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Abstract: The question of whether environmental, social, and governance investments outperform or
underperform other conventional financial investments has been debated in the literature. In this
study, we compare the volatility of rates of return of selected ESG indices and conventional ones
and investigate dependence between them. Analysis of tail dependence is important to evaluate the
diversification benefits between conventional investments and ESG investments, which is necessary
in constructing optimal portfolios. It allows investors to diversify the risk of the portfolio and
positively impact the environment by investing in environmentally friendly companies. Examples
of institutions that are paying attention to ESG issues are banks, which are increasingly including
products that support sustainability goals in their offers. This analysis could be also important for
policymakers. The European Banking Authority (EBA) has admitted that ESG factors can contribute
to risk. Therefore, it is important to model and quantify it. The conditional volatility models
from the GARCH family and tail-dependence coefficients from the copula-based approach are
applied. The analysis period covered 2007 until 2019. The period of the COVID-19 pandemic has
not been analyzed due to the relatively short time series regarding data requirements from models’
perspective. Results of the research confirm the higher dependence of extreme values in the crisis
period (e.g., tail-dependence values in 2009-2014 range from 0.4820/0.4933 to 0.7039/0.6083, and
from 0.5002/0.5369 to 0.7296/0.6623), and low dependence of extreme values in stabilization periods
(e.g., tail-dependence values in 2017-2019 range from 0.1650 until 0.6283/0.4832, and from 0.1357
until 0.6586/0.5002). Diversification benefits vary in time, and there is a need to separately analyze
crisis and stabilization periods.

Keywords: ESG; risk management; volatility; GARCH; copula; tail dependence

1. Introduction

The pandemic has highlighted social and global inequality and spiked interests in
environmental, social, and governance (ESG) investing. ESG assets reached $35.3 trillion
in 2020 from around $30.7 trillion in 2018, reaching a third of current total global assets
under management, according to the Global Sustainable Investment Association (http:
/ /www.gsi-alliance.org/, accessed on 18 November 2021).

According to the 2020 Trends Report, investors are considering ESG factors across
USD 17 trillion of professionally managed assets, a 42% increase since 2018. Such continued
growth is expected over the long term, too. Since 1995, the value of US sustainable
investment assets (USD 639 billion) has increased more than 25-fold (USD 16.6 trillion in
2020), at a compound annual growth rate of 14% (US SIF 2020).

A few terms are used interchangeably to describe environmental, social, and gover-
nance investments, e.g., socially responsible investing (SRI), responsible investing, sustain-
able investing, and impact investing. In this paper, we understand ESG investing in terms
of the ESG factors, which enhance traditional financial analysis, making it more complete.
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There are some ESG factors that are helpful in the evaluation of investment perfor-
mance. Investments with high ESG scores can increase rates of return, while those with
poor ESG scores may inhibit these rates. One may find energy consumption, pollution,
climate change, waste production, natural resource preservation (deforestation, carbon
emission reduction), and animal welfare among the environmental factors. The social
factors include human rights, child and forced labor, community engagement, health and
safety, stakeholder relations and employee relations, customer success, data hygiene, and
security. The governance factors contain the following: quality of management, board
independence, conflict of interest, executive compensation, hiring and onboarding best
practices, transparency, and disclosure. In this paper, we use the term ESG to refer to these
indices, which include the companies that disclose these factors.

Morgan Stanley’s research on nearly 11,000 mutual funds between 2004 and 2018
indicates there is no financial trade-off in returns of sustainable funds compared to tra-
ditional ones. Moreover, sustainable funds showed lower downside risk. The number
of ESG focused funds has been growing, since 2004 by 144% (Morgan Stanley, Institute
for Sustainable Investing, Sustainable Reality. Analyzing Risk and Returns of Sustainable
Funds, 2019. www.morganstanley.com, accessed on 18 November 2021).

A growing number of investors not only focus on the profitability of investment
strategies but also look for their social value. ESG investing fulfills this goal. ESG looks at
the company’s environmental, social, and governance practices, as well as traditional ones.
ESG investors believe that investments in companies employing ESG practices may have a
material impact on their investments’ profitability and risk. Moreover, they accept a lower
return in the short term and even slightly higher risk because of the additional future value
of their investment.

Considering ESG benefits in investing for economic value is not a new concept. The
report “Who Cares, Wins—Connecting Financial Markets to a Changing World”, which
provided guidelines for companies to incorporate ESG into their operations, was published
in 2004. The first ESG index, the Domini 400 Social Index (now known as the MSCI KLD
400 Social Index), was launched in May 1990. Since then, the ESG indices have evolved to
meet investors” unique needs in investing.

ESG equity indices are used as benchmarks for ESG investment, as the underlying
assets of passive ESG investment tools (such as exchange-traded funds), and as related risk-
management tools (ESG index futures). ESG equity indices are usually constructed based
on parent equity indices incorporating ESG investment styles. The construction process
may comprise screening out the companies with negative ESG impacts and including the
companies with positive ESG impacts by adjusting their relative weights. Therefore, the
risk-return performances of these indices may be different from those of their parent indices
with traditional investment strategies (HKEX 2020).

Making investment decisions, including portfolio construction, requires knowledge of
volatility and dependence between financial time series. Determination of the dependence
structure is essential for portfolio management, and the misinterpretation of the strength of
this dependence can lead to wrong investment decisions. Pearson’s linear correlation coeffi-
cient is the most common and widely used correlation measure. Because of its linearity, it is
a tool appropriate only for measuring the dependence between variables of elliptic distribu-
tions. In situations where empirical data are characterized by, for example, asymmetric and
non-elliptic distributions, with high kurtosis or skewness, the use of linear correlation coef-
ficient is not advisable. In such instances, copula functions are better tools for investigating
the dependence structure between the time series (Messaoud and Aloui 2015).

The objective of the paper is to evaluate the attractiveness of ESG investments as a
potential diversifier for conventional investments. In this study, we examine the following
hypothesis:

Hypothesis 1 (H1). ESG investments outperform conventional investments in terms of risk.
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Hypothesis 2 (H2). Asymptotic dependence increases during the crisis on the market (declines of
stock market indices), stabilizing during the non-crisis periods.

There are many ESG indices; in this paper, we select five ESG indices (see Table A1 for
details). Conventional stock indices are represented by the Dow Jones Industry Average
(DJI) and the S&P 500 (GSPC).

Because little is known about the dependence structure between ESG and conventional
investments, the contribution of this paper is to fill this research gap. The pioneering
character of this research—application of tail dependence to ESG investments, is highly
contributing both to the knowledge of the field as well as to the practice of assets selection
in portfolio construction. The paper also contributes to improving the understanding of
volatility and the (tail) dependence structure between ESG and conventional investments.
By quantifying the overall and lower tail risk between these two assets, we indicate that
these dependencies exist, can be quantified, and are not negligible, especially in times
of crisis.

The research results confirm the higher dependence of extreme values in the cri-
sis period (declines of indices); however, this is also due to increased volatility during
this period.

The paper is structured as follows: the introduction, literature review, research method-
ology, data description, empirical results, discussion, conclusions, and references.

Literature Review

Managi et al. (2012) report no statistical difference in means and volatilities generated
from the SRI indices and conventional indices in neither of the studied regions (the US, the
UK, and Japan). Furthermore, they found strong comovements between the two indices in
both regimes (bear and bull). In contrast, Ortas et al. (2014) found that in the period of the
global financial crisis of 2008, social and responsible investment strategies were less risky
in comparison to conventional investments.

There is no consensus in the literature as to whether ESG investments are characterized
by very high returns and very low risks compared to conventional ones.

Weber and Ang (2016) analyzed the performance of an emerging market SRI index con-
cerning its financial performance compared to conventional indices. Their results indicate
that the SRI index outperformed in terms of mean return the majority of the conventional
emerging market portfolios. Similarly, Verheyden et al. (2016) found that both global and
developed-markets portfolios (a 10% best-in-class ESG screening approach) show higher
returns, lower (tail) risk, and no significant reduction of diversification potential.

On the other hand, Giese and Lee (2019) reported no clear consensus on whether
ESG criteria have enhanced risk-adjusted returns. The empirical findings in the report on
ESG indices performance (HKEX 2020), indicate that many ESG indices tended to have
similar, if not better, risk-return performances then their parent indices. This implies that
investment in ESG indices may provide equally good or even better returns while pursuing
an ethics-focused investment strategy.

Ouchen (2021) empirically verified whether the series of returns of an ESG index was
less volatile than that of a conventional stock index. He concluded that the ESG index
was relatively less turbulent than the stock index. Jain et al. (2019) reported there is no
significant difference in the performance between sustainable indices and conventional
indices. Plastun et al. (2022) investigated returns on ESG and conventional indices. They
showed no significant differences between ESG and conventional indices. The types of
price effects detected by them were the same for the cases of ESG and conventional indices
(but their power was different in some cases).

Charles et al. (2016) compared the risk-adjusted performance between ESG and
conventional indices, as well as within the ESG indices, examining it based on standard
and tail risk measures. They showed that the ESG screens for equities lead neither to a
significant outperformance nor an underperformance compared to the benchmarks. They
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also indicated that the weights used to construct these indices (sustainability-score weights
vs. market cap-weights) seemed to impact their risk and performance.

Apergis et al. (2015) employed a standard cointegration methodology and a novel
time-varying quantile cointegration approach to investigate whether the US Dow Jones
Sustainability Index and its conventional parent index are integrated. The results confirmed
the presence of an asymmetric long-run relationship between these indices that is not
detected by the standard methodology of cointegration.

Classical Markowitz portfolio theory does not consider the role currently played by
the ESG investments on the market. It applies risk and return as single criteria, assuming
that investors are rational and seek the highest return at the lowest level of risk, and their
utility functions are convex (Markowitz 1952). Incorporating the ESG-based factor into the
portfolio selection problem, Pedersen et al. (2021) proposed a hypothesis that explained
how the increasingly widespread adoption of ESG affected portfolio choice and equilibrium
asset prices.

In the case of dependency modeling for classical portfolio theory, linear correlation
coefficients were used (assuming elliptic distributions of returns). The problem appears
because the returns are not correlated strongly when they are around zero; however, the
correlation increases in the tails. Then an appropriate tool for dependency modeling is the
copula function (Sklar 1959).

Empirical research indicates that stock returns also display an asymmetric dependence
in growing and declining markets, i.e., this dependence may be stronger in bearish markets
than in bullish markets and tends to increase in the periods of violent fluctuations of prices
(Ang and Bekaert 2002; Jondeau 2016; Longin and Solnik 2001). Because of the detected
asymptotic dependence of random variables in tails (Patton 2006), the authors apply copula
functions. This approach allows investigating the dependence in variance and in tails,
which is not possible using standard dependence measures.

While more than 2000 empirical studies have been conducted analyzing the ESG
factors and financial performance, still little is known about the dependence structure and
the associated risks (Friede 2019). This is especially important as ESG scores are often
related to investment risk (Bax et al. 2021).

Due to the imperfections of financial time series (they are not normally distributed)
and correlation coefficients (which measure linear relationship and are constant in time), we
applied GARCH family models and copula functions accompanied with some heavy-tailed
marginal distributions.

2. Data and Methods
2.1. Research Methodology

The ability to forecast volatility of assets is vital for portfolio selection and asset man-
agement, as well as for the pricing of primary and derivative assets (Engle and Ng 1993).

Early studies point to volatility clustering, leptokurtosis, and the leverage effect in
stock-returns time series (Mandelbrot 1963) and (Fama and Fama 1965). The additional fea-
tures of financial time series observed across different financial assets (stocks, stock indices,
exchange rates) are as follows: stationarity, fat tails, asymmetry, aggregational Gaussianity,
quasi-long-range dependence, and seasonality (e.g., Rydberg 2000; Taylor 1986). In the
GARCH model, the variance is influenced by the square of the lagged innovation. However
in the equity returns the leverage effect (higher impact of negative shocks on volatility) is
observed, the simple GARCH model fails to describe it. GARCH (1,1) with a generalized
residuals distribution can capture more volatility assessment than other models. On the
other hand, the impact of asymmetry on stock market volatility and return analysis is
beyond the descriptive power of the asymmetric GARCH models, which could capture
more details.

There are several limitations to GARCH models. The most important one is the in-
ability to capture the asymmetric performance. For that reason, EGARCH, GJR-GARCH,
and APGARCH models were proposed. Furthermore, the asymmetric GARCH models can
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measure the effect of positive or negative shocks on stock market returns and volatility in-
completely, and the GARCH (1,1) comparatively fails to accomplish this. The GJR-GARCH
model performs better in the face of asymmetry, producing a predictable conditional vari-
ance during the period of high volatility. In addition, among the asymmetric GARCH
models, the performance of the EGARCH model appeared to be superior.

Based on the properties of the studied time series: volatility clustering, leptokurtosis,
asymmetry, leverage effects, mean-reversion, and stationarity—we apply the following
models from the GARCH family: GARCH, EGARCH, GJR-GARCH, APGARCH, and
AVGARCH in the study. We selected the GARCH model using the Akaike (AIC) and
Bayesian (BIC) information criteria. Tables A2-A5 present only the results of estimation for
the best-fitted models according to these criteria (with the minimum criteria values).

Base ARMA(p, g) model is as follows (Box and Jenkins 1983; Brockwell and Davis 1991):

rT=@1r_1+...+ (Pp?’t_p +er— 0161 — ... — Gqst—q

where ¢ ~ i.i.d.(0, ht).

The autoregressive conditional heteroskedasticity (ARCH) models were introduced
by Engle (1982) and their generalization, the GARCH models, by Bollerslev (1986). The
standard GARCH(g, p) model (Bollerslev 1986) may be written as:

q 4
hi=w+ Y agr;+ Y il
i=1 =1

1

where h; is the conditional variance, w the intercept, and 8% the residuals from the ARMA
model.

Some researchers pointed out limitations of the GARCH model. The most important
one is that GARCH cannot capture asymmetric performance. Later, for improving this
problem, EGARCH, GJR-GARCH, and APGARCH were proposed.

The exponential GARCH (EGARCH) is designed to model the logarithm of the vari-
ance rather than the level, and this model accounts for an asymmetric response to a shock.
The exponential GARCH model of Nelson (1991) is defined as:

g p
Inhy = w+ Y (wiz—i +vi(lze—i| =E|ze—il)) + Y Biln by
i=1 i=1

where the coefficient a; captures the sign effect and +y; the size effect. E|z;_;| is the expected
value of the absolute standardized innovation z;.

The Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) as GARCH model captures
features of financial time series like leptokurtic returns and volatility clustering.However,
the GJR-GARCH model of Glosten et al. (1993) models positive and negative shocks on the
conditional variance asymmetrically by the use of the indicator function I:

q 4
h = w+ Z (ais%,i + %It,ieii) + Z Bih:—i
i=1 i=1

where ; now represents the ‘leverage’ term. The indicator function I takes on value of 1
for ¢ < 0 and zero otherwise.
The asymmetric power ARCH (APARCH) model of Ding et al. (1993) allows for both

leverage and the Taylor effect, named after Taylor (1986) who observed that the sample
autocorrelation of absolute returns was usually larger than that of squared returns:

(ﬂ)tg =w+ Y1 willeil — i) + Y, Bi (\/E) gy
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where 6 € RT, being a Box-Cox transformation of v/h, and +; the coefficient in the
leverage term.
The absolute value GARCH (AVGARCH) model of Taylor (1986) and Schwert (1990):

=w+ Y a2 — il = iz —120)) + Y Biv/hei,

where 71; and 1,; are rotations and shifts parameters respectively.

This paper examines the structure of interdependence between ESG and conventional
indices. In order to achieve this goal, we fit different theoretical distributions to the series of
returns. Then, we assumed the best-fitted distribution describing the process of returns as a
marginal distribution applied for our copula estimation. We used the two-stage maximum
likelihood method to estimate the parameters of the considered two-dimensional copulas.
In addition to testing the goodness of fit of alternative copulas, we also verified a set of
hypotheses relating to the correlation matrix.

The concept of copula, was first introduced by Sklar (1959). The theoretical background
for copulas is provided by Sklar’s theorem. There exists a copula C such that:

vx1€X1|i|x2€X2 F<x1’ xz) - C(Pl(Xl), FZ(xz))

where F is two-dimensional joint distribution with the marginal distributions F, F, of
random variables (X1, Xp). If Fy, F, are continuous, the copula C is unique:

Cur, up) = F(F (1), le(uz))

where (u1,u3) € [0,1], Fifl(u) = inf{x; F;(x) > u} fori =1,2.

The proof is provided by, e.g., Nelsen (2006).

One may use a wide range of parametric copula families to capture the different
structures of dependence (e.g., Gaussian, Archimedean). In the paper, we applied the
following copulas: Student’s t, Joe—Clayton (a combination of the Joe copula and the
Clayton copula), Gumbel-Clayton (a combination of the Clayton copula and the Gumbel
copula), and survival. The Gaussian copula does not capture tail dependence, Student’s
t-copula has symmetric tail dependence in both lower and upper tails, and the Clayton
and Gumbel copulas have only lower and upper tail dependence, respectively. Survival
copulas correspond to rotation by 180 degrees.

For two dimensions following copulas are defined as (Patton 2006):

(1) Gaussian/normal (N) copula
C (11, 12;) = N((D_l(m),@_l(uz))
where N is the normal joint distribution and ®~! is the quantile of the univariate

normal distribution;
(2) Student’s t/t (t) copula

Ciln, 25, p) = b (1 (1), 1 (102))

where p € [~1,1], t,, is the joint Student’s t distribution and ¢, 1 is the univariate
Student’s t distribution with v degrees of freedom;
(3) Clayton-Gumbel (BB1) copula

Cromy (w1, 12:0,6) = (1 1) (1) %)

where 6 > 0,6 > 1;
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(4) Joe—Clayton (BB7) copula

1
s ([0 )

where0 > 0,0 > 1,u1 =1—uy,up =1 — up.

Survival copula is the copula of (1 — u;) and (1 — up) instead of u; and u,, respectively.
Its function can measure the asymmetric dependence on the opposite side of the distribution
as compared to the original function.

Our focus was on the extreme downside market risk, so we investigated the lower tail
dependence in detail. The tail-dependence coefficients (Patton 2006) are:

e Lower tail-dependence coefficient:

A = lim P(Xs < Fy (u)|X) < E () = lim (2%
u—0+

u—0t u

e  Upper tail-dependence coefficient:

1-2
Ay = lim P(X, > Fy () |X1)F7 (1)) = lim 1-2u+C(uu)
u—1- u—1- 1—u
in the case that the limit exists, Ar, [Ay € [0,1] and (Ar # 0V Ay # 0), dependence
is present.

The bivariate normal distribution is tail independent, the bivariate Student’s
t-distribution exhibits the same upper and lower tail dependence, the bivariate Joe—Clayton
and Gumbel-Clayton distributions have both lower and upper tail dependence. The
concept of tail dependence is embedded within the copula theory.

Instead of Pearson’s correlation coefficient in the copula theory, we use the Kendall’s ©
coefficient (Nelsen 2006; Patton 2006). For each pair, the Kendall’s 7 is estimated and the
p-values of the independence test based on the Kendall’s T were determined in the study.

In this paper, we used functions from the VineCopula library in R (Stoeber et al. 2018).
We made the following assumptions during the estimation process: we took 39 copulas into
consideration, we applied the Maximum Likelihood Estimation (MLE) method, and we
used the AIC selection criterion to select the best-fitted copula. To measure the discrepancy
between a hypothesized model and the empirical model, we used the goodness-of-fit
(GoF) statistics based on the Kendall’s process as proposed by Wang and Wells (2000).
For computation of p-values, the parametric bootstrap described by Genest et al. (2006)
was used.

2.2. Data Description

In the study, we used five selected ESG indices (presented in Table Al) and two
stock indices—Dow Jones Industry and the S&P 500. Daily logarithmic rates of return
for them were calculated, as a difference between logarithms of two consecutive closing
prices multiplied by 100 (they can be interpreted as percentage changes). The data set
was retrieved from the Thomson Reuters database. In Table 1, Table 4, Table 7 and Table
10 descriptive statistics for rates of return of selected indices were given. The period of
analysis covered 3 July 2007 until 31 December 2019. We considered, based on important
market events (e.g., global financial crisis, debt crisis in the EU, fall in oil prices) and data
requirements from the models’ perspectives, the following four subperiods:

1. 3July 2007-30 January 2009 (388 observations)—the global financial crisis period;

2. 2 December 2009-30 July 2014 (1140 observations)—the period of debt crisis in the EU;

3. 3June 2014-31 January 2017 (633 observations)—the Russian financial crises, fall in
oil prices;

4. 3January 2017-31 December 2019 (746 observations)—stabilization period.
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3. Results
3.1. General Remarks

In order to identify the processes of the series of daily rates of return of the ESG
indices and conventional indices (S&P 500, DJI) during the period between 3 July 2007 and
31 December 2019 (excluding the COVID-19 pandemic), it is essential to conduct graphical,
statistical, and econometric examinations of these time series to check for their stationarity
and the presence of the ARCH effect. We conduct such analysis for four subperiods.

The graphic examination of values of all indices shows that they are not stationary,
but their daily rates of return are stationary (see Figures 1, 3, 5 and 7). We applied unit root
tests, i.e., the Augmented Dickey-Fuller, Phillips-Perron, and KPSS to confirm stationarity.

At the same time, the distribution of the returns has tails, which are heavier than
the tails of the normal distribution. To confirm this, we used the Jarque-Bera test and
Q-Q plots.

Generally, the daily returns for both types of indices exhibit no significant auto-
correlation, supporting the hypothesis that the returns are uncorrelated across time. To
confirm this, we applied the Ljung—Box test. Finally, we checked whether the rates of return
are characterized by the ARCH effect using the McLeoda and Li test. The null hypothesis is
that the rates of return do not have the ARCH effect, while the alternative hypothesis is that
they have the ARCH effect. In all subperiods, the ARCH effect was detected in the returns.

In the case of the standardized innovations from the ARMA-GARCH models, at the
assumed 5% level of significance, the p-values for the Engle test are greater than 0.05 (see
Tables A3—-A5), which means that the null hypothesis was not rejected, i.e., the ARCH
effect is not present in the innovations. Hence, the models are free from conditional
heteroskedasticity in almost all cases (only in the first period for three indices the ARCH
effect is present—Table A2). To verify the autocorrelation in the innovations, we used the
Ljung—Box test. The null hypothesis that the innovations are independently distributed
was not rejected in all the cases (see Tables A2—-A5). It means that the models have been
well-chosen and fitted.

Finally, the persistence parameters are close to one, which is high (see Tables A2-A5),
meaning that the variance moves slowly through time.

We employ not only normally distributed innovations, but also the Student’s
t-distributions, the generalized error distribution (GED) and a skewed version of both. The
reason for considering distributions other than normal is that a GARCH model with condi-
tional normal errors has fatter tails than the normal distribution, and for many financial
time series the standardized innovations still appear to be leptokurtic. Therefore, assuming
a leptokurtic unconditional distribution for the innovations seems more appropriate.

Because the market returns are not normally distributed, the Gaussian copula would
not capture tail dependence. Therefore, we fitted the Student’s t-copula and the combination
of Clayton and Gumbel copulas. At a 1% significance level for the chosen copulas, we
cannot reject the null hypothesis (GoF test), i.e., our copulas are the true copulas. Due to the
observed nonnormality in the returns distribution, we measured the dependence by using
Kendall’s T coefficient. All results for the Kendall’s T coefficient are statistically significant.
In the first two subperiods, dependencies were higher than in the next two subperiods
(see Table 2, Table 3, Table 5, Table 6, Table 8, Table 9, Table 11 and Table 12). To quantify
the degree of tail dependence in each pair, the Kendall’s 7 is estimated and the p-values of
the independence test based on the Kendall’s T are determined (see Figure 2 and Tables 2
and 3). The results indicate the existence of positive, significant dependence.

We analyzed the dependence for 10 pairs of indices, namely S&P and ESG—5 pairs and
DJI and ESG—5 pairs. Dependence between S&P and DJI exhibited lower tail dependence in
three subperiods; only in the 2008 global financial crisis was the tail dependence symmetric.
In the first and last subperiod, ESG and conventional investments showed lower and
symmetric tail dependence—in the first subperiod for 5 pairs in the lower tail, for 5 pairs
symmetric; in the third subperiod for 3 pairs in the lower tail and for 7 pairs symmetric.
In the second period, ESG and conventional investments exhibited lower and upper tail
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dependence—for 6 pairs in the lower tail, for 3 pairs symmetric (see Tables 2, 3,5, 6, 8, 9,
11 and 12).

3.2. The Global Financial Crisis Period (3 July 2007-30 January 2009)

In the global financial crisis period, all indices are not normally distributed (high
kurtosis, mostly positive asymmetry, as confirmed by the Jarque—Bera test) with negative
means and similar standard deviations (lower only for SGESGSEP and TRESQ1—Table 1).
The year 2008 was characterized by high volatility. Volatility clustering was observed for
all indices (Figure 1). There is no consensus in modeling the volatility of conventional
indices. There were APGARCH (innovations with normal distribution—norm) for S&P 500
and EGARCH (innovations with skewed Student’s t-distribution—sstd) for the fitted DJI.
For ESG indices, GJR-GARCH (innovations with normal distribution) for A1SGI and for
other AVGARCH (innovations with normal distribution) fitted best. From Table A2, we
can see that all the parameters have very small p-values, which shows their significance.
Persistence ranges from 0.9654 to 0.9818 for S&P 500 and DJI, and from 0.9649 to 0.9730 for
ESG indices, indicating the slow movement of variance through time.

GSPC 2007-07-03 / 2009-01-30 DJI 2007-07-03 / 2009-01-30
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2007 2007 2008 2008 2008 2009 2007 2007 2008 2008 2008 2009
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Figure 1. The rates of return 3 July 2007-30 January 2009.

The highest values of Kendall’s tau (see Figure 2) are between indices of the same
type (S&P 500 and DJI, and SEESGSEP and SGESGSEP). High dependence is observed
between S&P 500 and A1SGI and between DJI and A1SGI, low dependence between S&P
500 and SEESGSEP and between DJI and SEESGSEP. For example, for the GSPC-SEESGSEP
relationship—the observed copula has the lowest dependency—depends by 34.24% on the
upper and lower tail (Student’s t-copula was employed). The GSPC-SXWESGP relationship
has a dependency of 47.54% on the upper tail, and of 54.41% on the lower tail. It means the
interaction has a greater effect in the lower tail (also for GSPC-SGESGSEP, GSPC-TRESGQ],
DJI-SXWESGP, DJI-SGESGSEP, DJI-TRESGQ1).
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Figure 2. Kendall’s T and copulas 3 July 2007-30 January 2009.
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Table 1. Descriptive statistics 3 July 2007-30 January 2009.

GSPC DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Minimum —9.470 —8.201 —8.993 —8.927 —9.355 —8.272 —7.069
Maximum 10.957 10.508 9.453 9.712 11.476 10.283 8.504

1. Quartile —1.190 —1.147 —1.049 —1.120 —1.010 —1.020 —1.008
3. Quartile 0.780 0.744 0.741 0.788 0.736 0.718 0.723

Mean —0.154 —-