemic year 2020. However, since the
mortality shock takes place in the last year of our calibration period 7, it has a major
impact on the estimated drift term in the assumed random walk with drift process for the
European period effect (see Equation (4)). This, in turn, severely impacts the mortality and
life expectancy forecasts, as the year 2020 is the starting year to generate future scenarios of
mortality (Section 3.3).

With the roll-out of the four COVID-19 vaccines, approved by the European Medicine
Agency, a more optimistic scenario is that post-pandemic mortality rates will continue
their improvement at a rate that is similar to pre-pandemic levels. Section 5.1 introduces
a method to put this scenario into practice. We limit the weight of the pandemic data
point (the year 2020) in the four-dimensional Gaussian log-likelihood (see Equation (5))
to estimate the time series parameters in Equation (4). However, this strategy uses the
pandemic 2020 observations as a starting point to generate future mortality projections.
Therefore, we still observe a fairly large difference between the short-term future mortality
rates and life expectancies when comparing the results obtained with the original IA|BE
2020 model and the recalibrated mortality model.

The impact of the pandemic year 2020 concentrates on old age mortality rates, as
Figure 5 illustrates. The stochastic multi-population mortality projection model of type
Li and Lee (Li and Lee 2005), as specified in Equation (2), cannot capture this age-specific
effect of the pandemic on the mortality rates. Indeed, first, the upward jump in the
estimated common European period effect K; is driven by the deterioration in mortality
rates for the older ages. Second, the common age effect B, is larger for the younger ages
than for the older ages (see Figures 6 and 7 later on). Since we multiply the common
period effect K; with the common age effect By in Equation (2), the mortality deterioration
actually has the largest impact on the fitted mortality rates for the younger ages. Therefore,
the Li and Lee model overestimates the observed mortality rates at the younger ages and
underestimates the deterioration of the mortality rates at the older ages in the pandemic
year 2020.
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Figure 6. The European and Belgium-specific Li and Lee parameters Ay, By, by, ﬁx, K; and #; for
males. The blue line corresponds to the Li and Lee model calibrated on data from the years 1988-2020,
with virtually created deaths and exposures for the years 2019-2020. The dark red, dashed line
shows the calibrated Li and Lee parameters in the original IA|BE 2020 model (calibration period
1988-2018(9)).
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Figure 7. The European and Belgium-specific Li and Lee parameters Ay, By, By, .Bx/ K; and #; for
females. The blue line corresponds to the Li and Lee model calibrated on data from the years 1988-
2020, with virtually created deaths and exposures for the years 2019-2020. The dark red, dashed
line shows the calibrated Li and Lee parameters in the original IA|BE 2020 model (calibration period
1988-2018(9)).
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In light of the above discussion, Section 5.2 introduces a method that slightly changes
the model specifications in Equation (2). We here impose that the fitted death rates in the
pandemic year 2020 are equal to a weighted average of the observed death rates in the year
2020 and the pre-pandemic rates in 2019. By giving a zero weight to the observed death
rates in 2020, we can investigate the situation where we completely ignore the COVID-19
pandemic and are of the belief that the post-pandemic death rates in 2021 immediately
recover to pre-pandemic levels.

5.1. Limiting the Time Series Likelihood Contribution of the Pandemic Data Point

We first perform a simple recalibration of the mortality model on the data set including
the (virtually created) death counts and exposure points up to the year 2020. This recalibra-
tion is completely in line with the model choices and design principles underneath IA|BE
2020. Figures 6 and 7 show the recalibrated Li and Lee parameters for males (top panels)
and females (bottom panels). We visualize these together with the parameter estimates
from the original IA|BE 2020 model. We do not observe any substantial differences in
the calibrated age-dependent parameters A,, B, (European trend), &, and B, (Belgian
deviation). The recalibrated common period effect K; reveals a clear upward jump in the
year 2020 for both males and females to account for the increase in observed mortality rates
(see Figures 1 and 5). The sharp decline in the male Belgium-specific period effect %; in the
year 2020 implies that the male Belgian mortality rates do not diverge further from the
European mortality rates. In addition, we observe larger differences between the original
and the recalibrated Belgium-specific period effect for females, i.e., &} .

We use the specification proposed in Section 3.2 for the time dynamics. However, we
now limit the contribution of the pandemic data point in the four-dimensional Gaussian
log-likelihood in the estimation of the four-dimensional time series for (I%fvl, 1%{\/1, Kf , kf ) (see
Equation (5) in Section 3.2). Hereto, we introduce weights w; in the Gaussian log-likelihood:

2020
Y w- (4logzn+ log |C| + tr [c—l(yt —d—YY,_1)(Yi—d - ‘I’Yt,l)tD. @)
t=1989

Q) = -

Nl—

We specify w; = 1 for t < 2020 and consider five possible scenarios for wyg. This
is w0 € {0, 0.25,0.50,0.75, 1}. We follow the same approach for the projection set-up
as in Section 3.3. The use of a weighted log-likelihood function allows for assessing the
impact of the contribution of the pandemic data point on the projections of the time-specific
parameters, the mortality forecasts and the life expectancy predictions.

Figure 8 shows the projection of the calibrated European and Belgium-specific period
effects K; and #; for males and females. First, a lower weight for the likelihood contribution
of the 2020 data point leads to less variability in the simulations. Second, lowering the 2020
weight leads to a larger (absolute) value of the drift parameter in the RWD process for the
common period effect K;. In addition, it leads to a faster long-term mean reversion for
the Belgium-specific period effect %;. This is confirmed by Table 1 in which we show the
time series parameter estimates across the five different weighting scenarios of the 2020
data point. In the table, we also report the time series parameter estimates obtained in the
original IA|BE 2020 model. The latter estimates should be broadly in line with the estimates
of the zero weight scenario. However, some deviations may occur because the original
IA|BE 2020 model uses the calibration period 1988-2018 to model the European mortality
trend, while our recalibration uses the calibration period 1988-2020. The AR(1) parameter
estimates reveal that the Belgian deviation for females becomes less stable when the 2020
data point fully contributes to the Gaussian likelihood, i.e., the estimate ¢ is very close to
one. A potential drawback of this method to deal with the pandemic data point is that the
projections jump off from the impacted estimates Kagpg and &qp9 in the year 2020.
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Figure 8. Projection of the calibrated time dependent parameters in the Li and Lee model: K; (top)
and & (bottom). Male (left) and female (right) data, calibration period 1988-2020, projection period
2021-2070, method of Section 5.1. We show the 0.5%, median (white lines) and 99.5% quantile, based
on 10,000 simulations across each weighting scenario. The black lines visualize the calibrated period
effects: K and %;.

Table 1. Time series parameter estimates, male and female data, ages 0-90, years 1988-2020, Section 5.1.

Weight 2020 oM oF M cf oM of

0 —0.2315 —0.1938 0.0071 —0.0091 0.9027 0.9033
0.25 —0.2236 ~0.1872 0.0025 —0.0142 0.9306 0.9600
0.50 —0.2159 —0.1807 —0.0028 —0.0180 0.9424 0.9730
0.75 —0.2083 —0.1743 —0.0083 —0.0216 0.9487 0.9790
1 —0.2009 —0.1681 —0.0138 —0.0250 0.9527 0.9825
IA|BE 2020 —0.2285 —0.1882 0.0140 —0.0240 0.9682 0.9226

Figure 9 shows the observed, calibrated and simulated Belgian mortality rates for ages
25, 45, 65 and 85 from the recalibrated mortality model and the original (pre COVID-19)
IA|BE 2020 model. We observe a rather poor in-sample fit of the male mortality rate for
age 25 in 2020 since the Li and Lee mortality model is not able to capture the observed
differences in excess of mortality between the younger and older ages. Because of the
estimated, in sample increase in mortality rates at all ages, the projected mortality is clearly
at a higher level in the recalibrated model compared to the projected mortality in the
original IA|BE 2020 model. In addition, limiting the time series likelihood contribution of
the 2020 data point leads to lower projected mortality rates on average. The results from
Figure 8 confirm this.



Risks 2022, 10, 26

16 of 33

Male: BEL Mortality rates

0.00121 *

Male: BEL Mortality rates

0.004

0.003{ ~

=% 0.00081 =9
o S 0.002
0.0004 - -
. 0.001 4 oS
2000 2025 2050 2000 2025 2050
Year Year
Male: BEL Mortality rates Male: BEL Mortality rates
0.025q « 01671 =
0.020
0.12 1
= 0.0154 =8
[op (=2
0.08 1 -
0.010 S
0.0051 .~ -
0.04
2000 2025 2050 2000 2025 2050
Year Year

Weight 2020 data point @ 0 & 025 &1 05 = 075 [0 1

Figure 9. Estimated and projected Belgian mortality rates 4, . Male data, ages 25, 45 (top) and 65,
85 (bottom), calibration period 1988-2020, projection period 2021-2070, method of Section 5.1. We
show the 0.5%, median (white lines) and 99.5% quantile, based on 10,000 simulations across each
weighting scenario. The blue dots and the black lines represent the observed and fitted mortality
rates, respectively. The dark red, dashed line shows the calibrated mortality rates and the median
quantile of the simulations in the original IA|BE 2020 model.

We are now ready to assess the impact of COVID-19 on the estimated and projected
period and cohort life expectancies. Figure 10 depicts the projected period life expectancies
of a male and female Belgian newborn (left) and a 65 year old (right) resulting from
the recalibrated mortality model (fan charts) and from the original IA|BE 2020 model in
Antonio et al. (2020) (dark red, dashed line). Table 2 then shows the best-estimates and the
0.5%, median and 99.5% quantiles of the 10,000 simulations for the cohort life expectancy
of a 0 and 65 year old in 2020 (see Section 3.3). Both period and cohort life expectancies
are negatively impacted by COVID-19. Moreover, the long-term impact of COVID-19
reduces for the recalibrated mortality model that assigns a smaller weight to the 2020 data
point in the calibration step of the time dynamics. However, we still observe a clear and
pronounced short-term impact of COVID-19 on the period and cohort life expectancies
across all the different weighting scenarios. In addition, we also observe less uncertainty in
the life expectancy simulations when a smaller weight is allocated to the 2020 data point,
as the more narrow fan charts in Figure 10 indicate.

A closer look at Figure 10 reveals an over-estimation of the period life expectancy in
2020 for a 65 year old. This is primarily due to the fact that the Li and Lee model tries to
achieve a good in-sample fit for both the young and the old ages. As a result, the model
produces higher mortality rates than observed for the young ages and lower mortality
results than observed for the older ages, as confirmed by Figure 9.
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Figure 10. Estimated and projected period life expectancies éy; for Belgium. Male (top) and female
(bottom) data, ages 0 (left) and 65 (right), calibration period 1988-2020, projection period 2021-2070,
method of Section 5.1. We show the 0.5%, median (white lines) and 99.5% quantile (fan charts), based
on 10,000 simulations, across each weighting scenario. The dark red, dashed line shows the 50%

quantile originating from the original IA|BE 2020 model. The blue dots and black line represent the

observed and fitted period life expectancies, respectively.

Table 2. The cohort life expectancy for a 0 and 65 year old in 2020. The 0.5%, median and 99.5%
quantile obtained from 10,000 simulations are shown, for males and females. We obtain the best-

estimate of the cohort life expectancy by taking the zero vector for the noise terms in Equation (4) to

project the time dependent parameters.

Males Females
Cohort Life Expectancy in 2020
0 65 0 65

Recalibration Best. Est. 89.36 19.70 91.42 22.78
2020 weight =0 [90.5; 9505 999.5] [87.56; 89.34;90.90] [18.95;19.70; 20.44] [89.28;91.41;93.18] [21.82;22.78;23.73]
Recalibration Best. Est. 89.07 19.65 91.11 22.65
2020 weight = 0.25 [90.5; 9505 999.5] [86.88; 89.06; 90.86] [18.79;19.65; 20.52] [88.62;91.09; 93.04] [21.60;22.65; 23.69]
Recalibration Best. Est. 88.77 19.58 90.78 22.56
2020 weight = 0.50 [90.5; G505 999.5] [86.23; 88.74;90.81] [18.61;19.58;20.54] [88.08;90.76; 92.87] [21.42;22.55; 23.65]
Recalibration Best. Est. 88.45 19.52 90.46 22.48
2020 weight = 0.75 [90.5; 4505 §99.5] [85.62; 88.44;90.68] [18.49;19.52;20.58] [87.49;90.43;92.74] [21.29;22.49; 23.68]
Recalibration Best. Est. 88.13 19.45 90.13 22.41
2020 weight =1 [90.5; 9505 99,5 [84.98; 88.10; 90.56] [18.31;19.44;20.58] [86.79;90.10; 92.66] [21.12;22.40; 23.69]
TA|BE 2020 Best. Est. 89.91 20.38 91.54 23.14

[90.5; 9505 999.5] [88.11;89.89; 91.46] [19.57;20.37;21.17] [89.46;91.53;93.25] [22.15;23.14; 24.07]

5.2. Mitigating the Impact of the Pandemic Data Point with a Lee and Miller Inspired
Mortality Model

The method discussed in Section 5.1 to deal with the pandemic data point has two
potential drawbacks. First, we get a poor in-sample fit of the observed mortality rates
and life expectancies in the pandemic year 2020. Second, even with a low to zero weight
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assigned to the 2020 period effects in the time series likelihood, we obtain a clear short-term
impact of COVID-19 on the predicted mortality rates and life expectancies. This scenario
may be considered unrealistic in light of the effectiveness of the approved vaccines. In view
of the aforementioned shortcomings, we therefore propose two modifications to the Li and
Lee mortality model.

Modification 1.

A first modification consists of slightly changing the model specifications of the Li and
Lee model (see Equation (2)). Hereto, note that the (central) death rate m, ; equals dx:/Ey.
Under the piecewise constant force of mortality assumption, introduced in Section 2, the
maximum likelihood estimate of the force of mortality, ﬁl;’ItLE, equals the observed death
rate my . Lee and Miller (2001) adjust the Lee and Carter model specification in such a way
that the fitted forces of mortality in the last year of the calibration period 7 are equal to
the observed death rates in that year. This provides a solution for the poor in-sample fit
at young ages in the pandemic year 2020. We extend this idea to the Li and Lee mortality
model. We hereby reduce the degrees of freedom in the mortality model of Equation (2) by
fixing the parameter values for A, and «, such that the fitted and observed country-specific

death rates in the year 2020 match.
Modification 2.

Second, we mitigate the (short-term) impact of the pandemic data point on the mor-
tality projections. We do this by relaxing the fact that the observed death rates are exactly
the same as the fitted forces of mortality in the pandemic year 2020. Instead, we opt
for a weighted average between the observed death rates in the last two years of the
calibration period.

The adjusted Lee and Miller model specifications.

The two discussed modifications result in the following model specifications:'’

Inpg, =1In P‘E,t + In i,
Inpi}, = Aogoo - log s y000 + (1 — Azo0) - 108 111 5019 + B (Kt — Kanoo) 9
Infi§ ; = Az000 - 10g 715 5000 + (1 — A2020) - 10g 1115, 2919 + B (Kt — K2020),

with t € T = {1988,...,2020} and x € X = {0,1,...,90}. Furthermore, for t €
{2019, 2020}, m? | is the observed common central death rate and Tfli,t the observed country-

x,t
specific ‘central death rate’ with adjusted exposure ES , - m1 ;:
dr ds
T x,t ~C x,t
Myt = =1+ Myt = 7¢ T * (10)
Ey; ES;-my,

In addition, Ay € {0,0.25,0.50,0.75,1} is the weight we assign to the observed
central death rates in 2020. With the definitions in Equation (10), the case Aypp = 1
corresponds to the situation in which the observed country-specific death rates are equal
to the fitted country-specific forces of mortality in the year 2020. As a consequence, the
fitted and observed country-specific mortality rates also coincide in the year 2020. For this
weighting scenario, we therefore get a perfect fit of the observed period life expectancy in
the year 2020. Taking A»pp0 = 0 corresponds to the situation where the fitted mortality rates
in 2020 equal the observed mortality rates in 2019. In the latter scenario, we completely
ignore COVID-19 and assume that the mortality rates have not been changed over the years
2019-2020. We refer to the model, specified in Equation (9), as the adjusted Lee and Miller
mortality model.

Figures 11 and 12 display the calibrated parameters for males and females in the
adjusted Lee and Miller mortality model. In contrast to Section 5.1, we now obtain different
calibrated results for each weighting scenario. Note that the parameters Ay and «, are
not calibrated in this approach, but they represent the fixed values, given in Equation (9).
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In addition, the larger the weight A5, the more pronounced the upward jump in the
calibrated common period effects K; and the larger the downward jump in the Belgium-
specific period effects «; in the year 2020.

EU Male: A, EU Male: By EU Male: K;
—2.51 0.154
24
. 501 8 . o
& o 0.104 N
-7.54 -2+
0.05
41
-10.0+ 1 1 1 | | | | ] ] ] ]
25 50 75 0 25 50 75 1990 2000 2010 2020
Age Age Year
BEL Male: o2 BEL Male: B;*" BEL Male: k="
0.5 14
0.4
0.0 04
& -051 & 02 z )
101 0.0 oy
-1.54
1 1 1 1 -0.21, + + + sy S— T T T
0 25 50 75 0 25 50 75 1990 2000 2010 2020
Age Age Year
025 — 05 ~ 075 — 1

Weight 2020 data point — 0

Figure 11. The European and Belgian parameters Ay, By, &, By, K; and #; in the adjusted Lee and
Miller mortality model for males. The coloured lines correspond to the different weighting scenarios
in the calibration set-up. The mortality model is calibrated on data from 1988 to 2020 and contains
virtually created deaths and exposures for the years 2019-2020.

EU Female: A, EU Female: By EU Female: K,
_2
0.15 2-
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Figure 12. The European and Belgian parameters Ay, By, &y, Bx, K and &; in the adjusted Lee and
Miller mortality model for females. The coloured lines correspond to the different weighting scenarios
in the calibration set-up. The mortality model is calibrated on data from 1988 to 2020 and contains
virtually created deaths and exposures for the years 2019-2020.
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We use the same time dynamics and follow the same projection and simulation strategy
as outlined in Sections 3.2 and 3.3. We do not include weights in the time series likelihood
(see Equation (8)) to estimate the time series parameters. Figure 13 shows the calibrated
and simulated period effects in the adjusted Lee and Miller mortality model. Table 3 lists
the estimated time series parameters.

Male: Common Factor K; - RWD Female: Common Factor K, — RWD
0 0
-5+ 54
Ex‘d UEZ
_104
~104
154
154
ZOIOO 20‘25 20‘50 20‘00 20‘25 20‘50
Year Year
Male: KfBEL) - AR(1) with intercept Female: KEBEL) - AR(1) with intercept
254
14
0.0 01
s . W o~
X <]
—-2.54
iy
-5.0- . . ! -3 : . .
2000 2025 2050 2000 2025 2050
Year Year

Weight 2020 data point ¥ 0 & 0.25 = 0.5 [© 0.75 I 1

Figure 13. Projection of the calibrated time dependent parameters in the adjusted Lee and Miller
model: K; (top) and &; (bottom). Male (left) and female (right) data, calibration period 1988-2020
and projection period 2021-2070, method of Section 5.2. We show the 0.5%, median (white lines) and
99.5% quantile, based on 10,000 simulations across each weighting scenario. The coloured, solid lines
visualize the calibrated period effects for each weighting scenario: K; and ;.

Table 3. Time series parameter estimates, male and female data, ages 0-90, years 1988-2020, Section 5.2.

Weight 2020 oM oF cM cf oM oF

0 -02177  —0.1881  —0.0474  —0.0300 09588  0.9124
0.25 —-02139  —0.1836  —0.0305  —0.0277  0.9545  0.9607
0.50 —0.2094  —0.1809  —0.0319  —0.0303  0.9243  0.8567
0.75 —-02061  —0.1791  —0.0424  —0.0337 08539  0.7110
1 -0.2037  —0.1774  —0.0587  —0.0324  0.8248  0.5297

Figure 14 displays the calibrated and projected mortality rates for a 25, 45, 65 and
85 year old Belgian male. A lower weight Aygpo implies that the fitted mortality rates in 2020
are closer to the observed mortality rates in 2019 than those of 2020. This in turn results
in an overall, better in-sample fit of the mortality rates at old ages, see e.g., the bottom
right panel in Figure 14. Moreover, lowering the weight Ay leads to results closer to the
original IA|BE 2020 model (dark red, dashed line) on average. Another noteworthy fact is
the increase in the projected mortality rates for a 25 year old male (top, left panel) right after
the pandemic year 2020 in the case of a larger weight Ajp29. This increase is partly due the
fast mean reversion of the time series (see Figure 13) in combination with larger calibrated
B, values at the younger ages (see Figures 11 and 12 for the graphs of By). Therefore, the
term By - (k¢ — Kogp0) can become larger than the term By - (K¢ — Kagpo) in Equation (9) at
early years in the projection period.
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Figure 14. Estimated and projected Belgian mortality rates 4, ;. Male data, ages 25, 45 (top) and 65,
85 (bottom), calibration period 1988-2020, projection period 2021-2070, method of Section 5.2. We
show the 0.5%, median (white lines) and 99.5% quantile (fan charts), based on 10,000 simulations

across each weighting scenario. The blue dots and the coloured, solid lines represent the observed

and fitted mortality rates, respectively. The dark red, dashed line shows the calibrated mortality rates

and the median quantile of simulations in the original IA|BE 2020 model.

Figure 15 shows the estimated and projected period life expectancies for a 0 and
65 year old Belgian male (top) and female (bottom). Assigning the value zero to the weight
A020 leads to comparable results with the original IA|BE 2020 model (dark red, dashed
line). This is in line with our expectations since we actually omit the pandemic data point
in the calibration step when Ay0y0 = 0. Table 4 depicts the cohort life expectancy in 2020 for
a 0 and 65 year old male and female.

Table 4. The cohort life expectancy for a 0 and 65 year old in 2020. The 0.5% quantile, median and

99.5% quantile obtained from 10,000 simulations are shown, for males and females. We obtain the

best-estimate of the cohort life expectancy by taking the zero vector for the noise terms in Equation (4)

to project the time dependent parameters.

Females
Cohort Life Expectancy in 2020
0 65 0 65

Recalibration Best. Est. 89.95 20.31 92.15 23.32
2020 weight =0 [905; 9505 999.5) [88.09; 89.95;91.47] [19.56;20.30; 21.02] [89.42;92.14;94.20] [22.12;23.32;24.45]
Recalibration Best. Est. 89.25 19.89 91.58 22.99
2020 weight = 0.25 [905; 9505 §99.5] [87.08;89.24;91.06] [19.03;19.89;20.78] [88.76;91.59;93.79] [21.72;22.98;24.18]
Recalibration Best. Est. 88.60 19.57 91.12 22.82
2020 weight = 0.50 [905; 9505 §99.5) [85.83;88.61;90.75] [18.45;19.57;20.69] [88.35;91.10;93.31] [21.54;22.82;24.05]
Recalibration Best. Est. 88.05 19.37 90.71 22.71
2020 weight = 0.75 [905; 4505 §99.5) [84.98;88.02;90.33] [18.11;19.36;20.53] [87.94;90.69;92.84] [21.47;22.70;23.87]
Recalibration Best. Est. 87.57 19.19 90.32 22.58
2020 weight = 1 [905; 9505 999.5) [84.18; 87.53; 89.94] [17.82;19.18;20.46] [87.39;90.30;92.36] [21.28;22.57;23.74]
TA|BE 2020 Best. Est. 89.91 20.38 91.54 23.14

[905; 9505 §99.5] [88.11;89.89;91.46] [19.57;20.37;21.17] [89.46;91.53;93.25] [22.15;23.14;24.07]
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Figure 15. Estimated and projected period life expectancies éy; for Belgium. Male (top) and female
(bottom) data, ages 0 (left) and 65 (right), calibration period 1988-2020, projection period 2021-2070.
Calibration and projection is based on the method in Section 5.1. We show the 0.5% quantile, median
(white lines) and 99.5% quantile (fan charts), based on 10,000 simulations, across each weighting
scenario. The dark red, dashed line shows the 50% quantile originating from the original IA|BE 2020
model. The blue dots represent the observed period life expectancies.

6. Addressing a Mortality Shock in a Mortality Prediction Model: A Literature Review

The adjustments and sensitivity analyses proposed in Section 5 provide a framework
to assess the impact of the COVID-19 pandemic data point on a stochastic multi-population
mortality projection model of type Li and Lee. Professional actuarial organisations, such as
the Institute of Actuaries in Belgium and the Royal Dutch Actuarial Association, publish
regular updates (e.g., every two years) of their model. In their updates, these organisations
care for reproducibility, continuity and explainability of the mortality projection model.
Therefore, we explicitly aim for proposed adjustments that are much in line with the
original design principles of the mortality model. These ambitions are now challenged
by the presence of a mortality shock. Next, to the strategies outlined in this paper, other
techniques have been proposed in the literature to handle such mortality or pandemic
shocks in the Lee and Carter projection model (Lee and Carter 1992).

The Lee & Carter model.

The Lee and Carter mortality model specifies the logarithm of the force of mortality as:
Inpy s = Ax + BxKy. (11)

To forecast mortality rates, a random walk with drift model is typically assumed for
the calibrated K;:

Kt =0+ Kt,1 + &4, (12)

with 6 the drift term and &; a random noise term. A standard assumption is that ¢; follows

a normal distribution with mean 0 and unknown variance 2.
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Outlier detection.

A first stream of literature puts focus on outlier detection methods. One technique is
described in Lee and Carter (1992), where an intervention model is proposed to deal with
the influenza epidemic in 1918 when estimating the random walk with drift model for K
(see Equation (12)):

Kt = Kt,1 +9+C~flu+£t,

with flu being a dummy variable equal to one in the year of the influenza epidemic.
Parameter { captures the size of the increase in K; in 1918. The dummy variable is an
important component in the random walk with drift model, as the width of the prediction
interval for K; increases significantly when Lee and Carter (1992) exclude this dummy.
Li and Chan (2005) conduct a more thorough investigation of outlier detection in the period
effect of the Lee and Carter model. They define a general time series outlier model for K; as:

o m
Ky =Ki+ ) F(T;,wj), (13)
i=1

where K; follows an outlier-free ARIMA(p, d, g) model. Furthermore, T; is the year in which
outlier i occurs, w; the magnitude of outlier i and m the number of outliers. The term
F (T}, w;) is an exogenous intervention effect whose functional form depends on the specific
type of outlier i. To identify and to construct the model in Equation (13), Li and Chan (2005)
apply an iterative procedure to detect outliers in the estimated residuals from the fitted

ARIMA(p, d, q) time series model for K;. The discussed outlier detection methods regard
mortality shocks as non-repetitive, exogenous events and try to unravel the real underlying
mortality dynamics.

Jump processes.

A second stream of literature focuses on mortality modelling with jump processes.
Cox et al. (2006) and Chen and Cox (2009) extend the Lee and Carter model with permanent
and transitory jump effects, respectively. Let N; denote a random variable that indicates
whether there is a jump event in year ¢. The probability of occurrence of a jump event
is assumed to be time-independent and equal to p. For the model with permanent jump
effects (Cox et al. 2006), the random walk with drift model for K; extends to:

Kt:Kt_1+97p~m+Yt'Nt+€t, (14)

where Y; models the size of the jump in year ¢ (if any). The Y}’s are assumed to be independent
and identically distributed with mean m and standard deviation . Chen and Cox (2009)
notice that when a jump event occurs in year ¢, all future Ky (' > t), resulting from the
estimated time series model in Equation (14), will be affected. Catastrophic or pandemic
shocks, such as the influenza epidemic in 1918, only have a transitory effect on the mortality
rates instead of a permanent effect. Therefore, Chen and Cox (2009) extend the random
walk with drift model with a transitory jump effect:

Kt = Kt,1 +0+Y:- Ny —Yt,1 -Nt,1 + &t.

Thus, a jump event in year ¢t — 1 in this model is transitory because the jump Y;_;
is cancelled in year t (see —Y;_1N;_; in K;). Furthermore, the model allows for future
jump events when simulating future paths for K;. Zhang et al. (2021) discuss an alternative
technique. As a baseline, they first model the force of mortality without COVID-19 using a
Lee and Carter model. Next, they capture the pandemic shock of COVID-19 by multiplying
the baseline force of mortality i, with a temporary mortality jump process exp(Hy )
where jump events arrive at a certain determined pandemic arrival rate A.
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These jump processes do not allow for an age-specific effect of the jump event, e.g., a
pandemic shock, on the mortality rates. Therefore, Liu and Li (2015) add a transitory jump
component to the model specification in Equation (11):

Inpyr = Ax + BxKi + NiJx s,

with [ ; a time and age-dependent jump effect and Ny a dummy variable which equals one
if a jump event occurs in year ¢. This appears to be a useful addition to the Lee and Carter
model to capture the age-specific effect of COVID-19 on the observed mortality rates in
2020 (see Figure 5).

Extreme value theory.

Recent literature also investigates the use of extreme value theory to accurately forecast
mortality rates during periods of extreme events. Gungah and Narsoo (2021) propose the
EVT modified Lee and Carter model. Hereto they start from the usual random walk with
drift model for the period effect Ky in Equation (12). Gungah and Narsoo (2021) now assume
that the AK/’s, defined as AK; = K; — Kt,l, are independent and follow an extreme value
distribution instead of the normal distribution. In particular, the AK/’s are assumed to be
realizations from a two-parameter Generalized Pareto Distribution with shape parameter
and scale parameter ¢. The use of EVT in the random walk with drift model for Kt allows
for modelling sudden mortality jumps. Similar work is done in Chen and Cummins (2010),
with an application in longevity risk securitization.

7. Conclusions and Outlook

This paper examines different methods to deal with a pandemic data point in the
calibration and projection set-up of a stochastic multi-population mortality projection
model, in casu the Li and Lee model. When this data point corresponds to the last observed
year in the calibration period, it severely affects the drift parameter estimation in the
random walk with drift process to model the common European period effect for males and
females. To control this impact, we propose to make changes in either the projection strategy
(Section 5.1) or in the model specifications (Section 5.2) itself. We do this by restricting
the impact of the pandemic year through the inclusion of weights in the calibration or
projection step.

There are still many uncertainties about the future evolution of COVID-19. COVID-19
may have impacted mortality rates during just one or two years, or future years may be
affected as well. Future relevant work may focus on more thorough modifications of the Li
and Lee model so that it can automatically absorb pandemic shocks rather than assigning
a subjective weight to this pandemic data point. Section 6 provides a literature review
that discusses techniques to handle extreme mortality events in a Lee and Carter mortality
projection model. Examples include outlier detection methods, permanent and transitory
jump processes, and the use of extreme value theory.

In addition, several assumptions underneath the stochastic multi-population mortality
projection model of type Li and Lee may require further investigation. Future work may put
a focus on including a cohort effect in the model. This can be useful when COVID-19 has a
long-lasting effect on the health of people who have been severely affected by COVID-19,
e.g., hospitalized persons. Extending the techniques outlined in Section 6 to a mortality
model of type Li and Lee is another direction of future work. Next, to this, one can further
examine the selection of the weight Ay, assigned to the observed death rates in 2020 in
Section 5.2, in a data-driven way. One idea is to include Ay as a parameter that can be
optimally chosen in the calibration set-up. Finally, future research may also focus on the
performance of Kannisto’s method to extrapolate the mortality rates above the age of 90 in
the presence of a pandemic shock.
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Appendix A. Data Sources

Table A1. Overview of the data sources used for each country in the stochastic multi-population
mortality projection model of type Li and Lee. The data sources 'HMD’, ‘EURO’ and ‘STATBEL' refer
to the Human Mortality Database, Eurostat and the Belgian statistical institute Statbel, respectively.
They provide mortality data on an annual basis and at the level of individual ages. "HMD’ is our
primary data source. We use the other two data sources to supplement the annual deaths and
exposures at the individual age level for the more recent years 2018-2020 where possible. Because
these data sources are subject to a significant reporting delay of sometimes several years (e.g., for
the United Kingdom), we consult the Short-Term Mortality Fluctuations (STMF) Data series and the
weekly death statistics available at Eurostat (EURO.W) to supplement our dataset until the year 2020.
The latter two data sources provide weekly mortality statistics registered in age buckets. We convert
these to annual mortality statistics at the individual age level using the protocol in Section 4.

Exposures Deaths
Country
2017 2018 2019 2020 2017 2018 2019 2020

AUS HMD  HMD HMD STMF HMD  HMD HMD  EURO.W
BEL HMD HMD EURO STMF HMD HMD  EURO  STATBEL
DNK HMD  HMD HMD HMD HMD  HMD HMD HMD
FIN HMD  HMD HMD STMF HMD  HMD HMD  EURO.W
FRA HMD HMD EURO STMF HMD HMD  EURO STMF
GER HMD EURO EURO STMF HMD EURO  EURO STMF
ICE HMD HMD EURO STMF HMD HMD  EURO EURO.W
LUX HMD  HMD HMD STMF HMD  HMD HMD  EURO.W
NED HMD  HMD HMD STMF HMD  HMD HMD  EURO.W
NOR HMD HMD EURO STMF HMD HMD EURO EURO.W
SWE HMD  HMD HMD STMF HMD  HMD HMD  EURO.W
SWI HMD HMD EURO STMF HMD HMD  EURO EURO.W
UNK HMD  HMD STMF STMF HMD  HMD STMF STMF

Appendix B. Constructing Virtual Exposure Points

We create virtual annual exposures Ey ; for individual ages 0-90, years 2019-2020 and
for each country that is included in the calibration of the common, multi-population trend
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in the Li and Lee mortality projection model (Section 3.4).>Y We explain our strategy to
create virtual exposures for Belgium in the year 2020, but we follow a similar approach for
any other country that is part of this common mortality trend.

Figure Al shows the observed exposures in Belgium as a function of age over the years
2015-2019. These exposures are retrieved from HMD and Eurostat (see Table A1). The
exposure function has a similar pattern shifted to the right with one age in each subsequent
year t. This is in line with our intuition since people aged x in year ¢ become part of the
group at risk aged x + 1 in year ¢ + 1, in case of survival. A rough approximation of the
exposure atage x +1inyear t 41, i.e., Ex 111 is thus the exposure at age x in year t minus
the number of deaths at age x in year ¢,i.e., Ex; — Dy .

We use the above reasoning to create virtual annual exposures for 2020. Figure A2
graphically explains the strategy for Belgian males. First, we start from the observed annual
exposures Ey ; in the most recent available year (in casu 2019 for Belgium, using Eurostat)
and visualize these as a function of age (red, dashed line). Second, we shift this 2019
exposure curve one age to the right and subtract the number of deaths at age x in year ¢,
i.e., we define E}, 11 = Eyt — Dy for x € Ny. This results in the orange, dashed line.
This newly created curve Ef ; is undefined at the age of zero because of the shift to the right.

Therefore, in a third step, we linearly extrapolate the orange, dashed line to zero.”! This
choice is justified by the linear pattern of the exposure function at young ages. We obtain
the brown exposure point in Figure A2.

Belgium: Males Belgium: Females

80,000 4 80,0001

60,000 1 60,0001

Exposure
Exposure

40,000 A
40,0004

20,000

20,000 1

0 25 50 75 0 25 50 75
Age Age

Year — 2015 2016 — 2017 — 2018 — 2019

Figure A1. The exposures E, ; of Belgium for ages 0-90 and years 2015-2019. Data from HMD until
the year 2018 and from Eurostat for the year 2019.

Belgium: Male exposures 2020 Belgium: Male exposures 2020
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Figure A2. The virtual exposure Ey ; for Belgium in the year 2020, for males. At the right, we show a
snapshot for the age range 0-14.
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In a last step, we match the new exposure function of 2020, i.e., E; 2020 with the
exposures collected in age buckets from the STMF data series, as shown in Table A2.
Hereto, we consider an age bucket [x;, x j] and define the virtual annual exposures Ey ; as:

Ex )t
5o Al
£, (A1)

a=Xx;

Ex,t = Efc,t : bi,j/ where bi,j =

for t = 2020 (for example) and x € [x;, x;]. Intuitively, we vertically scale a section of the
orange dashed line, corresponding to a certain age bucket, such that the summed exposure
within this age bucket corresponds to the total exposure in the same age bucket of Table A2.
The right panel of Figure A2 shows this strategy for the age bucket [0, 14], where the purple
line shows the final virtual exposures Ey  at individual ages for Belgium in the year 2020.

Table A2. The male and female Belgian exposures in 2020 in age buckets, obtained from STMF.

Age Bucket Male Exp. Female Exp.
[0, 14] 988,713.02 944,379.40
[15, 64] 3,699,434.72 3,638,808.41
[65,74] 568,101.96 618,244.99
75, 84] 305,175.72 399,015.96
85+ 112,577.56 223,565.55

We apply a slightly different strategy for the exposure Egs 020 reported for ages
in the open age bucket 85+ on the STMF data series. The underlying idea is that we
want to distribute the extra exposure Egs 2020 (from the STMF data series) minus Egs.+ 2019
(from HMD) evenly across the ages 85+, i.e., ages 85, ..., 110 (the assumed maximum age).
Hereto, we calculate the shift cgs, as follows:

1
Cg54 = m(Eser,zozo — Egs42019)-

We then apply this shift cgs to go from Ey 2919 to Ey 2020:

Ex2020 = Ex2019 + ¢85+,

for ages x € {85,86,...,90}.

We repeat this procedure for all 13 European countries. In case there is no exposure
data available for 2019 on the HMD (see Table Al in Appendix A), we start from the
exposure curve for 2019 reported on the HMD or Eurostat and repeat the procedure two
times to generate Ey; data points for the years 2019-2020.

Appendix C. Constructing Virtual Death Counts

We construct virtual annual death counts d, ; at individual ages 0-90, years 2019-2020
and for each country that is included in the calibration of the common, multi-population
trend in the Li and Lee mortality projection model (Section 3.4).>? In explaining our strategy,
we focus on constructing virtual 2020 death counts at an individual age level for the
Netherlands, but a similar approach can be taken for any other country that is part of this
common mortality trend.

Figure A3 shows the observed annual deaths in the Netherlands across ages 0-90 and
over the years 2015-2019 for males (left) and females (right). In line with our discussion
about the pattern of the exposure curve in Figure A1, we observe a time-effect in these
death counts, e.g., the bumps in the deaths pattern move to the right each consecutive year.
We keep this in mind to construct virtual deaths for the year 2020.
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We propose the following strategy. Using a Li and Lee mortality model that is cali-
brated only on the observed annual deaths and exposures from HMD and/or Eurostat, we
project the fitted force of mortality /i , over the next year(s) (see Section 3.3). Similar to the
discussion in Antonio et al. (2020), we choose the starting year of the calibration period in
the Li and Lee mortality model such that we retrieve stable AR(1) processes for both the
male and female Dutch period effect. This motivates the use of starting year 1970 for the
case of the Netherlands. Under the assumption of a piecewise constant force of mortality,

the maximum likelihood estimate of the force of mortality ‘ui/ltL E< then equals
MLE d s
> 7 J— J— x!
]/lx,t ‘ - m;,l’ - EC ’ (Az)
x,t

with c the country of interest, i.e., the Netherlands in the example under consideration.
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Figure A3. The death counts dy; of the Netherlands for ages 0-90 and years 2015-2019. Data
from HMD.

Note that we create virtual annual exposures Ey  for the Netherlands in the year 2020
according to the strategy explained in Appendix B. Using Equation (A2), we can then easily
make the transition to virtual death counts dAfC,t. In a next step, we match these expected
deaths d< , with the information we retrieve from the weekly deaths data on Eurostat or
the STMF data series. For the Netherlands, we work with the weekly death counts in age
buckets of length 5 from Eurostat, see Table A3.

Table A3. The male and female Belgian death counts in 2020 in age buckets, obtained from Eurostat.

Age Bucket Male Deaths Female Deaths
0,4] 410 325

5,9] 27 27

(10, 14] 41 38
[15,19] 115 68
[75,79] 12,730 9202

80, 84] 15,125 12,899

(85, 89] 14,737 17,246
90+ 12,231 24,974

Having extracted the weekly deaths on Eurostat, we now return to the construction
of the virtual deaths in 2020 at individual ages 0-90. Figure A4 graphically explains this
construction for Dutch males. The red line shows the observed number of male deaths
in the Netherlands for the year 2019 from the HMD. Applying the Li and Lee mortality
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forecasting strategy of Section 3.3 to the Netherlands, we first project the force of mortality
fi5 s for the year t = 2020 and then calculate the estimated expected number of deaths

d ;. This corresponds to the orange line in Figure A4. Similar to the exposure matching
pr/inciple in Appendix B, we then match the orange death curve of 2020 with the death
counts collected in age buckets in 2020 from Eurostat, as given in Table A3.

Denote dAfC,t for the fitted death counts at age x and time ¢ as obtained from the orange
line in Figure A4. We consider an age bucket [x;, x;] and define the virtual annual death
counts dy ¢ as:
d[xi,xj],t

g (A3)

Y o

a=Xx;

dx,t = d?c,t . bi,j/ where bi,j =

for t = 2020 and x € [x;, x;]. Intuitively, we again vertically scale a section of the orange
line, corresponding to a certain age bucket, such that the combined number of deaths
within this age bucket corresponds to the total number of observed deaths in the same age
bucket from Eurostat. This matching principle results in the purple line in Figure A4. The
right panel of Figure A4 illustrates the results for the age bucket [70, 74]. This procedure
leads to annual death counts dy ¢, now evaluated at individual ages.

Netherlands: Male deaths 2020 Netherlands: Male deaths 2020
3000 4 r\\
IJ 7“\. 24004
§2} /\ \ 2]
€ 2000 A | c
=} 3
3 3 21004 7 \/
ey ey
S kS
(] (]
0O 1000 [a]
18004
L — d
0 ——
(I) 2I5 5IO 7I5 7IO 7Il 7I2 7I3 7I4
Age Age

— Deaths 2019 Fit Li-Lee in 2020 — Match with Eurostat in 2020

Figure A4. Construction of the virtual deaths in individual ages in the Netherlands for 2020.

The last age bucket 90+ is an open age bucket. This implies that we have to modify
our strategy outlined in Equation (A3) to define the virtual death count at age 90 in 2020:

(o)
d9o,2020 = dog2018 + oo,  where cgoy = A <d90+,2020 - da,201s> ,
a=90

and A¢ is a gender-specific rate, which we assume to be country-independent. For example,
A8 = 0.20 means that 20% of the deaths, at ages 90 or higher, occur at age 90. Based on the
observed ratios of Belgium and Denmark in 2020,% we select A™ = 0.2 and Af = 0.145 for
males and females, respectively.

We repeat this procedure for every European country in the study with the following
country-specific data adjustments. For the United Kingdom, we do not have the deaths d
at time t = 2019 yet. In this case, we construct a Li and Lee mortality model for the country
of interest with a shorter calibration period, ending with the year 2018. In addition, each
country has its own starting year of the calibration period for stability reasons, e.g., the
year 1970 for the Netherlands. We can then construct death counts for the year 2019 and
2020 (for each scenario) by projecting the force of mortality for the years 2019-2020 and by
performing the matching principle at both years.
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Moreover, for three of the European countries, namely Germany, France and the
United Kingdom, we work with the weekly death counts in age buckets from the STMF
data series, rather than from Eurostat.”* For these countries, we apply the strategy outlined
above, although we use larger age buckets.

Appendix D. Validation of the Constructed Virtual Death Counts and Exposure Points

Appendices B and C propose a protocol to extend the multi-population mortality
dataset with virtual exposures and death counts at individual ages 0-90 in the years
2019-2020. Table A1 in Appendix A reveals that we already have data available at the level
of individual ages in the year 2020 for Denmark (exposures ExD,ZKozo and deaths d5,12<020) and
Belgium (deaths dEEOZO)' We validate the protocols by comparing these observed deaths
and exposures in the year 2020 with the virtually created deaths and exposures obtained by
the approaches in Appendices B and C.

Figure A5 compares the observed Danish, male and female exposures E, ; (solid lines)
for ages 0-90 in the year 2020 with the virtual exposures (dashed lines) constructed using
the protocol. The right panel depicts the relative error between the two exposure curves for
males and females. In the case of Denmark, the linear extrapolation of the virtual exposure
curve to age 0 does not accurately reflect the observed exposure at age 0. However, for other
countries, this extrapolation might perform better, as the pattern over the years 2015-2019
suggests in the case of Belgium (see Figure A1). We also observe a larger spike around the
ages 20-25, but the protocol performs quite well overall.

40,000 MJ\
_/\\ !
0% A
/ \ g
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o S
5 £
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o
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Figure A5. Validating the protocol to construct virtual exposures in the year 2020 for Denmark from
the weekly exposures collected in age buckets from the STMF data series.

Figure A6 compares the observed Belgian (left) and Danish (right) death counts d,
(solid lines) for ages 0-90 in the year 2020 with the virtual death counts (dashed lines),
using the protocol in Appendix C. To construct the virtual death counts, we also use the
virtual exposures in the year 2020. The protocol performs quite well, with some deviations
for the old ages. The largest difference between the virtual and observed death counts
occurs at age 90, since we retrieve information from the open age bucket 90+ in Eurostat to
construct Egp2020.



Risks 2022, 10, 26 31 0f 33

Belgium Denmark
1000
3000
7504
2 2
S 20004 5
o Q
b © 500+
£ £
© @
[ 3]
0O 1000 a
2501
01 04
0 25 50 75 0 25 50 75
Age Age
— Obs.d), — Obs.d, - - Virtual d}}, Virtual df,

Figure A6. Validating the protocol to construct virtual death counts in the year 2020 for Belgium
(left) and Denmark (right) from the weekly death counts collected in age buckets from Eurostat.
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Numbers are retrieved from https://www.statista.com/statistics /1102209 / coronavirus-cases-development-europe/ (accessed
on 13 December 2021) and https:/ /www.statista.com/statistics /1102288 / coronavirus-deaths-development-europe/ (accessed
on 13 December 2021) and represent the situation at 5 December 2021.

These numbers of COVID-19 deaths come from the COVID-19 Dashboard by the Center for Systems Science and Engineering
(CSSE) at Johns Hopkins University (JHU), see https://www.arcgis.com/apps/opsdashboard /index.html#/bda7594740fd40299
423467b48e%ecf6 (accessed on 13 December 2021).

See https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans_en (accessed on
21 October 2021) for an overview of the approved, European COVID-19 vaccines and those currently under development, as well
as corresponding references.

See https:/ /www.actuaries.org.uk/learn-and-develop / continuous-mortality-investigation /cmi-working-papers /mortality-
projections (accessed on 9 November 2021).

This database is our primary database and can be consulted at https://www.mortality.org/ (accessed on 13 April 2021).
Eurostat is the statistical office of the European Union, see https:/ /ec.europa.eu/eurostat (accessed on 13 April 2021).

Statbel is the Belgian statistical office, see https://statbel.fgov.be/en (accessed on 13 April 2021).

This information can be explored using the visualization toolkit on https://mpidr.shinyapps.io/stmortality/ (accessed on 30 July
2021).

Eurostat provides weekly death statistics at https://ec.europa.eu/eurostat/web/COVID-19/data (accessed on 30 July 2021).
The years 1992, 1998, 2004, 2009, 2015 and 2020 contain 53 weeks instead of the usual 52 weeks (ISO 8601 standard).

The HMD team uses a Lee and Carter model to extrapolate recent exposures. The documentation can be consulted via
https:/ /www.mortality.org/Public/STMF_DOC/STMFNote.pdf (accessed on 30 July 2021).

See https:/ /appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_r_mwk_05&lang=en (accessed on 30 July 2021).
Eurostat only provides weekly death counts for Germany for age buckets of length 10.

We use the nlminb-function in the stats-package of R.

See https:/ /data.worldbank.org/indicator/NY.GDPPCAP.CD (accessed on 16 June 2021).

See https:/ /www.iso.org/iso-8601-date-and-time-format.html (accessed on 3 November 2021).

The years 1992, 1998, 2004, 2009, 2015 and 2020 contain 53 weeks.

See https:/ /statbel.fgov.be/sites/default/files /files/documents /bevolking /5.4%20Sterfte%2C%20levensverwachting%20en %20
doodsoorzaken/5.4.1%20Sterfte / Verdeling %200overlijdens%20per%20leeftijd %20en%20geslacht%20sinds %201992_NL.xIsx (ac-
cessed on 30 July 2021).

The case Appp = 1 corresponds to the Lee and Miller mortality model as discussed in Lee and Miller (2001).

For all countries except the United Kingdom, we do have the annual exposures E, ; at an individual age level in 2019 from either
HMD or Eurostat (see Table Al). For Denmark, we already have the annual exposures Ey  at an individual age level in the year
2020 available from the HMD.


https://www.statista.com/statistics/1102209/coronavirus-cases-development-europe/
https://www.statista.com/statistics/1102288/coronavirus-deaths-development-europe/
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans_en
https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/cmi-working-papers/mortality-projections
https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/cmi-working-papers/mortality-projections
https://www.mortality.org/
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https://statbel.fgov.be/en
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https://www.mortality.org/Public/STMF_DOC/STMFNote.pdf
https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_r_mwk_05&lang=en
https://data.worldbank.org/indicator/NY.GDP.PCAP.CD
https://www.iso.org/iso-8601-date-and-time-format.html
https://statbel.fgov.be/sites/default/files/files/documents/bevolking/5.4%20Sterfte%2C%20levensverwachting%20en%20doodsoorzaken/5.4.1%20Sterfte/Verdeling%20overlijdens%20per%20leeftijd%20en%20geslacht%20sinds%201992_NL.xlsx
https://statbel.fgov.be/sites/default/files/files/documents/bevolking/5.4%20Sterfte%2C%20levensverwachting%20en%20doodsoorzaken/5.4.1%20Sterfte/Verdeling%20overlijdens%20per%20leeftijd%20en%20geslacht%20sinds%201992_NL.xlsx

Risks 2022, 10, 26 32 0f 33

21 We use the exposure points (1, E1 ;) and (2, Ey) to linearly extrapolate to age 0:

Er; — E
Eo,t:El,t‘i‘M'

M 0-1),

2 For all countries except the United Kingdom, we do have the annual death counts d,; at individual ages in 2019 from either

HMD or Eurostat (see Table Al). For Belgium and Denmark, we even have the annual death counts d, ; at an individual age level
in 2020 available from HMD and Statbel, respectively. For these two countries, there is no need to create virtual death counts.

2 For Belgium and Denmark, we already have the death counts at individual ages in 2020 from Statbel and HMD, respectively. We

take the average of both ratios.

2 We only use the weekly death counts collected in age buckets from Eurostat when they match the reported death counts in the

larger age buckets from the STMF data series. We do this for safety reasons because some deviations between the weekly death
counts on Eurostat and the STMF data series may occur due to for example territorial differences, e.g., France with or without
overseas regions.
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