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Abstract: The question of whether environmental, social, and governance investments outperform or
underperform other conventional financial investments has been debated in the literature. In this
study, we compare the volatility of rates of return of selected ESG indices and conventional ones
and investigate dependence between them. Analysis of tail dependence is important to evaluate the
diversification benefits between conventional investments and ESG investments, which is necessary
in constructing optimal portfolios. It allows investors to diversify the risk of the portfolio and
positively impact the environment by investing in environmentally friendly companies. Examples
of institutions that are paying attention to ESG issues are banks, which are increasingly including
products that support sustainability goals in their offers. This analysis could be also important for
policymakers. The European Banking Authority (EBA) has admitted that ESG factors can contribute
to risk. Therefore, it is important to model and quantify it. The conditional volatility models
from the GARCH family and tail-dependence coefficients from the copula-based approach are
applied. The analysis period covered 2007 until 2019. The period of the COVID-19 pandemic has
not been analyzed due to the relatively short time series regarding data requirements from models’
perspective. Results of the research confirm the higher dependence of extreme values in the crisis
period (e.g., tail-dependence values in 2009–2014 range from 0.4820/0.4933 to 0.7039/0.6083, and
from 0.5002/0.5369 to 0.7296/0.6623), and low dependence of extreme values in stabilization periods
(e.g., tail-dependence values in 2017–2019 range from 0.1650 until 0.6283/0.4832, and from 0.1357
until 0.6586/0.5002). Diversification benefits vary in time, and there is a need to separately analyze
crisis and stabilization periods.

Keywords: ESG; risk management; volatility; GARCH; copula; tail dependence

1. Introduction

The pandemic has highlighted social and global inequality and spiked interests in
environmental, social, and governance (ESG) investing. ESG assets reached $35.3 trillion
in 2020 from around $30.7 trillion in 2018, reaching a third of current total global assets
under management, according to the Global Sustainable Investment Association (http:
//www.gsi-alliance.org/, accessed on 18 November 2021).

According to the 2020 Trends Report, investors are considering ESG factors across
USD 17 trillion of professionally managed assets, a 42% increase since 2018. Such continued
growth is expected over the long term, too. Since 1995, the value of US sustainable
investment assets (USD 639 billion) has increased more than 25-fold (USD 16.6 trillion in
2020), at a compound annual growth rate of 14% (US SIF 2020).

A few terms are used interchangeably to describe environmental, social, and gover-
nance investments, e.g., socially responsible investing (SRI), responsible investing, sustain-
able investing, and impact investing. In this paper, we understand ESG investing in terms
of the ESG factors, which enhance traditional financial analysis, making it more complete.
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There are some ESG factors that are helpful in the evaluation of investment perfor-
mance. Investments with high ESG scores can increase rates of return, while those with
poor ESG scores may inhibit these rates. One may find energy consumption, pollution,
climate change, waste production, natural resource preservation (deforestation, carbon
emission reduction), and animal welfare among the environmental factors. The social
factors include human rights, child and forced labor, community engagement, health and
safety, stakeholder relations and employee relations, customer success, data hygiene, and
security. The governance factors contain the following: quality of management, board
independence, conflict of interest, executive compensation, hiring and onboarding best
practices, transparency, and disclosure. In this paper, we use the term ESG to refer to these
indices, which include the companies that disclose these factors.

Morgan Stanley’s research on nearly 11,000 mutual funds between 2004 and 2018
indicates there is no financial trade-off in returns of sustainable funds compared to tra-
ditional ones. Moreover, sustainable funds showed lower downside risk. The number
of ESG focused funds has been growing, since 2004 by 144% (Morgan Stanley, Institute
for Sustainable Investing, Sustainable Reality. Analyzing Risk and Returns of Sustainable
Funds, 2019. www.morganstanley.com, accessed on 18 November 2021).

A growing number of investors not only focus on the profitability of investment
strategies but also look for their social value. ESG investing fulfills this goal. ESG looks at
the company’s environmental, social, and governance practices, as well as traditional ones.
ESG investors believe that investments in companies employing ESG practices may have a
material impact on their investments’ profitability and risk. Moreover, they accept a lower
return in the short term and even slightly higher risk because of the additional future value
of their investment.

Considering ESG benefits in investing for economic value is not a new concept. The
report “Who Cares, Wins—Connecting Financial Markets to a Changing World”, which
provided guidelines for companies to incorporate ESG into their operations, was published
in 2004. The first ESG index, the Domini 400 Social Index (now known as the MSCI KLD
400 Social Index), was launched in May 1990. Since then, the ESG indices have evolved to
meet investors’ unique needs in investing.

ESG equity indices are used as benchmarks for ESG investment, as the underlying
assets of passive ESG investment tools (such as exchange-traded funds), and as related risk-
management tools (ESG index futures). ESG equity indices are usually constructed based
on parent equity indices incorporating ESG investment styles. The construction process
may comprise screening out the companies with negative ESG impacts and including the
companies with positive ESG impacts by adjusting their relative weights. Therefore, the
risk-return performances of these indices may be different from those of their parent indices
with traditional investment strategies (HKEX 2020).

Making investment decisions, including portfolio construction, requires knowledge of
volatility and dependence between financial time series. Determination of the dependence
structure is essential for portfolio management, and the misinterpretation of the strength of
this dependence can lead to wrong investment decisions. Pearson’s linear correlation coeffi-
cient is the most common and widely used correlation measure. Because of its linearity, it is
a tool appropriate only for measuring the dependence between variables of elliptic distribu-
tions. In situations where empirical data are characterized by, for example, asymmetric and
non-elliptic distributions, with high kurtosis or skewness, the use of linear correlation coef-
ficient is not advisable. In such instances, copula functions are better tools for investigating
the dependence structure between the time series (Messaoud and Aloui 2015).

The objective of the paper is to evaluate the attractiveness of ESG investments as a
potential diversifier for conventional investments. In this study, we examine the following
hypothesis:

Hypothesis 1 (H1). ESG investments outperform conventional investments in terms of risk.

www.morganstanley.com
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Hypothesis 2 (H2). Asymptotic dependence increases during the crisis on the market (declines of
stock market indices), stabilizing during the non-crisis periods.

There are many ESG indices; in this paper, we select five ESG indices (see Table A1 for
details). Conventional stock indices are represented by the Dow Jones Industry Average
(DJI) and the S&P 500 (GSPC).

Because little is known about the dependence structure between ESG and conventional
investments, the contribution of this paper is to fill this research gap. The pioneering
character of this research—application of tail dependence to ESG investments, is highly
contributing both to the knowledge of the field as well as to the practice of assets selection
in portfolio construction. The paper also contributes to improving the understanding of
volatility and the (tail) dependence structure between ESG and conventional investments.
By quantifying the overall and lower tail risk between these two assets, we indicate that
these dependencies exist, can be quantified, and are not negligible, especially in times
of crisis.

The research results confirm the higher dependence of extreme values in the cri-
sis period (declines of indices); however, this is also due to increased volatility during
this period.

The paper is structured as follows: the introduction, literature review, research method-
ology, data description, empirical results, discussion, conclusions, and references.

Literature Review

Managi et al. (2012) report no statistical difference in means and volatilities generated
from the SRI indices and conventional indices in neither of the studied regions (the US, the
UK, and Japan). Furthermore, they found strong comovements between the two indices in
both regimes (bear and bull). In contrast, Ortas et al. (2014) found that in the period of the
global financial crisis of 2008, social and responsible investment strategies were less risky
in comparison to conventional investments.

There is no consensus in the literature as to whether ESG investments are characterized
by very high returns and very low risks compared to conventional ones.

Weber and Ang (2016) analyzed the performance of an emerging market SRI index con-
cerning its financial performance compared to conventional indices. Their results indicate
that the SRI index outperformed in terms of mean return the majority of the conventional
emerging market portfolios. Similarly, Verheyden et al. (2016) found that both global and
developed-markets portfolios (a 10% best-in-class ESG screening approach) show higher
returns, lower (tail) risk, and no significant reduction of diversification potential.

On the other hand, Giese and Lee (2019) reported no clear consensus on whether
ESG criteria have enhanced risk-adjusted returns. The empirical findings in the report on
ESG indices performance (HKEX 2020), indicate that many ESG indices tended to have
similar, if not better, risk-return performances then their parent indices. This implies that
investment in ESG indices may provide equally good or even better returns while pursuing
an ethics-focused investment strategy.

Ouchen (2021) empirically verified whether the series of returns of an ESG index was
less volatile than that of a conventional stock index. He concluded that the ESG index
was relatively less turbulent than the stock index. Jain et al. (2019) reported there is no
significant difference in the performance between sustainable indices and conventional
indices. Plastun et al. (2022) investigated returns on ESG and conventional indices. They
showed no significant differences between ESG and conventional indices. The types of
price effects detected by them were the same for the cases of ESG and conventional indices
(but their power was different in some cases).

Charles et al. (2016) compared the risk-adjusted performance between ESG and
conventional indices, as well as within the ESG indices, examining it based on standard
and tail risk measures. They showed that the ESG screens for equities lead neither to a
significant outperformance nor an underperformance compared to the benchmarks. They
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also indicated that the weights used to construct these indices (sustainability-score weights
vs. market cap-weights) seemed to impact their risk and performance.

Apergis et al. (2015) employed a standard cointegration methodology and a novel
time-varying quantile cointegration approach to investigate whether the US Dow Jones
Sustainability Index and its conventional parent index are integrated. The results confirmed
the presence of an asymmetric long-run relationship between these indices that is not
detected by the standard methodology of cointegration.

Classical Markowitz portfolio theory does not consider the role currently played by
the ESG investments on the market. It applies risk and return as single criteria, assuming
that investors are rational and seek the highest return at the lowest level of risk, and their
utility functions are convex (Markowitz 1952). Incorporating the ESG-based factor into the
portfolio selection problem, Pedersen et al. (2021) proposed a hypothesis that explained
how the increasingly widespread adoption of ESG affected portfolio choice and equilibrium
asset prices.

In the case of dependency modeling for classical portfolio theory, linear correlation
coefficients were used (assuming elliptic distributions of returns). The problem appears
because the returns are not correlated strongly when they are around zero; however, the
correlation increases in the tails. Then an appropriate tool for dependency modeling is the
copula function (Sklar 1959).

Empirical research indicates that stock returns also display an asymmetric dependence
in growing and declining markets, i.e., this dependence may be stronger in bearish markets
than in bullish markets and tends to increase in the periods of violent fluctuations of prices
(Ang and Bekaert 2002; Jondeau 2016; Longin and Solnik 2001). Because of the detected
asymptotic dependence of random variables in tails (Patton 2006), the authors apply copula
functions. This approach allows investigating the dependence in variance and in tails,
which is not possible using standard dependence measures.

While more than 2000 empirical studies have been conducted analyzing the ESG
factors and financial performance, still little is known about the dependence structure and
the associated risks (Friede 2019). This is especially important as ESG scores are often
related to investment risk (Bax et al. 2021).

Due to the imperfections of financial time series (they are not normally distributed)
and correlation coefficients (which measure linear relationship and are constant in time), we
applied GARCH family models and copula functions accompanied with some heavy-tailed
marginal distributions.

2. Data and Methods
2.1. Research Methodology

The ability to forecast volatility of assets is vital for portfolio selection and asset man-
agement, as well as for the pricing of primary and derivative assets (Engle and Ng 1993).

Early studies point to volatility clustering, leptokurtosis, and the leverage effect in
stock-returns time series (Mandelbrot 1963) and (Fama and Fama 1965). The additional fea-
tures of financial time series observed across different financial assets (stocks, stock indices,
exchange rates) are as follows: stationarity, fat tails, asymmetry, aggregational Gaussianity,
quasi-long-range dependence, and seasonality (e.g., Rydberg 2000; Taylor 1986). In the
GARCH model, the variance is influenced by the square of the lagged innovation. However
in the equity returns the leverage effect (higher impact of negative shocks on volatility) is
observed, the simple GARCH model fails to describe it. GARCH (1,1) with a generalized
residuals distribution can capture more volatility assessment than other models. On the
other hand, the impact of asymmetry on stock market volatility and return analysis is
beyond the descriptive power of the asymmetric GARCH models, which could capture
more details.

There are several limitations to GARCH models. The most important one is the in-
ability to capture the asymmetric performance. For that reason, EGARCH, GJR-GARCH,
and APGARCH models were proposed. Furthermore, the asymmetric GARCH models can
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measure the effect of positive or negative shocks on stock market returns and volatility in-
completely, and the GARCH (1,1) comparatively fails to accomplish this. The GJR-GARCH
model performs better in the face of asymmetry, producing a predictable conditional vari-
ance during the period of high volatility. In addition, among the asymmetric GARCH
models, the performance of the EGARCH model appeared to be superior.

Based on the properties of the studied time series: volatility clustering, leptokurtosis,
asymmetry, leverage effects, mean-reversion, and stationarity—we apply the following
models from the GARCH family: GARCH, EGARCH, GJR-GARCH, APGARCH, and
AVGARCH in the study. We selected the GARCH model using the Akaike (AIC) and
Bayesian (BIC) information criteria. Tables A2–A5 present only the results of estimation for
the best-fitted models according to these criteria (with the minimum criteria values).

Base ARMA(p, q) model is as follows (Box and Jenkins 1983; Brockwell and Davis 1991):

rt = φ1rt−1 + . . . + φprt−p + εt − θ1εt−1 − . . .− θqεt−q

where εt ∼ i.i.d.(0, ht).
The autoregressive conditional heteroskedasticity (ARCH) models were introduced

by Engle (1982) and their generalization, the GARCH models, by Bollerslev (1986). The
standard GARCH(q, p) model (Bollerslev 1986) may be written as:

ht = ω +
q

∑
i=1

αiε
2
t−i +

p

∑
i=1

βiht−i

where ht is the conditional variance, ω the intercept, and ε2
t the residuals from the ARMA

model.
Some researchers pointed out limitations of the GARCH model. The most important

one is that GARCH cannot capture asymmetric performance. Later, for improving this
problem, EGARCH, GJR-GARCH, and APGARCH were proposed.

The exponential GARCH (EGARCH) is designed to model the logarithm of the vari-
ance rather than the level, and this model accounts for an asymmetric response to a shock.
The exponential GARCH model of Nelson (1991) is defined as:

ln ht = ω +
q

∑
i=1

(αizt−i + γi(|zt−i|−E|zt−i|)) +
p

∑
i=1

βi ln ht−i

where the coefficient αi captures the sign effect and γi the size effect. E|zt−i| is the expected
value of the absolute standardized innovation zt.

The Glosten–Jagannathan–Runkle GARCH (GJR-GARCH) as GARCH model captures
features of financial time series like leptokurtic returns and volatility clustering.However,
the GJR-GARCH model of Glosten et al. (1993) models positive and negative shocks on the
conditional variance asymmetrically by the use of the indicator function I:

ht = ω +
q

∑
i=1

(
αiε

2
t−i + γi It−iε

2
t−i

)
+

p

∑
i=1

βiht−i

where γi now represents the ’leverage’ term. The indicator function I takes on value of 1
for ε ≤ 0 and zero otherwise.

The asymmetric power ARCH (APARCH) model of Ding et al. (1993) allows for both
leverage and the Taylor effect, named after Taylor (1986) who observed that the sample
autocorrelation of absolute returns was usually larger than that of squared returns:(√

ht

)δ
= ω + ∑q

i=1 αi(|εt−i| − γiεt−i)
δ + ∑p

i=1 βi

(√
ht−i

)δ
,
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where δ ∈ R+, being a Box–Cox transformation of
√

ht, and γi the coefficient in the
leverage term.

The absolute value GARCH (AVGARCH) model of Taylor (1986) and Schwert (1990):√
ht = ω + ∑q

i=1 αi
√

ht−i(|zt−i − η2i| − η1i(zt−i − η2i)) + ∑p
i=1 βi

√
ht−i,

where η1i and η2i are rotations and shifts parameters respectively.
This paper examines the structure of interdependence between ESG and conventional

indices. In order to achieve this goal, we fit different theoretical distributions to the series of
returns. Then, we assumed the best-fitted distribution describing the process of returns as a
marginal distribution applied for our copula estimation. We used the two-stage maximum
likelihood method to estimate the parameters of the considered two-dimensional copulas.
In addition to testing the goodness of fit of alternative copulas, we also verified a set of
hypotheses relating to the correlation matrix.

The concept of copula, was first introduced by Sklar (1959). The theoretical background
for copulas is provided by Sklar’s theorem. There exists a copula C such that:

∀x1∈X1|i|x2∈X2
F(x1, x2) = C(F1(x1), F2(x2))

where F is two-dimensional joint distribution with the marginal distributions F1, F2 of
random variables (X1, X2). If F1, F2 are continuous, the copula C is unique:

C(u1, u2) = F
(

F−1
1 (u1), F−1

2 (u2)
)

where (u1, u2) ∈ [0, 1], F−1
i (u) = inf{x; Fi(x) ≥ u} for i = 1, 2.

The proof is provided by, e.g., Nelsen (2006).
One may use a wide range of parametric copula families to capture the different

structures of dependence (e.g., Gaussian, Archimedean). In the paper, we applied the
following copulas: Student’s t, Joe–Clayton (a combination of the Joe copula and the
Clayton copula), Gumbel–Clayton (a combination of the Clayton copula and the Gumbel
copula), and survival. The Gaussian copula does not capture tail dependence, Student’s
t-copula has symmetric tail dependence in both lower and upper tails, and the Clayton
and Gumbel copulas have only lower and upper tail dependence, respectively. Survival
copulas correspond to rotation by 180 degrees.

For two dimensions following copulas are defined as (Patton 2006):

(1) Gaussian/normal (N) copula

CN(u1, u2;) = N
(

Φ−1(u1), Φ−1(u2)
)

where N is the normal joint distribution and Φ−1 is the quantile of the univariate
normal distribution;

(2) Student’s t/t (t) copula

Ct(u1, u2; ν, ρ) = tν,ρ

(
t−1
ν (u1), t−1

ν (u2)
)

where ρ ∈ [−1, 1], tν,ρ is the joint Student’s t distribution and t−1
ν is the univariate

Student’s t distribution with ν degrees of freedom;
(3) Clayton–Gumbel (BB1) copula

C{BB1}(u1, u2; θ, δ) =

(
1 +

[(
u−θ

1 − 1
)δ

+
(

u−θ
2 − 1

)δ
] 1

δ

)− 1
θ

where θ ≥ 0, δ ≥ 1;
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(4) Joe–Clayton (BB7) copula

C{BB7}(u1, u2; θ, δ) = 1−
(

1−
[(

1− uθ
1

)−δ
+
(

1− uθ
2

)−δ
− 1
]− 1

δ

) 1
θ

where θ ≥ 0, δ ≥ 1, u1 = 1− u1, u2 = 1− u2.

Survival copula is the copula of (1 − u1) and (1 − u2) instead of u1 and u2, respectively.
Its function can measure the asymmetric dependence on the opposite side of the distribution
as compared to the original function.

Our focus was on the extreme downside market risk, so we investigated the lower tail
dependence in detail. The tail-dependence coefficients (Patton 2006) are:

• Lower tail-dependence coefficient:

λL = lim
u→0+

P(X2 ≤ F−1
2 (u)|X1 ≤ F−1

1 (u)) = lim
u→0+

C(u, u)
u

• Upper tail-dependence coefficient:

λU = lim
u→1−

P(X2 > F−1
2 (u) |X1〉F−1

1 (u)) = lim
u→1−

1− 2u + C(u, u)
1− u

in the case that the limit exists, λL, |λU ∈ [0, 1] and (λL 6= 0 ∨ λU 6= 0), dependence
is present.

The bivariate normal distribution is tail independent, the bivariate Student’s
t-distribution exhibits the same upper and lower tail dependence, the bivariate Joe–Clayton
and Gumbel–Clayton distributions have both lower and upper tail dependence. The
concept of tail dependence is embedded within the copula theory.

Instead of Pearson’s correlation coefficient in the copula theory, we use the Kendall’s τ
coefficient (Nelsen 2006; Patton 2006). For each pair, the Kendall’s τ is estimated and the
p-values of the independence test based on the Kendall’s τwere determined in the study.

In this paper, we used functions from the VineCopula library in R (Stoeber et al. 2018).
We made the following assumptions during the estimation process: we took 39 copulas into
consideration, we applied the Maximum Likelihood Estimation (MLE) method, and we
used the AIC selection criterion to select the best-fitted copula. To measure the discrepancy
between a hypothesized model and the empirical model, we used the goodness-of-fit
(GoF) statistics based on the Kendall’s process as proposed by Wang and Wells (2000).
For computation of p-values, the parametric bootstrap described by Genest et al. (2006)
was used.

2.2. Data Description

In the study, we used five selected ESG indices (presented in Table A1) and two
stock indices—Dow Jones Industry and the S&P 500. Daily logarithmic rates of return
for them were calculated, as a difference between logarithms of two consecutive closing
prices multiplied by 100 (they can be interpreted as percentage changes). The data set
was retrieved from the Thomson Reuters database. In Table 1, Table 4, Table 7 and Table
10 descriptive statistics for rates of return of selected indices were given. The period of
analysis covered 3 July 2007 until 31 December 2019. We considered, based on important
market events (e.g., global financial crisis, debt crisis in the EU, fall in oil prices) and data
requirements from the models’ perspectives, the following four subperiods:

1. 3 July 2007–30 January 2009 (388 observations)—the global financial crisis period;
2. 2 December 2009–30 July 2014 (1140 observations)—the period of debt crisis in the EU;
3. 3 June 2014–31 January 2017 (633 observations)—the Russian financial crises, fall in

oil prices;
4. 3 January 2017–31 December 2019 (746 observations)—stabilization period.
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3. Results
3.1. General Remarks

In order to identify the processes of the series of daily rates of return of the ESG
indices and conventional indices (S&P 500, DJI) during the period between 3 July 2007 and
31 December 2019 (excluding the COVID-19 pandemic), it is essential to conduct graphical,
statistical, and econometric examinations of these time series to check for their stationarity
and the presence of the ARCH effect. We conduct such analysis for four subperiods.

The graphic examination of values of all indices shows that they are not stationary,
but their daily rates of return are stationary (see Figures 1, 3, 5 and 7). We applied unit root
tests, i.e., the Augmented Dickey–Fuller, Phillips–Perron, and KPSS to confirm stationarity.

At the same time, the distribution of the returns has tails, which are heavier than
the tails of the normal distribution. To confirm this, we used the Jarque–Bera test and
Q-Q plots.

Generally, the daily returns for both types of indices exhibit no significant auto-
correlation, supporting the hypothesis that the returns are uncorrelated across time. To
confirm this, we applied the Ljung–Box test. Finally, we checked whether the rates of return
are characterized by the ARCH effect using the McLeoda and Li test. The null hypothesis is
that the rates of return do not have the ARCH effect, while the alternative hypothesis is that
they have the ARCH effect. In all subperiods, the ARCH effect was detected in the returns.

In the case of the standardized innovations from the ARMA-GARCH models, at the
assumed 5% level of significance, the p-values for the Engle test are greater than 0.05 (see
Tables A3–A5), which means that the null hypothesis was not rejected, i.e., the ARCH
effect is not present in the innovations. Hence, the models are free from conditional
heteroskedasticity in almost all cases (only in the first period for three indices the ARCH
effect is present—Table A2). To verify the autocorrelation in the innovations, we used the
Ljung–Box test. The null hypothesis that the innovations are independently distributed
was not rejected in all the cases (see Tables A2–A5). It means that the models have been
well-chosen and fitted.

Finally, the persistence parameters are close to one, which is high (see Tables A2–A5),
meaning that the variance moves slowly through time.

We employ not only normally distributed innovations, but also the Student’s
t-distributions, the generalized error distribution (GED) and a skewed version of both. The
reason for considering distributions other than normal is that a GARCH model with condi-
tional normal errors has fatter tails than the normal distribution, and for many financial
time series the standardized innovations still appear to be leptokurtic. Therefore, assuming
a leptokurtic unconditional distribution for the innovations seems more appropriate.

Because the market returns are not normally distributed, the Gaussian copula would
not capture tail dependence. Therefore, we fitted the Student’s t-copula and the combination
of Clayton and Gumbel copulas. At a 1% significance level for the chosen copulas, we
cannot reject the null hypothesis (GoF test), i.e., our copulas are the true copulas. Due to the
observed nonnormality in the returns distribution, we measured the dependence by using
Kendall’s τ coefficient. All results for the Kendall’s τ coefficient are statistically significant.
In the first two subperiods, dependencies were higher than in the next two subperiods
(see Table 2, Table 3, Table 5, Table 6, Table 8, Table 9, Table 11 and Table 12). To quantify
the degree of tail dependence in each pair, the Kendall’s τ is estimated and the p-values of
the independence test based on the Kendall’s τ are determined (see Figure 2 and Tables 2
and 3). The results indicate the existence of positive, significant dependence.

We analyzed the dependence for 10 pairs of indices, namely S&P and ESG—5 pairs and
DJI and ESG—5 pairs. Dependence between S&P and DJI exhibited lower tail dependence in
three subperiods; only in the 2008 global financial crisis was the tail dependence symmetric.
In the first and last subperiod, ESG and conventional investments showed lower and
symmetric tail dependence—in the first subperiod for 5 pairs in the lower tail, for 5 pairs
symmetric; in the third subperiod for 3 pairs in the lower tail and for 7 pairs symmetric.
In the second period, ESG and conventional investments exhibited lower and upper tail
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dependence—for 6 pairs in the lower tail, for 3 pairs symmetric (see Tables 2, 3, 5, 6, 8, 9,
11 and 12).

3.2. The Global Financial Crisis Period (3 July 2007–30 January 2009)

In the global financial crisis period, all indices are not normally distributed (high
kurtosis, mostly positive asymmetry, as confirmed by the Jarque–Bera test) with negative
means and similar standard deviations (lower only for SGESGSEP and TRESQ1—Table 1).
The year 2008 was characterized by high volatility. Volatility clustering was observed for
all indices (Figure 1). There is no consensus in modeling the volatility of conventional
indices. There were APGARCH (innovations with normal distribution—norm) for S&P 500
and EGARCH (innovations with skewed Student’s t-distribution—sstd) for the fitted DJI.
For ESG indices, GJR-GARCH (innovations with normal distribution) for A1SGI and for
other AVGARCH (innovations with normal distribution) fitted best. From Table A2, we
can see that all the parameters have very small p-values, which shows their significance.
Persistence ranges from 0.9654 to 0.9818 for S&P 500 and DJI, and from 0.9649 to 0.9730 for
ESG indices, indicating the slow movement of variance through time.
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Figure 1. The rates of return 3 July 2007–30 January 2009.

The highest values of Kendall’s tau (see Figure 2) are between indices of the same
type (S&P 500 and DJI, and SEESGSEP and SGESGSEP). High dependence is observed
between S&P 500 and A1SGI and between DJI and A1SGI, low dependence between S&P
500 and SEESGSEP and between DJI and SEESGSEP. For example, for the GSPC–SEESGSEP
relationship—the observed copula has the lowest dependency—depends by 34.24% on the
upper and lower tail (Student’s t-copula was employed). The GSPC–SXWESGP relationship
has a dependency of 47.54% on the upper tail, and of 54.41% on the lower tail. It means the
interaction has a greater effect in the lower tail (also for GSPC–SGESGSEP, GSPC–TRESGQ1,
DJI–SXWESGP, DJI–SGESGSEP, DJI–TRESGQ1).
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Table 1. Descriptive statistics 3 July 2007–30 January 2009.

GSPC DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Minimum −9.470 −8.201 −8.993 −8.927 −9.355 −8.272 −7.069
Maximum 10.957 10.508 9.453 9.712 11.476 10.283 8.504
1. Quartile −1.190 −1.147 −1.049 −1.120 −1.010 −1.020 −1.008
3. Quartile 0.780 0.744 0.741 0.788 0.736 0.718 0.723

Mean −0.154 −0.133 −0.153 −0.181 −0.150 −0.153 −0.170
Median 0.024 −0.024 0.011 −0.141 −0.162 −0.093 −0.103
SE Mean 0.116 0.106 0.107 0.106 0.105 0.099 0.094

LCL Mean −0.382 −0.341 −0.364 −0.390 −0.357 −0.347 −0.356
UCL Mean 0.073 0.074 0.058 0.029 0.056 0.042 0.015

Variance 5.179 4.321 4.479 4.398 4.269 3.796 3.437
Stdev 2.276 2.079 2.116 2.097 2.066 1.948 1.854

Skewness −0.082 0.181 −0.212 −0.117 0.384 0.240 0.014
Kurtosis (−3) 4.478 4.694 4.268 4.348 6.464 5.731 3.879

Table 2. Dependence structure for the GSPC and ESG indices, 3 July 2007–30 January 2009.

GSPC and . . . DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Copula t t Joe–Clayton t Joe–Clayton Joe–Clayton

Par 0.9820 0.8578 1.6436 0.5161 1.4962 1.8196
Par2 2.5474 2.0001 1.1390 2.7057 0.9161 1.1576
Beta 0.4426 0.3921 0.4649
λL 0.8673 0.6645 0.5441 0.3424 0.4692 0.5495
λU 0.8673 0.6645 0.4754 0.3424 0.4108 0.5363

logLik 668.60 289.87 130.03 79.68 99.50 147.25
AIC −1333.20 −575.74 −256.07 −155.36 −194.99 −290.51

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GoF test 7.3719 4.7832 0.0303 0.5155 0.0472 0.0323
p-value 0.045 0.095 0.89 0.79 0.64 0.875

Indep.—testing for independence for pairs of variables (H0 : τ = 0).

The dependence between the S&P 500 and ESG indices and between the DJI and ESG
indices is modeled by Student’s t and the Joe–Clayton copula (see Tables 2 and 3). There
is one difference—the dependence between S&P 500 and SGESGSEP is described by the
Joe–Clayton copula; between DJI and SGESGSEP by the t copula.
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Table 3. Dependence structure for DJI and ESG indices, 3 July 2007–30 January 2009.

DJI and . . . A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Copula t Joe–Clayton t t Joe–Clayton

Par 0.8460 1.6701 0.5399 0.6026 1.8628
Par2 2.0001 1.1168 2.5160 2.3969 1.1787
Beta 0.4430 0.4719
λL 0.6513 0.5376 0.3706 0.4191 0.5554
λU 0.6513 0.4856 0.3706 0.4191 0.5492

logLik 279.78 129.87 87.18 107.47 151.48
AIC −555.56 −255.74 −170.35 −210.94 −298.95

Indep.
(p-value) 0.0000 0.0000 0.0000 0.0000 0.0000

GoF test 4.7128 0.0268 0.1041 1.1651 0.0231
p-value 0.11 0.95 0.95 0.55 0.95

Indep.—testing for independence for pairs of variables (H0 : τ = 0).

3.3. The Period of Debt Crisis in EU (2 December 2009–30 July 2014)

In the period of debt crisis in the EU, all indices are not normally distributed (mostly
high kurtosis, negative asymmetry, as confirmed by the Jarque–Bera test) with positive
means and similar standard deviations (lower only for DJI and A1SGI—Table 4). Two
periods were characterized by high volatility (visible volatility clustering at all indices in
2009 and 2011—Figure 3). To model the volatility of conventional indices ARMA-EGARCH
models (with innovations with skewed GED—sged) were fitted. In the case of ESG indices
ARMA-EGARCH models also fitted best, but different distributions for innovation were
applied (mostly skewed Student’s t-distribution and skewed GED for SEESGSEP). From
Table A3 we can see that all the parameters have very small p-values, which shows their
statistical significance. Persistence for S&P 500 and DJI is similar (0.9410–0.9411) for ESG
indices ranges from 0.9594 to 0.9910, indicating slow movement of variance through time.

The highest values of Kendall’s τ (see Figure 4) are between indices of the same
type (S&P 500 and DJI, and SEESGSEP and SGESGSEP). High dependence is observed
between S&P 500 and A1SGI and between DJI and A1SGI; low dependence between S&P
500 and SEESGSEP and between DJI and SEESGSEP. For example, for the GSPC–SEESGSEP
relationship—the observed copula has the lowest dependency (but higher comparing to
previous period)—depends by 52.82% on the upper tail and 50.95% on the lower tail. The
GSPC-A1SGI relationship has a dependency of 84.33% on the upper tail, and of 89.85% on
the lower tail. It means the interaction has a greater effect in the upper tail for the first pair
and for DJI–SEESGSEP, DJI–SGESGSEP, and GSPC–SGESGSEP. The greater effect in the
lower tail is observed for the second pair and for the other indices.

Table 4. Descriptive statistics, 2 December 2009–30 July 2014.

GSPC DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Minimum −6.896 −5.706 −5.794 −5.240 −4.991 −4.376 −5.677
Maximum 4.632 4.153 4.532 5.636 5.797 5.168 4.552
1. Quartile −0.399 −0.386 −0.385 −0.561 −0.575 −0.449 −0.454
3. Quartile 0.570 0.521 0.539 0.700 0.662 0.559 0.605

Median 0.083 0.064 0.078 0.061 0.090 0.062 0.102
Sum 58.674 48.966 44.397 33.376 16.824 26.214 42.434

SE Mean 0.031 0.028 0.029 0.037 0.035 0.030 0.032
LCL Mean −0.009 −0.012 −0.017 −0.043 −0.054 −0.036 −0.025
UCL Mean 0.112 0.098 0.095 0.101 0.084 0.082 0.099

Variance 1.078 0.887 0.930 1.536 1.400 1.031 1.138
Stdev 1.038 0.942 0.964 1.239 1.183 1.015 1.067

Skewness −0.441 −0.412 −0.416 −0.313 −0.352 −0.390 −0.432
Kurtosis (−3) 4.651 4.141 3.932 2.798 2.408 3.049 3.065
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The dependence between the S&P 500 and ESG indices and between the DJI and ESG
indices is modeled by the Clayton–Gumbel and Joe–Clayton copulas (see Tables 5 and 6).
The dependences between S&P 500 and SXWESGP, SGESGSEP, and TRESGQ1 comparing
to DJI’s dependence were modeled differently. For example, GSPC–SGESGSEP relationship
is modeled by the Clayton–Gumbel copula, and DJI–SGESGSEP by the Joe–Clayton copula.
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Table 5. Dependence structure for GSPC and ESG indices, 2 December 2009–30 July 2014.

GSPC and . . . DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Copula Clayton–Gumbel Clayton–Gumbel Clayton–Gumbel Joe–Clayton Clayton–Gumbel Clayton–Gumbel

Par 1.2451 1.3609 0.6552 1.7934 0.5618 0.9411
Par2 3.8209 4.7603 1.8753 1.0280 1.6908 2.0972
Beta 0.8326 0.8701 0.5879 0.4476 0.5276 0.6659
λL 0.8644 0.8985 0.5688 0.5095 0.4820 0.7039
λU 0.8011 0.8433 0.5528 0.5282 0.4933 0.6083

logLik 1632.44 1919.46 634.47 409.04 493.41 857.63
AIC −3260.88 −3834.92 −1264.94 −814.07 −982.82 −1711.26

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GoF test 0.0462 0.0181 0.0281 0.038 0.033 0.0747
p-value 0.035 0.635 0.86 0.73 0.83 0.115

Indep.—testing for independence for pairs of variables (H0 : τ = 0).

Table 6. Dependence structure for DJI and ESG indices, 2 December 2009–30 July 2014.

DJI and . . . A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Copula Clayton–Gumbel Joe–Clayton Joe–Clayton Joe–Clayton Survival Joe–Clayton

Par 1.1574 2.1417 1.8214 1.9686 2.8966
Par2 4.0965 1.5508 1.0006 1.2038 1.6822
Beta 0.8394 0.5301 0.4480 0.4857 0.5951
λL 0.8640 0.6396 0.5002 0.5623 0.7296
λU 0.8156 0.6178 0.5369 0.5779 0.6623

logLik 1674.90 602.00 411.37 489.18 777.30
AIC −3345.80 −1200.00 −818.75 −974.35 −1550.61

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
GoF test 0.0359 0.0429 0.0337 0.0226 0.0389
p-value 0.14 0.64 0.795 0.975 0.585

Indep.—testing for independence for pairs of variables (H0 : τ = 0).

3.4. The Russian Financial Crises, Fall in Oil Prices (3 June 2014–31 January 2017)

In the Russian financial crises and fall in oil prices period, all indices are not normally
distributed (mostly high kurtosis, negative asymmetry, as confirmed by the Jarque–Bera
test) with mostly positive means (for three ESG indices the mean was negative) and similar
standard deviations for S&P 500 and DJI. In the case of standard deviation for the ESG
indices, large differences were observed—low for A1SGI and high for SEESGSEP (Table 7).
In this period, three subperiods characterized by high volatility (visible volatility clustering
of all indices in 2015 and the beginning of 2016, and a large drop in the middle of 2016—
Figure 5) were present. The volatility of three indices, namely S&P 500, DJI and A1SGI,
was modeled by AVGARCH (innovations with skewed Student’s t-distribution). There
is no consensus in the modeling volatility of the ESG indices. GARCH, EGARCH, and
AVGARCH (innovations with Student’s t-distribution in all models) were applied. From
Table A4, we can see that all the parameters have very small p-values, which shows their
statistical significance. Persistence ranges from 0.9655 to 0.9749 for S&P 500 and DJI, and
from 0.8972 to 0.9716 for ESG indices.

The highest values of Kendall’s τ (see Figure 6) are between indices of the same
type (S&P 500 and DJI, and SEESGSEP and SGESGSEP). High dependence is observed
between S&P 500 and A1SGI and between DJI and A1SGI; low dependence between S&P
500 and SEESGSEP and between DJI and SEESGSEP. For example, for the DJI–SEESGSEP
relationship—the observed copula has the lowest dependency (lower compared to previous
periods too)—depends by 21.90% on the upper tail and 21.90% on the lower tail. The GSPC–
A1SGI relationship has a dependency of 85.21% on the upper tail, and of 85.21% on the
lower tail. It means that the interaction has the same effect in the upper tail and in the lower
tail. The greater effects in the lower tail are observed for GSPC–TRESGQ1, DJI–TRESGQ1
and DJI–A1SGI.
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Table 7. Descriptive statistics, 3 June 2014–31 January 2017.

GSPC DJI A1SGI SXWESG SEESGSE SGESGSE TRESGQ

Minimum −4.021 −3.640 −4.114 −8.160 −9.600 −7.611 −6.608
Maximum 3.829 3.875 3.552 2.998 3.868 2.819 2.970
1. Quartile −0.355 −0.333 −0.387 −0.513 −0.586 −0.497 −0.392
3. Quartile 0.463 0.463 0.457 0.550 0.550 0.487 0.502

Mean 0.026 0.026 0.018 −0.009 −0.044 −0.029 0.007
Median 0.013 0.035 0.025 0.001 −0.010 −0.034 0.001
SE Mean 0.033 0.033 0.034 0.038 0.042 0.035 0.034

LCL Mean −0.040 −0.038 −0.049 −0.084 −0.128 −0.098 −0.059
UCL Mean 0.091 0.090 0.085 0.067 0.039 0.040 0.074

Variance 0.743 0.713 0.766 0.982 1.192 0.811 0.761
Stdev 0.862 0.844 0.875 0.991 1.092 0.901 0.872

Skewness −0.376 −0.312 −0.347 −1.010 −1.031 −0.954 −0.862
Kurtosis (−3) 2.615 2.201 2.265 7.388 9.220 8.011 5.855

Risks 2022, 10, x FOR PEER REVIEW 15 of 27 
 

 

 
Figure 5. The rates of return, 3 June 2014–31 January 2017. 

 
Figure 6. Kendall’s τ and copulas, 3 June 2014–31 January 2017. 

The dependences between the S&P 500 and ESG indices and between the DJI and 
ESG indices were modeled by the Clayton–Gumbel and t copulas (see Tables 8 and 9). The 
dependence between S&P 500 and A1SGI compared to the DJI dependence was modeled 
differently. For example, the GSPC–A1SGI relationship is modeled by Student’s t copula, 
and DJI–GESGSEP by Clayton–Gumbel copula. 

  

Figure 5. The rates of return, 3 June 2014–31 January 2017.

The dependences between the S&P 500 and ESG indices and between the DJI and
ESG indices were modeled by the Clayton–Gumbel and t copulas (see Tables 8 and 9). The
dependence between S&P 500 and A1SGI compared to the DJI dependence was modeled
differently. For example, the GSPC–A1SGI relationship is modeled by Student’s t copula,
and DJI–GESGSEP by Clayton–Gumbel copula.
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Table 8. Dependence structure for the GSPC and ESG indices, 3 June 2014–31 January 2017.

GSPC and . . . DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Copula Clayton–Gumbel t t t t Clayton–Gumbel

Par 1.0439 0.9777 0.5900 0.4638 0.5336 0.7395
Par2 4.2304 2.5661 3.8015 4.0842 4.0282 1.5687
Beta 0.8388 0.5237
λL 0.8547 0.8521 0.3184 0.2296 0.2709 0.5502
λU 0.8220 0.8521 0.3184 0.2296 0.2709 0.4444

logLik 963.82 1075.43 161.66 98.89 129.49 282.82
AIC −1923.64 −2146.7 −319.32 −193.79 −254.97 −561.64

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GoF test 0.0287 2.3726 2.9012 6.674 2.6074 0.0385
p-value 0.285 0.365 0.245 0.03 0.23 0.7

Indep.—testing for independence for pairs of variables (H0 : τ = 0).

Table 9. Dependence structure for DJI and ESG indices, 3 June 2014–31 January 2017.

DJI and . . . A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Copula Clayton–Gumbel t t t Clayton–Gumbel

Par 1.1266 0.5777 0.4481 0.5130 0.7433
Par2 3.5402 4.0794 4.1390 4.1347 1.5194
Beta 0.8126 0.5093
λL 0.8405 0.2954 0.2190 0.2535 0.5413
λU 0.7837 0.2954 0.2190 0.2535 0.4219

logLik 868.61 153.33 93.46 120.53 267.18
AIC −1733.22 −302.65 −182.93 −237.06 −530.36

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
GoF test 0.0248 2.8387 7.2067 5.637 0.0421
p-value 0.625 0.265 0.025 0.075 0.675

Indep.—testing for independence for pairs of variables (H0 : τ = 0).

3.5. The Stabilization Period (4 January 2017–31 December 2019)

In the stabilization period, all indices are not normally distributed (mostly low kur-
tosis comparing to previous periods, but higher than for normal distribution, negative
asymmetry, as confirmed by the Jarque–Bera test) with positive means and similar standard
deviations for S&P 500, DJI, and A1SGI. In the case of standard deviation for other ESG
indices, large differences were observed—low for SGESGSEP and high for SEESGSEP
(Table 10). In the whole period, two subperiods characterized by high volatility (visible
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volatility clustering in beginning of 2018 and the beginning of 2019—Figure 7) were ob-
served for S&P 500, DJI, and A1SGI. For other ESG indices not only these clusters were
observed (high volatility was during the whole of 2018 and the first half of 2019). Volatility
of three indices, namely S&P 500, DJI, and A1SGI, was modeled by AVGARCH (innovations
with skewed Student’s t and skewed GED distributions). There is no consensus in the
modeling volatility of the ESG indices. There were applied GJR-GARCH and EGARCH
(innovations with Student’s t and skewed normal distributions). From Table A5, we can see
that all the parameters have very small p-values, which shows their statistical significance.
Persistence ranges from 0.9581 to 0.9564 for S&P 500 and DJI, and from 0.9169 to 0.9628 for
the ESG indices.

Table 10. Descriptive statistics, 4 January 2017–31 December 2019.

GSPC DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Minimum −4.184 −4.714 −4.169 −2.765 −3.297 −2.515 −3.333
Maximum 5.693 5.996 5.563 2.687 3.831 2.477 2.555
1. Quartile −0.225 −0.266 −0.251 −0.368 −0.436 −0.369 −0.344
3. Quartile 0.451 0.443 0.449 0.454 0.459 0.412 0.448

Mean 0.049 0.049 0.049 0.030 0.011 0.015 0.035
Median 0.069 0.075 0.066 0.046 0.025 0.030 0.049
SE Mean 0.030 0.031 0.029 0.025 0.027 0.023 0.025

LCL Mean −0.009 −0.011 −0.009 −0.019 −0.042 −0.031 −0.014
UCL Mean 0.108 0.109 0.106 0.078 0.065 0.061 0.084

Variance 0.663 0.702 0.648 0.450 0.554 0.407 0.465
Stdev 0.815 0.838 0.805 0.671 0.744 0.638 0.682

Skewness −0.502 −0.508 −0.485 −0.273 −0.131 −0.237 −0.420
Kurtosis (−3) 6.620 7.227 6.444 1.214 2.059 1.374 1.696
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The highest values of Kendall’s τ (see Figure 8) are between indices of the same
type (S&P 500 and DJI, and SEESGSEP and SGESGSEP). High dependence is observed
between S&P 500 and A1SGI and between DJI and A1SGI, low dependence between S&P
500 and SEESGSEP, and between DJI and SEESGSEP. For example, for the GSPC–SEESGSEP
relationship—the observed copula has the lowest dependency—depends by 16.50% on the
upper tail and 16.50% on the lower tail (the same dependency). The pair GSPC–A1SGI has
a dependency of 88.22% on the lower tail, and of 85.32% on the upper tail. It means the
interaction has a greater effect in the lower tail. This interaction was also observed in the
pairs DJI–A1SGI, DJI–TRESGQ1, DJI–SXWESGP, and GSPC–TRESGQ1.
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The dependences between the S&P 500 and ESG indices and between the DJI and ESG
indices were modeled by the Clayton–Gumbel, t, and Joe–Clayton copula (see
Tables 11 and 12). Dependences between S&P 500 and SEESGSEP, and between S&P 500
and SGESGSEP compared to DJI were modeled by using the t copula. In the other cases,
we used other copulas. For example, the GSPC-TRESGQ1 relationship is modeled by the
Clayton–Gumbel copula, and DJI–SGESGSEP by the Survival Joe–Clayton copula.

Table 11. Dependence structure for the GSPC and ESG indices, 4 January 2017–31 December 2019.

GSPC and . . . DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Copula Joe–Clayton Clayton–Gumbel t t t Clayton–Gumbel

Par 3.9223 1.0932 0.6060 0.4171 0.4443 0.8964
Par2 5.3912 5.0599 4.9383 5.0582 4.9680 1.6639
Beta 0.7145 0.8672 0.5745
λL 0.8794 0.8822 0.2733 0.1650 0.1807 0.6283
λU 0.8067 0.8532 0.2733 0.1650 0.1807 0.4832

logLik 847.98 1231.71 175.35 80.16 91.18 391.80
AIC −1691.97 −2459.43 −346.69 −156.33 −178.37 −779.59

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GoF test 0.0167 0.0438 2.4133 0.2038 0.2798 0.1366
p-value 0.96 0.02 0.274 0.926 0.882 0.012

Indep.—testing for independence for pairs of variables (H0 : τ = 0).
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Table 12. Dependence structure for the DJI and ESG indices, 4 January 2017–31 December 2019.

DJI and . . . A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Copula Joe–Clayton Survival
Clayton–Gumbel t t Survival

Joe–Clayton

Par 3.8520 0.2404 0.4205 0.4489 2.3596
Par2 5.2688 1.4921 5.9725 5.4041 1.0007
Beta 0.7115 0.3935 0.5121
λL 0.8767 0.4087 0.1357 0.1665 0.6586
λU 0.8028 0.1448 0.1357 0.1665 0.5002

logLik 839.08 167.21 80.10 92.97 353.55
AIC −1674.17 −330.42 −156.20 −181.93 −703.09

Indep. (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000
GoF test 0.0297 0.0558 1.8649 1.0997 0.0733
p-value 0.685 0.485 0.43 0.525 0.3

Indep.—testing for independence for pairs of variables (H0 : τ = 0).

4. Discussion

Our study does not confirm the outperformance of the ESG indices compared to
conventional ones in terms of risk in the considered subperiods. However, generalization
of the results is limited by the selection of a market index as a proxy of an investment
portfolio. Other empirical studies demonstrate a strong correlation between the lower risk
related to sustainability and better financial performance (Whelan et al. 2021). During the
2008 global financial crisis Fernández et al. (2019) found that German green mutual funds
had risk-adjusted returns slightly better than their peers (in the noncrisis period, they were
equal to conventional funds but better than the SRI funds). Similarly, ESG stock indices
performed better and recovered faster after the 2008 global financial crisis (Wu et al. 2017).
Other results confirm these findings, as in economic downturns, the high-rated mutual
funds outperformed the low-rated funds, based on the Sharpe ratio (Das et al. 2018a,
2018b; Khajenouri and Schmidt 2020). In line are research by Abate et al. (2021) that
mutual funds investing in high ESG stocks perform better than investing in low ESG score
stocks. Gil-Bazo et al. (2010) confirm that SRI funds perform better than their conventional
counterparts.

In the study we evaluate whether conventional stock portfolios, including ESG com-
panies, can effectively decrease portfolio risk, especially in times of financial distress on the
market. Generally, we observe in all subperiods almost-weak to high lower-tail dependence
between the ESG and conventional indices. Our findings indicate that there is low or
symmetric tail dependence between ESG and conventional indices, meaning that if the
ESG index decreases, the conventional one will also decrease accordingly. In the two first
subperiods (economic downturn periods) lower tail dependence coefficients are higher
comparing to the next two periods (‘stabilization’ periods). We conclude that dependencies
exist, can be quantified, and are not negligible, especially in times of crisis.

In risk management of an asset portfolio, we are interested whether the decline of one
(or more) assets may influence the behavior of the other assets in a portfolio. Especially, the
occurrence of simultaneous extreme events on the market implies that risk diversification
breaks down just when it is crucial. In case of extreme events, classical dependence analysis
(e.g., linear correlation) fails, a copula approach is used. Some researchers argue that consid-
ering ESG practices when creating an equity portfolio (selecting companies with high ESG
scores) can act as protection against left-tail risk; therefore, reducing ex-ante expectations of
a left-tail event (Shafer and Szado 2020; De and Clayman 2015; Djoutsa Wamba et al. 2020).

The measurement of the tail dependence between ESG and conventional investment
based on the copula approach, allows to monitor extreme risks between them. Understand-
ing dependencies and risks is important for setting up adequate risk management as well
as construction portfolios—ESG-diversified and resilient to crises. Bax et al. (2021) use
the R-vine copula ESG risk model. They estimate all the conditional dependencies among



Risks 2022, 10, 20 19 of 25

assets as well as specify their interactions as modeled by different copulas families, but they
also introduce three ESG risk measures that capture ESG risk, market risk conditionally on
the ESG class, as well as an idiosyncratic risk component.

5. Conclusions

As interest in ESG investments grows, it is crucial to better understand the various
risks and return tradeoffs between ESG and conventional stocks and the dependence
structures between them. We used GARCH family models to estimate conditional volatili-
ties and the copula approach, in particular the (tail) dependence structure between ESG
and conventional investments to quantify the overall and lower tail risk between these
two investments.

Hypothesis 1, that ESG investments outperform conventional ones in terms of risk
was negatively verified—there are indices that underperform the conventional indices in
selected subperiods. Hypothesis 2, that asymptotic dependence increases during the crisis
on the market (declines of stock market indices), and it stabilizes during non-crisis periods
was positively verified.

The findings indicate that there is no significant difference in daily returns of ESG
indices and conventional ones.

The parameters are significant among all the estimations and comparisons, showing
that GARCH family models may appropriately model the ESG and conventional index
data. In most subperiods, the data for the ESG and conventional indices were negatively
skewed. The EGARCH models this type of behavior, but in this study, also AVGARCH
model was applied. Surprisingly, GJR-GARCH was not often used.

We found relations between the selected ESG indices. A1GSI is related in construction
to S&P 500, while three other ESG indices—SXWESGP, SEESGSEP, and SGESGSEP are
related to each other. These relations were visible in similar behavior of the rates of return.
Volatility clustering observed at S&P 500, DJI, and A1SGI was different from that in other
ESG indices (but the scale of these differences depends on the subperiod). In the first
subperiod, one cluster was observed for all the indices (there is no difference visible). In
the second and third subperiod, two clusters were found for all indices, but the difference
between these two groups of indices was present. The most visible differences were
observed in the last subperiod. Only in the second period, results of model estimation are
consistent for all the indices (ARMA-EGARCH models with innovations sged and sstd).

We cannot confirm that the volatility of conventional indices should be modeled using
different models than the volatility of the ESG—this depends on the time period and the
market events. There are periods when volatility of all the indices may be modeled by
using the same models, when there is a difference between the modeling of conventional
and ESG indices, and when there is a difference between the modeling of ESG indices.

The characteristics of the time series indicated the need to apply to the dependence
analysis copula approach. To capture tail dependence, Student’s t-copula and the combi-
nation of the Clayton and Gumbel copulas were fitted best in this study. The choice of an
appropriate copula function is crucial. Two features are important regarding the copula
selection. The general structure of the chosen copula should coincide with the dependence
structure of the real data. If the data show tail dependence than we must apply a copula
which comprises tail dependence.

In the periods of economic downturn (declines of stock market indices), the dependen-
cies measured by Kendell’s tau coefficients were higher than in the less turbulent periods.

The lower tail dependence and symmetric dependence between ESG and conventional
investments were detected. High values of low tail-dependence coefficients were observed
in the economic downturn periods; low in stabilization periods. This signifies higher
dependence of extreme values in the economic downturn periods and low dependence of
extreme values in stabilization periods.

We conclude that when selecting the right model, the preliminary analysis of data is
necessary, and the selection of the volatility model should be carried out for subperiods
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regarding different market-event characteristics. Results show, as in cases of systemic risk,
that analysis of volatility and dependence structure should be carried out separately—in
the periods of economic downturn and in less turbulent times.

To extend this research for the future, a more detailed analysis, including ESG and non-
ESG companies from different markets (developed and developing) would be beneficial. In
addition, application of a time-varying model (time-varying copula) would give insights
into dependence structure.
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Appendix A

Table A1. Description of ESG indices.

Name Ticker Description Market

STOXX
GLOBAL ESG

LEADERS Index
.SXWESGP

The index offers a representation of the
leading global companies in terms of
environmental, Social, and governance
criteria, based on ESG indicators provided by
Sustainalytics

Global

STOXX Europe
ESG Leaders

Select 30 Price
EUR Index

.SEESGSEP
The index captures the performance of stocks
with low volatility and high dividends from
the STOXX Global ESG Leaders Index.

Europe

STOXX Global
ESG Leaders

Select 50 Price
EUR Index

.SGESGSEP

The index captures the performance of stocks
with low volatility and high dividends from
the STOXX Global ESG Leaders Index. The
component selection process first excludes all
stocks whose 3- or 12-month historical
volatilities are the highest. Among the
remaining stocks, the 50 stocks with the
highest 12-month historical dividend yields
are selected to be included in the index.

Global

Refinitiv IX
Global ESG

Equal Weighted
Price Only

.TRESGQ1

The index is a benchmark for investors
seeking companies that actively invest in and
promote ESG values and principles. The index
tracks the price return and net total return of
publicly traded equities across the world that
display relatively high ESG. The constituents’
universe is derived from Refinitiv Global
Developed Index (the parent index).

Global

Dow Jones
Sustainability

North America
Composite

Index

.A1SGI

The index comprises North American
sustainability leaders as identified by S&P
Global through the Corporate Sustainability
Assessment (CSA). It represents the top 20%
of the largest 600 North American companies
in the S&P Global BMI based on long-term
ESG criteria.

North
America

Source: own elaboration based on particular indices’ websites.
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Appendix B

Table A2. Family ARMA-GARCH models, 3 July 2007–30 January 2009.

GSPC DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Model APARCH EGARCH GJR GARCH AVGARCH AVGARCH AVGARCH AVGARCH

Distribution norm sstd norm norm norm norm norm

φ1
−1.8549 −1.8857 −1.8615 −0.2658
0.0000 0.0000 0.0000 0.0000

φ2
−0.9319 −0.9614 −0.8876 −1.0050
0.0000 0.0000 0.0000 0.0000

θ1
1.7806 1.8063 1.6787 0.2702 0.1156
0.0000 0.0000 0.0000 0.0000 0.0167

θ2
0.6639 0.7189 0.3917 1.0118 −0.0562
0.0000 0.0000 0.0000 0.0000 0.0285

θ3
−0.2059 −0.1801 −0.3394
0.0000 0.0000 0.0000

ω
0.0512 0.0001 0.0555 0.0370 0.0454 0.0382 0.0312
0.0000 0.9834 0.0000 0.0000 0.0000 0.0000 0.0000

α1
0.0000 −0.1579 0.0000 0.0926 0.1398 0.1164 0.0753
1.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

α2
0.1068
0.0000

β1
0.8751 0.9818 0.8774 0.8314 0.7855 0.8196 0.8354
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ1
−0.4094 0.1037 0.1778
0.9532 0.0000 0.0001

γ2
1.0000
0.0000

η11
0.4877 0.4084 0.5056 0.6569
0.0000 0.0000 0.0000 0.0000

η21
0.8895 0.7126 0.6472 0.9940
0.0000 0.0000 0.0000 0.0000

δ
1.0751
0.0000

skew
0.8852
0.0000

shape 11.4791
0.0642

Akaike 3.8296 3.7112 3.6759 3.7624 3.6824 3.6065 3.5371

Bayes 3.9521 3.8235 3.7678 3.8135 3.7743 3.6576 3.6085

Ljung–Box test 4.4482 6.3567 9.9787 6.9881 5.9840 6.6419 7.7529
0.9249 0.7845 0.4424 0.7266 0.8166 0.7588 0.6530

Engle Arch test 8.6312 15.2820 12.3802 21.5479 16.7602 30.0986 24.3912
0.7341 0.2264 0.4156 0.0429 0.1588 0.0027 0.0180

Persistence 0.9654 0.9818 0.9663 0.9730 0.9649 0.9693 0.9721

Note: the first row indicates the estimate parameters (or test statistics) and the second row—the p-value of
the Student’s t-test (or appropriate test); Ljung–Box and Engle ARCH tests were calculated for standardized
innovations.
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Table A3. ARMA-EGARCH models, 2 December 2009–30 July 2014.

GSPC DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Distribution sged sged sstd sstd sged sstd sstd

φ1
−0.5969 −0.2909 0.0773
0.0000 0.0000 0.0000

θ1
0.5690 0.2501
0.0000 0.0000

ω
−0.0042 −0.0162 −0.0081 0.0027 0.0023 −0.0017 0.0024
0.4793 0.0005 0.1138 0.1199 0.2122 0.6040 0.3074

α1
−0.3983 −0.3570 −0.3832 −0.1023 −0.0918 −0.1150 −0.1117
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

α2
0.1515 0.1371 0.1687
0.0000 0.0049 0.0000

β1
0.9410 0.9411 0.9594 0.9910 0.9867 0.9816 0.9867
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ1
−0.1456 −0.0852 −0.1791 0.0668 0.0672 0.1182 0.0808
0.0323 0.0003 0.0126 0.0000 0.0000 0.0002 0.0019

γ2
0.2681 0.2472 0.2805
0.0001 0.0003 0.0001

skew
0.8098 0.8356 0.7841 0.8657 0.8563 0.8689 0.8251
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

shape 1.3919 1.4247 7.7845 8.1811 1.5014 8.8081 6.7950
0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000

Akaike 2.4940 2.3325 2.3731 2.9187 2.8993 2.5299 2.6496

Bayes 2.5382 2.3767 2.4084 2.9496 2.9258 2.5564 2.6762

Ljung–Box test 7.6686 4.6382 6.8038 5.5808 4.8186 6.0897 7.1695
0.6612 0.9140 0.7438 0.8492 0.9030 0.8077 0.7094

Engle ARCH test 7.8238 6.3159 7.2004 8.4786 13.9807 17.9072 10.1396
0.7987 0.8993 0.8441 0.7467 0.3019 0.1185 0.6037

Persistence 0.9410 0.9411 0.9594 0.9910 0.9867 0.9816 0.9867

Note: the first row indicates the estimate parameters (or test statistics) and the second row—the p-value of
the Student’s t-test (or appropriate test); Ljung–Box and Engle ARCH tests were calculated for standardized
innovations.

Table A4. Family GARCH models, 3 June 2014–31 January 2017.

GSPC DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Model AVGARCH AVGARCH AVGARCH EGARCH EGARCH GARCH AVGARCH

Distribution sstd sstd sstd std std std std

ω
0.0361 0.0285 0.0302 −0.0215 −0.0147 0.0723 0.0326
0.0000 0.0000 0.0000 0.0560 0.2977 0.0052 0.0007

α1
0.2033 0.2302 0.2782 −0.1276 −0.1335 0.1981 0.1807
0.0000 0.0000 0.0000 0.0001 0.0007 0.0000 0.0000

β1
0.6804 0.7186 0.7042 0.9419 0.8972 0.7133 0.7933
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ1
0.2418 0.2775
0.0002 0.0003

η11
0.1086 −0.1145 −0.2498 −0.1651
0.1826 0.0000 0.0000 0.0450

η21
1.1870 1.1419 1.1495 0.9274
0.0000 0.0000 0.0000 0.0000
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Table A4. Cont.

GSPC DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Model AVGARCH AVGARCH AVGARCH EGARCH EGARCH GARCH AVGARCH

skew
0.8196 0.8599 0.8440
0.0000 0.0000 0.0000

shape 11.2696 7.7111 11.4148 10.6788 8.5965 9.6351 7.6282
0.0084 0.0001 0.0037 0.0022 0.0003 0.0018 0.0001

Akaike 2.1554 2.1590 2.1985 2.5601 2.7756 2.4024 2.3052

Bayes 2.2029 2.2065 2.2460 2.5940 2.8096 2.4296 2.3458

Ljung–Box test 15.6265 12.3524 13.1544 11.6801 7.0749 13.3207 11.0541
0.1108 0.2622 0.2152 0.3070 0.7184 0.2063 0.3533

Engle ARCH test 5.3622 4.8535 8.7917 9.6174 9.4367 12.2077 12.4372
0.9448 0.9627 0.7206 0.6495 0.6653 0.4291 0.4112

Persistence 0.9655 0.9749 0.9716 0.9419 0.8972 0.9114 0.9668

Note: the first row indicates the estimate parameters (or test statistics) and the second row—the p-value of
the Student’s t-test (or appropriate test); Ljung–Box and Engle ARCH tests were calculated for standardized
innovations.

Table A5. Family ARMA-GARCH models, 4 January 2017–31 December 2019.

GSPC DJI A1SGI SXWESGP SEESGSEP SGESGSEP TRESGQ1

Model AVGARCH AVGARCH AVGARCH EGARCH EGARCH GJR GARCH EGARCH

Distribution sged sstd sged std std std snorm

θ1
0.0766
0.0462

ω
0.0392 0.0406 0.0338 −0.0707 −0.0417 0.0208 −0.0443
0.0000 0.0000 0.0000 0.0141 0.0407 0.0207 0.0021

α1
0.1456 0.1065 0.1321 −0.1286 −0.0982 0.0067 −0.1526
0.0000 0.0000 0.0000 0.0000 0.0036 0.7335 0.0000

β1
0.7806 0.8708 0.7995 0.9169 0.9394 0.8845 0.9402
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

γ1
0.1402 0.1375 0.1149 0.1793
0.0077 0.0009 0.0078 0.0000

η11
0.5809 1.0000 0.4573
0.0000 0.0001 0.0000

η21
0.5806 0.0786 0.6727
0.0000 0.0695 0.0000

skew
0.8846 0.8334 0.8564 0.8620
0.0000 0.0000 0.0000 0.0000

shape 1.2853 4.6528 1.3843 14.0514 8.7823 12.4842
0.0000 0.0000 0.0000 0.0145 0.0002 0.0122

Akaike 1.8836 1.9762 1.9035 1.9509 2.1482 1.8526 1.9036

Bayes 1.9269 2.0195 1.9468 1.9880 2.1791 1.8835 1.9345

Ljung–Box test 8.6446 7.6484 9.9759 9.0690 12.1615 9.3624 10.8849
0.5661 0.6631 0.4426 0.5256 0.2744 0.4981 0.3666

Engle ARCH test 9.3952 12.5922 10.9797 10.0092 20.3661 14.3953 8.8700
0.6689 0.3994 0.5307 0.6151 0.0605 0.2762 0.7140

Persistence 0.9581 0.9564 0.9628 0.9169 0.9394 0.9487 0.9402

Note: the first row indicates the estimate parameters (or test statistics) and the second row—the p-value of
the Student’s t-test (or appropriate test); Ljung–Box and Engle ARCH tests were calculated for standardized
innovations.



Risks 2022, 10, 20 24 of 25

References
Abate, Guido, Ignazio Basile, and Pierpaolo Ferrari. 2021. The level of sustainability and mutual fund performance in europe: An

empirical analysis using ESG ratings. Corporate Social Responsibility and Environmental Management 28: 1446–55. [CrossRef]
Ang, Andrew, and Geert Bekaert. 2002. International asset allocation with regime shifts. Review of Financial Studies 15: 1137–87.

[CrossRef]
Apergis, Nicholas, Vassilios Babalos, Christina Christou, and Rangan Gupta. 2015. Identifying Asymmetries between Socially Responsible

and Conventional Investments. Working Papers: 2015-37. Pretoria: Department of Economics, University of Pretoria.
Bax, Karoline, Özge Sahin, Claudia Czado, and Sandra Paterlini. 2021. ESG, Risk, and (Tail) Dependence. SSRN Electronic Journal.

[CrossRef]
Bollerslev, Tim. 1986. Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31: 307–27. [CrossRef]
Box, George E. P., and Gwilym M. Jenkins. 1983. Analiza Szeregów Czasowych. Warszawa: Wydawnictwo PWN.
Brockwell, Peter J., and Richard A. Davis. 1991. Time Series: Theory and Methods. New York: Springer. [CrossRef]
Charles, Amélie, Olivier Darné, and Jessica Fouilloux. 2016. The Impact of Screening Strategies on the Performance of ESG Indices.

July 12. Available online: https://hal.archives-ouvertes.fr/hal-01344699 (accessed on 1 October 2021).
Das, Nandita, Bernadette Ruf, Swarn Chatterjee, and Aman Sunder. 2018a. Fund characteristics and performances of socially

responsible mutual funds: Do ESG ratings play a role? Journal of Accounting and Finance 18: 57–69. [CrossRef]
Das, Nandita, Swarn Chatterje, Bernadette Ruf, and Aman Sunder. 2018b. ESG ratings and the performance of socially responsible

mutual funds: A panel study journal of finance issues esg ratings and the performance of socially responsible mutual funds: A
panel study. Journal of Finance Issues 17: 49–57.

De, Indrani, and Michelle R. Clayman. 2015. The benefits of socially responsible investing: An active manager’s perspective. The
Journal of Investing 24: 49–72. [CrossRef]

Ding, Zhuanxin, Clive William John Granger, and Robert F. Engle. 1993. A long memory property of stock market returns and a new
model. Journal of Empirical Finance 1: 83–106. [CrossRef]

Djoutsa Wamba, Léopold, Jean Michel Sahut, Eric Braune, and Frédéric Teulon. 2020. Does the optimization of a company’s
environmental performance reduce its systematic risk? New evidence from European listed companies. Corporate Social
Responsibility and Environmental Management 27: 1677–94. [CrossRef]

Engle, Robert F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation.
Econometrica 50: 987–1007. [CrossRef]

Engle, Robert F., and Victor K. Ng. 1993. Measuring and testing the impact of news on volatility. The Journal of Finance 48: 1749–78.
[CrossRef]

Fama, Eugene F., and Eugene F. Fama. 1965. The behaviour of stock market prices. Journal of Business 38: 34–105. [CrossRef]
Fernández, Manuel Salazar, Ahmad Abu-Alkheil, and Ghadeer M. Khartabiel. 2019. Do German green mutual funds perform better

than their peers. Business and Economics Research Journal 10: 297–312. [CrossRef]
Friede, Gunnar. 2019. Why don’t we see more action? A metasynthesis of the investor impediments to integrate environmental, social,

and governance factors. Business Strategy and the Environment 28: 1260–82. [CrossRef]
Genest, Christian, Jean François Quessy, and Bruno Rémillard. 2006. Goodness-of-Fit procedures for copula models based on the

probability integral transformation. Scandinavian Journal of Statistics 33: 337–66. [CrossRef]
Giese, Guido, and Linda-Eling Lee. 2019. Weighing the Evidence: ESG and Equity Returns. MSCI Research Insight. Available online:

https://www.msci.com/www/research-paper/weighing-the-evidence-esg-and/01315636760 (accessed on 24 October 2021).
Gil-Bazo, Javier, Pablo Ruiz-Verdú, and André A. P. Santos. 2010. The performance of socially responsible mutual funds: The role of

fees and management companies. Journal of Business Ethics 94: 243–63. [CrossRef]
Glosten, Lawrence R., Ravi Jagannathan, and David E. Runkle. 1993. On the relation between expected value and the volatility of the

nominal excess return on stocks. Journal of Finance 48: 1779–801. [CrossRef]
HKEX. 2020. Performance of ESG Equity Indices Versus Traditional Equity Indices. Available online: https://www.hkex.com.hk/-/

media/HKEX-Market/News/Research-Reports/HKEx-Research-Papers/2020/CCEO_ESGEqIdx_202011_e.pdf (accessed on
24 October 2021).

Jain, Mansi, Gagan Deep Sharma, and Mrinalini Srivastava. 2019. Can sustainable investment yield better financial returns: A
comparative study of ESG indices and MSCI indices. Risks 7: 15. [CrossRef]

Jondeau, Eric. 2016. Asymmetry in Tail Dependence in Equity Portfolios. Computational Statistics and Data Analysis 100: 351–68.
[CrossRef]

Khajenouri, Daniel, and Jacob Schmidt. 2020. Standard or sustainable—Which offers better performance for the passive investor.
Journal of Applied Finance & Banking 11: 61–71. [CrossRef]

Longin, Franqois, and Bruno Solnik. 2001. Extreme correlation of international equity markets. The Journal of Finance LVI: 649–76.
[CrossRef]

Managi, Shunsuke, Tatsuyoshi Okimoto, and Akimi Matsuda. 2012. Do socially responsible investment indexes outperform conven-
tional indexes? Applied Financial Economics 22: 1511–27. [CrossRef]

Mandelbrot, Benoit. 1963. The Variation of Certain Speculative Prices. The Journal of Business 36: 394. [CrossRef]
Markowitz, Harry. 1952. Portfolio Selection. Journal of Finance 7: 77–91.

http://doi.org/10.1002/csr.2175
http://doi.org/10.1093/rfs/15.4.1137
http://doi.org/10.2139/ssrn.3846739
http://doi.org/10.1016/0304-4076(86)90063-1
http://doi.org/10.1007/978-1-4419-0320-4
https://hal.archives-ouvertes.fr/hal-01344699
http://doi.org/10.33423/jaf.v18i6.449
http://doi.org/10.3905/joi.2015.24.4.049
http://doi.org/10.1016/0927-5398(93)90006-D
http://doi.org/10.1002/csr.1916
http://doi.org/10.2307/1912773
http://doi.org/10.1111/j.1540-6261.1993.tb05127.x
http://doi.org/10.1086/294743
http://doi.org/10.20409/berj.2019.169
http://doi.org/10.1002/bse.2346
http://doi.org/10.1111/j.1467-9469.2006.00470.x
https://www.msci.com/www/research-paper/weighing-the-evidence-esg-and/01315636760
http://doi.org/10.1007/s10551-009-0260-4
http://doi.org/10.1111/j.1540-6261.1993.tb05128.x
https://www.hkex.com.hk/-/media/HKEX-Market/News/Research-Reports/HKEx-Research-Papers/2020/CCEO_ESGEqIdx_202011_e.pdf
https://www.hkex.com.hk/-/media/HKEX-Market/News/Research-Reports/HKEx-Research-Papers/2020/CCEO_ESGEqIdx_202011_e.pdf
http://doi.org/10.3390/risks7010015
http://doi.org/10.1016/j.csda.2015.02.014
http://doi.org/10.47260/JAFB/1114
http://doi.org/10.1111/0022-1082.00340
http://doi.org/10.1080/09603107.2012.665593
http://doi.org/10.1086/294632


Risks 2022, 10, 20 25 of 25

Messaoud, Samia Ben, and Chaker Aloui. 2015. Measuring risk of Portfolio: GARCH-Copula model. Journal of Economic Integration 30:
172–205. [CrossRef]

Nelsen, Roger B. 2006. An introduction to Copulas. New York: Springer. [CrossRef]
Nelson, Daniel B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347. [CrossRef]
Ortas, Eduardo, José M. Moneva, Roger Burritt, and Joanne Tingey-Holyoak. 2014. Does sustainability investment provide adaptive

resilience to ethical investors? evidence from Spain. Journal of Business Ethics 124: 297–309. [CrossRef]
Ouchen, Abdessamad. 2021. Is the ESG Portfolio Less Turbulent than a Market Benchmark Portfolio? Risk Management, 1–33. [CrossRef]
Patton, Andrew J. 2006. Copula-Based Models for Financial Times Series. Working Papers: OMI11/07. Oxford: The Oxford-Man Institute,

University of Oxford.
Pedersen, Lasse Heje, Shaun Fitzgibbons, and Lukasz Pomorski. 2021. Responsible investing: The ESG-efficient frontier. Journal of

Financial Economics 142: 572–97. [CrossRef]
Plastun, Alex, Elie Bouri, Rangan Gupta, and Qiang Ji. 2022. Price Effects after one-day abnormal returns in developed and emerging

markets: ESG versus traditional indices. The North American Journal of Economics and Finance 59: 101572. [CrossRef]
Rydberg, Tina Hviid. 2000. Realistic statistical modelling of financial data. International Statistical Review/Revue Internationale de

Statistique 68: 233. [CrossRef]
Schwert, G. William. 1990. Stock Volatility and the crash of ’87. Review of Financial Studies 3: 77–102. [CrossRef]
Shafer, Michael, and Edward Szado. 2020. Environmental, social, and governance practices and perceived tail risk. Accounting and

Finance 60: 4195–224. [CrossRef]
Sklar, A. 1959. Fonctions de Répartition an Dimensions et Leurs Marges. Publications de l’Institut de statistique de l’Université de Paris 8:

229–31.
Stoeber, Jakob, Eike Christian, Benedikt Graeler, Thomas Nagler, Tobias Erhardt, Carlos Almeida, Aleksey Min, Claudia Czado, Mathias

Hofmann, Matthias Killiches, and et al. 2018. Package ‘VineCopula’. Available online: https://cran.microsoft.com/snapshot/20
18-07-26/web/packages/VineCopula/VineCopula.pdf (accessed on 9 August 2020).

Taylor, Stephen J. 1986. Modelling Financial Time Series: 2nd Edition. Modelling Financial Time Series. Chichester: John Wiley & Sons.
US SIF. 2020. 2020 Report on US Sustainable, Responsible and Impact Investing Trends. Available online: https://www.ussif.org/

currentandpast (accessed on 24 October 2021).
Verheyden, Tim, Robert G. Eccles, and Andreas Feiner. 2016. ESG for all? the impact of ESG screening on return, risk, and diversification.

Journal of Applied Corporate Finance 28: 47–55. [CrossRef]
Wang, Weijing, and Martin T. Wells. 2000. Model Selection and Semiparametric Inference for Bivariate Failure-Time Data. Journal of the

American Statistical Association 95: 62–72. [CrossRef]
Weber, Olaf, and Wei Rong Ang. 2016. The performance, volatility, persistence and downside risk characteristics of sustainable

investments in emerging market. ACRN Oxford Journal of Finance and Risk Perspectives 5: 1–12.
Whelan, Tensie, Ulrich Atz, Tracy Van Holt, and Casey Clark. 2021. ESG and Financial Performance: Uncovering the Relationship by

Aggregating Evidence from 1000 Plus Studies Published between 2015–2020. Available online: https://www.stern.nyu.edu/
sites/default/files/assets/documents/NYU-RAM_ESG-Paper_2021%20Rev_0.pdf (accessed on 24 October 2021).

Wu, Junjie, George Lodorfos, Aftab Dean, and Georgios Gioulmpaxiotis. 2017. The Market Performance of Socially Responsible
Investment during Periods of the Economic Cycle—Illustrated Using the Case of FTSE. Managerial and Decision Economics 38:
238–51. [CrossRef]

http://doi.org/10.11130/jei.2015.30.1.172
http://doi.org/10.1007/0-387-28678-0
http://doi.org/10.2307/2938260
http://doi.org/10.1007/s10551-013-1873-1
http://doi.org/10.1057/s41283-021-00077-4
http://doi.org/10.1016/j.jfineco.2020.11.001
http://doi.org/10.1016/j.najef.2021.101572
http://doi.org/10.2307/1403412
http://doi.org/10.1093/rfs/3.1.77
http://doi.org/10.1111/acfi.12541
https://cran.microsoft.com/snapshot/2018-07-26/web/packages/VineCopula/VineCopula.pdf
https://cran.microsoft.com/snapshot/2018-07-26/web/packages/VineCopula/VineCopula.pdf
https://www.ussif.org/currentandpast
https://www.ussif.org/currentandpast
http://doi.org/10.1111/JACF.12174
http://doi.org/10.1080/01621459.2000.10473899
https://www.stern.nyu.edu/sites/default/files/assets/documents/NYU-RAM_ESG-Paper_2021%20Rev_0.pdf
https://www.stern.nyu.edu/sites/default/files/assets/documents/NYU-RAM_ESG-Paper_2021%20Rev_0.pdf
http://doi.org/10.1002/mde.2772

	Introduction 
	Data and Methods 
	Research Methodology 
	Data Description 

	Results 
	General Remarks 
	The Global Financial Crisis Period (3 July 2007–30 January 2009) 
	The Period of Debt Crisis in EU (2 December 2009–30 July 2014) 
	The Russian Financial Crises, Fall in Oil Prices (3 June 2014–31 January 2017) 
	The Stabilization Period (4 January 2017–31 December 2019) 

	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	References

