
Matthews, Spencer; Hartman, Brian

Article

mSHAP: SHAP Values for Two-Part Models

Risks

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Matthews, Spencer; Hartman, Brian (2021) : mSHAP: SHAP Values for
Two-Part Models, Risks, ISSN 2227-9091, MDPI, Basel, Vol. 10, Iss. 1, pp. 1-23,
https://doi.org/10.3390/risks10010003

This Version is available at:
https://hdl.handle.net/10419/258314

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

 https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/risks10010003%0A
https://hdl.handle.net/10419/258314
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

����������
�������

Citation: Matthews, Spencer and

Brian Hartman. 2022. mSHAP: SHAP

Values for Two-Part Models. Risks 10:

3. https://doi.org/10.3390/

risks10010003

Academic Editor: Mogens Steffensen

Received: 27 October 2021

Accepted: 17 December 2021

Published: 24 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

mSHAP: SHAP Values for Two-Part Models

Spencer Matthews 1,* and Brian Hartman 2

1 Department of Statistics, Donald Bren School of Information and Computer Science,
University of California-Irvine, Irvine, CA 92697, USA

2 Department of Statistics, College of Physical and Mathematical Sciences, Brigham Young University,
Provo, UT 84602, USA; hartman@stat.byu.edu

* Correspondence: spencer.matthews@uci.edu

Abstract: Two-part models are important to and used throughout insurance and actuarial science.
Since insurance is required for registering a car, obtaining a mortgage, and participating in certain
businesses, it is especially important that the models that price insurance policies are fair and non-
discriminatory. Black box models can make it very difficult to know which covariates are influencing
the results, resulting in model risk and bias. SHAP (SHapley Additive exPlanations) values enable
interpretation of various black box models, but little progress has been made in two-part models. In
this paper, we propose mSHAP (or multiplicative SHAP), a method for computing SHAP values of
two-part models using the SHAP values of the individual models. This method will allow for the
predictions of two-part models to be explained at an individual observation level. After developing
mSHAP, we perform an in-depth simulation study. Although the kernelSHAP algorithm is also
capable of computing approximate SHAP values for a two-part model, a comparison with our
method demonstrates that mSHAP is exponentially faster. Ultimately, we apply mSHAP to a two-
part ratemaking model for personal auto property damage insurance coverage. Additionally, an R
package (mshap) is available to easily implement the method in a wide variety of applications.

Keywords: explainability; machine learning; ratemaking

1. Introduction

One of the most popular families of machine learning models are tree-based algorithms,
which use the concept of many decision trees working together to create more generalized
predictions (Lundberg et al. 2020). Current implementations include random forests,
gradient boosted forests, and others. These models are very good at learning relationships
and have proven highly accurate in diverse areas. Currently, many aspects of life are
affected by these algorithms as they have been implemented in business, technology,
and more.

As these methods become more abundant, it is crucial that explanations of model
output are easily available. Although there have been some advances in quantifying the
uncertainty around black-box predictions as in Ablad et al. (2021), we search for more
interpretable explanations that relate inputs to model outputs. The exact definition of
“explanation” is a subject of debate, and Lipton (2018) argues that the word is often used
in a very unscientific manner due to the confusion over its meaning. In this paper, we
will regard an explainable system as what Doran et al. (2017) refer to as a comprehensible
system, or one that “allow[s] the user to relate properties of the inputs to their output.”

Explainable models are important not only because some industries require them but
also because understanding the why behind the output is essential to avoiding possible
pitfalls. Understanding the reasoning behind model output allows for recognition of model
bias, and increased security against the risk of harmful models being put into production.
When implemented well, machine learning models can be more accurate than compared to
traditional models. However, more accurate model families can be less explainable simply
because of the nature of these algorithms. Generally, as predictive performance increases,

Risks 2022, 10, 3. https://doi.org/10.3390/risks10010003 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks10010003
https://doi.org/10.3390/risks10010003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0002-7109-7474
https://orcid.org/0000-0002-9116-8161
https://doi.org/10.3390/risks10010003
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks10010003?type=check_update&version=2

Risks 2022, 10, 3 2 of 23

model complexity also increases, decreasing the ability to understand the effects of inputs
on the output (Gunning 2017).

In this paper, we propose a methodology for explaining two-part models, which
expands on the already prevalent TreeSHAP (Tree Model SHapley Additive exPlanations)
algorithm (Lundberg et al. 2020). This methodology, called mSHAP, will allow the output
of two models to be multiplied together while maintaining explainability of the resulting
prediction and deals with the issue of perturbation as described in (Li et al. 2020). Although
there have been significant advancements made in this area, current methods are unable to
rapidly assign input contributions to outputs in two-part models. This lack of explainability
is an issue in the insurance industry, and here we propose a method of explaining two-part
models that works rapidly and effectively.

The remainder of the paper is outlined as follows. In Section 2, we revisit existing
SHAP-based methods and discuss where issues arise in the context of two-part models.
In Section 3, we discuss the math behind multiplying SHAP values and propose a context in
which SHAP values for two existing models can be combined to explain a two-part model.
Although this framework is robust, it does leave a part (which we call α) of the ultimate
prediction that must be distributed back into the contributions of the variables. To this
end, we run a simulation in Section 4 across different methods of distributing α and score
the methods in comparison to kernelSHAP, which is an existing method for estimating
explanations of any type of model. Having scored these methods, we select the best one
and apply the process of mSHAP on an auto insurance dataset in Section 5. A conclusion
and summary of our results is provided in Section 6.

2. Motivation

The initial idea for this methodology came due to the problem of machine learning
in auto insurance ratemaking (or pricing). Actuaries are tasked with taking historical
data and using it to set current rates for insured consumers. Given the sensitive nature
of the data and the potential impact it has to bias rates for different types of people, there
are strict regulations on the models. The outputs of these models must be explainable
so that regulators in the insurance industry can be sure that the rates are not unfairly
discriminatory.

Many actuaries use a two-part model to set rates, where the first part predicts how
many claims a policyholder will have (the claim frequency) and the second part predicts
the average cost of an individual claim (Frees and Sun 2010; Heras et al. 2018; Prabowo
et al. 2019). Multiplying the two outputs of these models predicts the total cost of a given
policyholder.

Two-part models are more difficult to explain than compared standard models, but
the complexity increases when the two models themselves are not traditionally generalized
linear models. Given this difficulty and the strict requirements of the regulators, machine
learning models are not often used in actuarial ratemaking. Despite the lack of current
industry use, machine learning models such as tree-based algorithms could improve the
accuracy of ratemaking models (Akinyemi and Leiser 2020). Since the data that actuaries
work with is typically tabular, tree-based algorithms are a good fit for predicting on the
data. In recent years, there have been many advances in explaining tree-based machine
learning algorithms, which could result in greater adaptation in the field. One of the most
important is the SHAP value.

2.1. SHAP Values and Current Implementations

SHAP values originate in the field of economics, where they are used to explain player
contributions in cooperative game theory. Proposed by Shapley (1953), they predict what
each player brings to a game. This idea was ported into the world of machine learning by
Lundberg and Lee (2017). The basic algorithm calculates the contribution of a variable to
the prediction for every possible ordering of variables, then it averages those contributions.

Risks 2022, 10, 3 3 of 23

This becomes computationally impractical very quickly, but Lundberg and Lee (2017)
created a modified algorithm that approximates these SHAP values.

A couple of years later, Lundberg et al. (2020) published a new paper detailing a
method called TreeSHAP. This method is a rapid method for computing exact SHAP values
for any tree-based machine learning model. The fixed structure of trees in a tree-based
model allows shortcuts to be taken in the computation of SHAP values, which greatly
speeds up the process. With this improvement, it becomes feasible to explain millions of
predictions from tree-based machine learning algorithms. These local explanations can
then be combined to create an understanding of the entire model.

2.2. Properties of SHAP Values

There are three essential properties of SHAP values: local accuracy/efficiency, con-
sistency/monotonicity, and missingness (Lundberg and Lee 2017). These three prop-
erties are satisfied by the equation used to calculate SHAP values, as implemented by
Lundberg and Lee (2017). While we focus on the local accuracy property for the rest of this
section, we note that since mSHAP is built on top of treeSHAP, it automatically incorporates
consistency/monotonicity and missingness properties.

2.2.1. Local Accuracy in Implementation

The most important of the above mentioned properties in the context of mSHAP is
the property of local accuracy/efficiency. In the context of machine learning, this property
says that the contributions of the variables should add up to the difference between the
prediction and the average prediction of the model. The average prediction can be thought
of as the model bias term, which is what the model will predict, on average, across all
inputs (assuming representative training data). For a more mathematical definition of local
accuracy, see Appendix A. In the TreeSHAP algorithm, the average prediction of the model
is computed as the mean of all predictions for the training data set. The SHAP values are
then computed to explain deviance from the average prediction.

Thus, given an arbitrary model Y with prediction ŷ based on two predictors, x1 and x2,
we can represent the mean prediction with µY and the SHAP values for the two covariates
as sx1 and sx2 . Based on the property of local accuracy, we know that ŷ = µY + sx1 + sx2 .

This principle applies to models with any number of predictors and is very desireable
in explainable machine learning (Arrieta et al. 2020).

2.2.2. The Problem of Local Accuracy

Since it is so important that the SHAP values add up to the model output, any
attempt at explaining two-part model output from the SHAP values of the individual parts
must maintain this property. However, multiplying the output of two models blends the
contributions from different variables, making it unclear what contributions should be given
to what variables. The idea of combining models and using SHAP values of the individual
models to obtain the SHAP values for the combined model has been implemented before.
In a related github issue, Scott Lundberg assures that averaging model output is compatible
with averaging SHAP values, as long as the SHAP values (and model output) are in their
untransformed state (Slundberg 2020). Even though averaging SHAP values for each
variable works when averaging model outputs, the same principle does not apply when
multiplying model outputs.

When considered, this is apparent. In the most simple of cases, we observe that if we
have two models that both predict some outcomes based on two covariates x1 and x2, we
can average their results and likely obtain a better prediction. We will call these models A
and B, respectively. For a given observation, model A predicts â and model B predicts b̂.
When run through a SHAP explainer, we can break down these predictions even further.

Risks 2022, 10, 3 4 of 23

Since SHAP values are additive, we know that â = µA + sx1a + sx2a and b̂ = µB + sx1b + sx2b.
It follows the following is obtained.

avg(â, b̂) =
â + b̂

2

=
µA + sx1a + sx2a + µB + sx1b + sx2b

2

=
µA + µB

2
+

sx1a + sx1b

2
+

sx2a + sx2b

2
= avg(µA, µB) + avg(sx1a, sx1b) + avg(sx2a, sx2b). (1)

Equation (1) means that we can find the contribution to the overall model from x1 by
averaging sx1a and sx1b, and likewise for the contribution to the overall model from x2.

However, if we for some reason wished to stack our models such that the two outputs
(â and b̂) are multiplied, we run into a problem. This occurs because, despite the longings
of all algebra students, the following is the case.

âb̂ = (µA + sx1a + sx2a)(µB + sx1b + sx2b) 6= µAµB + sx1asx1b + sx2asx2b.

Instead, we end up with the following.

âb̂ = (µA + sx1a + sx2a)(µB + sx1b + sx2b)

= µAµB + µAsx1b + µAsx2b + sx1aµB + sx1asx1b+

sx1asx2b + sx2aµB + sx2asx1b + sx2asx2b. (2)

Even in this simple case, it is difficult to assign a single contribution to our two different
variables when presented with the SHAP values of the two original models. This problem
grows even more difficult with the addition of other explanatory features. mSHAP is the
methodology developed to solve this problem.

3. The Math behind Multiplying SHAP Values

In a two-part model, the output of one model is multiplied by the output of a second
model to obtain the response. The principal driver behind mSHAP is the explanation of
these sorts of models, and it requires that the SHAP values be multiplied together in some
manner to obtain a final SHAP value for the output. The mathematics behind mSHAP are
explained here in the general case for any given number of predictors with a training set of
arbitrary size. Although an exact solution for the SHAP values of a two-part model is still
out of reach, this method proves very accurate in its results.

3.1. Definitions

Consider three different predictive models, f , g, and h and a single input (training)
matrix A. We will let the number of columns and rows in A be arbitrary. In other words,
let A be an n× p matrix where each column is a covariate and each row is an observation.
Moreover, let Ai denote the ith observation (row) of A. Furthermore, define h to be the
product of f and g; thus, h(Ai) = f (Ai) · g(Ai).

Recall that the sum of the SHAP values for each covariate and the average model
output must add up to the model prediction. For simplicity in presentation, we will define
f (Ai) = x̂i, g(Ai) = ŷi, and h(Ai) = ẑi and the contribution of the jth predictor to xi as sxi j.
With these considerations in place, we can define the output space of our three models on
the training data set, as shown in Equations (3) to (5).

Risks 2022, 10, 3 5 of 23

For model f , we have the following.

x̂1 =sx11 + sx12 + sx13 + . . . + sx1 p + µ f (3)

x̂2 =sx21 + sx22 + sx23 + . . . + sx2 p + µ f

x̂3 =sx31 + sx32 + sx33 + . . . + sx3 p + µ f

...

x̂n =sxn1 + sxn2 + sxn3 + . . . + sxn p + µ f

For model g, we have the following.

ŷ1 =sy11 + sy12 + sy13 + . . . + sy1 p + µg (4)

ŷ2 =sy21 + sy22 + sy23 + . . . + sy2 p + µg

ŷ3 =sy31 + sy32 + sy33 + . . . + sy3 p + µg

...

ŷn =syn1 + syn2 + syn3 + . . . + syn p + µg

Moreover, for model h, we have the following.

ẑ1 =sz11 + sz12 + sz13 + . . . + sz1 p + µh (5)

ẑ2 =sz21 + sz22 + sz23 + . . . + sz2 p + µh

ẑ3 =sz31 + sz32 + sz33 + . . . + sz3 p + µh

...

ẑn =szn1 + szn2 + szn3 + . . . + szn p + µh

Furthermore, given our training data A, we can extract the values of µ f , µg, and µh. As
explained above, these are the average values of the model predictions on the training set.

µ f =
1
n

n

∑
i=1

x̂i =
x̂1 + x̂2 + x̂3 + . . . + x̂n

n
(6)

µg =
1
n

n

∑
i=1

ŷi =
ŷ1 + ŷ2 + ŷ3 + . . . + ŷn

n
(7)

µh =
1
n

n

∑
i=1

ẑi =
ẑ1 + ẑ2 + ẑ3 + . . . + ẑn

n
(8)

In practice, it is necessary to be able to pull µh out of x̂i ŷi. When implemented, it is
important to note that µ f µg = µ f µg − µh + µh. Since every expansion of SHAP values
from x̂i x̂j contains µ f µg, we substitute µ f µg − µh + µh, where µh is essential and µ f µg − µh
becomes a term that we label α and distribute among all the SHAP values. A more
formalized definition of α is provide in Appendix B.

3.2. Obtaining zi’s SHAP Values

We now derive the individual SHAP values for each variable as it pertains to the pre-
diction of model h. Again, we will allow this output be an arbitrary ẑi. Recall the following.

ẑi = x̂i ŷi = (sxi1 + sxi2 + sxi3 + . . . + sxi p + µ f)(syi1 + syi2 + syi3 + . . . + syi p + µg). (9)

Using a tabular form for visual simplicity, we obtain the following expansion of
Equation (9).

Risks 2022, 10, 3 6 of 23

sxi1 + sxi2 + sxi3 + . . . + sxi p + µ f

syi1 sxi1syi1 sxi2syi1 sxi3syi1 . . . sxi psyi1 µ f syi1
+

syi2 sxi1syi2 sxi2syi2 sxi3syi2 . . . sxi psyi2 µ f syi2
+

syi3 sxi1syi3 sxi2syi3 sxi3syi3 . . . sxi psyi3 µ f syi3
+
...

...
...

...
. . .

...
...

+
syin sxi1syi p sxi2syi p sxi3syi p . . . sxi psyi p µ f syi p
+
µg sxi1µg sxi2µg sxi3µg . . . sxi pµg µ f µg

We break these terms into the SHAP values for each variable, one through p, for ẑi.
Our approach breaks szi j into two parts, which we call s′zi j

and αij. By using the method of
obtaining αi, which can take on several forms, s′zi j

is always as follows (where j refers to the
jth covariate).

s′zi j = µ f syi j + sxi jµg + sxi jsyi j +
p

∑
a=1

(
sxi jsyia

2
I(a 6= j)) +

p

∑
a=1

(
syi jsxia

2
I(a 6= j))

= µ f syi j + sxi jµg +
1
2

p

∑
a=1

(sxi jsyia + syi jsxia) (10)

In other words and with the aid of the table above, Equation (10) can be described
as the sum of the jth row and jth column, where every term is divided by two except the
terms with µ f and µg. When applied to each variable, this can be written as follows:

ẑi =
p

∑
j=1

[
µ f syi j + sxi jµg +

1
2

p

∑
a=1

(sxi jsyia + syi jsxia)

]
+ µ f µg (11)

and by applying the breakdown we derived in Equation (10), while simplifying Equation (11)
as well, we arrive at the following.

ẑi =

(
p

∑
j=1

s′zi j

)
+ α + µh. (12)

For a proof that this formula and the subsequent distribution of α maintains the local
accuracy property of SHAP values, refer to Appendix B.1.

3.3. Methods for Distributing α

We now arrive at the aforementioned point of deciding how to distribute α into each
szi j. There are four methods that we tested for distributing α: the first being simple uniform
distribution and the others being variations of weighting based on the value of s′zi j

. All
four of these methods maintain the local accuracy property of SHAP values, and a detailed
proof of the absolute value case can be found in Appendix B.1. We acknowledge that there
is no easy interpretation of α and our choices for distributing/weighting it were arbitrary
methods of dividing a whole into parts. In Equation (13), we evenly distributed α over
the contributions from all covariates, while in Equation (15), we weighted each part by
its corresponding contribution to the model. Both Equations (16) and (17) are variations

Risks 2022, 10, 3 7 of 23

on weighting the parts, but they use different methods to ensure that all the weights are
positive. Different methods for distributing α may be a topic for further research.

3.3.1. Uniformly Distributed

The simplest method of distributing α between all the szi j’s is to divide it evenly. In
this case, our resulting equation for each variable’s SHAP value would be the following.

szi j = s′zi j +
α

p
. (13)

This method could prove a strong baseline.

3.3.2. Raw Weights

The computation of this method is made easier by recalling from Equation (11) that
the following is the case:

p

∑
j=1

s′zi j = ẑi − µ f µg, (14)

which allows us to use ẑi − µ f µg as the whole upon which we base our weighting. When
applied, this method defines each SHAP value as follows.

szi j = s′zi j +
s′zi j

ẑi − µ f µg
α. (15)

3.3.3. Absolute Weights

This method differs from that of the raw weights in that instead of summing the s′zi j
’s,

we sum their absolute values. The weight for each SHAP value is calculated with the
following.

szi j = s′zi j +
|s′zi j
|

∑
p
k=1 |s

′
zik
|
α. (16)

3.3.4. Squared Weights

Finally, instead of working with the absolute values, we could work with squares.
Similarly to the equation above, the SHAP values under this method are computed by the
following.

szi j = s′zi j +
(s′zi j

)2

∑
p
k=1(s

′
zik
)2

α. (17)

4. Simulation Study for Distributing α

To test the differences between these methods of distributing α, we simulated various
multiplicative models based on known equations and compared the results of our multi-
plicative method with the output from kernelSHAP. KernelSHAP is an existing generalized
method for estimating the contributions based on any prediction function. However, it
is extremely computationally expensive when compared with TreeSHAP. When training
on millions of rows with many variables, it becomes unrealistic to use kernelSHAP for
computing the SHAP values.

4.1. Scoring the Methods

Several factors were considered in scoring, including the mean absolute error of the
SHAP values, the directions of the SHAP values, and the rank (in magnitude) of the SHAP
values for each variable. The score needed to be a singular method to asses how close the
method approaches the kernelSHAP estimates. Even though kernelSHAP is an estimate
and not necessarily the truth, we used it as a benchmark in the different parts of our score.

Risks 2022, 10, 3 8 of 23

This allowed us to compare new variations of the mSHAP method to existing methods for
the computation of SHAP values.

For ease of notation, if we define the SHAP value, we are estimating it as szi j; then, we
can define its counterpart as computed by kernelSHAP, as kzi j.

4.1.1. General Equation for Scoring

In the end, an equation was formed to create a raw “score” based on the direction of
the SHAP value, the relative value of the SHAP value, and the rank (importance) of the
SHAP value in comparison to kernelSHAP. The score ranges from 0 to 3 (with 3 being the
best possible score), and is defined by the following:

β(szi j, kzi j|θ1, θ2) = λ1(szi j, kzi j|θ1) + λ2(szi j, kzi j|θ2) + λ3(szi j, kzi j) (18)

where the following is the case:

λ1(szi j, kzi j|θ1) =

1 szi jkzi j > 0
min(1, 1+θ1

|szi j |+|kzi j |+θ1
) otherwise

(19)

λ2(szi j, kzi j|θ2) = min(1,
1 + θ2

|szi j − kzi j|+ 1
) (20)

λ3(szi j, kzi j) =
1

|imp(szi j)− imp(kzi j)|+ 1
(21)

and imp(szi j) is the importance of that SHAP value relative to the other contributions in
the observation (where importance is determined by the magnitude of the absolute value).

In this function (and as will be described in the following section), λ1 is the contribution
from the signs of the SHAP values, λ2 is the contribution from the relative value of the
SHAP values, and λ3 is the contribution from the relative ranking (importance) of the
SHAP values.

4.1.2. Lambda Functions

In order to gain some intuition about the λ functions (Equations (19)–(21)) and the
impact of θ1 and θ2, we depict them in Figure 1.

For λ1, which measures whether the two SHAP values are the same sign, any values in
the first and third quadrants return a perfect score of 1, since the two values have the same
sign. It also allows for some wiggle room with θ1 by allowing anything within the lines
kzi j = szi j + θ1 and kzi j = szi j − θ1 to be 1. Beyond those boundaries, the scores gradually
decrease.

The function λ2, which compares the values, also creates boundary lines for the perfect
score of 1 at kzi j = szi j + θ2 and kzi j = szi j − θ2. In other words, as long as the difference
between szi j and kzi j is less than θ2, the function will return 1. Beyond that, the value begins
to decrease.

Out of the three λ3, the rank measure is the easiest to understand. In a given observa-
tion, each SHAP value is given a rank (between 1 and p, inclusive) based on its absolute
value. These ranks are then compared, and the closer they are together, the higher the score,
with a perfect score of 1 being obtained if the two rankings are the same.

Risks 2022, 10, 3 9 of 23

(a)

(b)

Figure 1. Heat maps for the λ functions. (a) Heatmap of λ1. (b) Heatmap of λ2.

4.2. Simulation Study

As mentioned above, we simulated various multiplicative models based on known equa-
tions and compared the results of our multiplicative method with the output from kernelSHAP
in order to test the model. The type of simulation used here is a Monte Carlo simulation that is
commonly used in actuarial literature, as in Appendix C Romaniuk (2017).

Specifically, we used three variables, x1, x2, and x3 in a variety of response equations
y1 and y2 to create models for y1 and y2 and then multiply their outputs together. Using
the multiplied output and the covariates, we were able to use kernelSHAP to compute an
estimate of the SHAP values. We could then compared this estimate to the result from
our multiplicative method, as described above, with different methods of distributing α
applied.

More details on the simulation can be found in Appendix C.
For testing, we used 100 samples in each iteration for faster computation, which

allowed us to simulate over 2500 scenarios. Specifically, we worked with all possible
combinations of the following values (see Table 1).

Risks 2022, 10, 3 10 of 23

Table 1. Details of the scope of the simulation, describing all possible values for each variable.

Variable Possible Values

y1 x1 + x2 + x3
2 ∗ x1 + 2 ∗ x2 + 3 ∗ x3

y2 x1 + x2 + x3
2 ∗ x1 + 2 ∗ x2 + 3 ∗ x3
x1 ∗ x2 ∗ x3
x2

1 ∗ x3
2 ∗ x4

3
(x1 + x2)/(x1 + x2 + x3)
x1 ∗ x2/(x1 + x1 ∗ x2 + x2

1 ∗ x2
3)

θ1 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5,
11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5

θ2 1, 6, 11, 16, 21, 26, 31, 36, 41, 46

For each combination of values in the above table, we distributed α in each of the four
methods mentioned in Section 3.3. The resulting table, therefore, had results for each model
and each method of distributing α. In general, we averaged across all rows of the same
method to obtain the scores that were compared to each other.

In our examples, our covariates were distributed as follows.

x1 ∼ Uniform[−10, 10]

x2 ∼ Uniform[0, 20]

x3 ∼ Uniform[−5,−1].

4.3. Results of the Simulation

In general, the multiplicative SHAP method performed very well when compared to
the kernelSHAP output. Since kernelSHAP is an estimation as well, it is hard to determine
exactly how well the multiplicative SHAP method does, but we will summarize some
statistics here.

4.3.1. Distributing α

After trying the aforementioned four methods for distributing α into the SHAP values,
we came to the conclusion that the weighted by absolute value method was the best. This
came by way of the score as well as other metrics. Details can be observed in the Table 2
(all values are averaged across all 2520 simulations).

Table 2. Results of the simulation for different methods of distributing α, note that the highest score
in each column is indicated with boldface type.

Method Score Direction
Score

Relative
Value Score Rank Score Pct Same

Sign
Pct Same

Rank

Weighted by
Absolute Value 2.27 0.869 0.594 0.802 84.8% 62.5%

Weighted by
Squared Value 2.21 0.841 0.579 0.792 81.8% 60.8%

Uniformly
Distributed 2.20 0.858 0.563 0.783 83.7% 59.4%

Weighted by
Raw Value 1.99 0.727 0.494 0.768 71.4% 56.2%

Risks 2022, 10, 3 11 of 23

4.3.2. Impact of θ1 and θ2

We plotted the effects of the different values for θ1 and θ2 on the overall score based
on type of method of distribution.

As observed, in Figures 2 and 3, changing the value of these two parameters has a
similar impact across all scoring methods.

Figure 2. How θ1 impacts overall score on average.

Figure 3. How θ2 impacts overall score on average.

4.3.3. Computational Time

The most dramatic benefit of mSHAP over kernelSHAP is the computational efficiency
of mSHAP. The times shown in this section were obtained using a personal MacBook Air
laptop computer with a 1.8 GHz Dual-Core Intel Core i5 processor.

In Figure 4, we are able to observe the comparison in run time between the ker-
nelSHAP and mSHAP methods (including the individual treeSHAP value calculations).
Both an increase in the number of variables and the number of samples causes the time of
kernelSHAP to grow greatly, while the multiplicative method remains fairly constant. In
these trials, the number of background samples was fixed at 100 for kernelSHAP.

Risks 2022, 10, 3 12 of 23

(a)

(b)

Figure 4. Computational time of kernelSHAP and mSHAP. (a) Fixed n. (b) Fixed number of variables.

A case study can show the importance of this. In the auto insurance dataset, there are
5,000,000 rows in the test set, with 46 variables. For the sake of simplicity, let us assume
that we use 45 of those variables and that 100 background samples are enough to compute
accurate SHAP values. In reality, it would need many more background samples, but that
only accentuates the point, as a large quantity of background samples slows kernelSHAP
drastically. KernelSHAP computes SHAP values for 45 variables at a rate of about 2.268 s
per observation on a personal laptop. In order to compute the SHAP values for the entire
test set, one would need about 131 days of continuous compute time.

In contrast, our multiplicative method, using treeSHAP on two tree-based models,
computes SHAP values at a rate of about 0.00175 s per observation for a model with
45 variables. To compute the SHAP values for the entire test set using this method, it would
take a little less than three hours of continuous computation time.

4.4. Final Equation for mSHAP

Based on the results of the simulation, we determine that the best method of distribut-
ing α is the method of weighting by absolute values (as described above). Recall from
Equation (16) that in this method, we have the following:

szi j = s′zi j +
|s′zi j
|

∑
p
k=1 |s

′
zik
|
(α) (22)

Risks 2022, 10, 3 13 of 23

and that s′zi j
refers to an initial mSHAP value, before the correction introduced by α as in

Equation (10). It is calculated as follows.

s′zi j = µ f syi j + sxi jµg +
1
2

p

∑
a=1

(sxi jsyia + syi jsxia). (23)

Thus, the final equation for the mSHAP value of the jth predictor on the ith observation
can be written as follows.

szi j = µ f syi j + sxi jµg +
1
2

[
p

∑
a=1

(sxi jsyia + syi jsxia)

]
+

|s′zi j
|

∑
p
k=1 |s

′
zik
|
(α). (24)

For a complete proof that local accuracy holds with this equation, see Appendix B.1.

5. Case Study

In order to prove the efficacy of mSHAP, it is necessary to put it into practice. We
obtained an insurance dataset including over 20 million auto insurance policies for a large
insurance provider in the United States. Using these data, we created a two-part model
that predicts the expected property damage cost of each policy. Both parts of this model
consist of tree-based methods, specifically random forests. After creating this model, we
used the shap python library to explain the predictions of each individual part on a sample
of 50,000 observations from our test set. We then applied the final mSHAP method, as de-
scribed above, to obtain explanations for the overall model and used the mshap R package
to visualize some of the results. Although there has been recent studies on models that
span multiple types of claims on one policy as in Gómez-Déniz and Calderín-Ojeda (2021),
the data were such that we could only focus on one specific type of claim for each model.

5.1. Model Creation

As mentioned above, the model is a two-part model for predicting the expected cost
of the policy. The first part of the model predicts the frequency of the claims. It is a random
forest that predicts the probability of each of four possible outcomes (a multinomial model).
In our dataset, there existed policies with up to seven claims, but we chose the classes of
zero, one, two, and three and bundled everything over three into the third class. The data
were heavily imbalanced; thus, we used a combination of upsampling the minority classes
(one, two, and three claims) and downsampling the majority class (0 claims) to obtain a
more balanced training data set. This allowed the model to use the information to predict
meaningful probabilities instead of always assigning a very high probability to zero claims.

The second part is a random forest which predicts the severity component of the
two-part model or the expected cost per claim.

Once these models were created, we could calculate the expected value (or in this case,
the expected cost) of a policy in the following manner. If we let P̂i(a) denote the predicted
probability of the for the ith policy of the ath class and ŷi be the predicted severity of the
policy, then we have the following.

EV = ŷi
(
0P̂i(0) + 1P̂i(1) + 2P̂i(2) + 3P̂i(3)

)
(25)

The final two-part model was used to predict the expected cost of 50,000 policies
from the test dataset. For more specific details about the model and how it was tuned, see
Appendix E.

5.2. Model Explanation

After creating the two-part model and obtaining final predictions for the expected cost
of the claims, we were able to apply mSHAP to explain final model predictions. Before
performing this, we computed SHAP values on the individual models so that we have the
necessary data to apply the mSHAP method for explaining two-part models. Summary

Risks 2022, 10, 3 14 of 23

plots for the five different sets of SHAP values (one for severity, and one for each class of
the frequency model) can be created. In Figure 5, we depict the SHAP values for one of the
frequency classes from the frequency model and the SHAP values for the severity model.

(a)

(b)

Figure 5. Example summary plots of SHAP values from the individual model parts. (a) Summary
plot of the frequency model’s SHAP values for the 0 claim class. (b) Summary plot of the severity
model’s SHAP values.

After computing these SHAP values, we applied the mSHAP method detailed in
this paper. When applying mSHAP, the expected value formula above is simply a linear
combination, and we are able to perform that same linear combination on the SHAP values
before (or after) applying mSHAP. This process left us with a single mSHAP value for each
variable in every row of our test set and an overall expected value across the training set.
The summary plot of those final mSHAP values can be oberved in Figure 6, and an example
of an observation plot is shown in Figure 7.

Risks 2022, 10, 3 15 of 23

Figure 6. Summary plot of the two-part model’s mSHAP values.

Figure 7. Observation plot from the two-part model’s mSHAP values. This plot shows how mSHAP
can be used to explain a single observation.

The beauty of the mSHAP method is that it allows for a two-part model to be explained
in the same manner that tree-based models can be easily explained with SHAP values. As
observed in the plots, general trends across variables can be established, as well as specific
policies dissected to observe individual motivators behind each prediction. The ability of
mSHAP to explain these types of models opens the door to using two-part models that are
both powerful and explainable.

6. Conclusions

In this paper, we developed mSHAP, a method for calculating SHAP values in two-
part models. The theoretical foundations were laid out, and the algorithm was explained.
Our method is shown to be much less computationally expensive than kernelSHAP on
the order of hundreds of times faster (See Section 4.3). Furthermore, the results of the
application to a real-world problem are displayed. We recommend that this new algorithm

Risks 2022, 10, 3 16 of 23

be implemented in the insurance industry where two-part models are used heavily. It will
allow for insurance pricing to be explained to key stakeholders while ensuring fair and
accurate pricing methods with black-box algorithms. Although this new framework is
robust and builds upon exact SHAP values of individual model parts, it does not return
exact SHAP values for the two-part model. Further research is needed to develop exact
methodologies for determining variable contributions in two-part models.

Author Contributions: Data curation, S.M.; formal analysis, B.H.; funding acquisition, B.H.; in-
vestigation, S.M.; methodology, S.M.; project administration, B.H.; writing—original draft, S.M.;
writing—review and editing, B.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This paper was funded by an individual grant from the Casualty Actuarial Society.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data was provided by a private insurance carrier to the Casualty
Actuarial Society (CAS) after anonymizing the data set. This data is available to actuarial researchers
for well-defined research projects that have universal benefit to the insurance industry and the public.
In order to obtain the data, contact CAS through Brian Fannin with a project proposal.

Acknowledgments: Brigham Young University Department of Statistics Computing Cluster; Brian
Fanin and the Casualty Actuarial Society for providing the data; and Isabelle Matthews for proof-
reading.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Shapley Values

In this section, we briefly discuss the math behind Shapley values. This section leans
heavily upon the explanations and formulas as given in Lundberg and Lee (2017). A
motivated reader can find further information regarding Shapley values in that paper.

Shapley values are a class of what is known as additive feature attribution methods.
These methods are defined as methods that have an “explanation model that is a linear
function of binary variables”:

g(z′) = φ0 +
M

∑
i=1

φiz′i (A1)

where M is the number of input features, φ0, φi ∈ R and z′i ∈ {0, 1}M. Essentially, every
prediction of the model (which we will denote f (x)) can be obtained by assigning some
contribution to each of the variables.

The Shapley values have three desirable properties, as mentioned above, and the
formal definitions for these properties are given here.

Local Accuracy. Local accuracy requires that the outputs of our model f (x) and the
outputs of the additive feature attribution method to be equal. In symbols, this means the
following.

f (x) = g(x′) = φ0 +
M

∑
i=1

φix′i . (A2)

Missingness. A second property is missingness. Simply stated, any variable that has
a value of 0 requires its corresponding contribution to the output to be zero. In other words,
the following is the case.

x′i = 0⇒ φi = 0 (A3)

Consistency. The third property is consistency, which assures that if the model
changes so that an input’s contribution increases or stays the same, the attribution of that

Risks 2022, 10, 3 17 of 23

input should not decrease. If we let fx(z′) = f (hx(z′)) and z′/i denote setting z′i = 0, then
for any two models f and f ′, if the following is the case:

f ′x(z
′)− f ′x(z

′/i) ≥ fx(z′)− fx(z′/i) (A4)

for all inputs z′ ∈ {0, 1}M, then φi(f ′, x) ≥ φi(f , x).
The theorem proposed by Lundberg and Lee (2017) is as follows. Only one possible

explanation model follows the above definition and the three given properties:

φi(f , x) = ∑
z′⊆x′

|z′|!(M− |z′| − 1)!
M!

[fx(z′)− fx(z′/i)] (A5)

where |z′| is the number of non-zero entries in z′ and z′ ⊆ x′ represents all z′ vectors where
the non-zero entries are a subset of the non-zero entries in x′.

Appendix B. The Relationship between µ f , µg , and µh

Recall from Equation (8) that the following is the case:

µh =
1
n

n

∑
i=1

ẑi =
ẑ1 + ẑ2 + ẑ3 + . . . + ẑn

n
, (A6)

and that we defined model h as the product of models f and g. Thus, any ẑi is equivalent
to x̂i ŷi.

Taking Equation (8) and substituting x̂i ŷi for every ẑi, we see that the following is the
case.

µh =
x̂1ŷ1 + x̂2ŷ2 + x̂3ŷ3 + . . . + x̂nŷn

n
. (A7)

Whenever we multiply x̂i and ŷi to obtain ẑi, it is inevitable that we end up with the
term µ f µg in the resulting expansion. We will take this term and split it into two parts:
µh and α. Some correction must be added in to the other SHAP values. Start with the
expansion of µ f µg:

µ f µg = (
1
n

n

∑
i=1

x̂i) · (
1
n

n

∑
i=1

ŷi) (A8)

which can be written in tabular form for ease of explanation.

x̂1
n + x̂2

n + x̂3
n + . . . + x̂n

n

ŷ1
n

x̂1 ŷ1
n2

x̂2 ŷ1
n2

x̂3 ŷ1
n2 . . . x̂n ŷ1

n2

+
ŷ2
n

x̂1 ŷ2
n2

x̂2 ŷ2
n2

x̂3 ŷ2
n2 . . . x̂n ŷ2

n2

+
ŷ3
n

x̂1 ŷ3
n2

x̂2 ŷ3
n2

x̂3 ŷ3
n2 . . . x̂n ŷ3

n2

+
...

...
...

...
. . .

...
+
ŷn
n

x̂1 ŷn
n2

x̂2 ŷn
n2

x̂3 ŷn
n2 . . . x̂n ŷn

n2

Along the diagonal are the terms that may be of interest to us, specifically the following.

n

∑
i=1

x̂i ŷi
n2 =

µh
n

. (A9)

Risks 2022, 10, 3 18 of 23

By multiplying both sides by n, we see that the following is the case.

n
n

∑
i=1

x̂i ŷi
n2 = µh. (A10)

Since we already have one, we can simply add n− 1 and subtract n− 1 summands to
obtain the desired µh. This can be summarized as follows:

µ f µg =
n

∑
i=1

n

∑
j=1

(
x̂i ŷj

n2 I(i 6= j))− (n− 1)
n

∑
i=1

x̂i ŷi
n2 +

n

∑
i=1

x̂i ŷi
n

=
n

∑
i=1

n

∑
j=1

(
x̂i ŷj

n2 I(i 6= j))− (n− 1)
n

∑
i=1

x̂i ŷi
n2 + µh

= α + µh (A11)

where α = ∑n
i=1 ∑n

j=1(
x̂i ŷj
n2 I(i 6= j))− (n− 1)∑n

i=1
x̂i ŷi
n2 = µ f µg − µh. This becomes a critical

element in our substitutions in later steps.

Appendix B.1. Proof of Local Accuracy

If we define ẑi as the prediction of our model, h for the ith observation, µh as the
average model prediction across our training set, and szi j as the contribution of the jth
variable to the ith observation’s prediction, we can define local accuracy as follows.

ẑi = µh +
p

∑
j=1

szi j. (A12)

In this section, we will prove that this equation holds for our chosen definition of szi j.
Remember that based on our initial definition, ẑi = x̂i ŷi, and recall from Equation (24)

that the final equation for the mSHAP values is as follows.

szi j = µ f syi j + sxi jµg +
1
2

[
p

∑
a=1

(sxi jsyia + syi jsxia)

]
+

|s′zi j
|

∑
p
k=1 |s

′
zik
|
α. (A13)

We see that the following is the case.

µh +
p

∑
j=1

szi j = µh +
p

∑
j=1

(
µ f syi j + sxi jµg +

1
2

[
p

∑
a=1

(sxi jsyia + syi jsxia)

]
+

|s′zi j
|

∑
p
k=1 |s

′
zik
|
α

)

= µh +

(
µ f syi1 + sxi1µg +

1
2

[
p

∑
a=1

(sxi1syia + syi1sxia)

]
+

|s′zi1
|

∑
p
k=1 |s

′
zik
|
α

)
+ . . .

. . . +

(
µ f syi p + sxi pµg +

1
2

[
p

∑
a=1

(sxi psyia + syi psxia)

]
+

|s′zi p|
∑

p
k=1 |s

′
zik
|
α

)

= µh +
∑

p
k=1 |s

′
zik
|

∑
p
k=1 |s

′
zik
|
α +

p

∑
j=1

(
µ f syi j + sxi jµg +

1
2

[
p

∑
a=1

(sxi jsyia + syi jsxia)

])

= µh + α +
p

∑
j=1

(
µ f syi j + sxi jµg +

1
2

[
p

∑
a=1

(sxi jsyia + syi jsxia)

])
(A14)

At this point, we recall the definition given in Section 3.1 that µ f µg − µh = α. With a
simple manipulation, we see that µh + α = µ f µg. Thus, the following is the case.

Risks 2022, 10, 3 19 of 23

= µ f µg +

(
µ f syi1 + sxi1µg +

1
2

[
p

∑
a=1

(sxi1syia + syi1sxia)

])
+ . . .

. . . +

(
µ f syi p + sxi pµg +

1
2

[
p

∑
a=1

(sxi psyia + syi psxia)

])

= µ f µg +
p

∑
j=1

µ f syi j +
p

∑
j=1

sxi jµg +
1
2

p

∑
j=1

p

∑
a=1

(sxi jsyia + syi jsxia). (A15)

We can expand this further to give us the following.

= µ f µg +
p

∑
j=1

µ f syi j +
p

∑
j=1

sxi jµg +
1
2
(sxi1syi1 + syi1sxi1 + sxi1syi2 + syi1sxi2 + . . . + sxi1syi p

+ syi1sxi p + sxi2syi1 + syi2sxi1 + sxi2syi2 + syi2sxi2 + . . . + sxi2syi p + syi2sxi p

+ . . . + . . .

+ sxi psyi1 + syi psxi1 + sxi psyi2 + syi psxi2 + . . . + sxi psyi p + syi psxi p)

= µ f µg +
p

∑
j=1

µ f syi j +
p

∑
j=1

sxi jµg +
1
2
(2sxi1syi1 + 2sxi1syi2 + 2sxi1syi3 + . . . + 2sxi1syi p

+ 2sxi2syi1 + 2sxi2syi2 + 2sxi2syi3 + . . . + 2sxi2syi p

+ . . . + . . .

+ 2sxi psyi1 + 2sxi psyi2 + 2sxi psyi3 + . . . + 2sxi psyi p

= (µ f + sxi1 + sxi2 + . . . + sxi p)(µg + syi1 + syi2 + . . . + syi p). (A16)

Since the original SHAP values have the local accuracy property, we know that the
following is the case.

(µ f + sxi1 + sxi2 + . . . + sxi p)(µg + syi1 + syi2 + . . . + syi p) = x̂i ŷi (A17)

In turn, this is equal to ẑi. We see that ẑi = µh + ∑
p
j=1 szi j and that the local accuracy

property holds for the implementation of mSHAP using the absolute value weighting
method for α. Based on Equation (A15), we see that as long as the method for weighting α
sums to 1 across all covariates, the property of local accuracy holds. All methods tested
in this paper of weighting α maintain the local accuracy property, and a proof of that is
similar to the one above but left as an exercise for the reader. Since the final equation for
mSHAP only uses the absolute value method of weighting, we only prove local accuracy
for Equation (24) here.

Appendix C. The Simulation

Appendix C.1. Simulation Process

The basic flow for the simulation involved creating a data frame with all our desired
combinations of y1, y1, θ1, and θ2 and then mapping by using the following steps for
each row:

1. Using randomly distributed data as the covariates, create the response variables by
evaluating y1 and y2 and then multiply them together;

2. Create two gradient boosted forests, one to predict y1 and the other to predict y2,
based on the covariates;

3. Multiply the model predictions together and run kernelSHAP to approximate expla-
nations for the final model output;

4. Use TreeSHAP to obtain exact explanations for the predictions of y1 and y2;

Risks 2022, 10, 3 20 of 23

5. Multiply the TreeSHAP values together, using the method described in Section 3 to
calculate mSHAP values for each variable;

6. Distribute α into the subsequent mSHAP values in each of the four proposed methods;
7. Compare the mSHAP values to the kernelSHAP values, using the scoring metrics

described in Section 4.1;
8. Record the resulting scores in a data frame.

As previously mentioned, final scores were calculated by taking the average across all
variables and all combinations of the inputs. The code used to perform the simulation can
be found in the github repo at https://github.com/srmatth/mshap (accessed 16 October
2021), inside the inst/paper directory.

Appendix C.2. Additional Simulations

Since the initial simulation only used data with three explanatory variables, we have
completed additional simulations with different numbers of variables. The goal of this is
to ascertain that the weighted by absolute value is the best method no matter the number
of variables.

Our additional simulations used between 10 and 50 covariates across over 250 combi-
nations of y1, y2, θ1, and θ2. For these simulations, all of our covariates were distributed
uniformly between −1 and 1. After performing the simulation, we saw that the absolute
value method of weighting alpha is again the best (but just barely) based on overall score
and in other metrics as well. The results are shown in Table A1.

Table A1. Results from additional simulations encompassing different numbers of variables and
different variable values.

Method Score Direction
Score

Relative
Value Score Rank Score Pct Same

Sign
Pct Same

Rank

Weighted by
Absolute Value 2.13 0.884 0.770 0.480 74.4% 24.9%

Uniformly
Distributed 2.13 0.890 0.766 0.470 75.0% 23.7%

Weighted by
Squared Value 2.12 0.880 0.768 0.475 73.9% 24.3%

Weighted by
Raw Value 2.00 0.780 0.753 0.468 63.5% 23.2%

Due to these results, we are assured that the absolute weighting method of distributing
α is the best based on our chosen metrics, across different numbers of covariates. It can be
seen in Figure A1 that the general score decreases as we add more variables. However, this
is consistent with what we observed when we compared TreeSHAP (exact) to kernelSHAP
(on singular models, not two-part models), as demonstrated in Figure A2.

https://github.com/srmatth/mshap

Risks 2022, 10, 3 21 of 23

Figure A1. How the number of covariates impacts overall score on average for mSHAP compared
to kernelSHAP.

Figure A2. How the number of covariates impacts overall score, on average, for TreeSHAP compared
to kernelSHAP.

Appendix D. The Data

The data used to create the model include a Property Damage dataset, which is not
available publicly but can be obtained through the Casualty Actuarial Society.

Appendix E. The Model

Both the severity model and the frequency model were tuned in R using an h2o
backend (H2O.ai 2021). Tuning parameters are given in Table A2, and model metrics are

Risks 2022, 10, 3 22 of 23

given in Table A3. All model metrics were computed on the test (hold-out) subset of data.
These tuning results were then used to create the final model in Python using scikit-learn
(Pedregosa et al. 2011). Scikit-learn was used to create the models because multinomial
predictions do not have SHAP support in H2O as of the time of writing.

Table A2. Tuning parameters for the frequency and severity models.

Tuning Parameter Severity Model Frequency Model

ntrees 200 100
max_depth 30 20
mtries 20 20
min_split_improvement 0.0001 0.001
sample_rate 0.632 0.632

Table A3. Model metrics for all models.

Model MAE MSE Logloss

Severity Model 2832 16,359,170 NA
Frequency Model NA 0.074 0.427

Two-Part Model 683 830,351 NA

Appendix F. Code Availability

The code used to tune the model (as well as additional code focused on working with
the CAS datasets) can be found at this github link: https://github.com/srmatth/CAS
(accessed 16 October 2021).

mSHAP has been developed into an R package as well. The R package can be down-
loaded from CRAN, with the R code of the following:

i n s t a l l . packages (" mshap ")

or the development version from https://github.com/srmatth/mshap (accessed 16 October
2021) can be obtained by running the following:

devtools : : i n s t a l l _ g i t h u b (" srmatth/mshap ")

in R.
The mSHAP package repository (https://github.com/srmatth/mshap, accessed 16

October 2021) also contains all codes and data used to generate the plots in this paper, as
well as the code used to run the various simulations mentioned. It can be found in the
inst/paper directory under the main directory of the package. Be aware that installing the
package by following the steps above will not download the code used in this paper; it
must be obtained from the github repository.

References
Ablad, Mouad, Bouchra Frikh, and Brahim Ouhbi. 2021. Uncertainty quantification in deep learning context: Application to insurance.

Paper presented at 2020 6th IEEE Congress on Information Science and Technology (CiSt), Agadir and Essaouira, Morocco, June
5–12; pp. 110–15.

Akinyemi, Kemi, and Ben Leiser. 2020. The Use of Advanced Predictive Analytics for Rate Making in Insurance. Available
online: https://www.soa.org/globalassets/assets/library/newsletters/actuarial-technology-today/2020/may/att-2020-05.pdf
(accessed on 8 June 2021).

Arrieta, Alejandro Barredo, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador García,
Sergio Gil-López, Daniel Molina, Richard Benjamins, and et al. 2020. Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai. Information Fusion 58: 82–115. [CrossRef]

Doran, Derek, Sarah Schulz, and Tarek R Besold. 2017. What does explainable ai really mean? A new conceptualization of perspectives.
arXiv preprint arXiv:1710.00794.

Frees, Edward W., and Yunjie Sun. 2010. Household life insurance demand: A multivariate two-part model. North American Actuarial
Journal 14: 338–54. [CrossRef]

https://github.com/srmatth/CAS
https://github.com/srmatth/mshap
https://github.com/srmatth/mshap
https://www.soa.org/globalassets/assets/library/newsletters/actuarial-technology-today/2020/may/att-2020-05.pdf
http://doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1080/10920277.2010.10597595

Risks 2022, 10, 3 23 of 23

Gómez-Déniz, Emilio, and Enrique Calderín-Ojeda. 2021. A priori ratemaking selection using multivariate regression models allowing
different coverages in auto insurance. Risks 9: 137. [CrossRef]

Gunning, David. 2017. Explainable artificial intelligence (xai). Defense Advanced Research Projects Agency (DARPA), ND Web 2: 2.
[CrossRef] [PubMed]

Heras, Antonio, Ignacio Moreno, and José L Vilar-Zanón. 2018. An application of two-stage quantile regression to insurance ratemaking.
Scandinavian Actuarial Journal 9: 753–69. [CrossRef]

H2O.ai. 2021. h2o R Package.Version 3.34.0.1. Mountain Viewm: H2O.ai, Inc.
Li, Shoujun, Yanzi Miao, Guangyu Li, and Muhammad Ikram. 2020. A novel varistructure grey forecasting model with speed

adaptation and its application. Mathematics and Computers in Simulation 172: 45–70. [CrossRef]
Lipton, Zachary C. 2018. The mythos of model interpretability: In machine learning, the concept of interpretability is both important

and slippery. Queue 16: 31–57. [CrossRef]
Lundberg, Scott M., and Su-In Lee. 2017. A unified approach to interpreting model predictions. Paper presented at the 31st International

Conference on Neural Information Processing Systems, Long Beach, CA, USA, December 4–9; pp. 4765–74.
Lundberg, Scott M., Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha

Bansal, and Su-In Lee. 2020. From local explanations to global understanding with explainable ai for trees. Nature Machine
Intelligence 2: 56–57. [CrossRef] [PubMed]

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mthieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, and et al. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research 12: 2825–30.

Prabowo, Agung, Mustafa Mamat, Sukono, and Afif Amrullah Taufiq. 2019. Pricing of Premium for Automobile Insurance using
Bayesian Method. International Journal of Recent Technology and Engineering 8: 6226–29. [CrossRef]

Romaniuk, Maciej. 2017. Analysis of the insurance portfolio with an embedded catastrophe bond in a case of uncertain parameter of
the insurer’s share. In Information Systems Architecture and Technology, Proceedings of 37th International Conference on Information
Systems Architecture and Technology–ISAT 2016–Part IV, Karpacz, Poland, September 18–20. Berlin/Heidelberg: Springer, pp. 33–43.

Shapley, Lloyd S. 1953. A value for n-person games. Contributions to the Theory of Games 2: 307–17.
Slundberg. 2020. SHAP Values for Ensemble of XGBoost Models. Available online: https://github.com/slundberg/shap/issues/112

(accessed on 7 April 2021).

http://dx.doi.org/10.3390/risks9070137
http://dx.doi.org/10.1126/scirobotics.aay7120
http://www.ncbi.nlm.nih.gov/pubmed/33137719
http://dx.doi.org/10.1080/03461238.2018.1452786
http://dx.doi.org/10.1016/j.matcom.2019.12.020
http://dx.doi.org/10.1145/3236386.3241340
http://dx.doi.org/10.1038/s42256-019-0138-9
http://www.ncbi.nlm.nih.gov/pubmed/32607472
http://doi.org/10.35940/ijrte.C5740.098319
https://github.com/slundberg/shap/issues/112

	Introduction
	Motivation
	SHAP Values and Current Implementations
	Properties of SHAP Values
	Local Accuracy in Implementation
	The Problem of Local Accuracy

	The Math behind Multiplying SHAP Values
	Definitions
	Obtaining zi's SHAP Values
	Methods for Distributing alpha
	Uniformly Distributed
	Raw Weights
	Absolute Weights
	Squared Weights

	Simulation Study for Distributing
	Scoring the Methods
	General Equation for Scoring
	Lambda Functions

	Simulation Study
	Results of the Simulation
	Distributing alpha
	Impact of theta1 and theta2
	Computational Time

	Final Equation for mSHAP

	Case Study
	Model Creation
	Model Explanation

	Conclusions
	Shapley Values
	The Relationship between f, g, and h
	Proof of Local Accuracy

	The Simulation
	Simulation Process
	Additional Simulations

	The Data
	The Model
	Code Availability
	References

