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Lévy Interest Rate Models with a Long Memory
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Abstract: This article proposes an interest rate model ruled by mean reverting Lévy processes
with a sub-exponential memory of their sample path. This feature is achieved by considering an
Ornstein–Uhlenbeck process in which the exponential decaying kernel is replaced by a Mittag–Leffler
function. Based on a representation in term of an infinite dimensional Markov processes, we present
the main characteristics of bonds and short-term rates in this setting. Their dynamics under risk
neutral and forward measures are studied. Finally, bond options are valued with a discretization
scheme and a discrete Fourier’s transform.

Keywords: interest rate; Lévy process; Mittag–Leffler function; mean reverting process

1. Introduction

From the 1980s to current years, many interest rate models were proposed in the
literature. Their common aim is to explain changes in bond or swap quotes and to replicate
risks within the interest rates market. Three dominating frameworks coexist: short-term
rate, forward rate and the Libor market models. In this last approach proposed by Brace et al.
(1997), interest rates are driven by geometric processes. In the forward rate model pioneered
by Heath et al. (1992), the term structure of rates is specified through instantaneous forward
rates. Mercurio and Moraleda (2000) and Falini (2010) proposed a forward model with a
humped structure of volatilities. Li et al. (2020) developed a forward rate model unifying
most existing Gaussian models for interest rates. Short-term rate models such as those
promoted by Hull and White (1990) specify a mean reverting dynamic for the instantaneous
risk-free rate. The framework developed in this article belongs to this third category.

The family of short-term rate models gathers multiple frameworks and we refer the
reader, e.g., to Boero and Torricelli (1996) or to Schmidt (2011) for a review. On the other
hand, various processes were proposed to explain the interest rate risk. The literature
is too vast to be exhaustive. We restrict our attention to contributions related to this
work and do not attempt at providing a general overview, referring instead to Brigo and
Mercurio (2006) for detailed accounts on the topic. For instance, Eberlein and Raible
(1999) were among the first to propose a short-term rate model driven by Lévy processes.
In their setting, the short-term rate is ruled by Ornstein–Uhlenbeck processes reverting
in an exponential manner to a mean level. Within this framework, Eberlein and Kluge
(2005) derived analytical formulae for the prices of caps and floors using bilateral Laplace
transforms. In a similar setting, Hainaut and MacGilchrist (2010) proposed a pentanomial
tree for pricing derivatives. Hainaut (2013) studied the properties of a Gaussian short-
term rate with a Markov Switching Multifractal volatility. Moreno and Platania (2015)
proposed a square-root model replicating economic cycles in the dynamics of interest
rates. Hainaut (2016) and Njike and Hainaut (2020) developed unicurve and multicurve
models in which the short-term rate is exposed to self-excitating jumps. Fontana et al. (2020)
studied a modelling framework exploiting the the self-exciting behavior of continuous-state
branching processes with immigration (CBI).

A wide majority of short-term rate models are driven by Markov mean reverting
processes. In this setting, the interest rate depends on its path through the integral of past
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occurrences weighted by an exponential decaying function, called the memory kernel. In
this framework, the influence of previous variations of interest rates decreases exponentially
over time. In this article, we consider an alternative that consists in replacing this memory
kernel by a Mittag–Leffler decaying function. This function is sub-exponential and may
be seen as a generalization of the exponential. In this setting, the interest rate remembers
its previous occurrences for a longer period than in the exponential framework. The
motivations for studying such a model are multiple. Firstly, the features replicate the
persistence empirically observed in short term rates, as illustrated in Section 3, or in nominal
yields and inflation, as shown by Golinski and Zaffaroni (2016). Secondly, the proposed
model has a sufficient level of analytical tractability for most of financial applications such
as option pricing. Finally, it also offers a novel alternative to existing approaches based on
the fractional Brownian motion for introducing long memory, as for instances studied in
Cheridito et al. (2003) or Maejima and Yamamoto (2003).

A consequence of this change of memory kernel is that the interest rate process is
not Markovian anymore. Bond prices depend then on the sample path of past rates.
Nevertheless, we take advantage of the representation of the memory kernel as a Laplace
Stieltjes integral to rewrite the short-term rate as an infinite dimensional Markov process.
The last part of the article studies the properties of the model under a forward measure
and proposes a pricing method for bond options.

2. A Lévy Model with a Mittag Leffler Kernel

We consider that the short-term rate is driven by d ∈ N independent Lévy processes,
denoted by (L(j)

t )t≥0 for j = 1, . . . , d. These processes are defined on a probability space Ω,
endowed with the natural filtration (Ft)t≥0 and a risk neutral measure, Q. Each process

(L(j)
t )t≥0 has independent and stationary increments. It is fully described by a triplet(

µj, σ2
j , νj

)
where µj ∈ R, σj ∈ R+ and νj(.) is a Lévy measure. The moment generating

function (mgf) is denoted by φ
(j)
t (ω) for j = 1, . . . , d and is equal to the following:

φ
(j)
t (ω) := E

(
exp

(
ω(L(j)

t − L(j)
0 )
)
| F0

)
= exp

(
t
(

µjω +
1
2

ω2σ2
j +

∫
R

(
eωz − 1−ωz1|z|<ε

)
νj(dz)

))
(1)

= exp
(
tψj(ω)

)
,

where ε > 0. Notice that if the Lévy measure, νj(.), has no singurality at z = 0, we can set ε
to zero. The function ψj(ω) is the characteristic exponent of this Lévy process that is always

defined for pure imaginary numbers. Without loss of generality, we assume that L(j)
0 = 0.

According to the Lévy Itô decomposition, each L(j)
t is the sum of three components: a

deterministic drift µj t , a Brownian motion with variance σ2
j and a jump process, Jj(t , z),

of intensity νj(dz) well defined on [−∞, 0) ∪ (0,+∞]. This Lévy measure is such that the
probability of observing k jumps between [τ1, τ2] of a size included in a set B ⊂ R\{0} is
given by the following:

P
(

Jj([τ1, τ2]× B) = k
)

= e−
∫ τ2

τ1

∫
B νj(dz)dt

(∫ τ2
τ1

∫
B νj(dz)dt

)k

k!
, (2)

for j = 1, . . . , d. If
(

W(j)
t

)
t≥0

for j = 1, . . . , d, are independent Brownian motions on

(Ω,F ,Q), L(j)
t may be split as the sum of a drift, a Brownian motion and a jump process:

dL(j)
t = µjdt + σjdW(j)

t +
∫
R

z J̃j(dt , dz), (3)
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where the following is the case.

J̃j(dt , dz) = Jj(dt , dz)− 1|z|<ενj(dz)dt .

Without loss of generality, we assume that E
(

L(j)
t

)
= 0. This constraint implies that

the drift compensates jumps larger than ε in absolute value:

µj = −
∫
|z|≥ε

z νj(dz) , j = 1, . . . , d.

From Cont and Tankov (2003, Lemma 15.1, p. 482), for any integrable function
f : R→ C, the following relation holds.

E
(

eω
∫ t

s f (u)dL(j)
u |Fs

)
= exp

(∫ t

s
ψj(ω f (u)) du

)
, j = 1, . . . , d. (4)

This can be proved by approaching f (.) with a stepwise function and by using the
property of independence of increments. This property will be useful in later developments.
We postulate that the risk-free rate, (rt)t≥0, is the sum of a deterministic function ϕ(t) :

R→ R and of d processes:
(

X(d)
t

)
t≥0

:

rt = ϕ(t) +
d

∑
j=1

X(j)
t , (5)

where X(j)
t is such that the following is the case.

X(j)
t = gj(t)X(j)

0 +
∫ t

0
gj(t− u) dL(j)

u . (6)

The function gj(.) : R+ → R is continuously decreasing with an initial value gj(0) = 1.

As gj(.) determines the influence of past realizations of L(j)
t on the current value of the

process, we call it “memory kernel” or “kernel function” in the remainder of this article.
When the function gj(t) decreases exponentially, the processes

(
X(j)

t

)
j=1,...,d

are Markov

and mean-reverting as recalled in Appendix A. Such a model was, e.g., developed in
Hainaut and MacGilchrist (2010) for pricing interest rate derivatives and will serve as
benchmark in numerical illustrations. However,

(
X(j)

t

)
t≥0

and (rt)t≥0 are in general not

Markov for any other non-exponential kernels. This feature makes difficult the evaluation
of bond prices at a given time t > 0 as their value depends on the entire sample path of
interest rates up to t. Nevertheless, for a few kernel functions that admit a representation
as a Laplace–Stieltjes integral, we will show that the interest rate may be represented as
an infinite dimensional Markov process. In particular, we consider two types of kernel
functions, both based on the Mittag–Leffler function, denoted by Eα(.) where α ∈ [0, 1].

gj(t) = Eαj(−β jt) or gj(t) = Eαj(−β jt
αj) . (7)

In order to understand the motivation for working with such functions, we need to
review the main properties of the Mittag–Leffler function. The Mittag–Leffler function of
order α > 0 plays a fundamental role in the fractional calculus and can be considered as an
extension of the exponential function. It is defined as an infinite sum.

Eα(t) =
∞

∑
n=0

tn

Γ(nα + 1)
.
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In this article, we assume that α ∈ [0, 1]. For this range of values, Eα(−t) is an
intermediary between the power and the exponential decreasing functions.

E0(−t) =
1

1 + t
∀|t| < 1 and E1(−t) = e−t .

We refer the reader to the book of Gorenflo et al. (2020) for a detailed presentation of
this function. For a complete presentation of fractional calculus, we recommend the book
of Baleanu et al. (2012) and the book of Kochubei and Luchko (2019). Let us recall that a
function f : (0, ∞)→ ∞ is called completely monotonic if it possesses derivatives f (n)(t)
of any order n = 0, 1, 2 . . . and the derivatives are alternating in sign.

(−1)n f (n)(t) ≥ 0 ∀t ∈ ((0, ∞) .

The above property is equivalent to the existence of a representation of the function f
in the form of a Laplace–Stieltjes integral with non-decreasing density and non-negative
measure dγ(.) such that the following is the case.

f (t) =
∫ ∞

0
e−utdγ(u) .

The Mittag–Leffler function of negative argument Eα(−βt) is completely monotonic
for all 0 ≤ α ≤ 1 and β ∈ R+. A proof of this result is available in Gorenflo et al. (2020) on
page 47. The authors show the following:

Eα(−βt) =
∫ ∞

0
e−tudγα,β(u) , (8)

where the derivative of γα,β(u) is equal to the following.

dγα,β(u)
du

=
1

πα

∞

∑
k=1

(−1)k−1

k!
sin(παk)Γ(αk + 1)

uk−1

βk . (9)

Given that Eα(0) = 1, we have
∫ ∞

0 dγα,β(u) = 1 and γα,β(.) is then a measure of
probability on R+. In the remainder of this article, Eα(−βt) is called the decreasing Mittag–
Leffler (ML) kernel. The DML behaves at short-term as follows:

Eα(−βt) = 1− βt
Γ(1 + α)

+ · · · ∼ exp
(
− βt

Γ(1 + α)

)
,

when t→ 0. From Haubold et al. (2011), we known that when t→ ∞, DML converges to
the following.

Eα(−βt) ∼ (β t)−1

Γ(1− α)
.

The function Eα(−βt) interpolates for intermediate times t between the decreasing
exponential and the inverse power law. The exponential models fast decay for small time t,
whereas the asymptotic inverse power law entails a slow decrease at long term. This point
is illustrated in the left plot of Figure 1, which compares the ML kernel to the exponential
and inverse power functions.
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Figure 1. Left and right plots: Comparison of the Mittag–Leffler (ML), Eα(−βt), and power Mittag–
Leffler (PML), Eα(−βtα) kernels with exponential and power decreasing functions (α = 0.7 and
β = 0.5).

The Mittag–Leffler function is also related to the fractional calculus. In order to explain
this link, we recall that Caputo’s fractional derivative of order α ∈ (0, 1) for a function h(t):
R+ → R, C1 with respect to t is defined by the following.

∂α

∂tα
h(t) =

1
Γ(1− α)

∫ t

0
(t− s)−α ∂

∂s
h(s)ds (10)

When α = 1, this derivative corresponds to the first order derivative. The solution of
the fractional differential equation of the following:

∂α

∂tα
y(t) = −βy(t) 0 < α < 1

with the initial condition y(0) = b0 is y(t) = Eα(−βtα) . We abusively call this function the
power decreasing Mittag–Leffler kernel (PML). The Laplace transform of Eα(−βtα) is given
by sα−1

sα+β where Re(s) > |β| 1α . By inverting this transform, we can prove as in Gorenflo and
Mainardi (1997) that the PML is the Laplace transform of the following:

Eα(−βtα) =
∫ ∞

0
e−ut dγ

p
α,β(u) , (11)

where the derivative of γ
p
α,β(u) is given by the following.

dγ
p
α,β(u)

du
=

1
π

β uα−1 sin(απ)

u2α + 2βuα cos(απ) + β2 . (12)

Since Eα(0) = 1, we have
∫ ∞

0 dγ
p
α,β(u) = 1 and γ

p
α,β(u) is a measure of probability on

R+. As underlined by Mainardi (2020), the PML behaves at short-term as follows:

Eα(−βtα) = 1− βtα

Γ(1 + α)
+ · · · ∼ exp

(
− βtα

Γ(1 + α)

)
.

when t → 0. From Erdélyi et al. (1955), we known that when t → ∞, PML converges to
the following.

Eα(−βtα) ∼

(
β1/αt

)−α

Γ(1− α)
.
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As a consequence, the function Eα(−βtα) interpolates for intermediate times t between the
stretched exponential and the negative power law. The stretched exponential models the
very fast decay at short-term whereas the asymptotic power law is due to the very slow
decay for large time t. The right plot of Figure 1 illustrates this convergence.

Figure 2 presents simulated sample paths of the short-term rate with a one dimensional
(d = 1) model ruled by a Brownian motion. These paths are computed for various α with
the same random occurrences in order to make a comparison feasible. For the ML kernel,
the trajectories are nearly similar. An analysis of figures reveals that the sample path is
smoother for α = 0.50 than for α = 0.90. This trend becomes visible if we choose the highest
value for β. For PML sample paths, the difference is clearly visible. Decreasing α reduces
the volatility of rates and smooths the sample path.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
0.

01
0

0.
00

0
0.

01
0

M.L.

Time

r(
t)

alpha=0.90
alpha=0.50
alpha=0.10

0.0 0.1 0.2 0.3 0.4 0.5 0.6

−
0.

01
0

0.
00

0
0.

01
0

Power M.L.

Time

r(
t)

alpha=0.90
alpha=0.50
alpha=0.10

Figure 2. Upper and lower plots: Comparison of sample paths of (rt)t≥0 with Mittag–Leffler (ML)

and power Mittag—Leffler (PML) kernels. d = 1, β = 3, X(1)
0 = 0, ϕ(t) = 0 and Lt are Brownian

motions with σ1 = 0.05.

To conclude this section, we present the first two moments of the short-term rate
and its autocovariance function. The ML and PML kernels defined in Equation (7) are
continuously decreasing and integrable functions on any bounded interval of R. From
Equation (4), the mgf of X(j)

t for j = 1, . . . , d is then equal to the following.

E
(

eωX(j)
t |F0

)
= exp

(
ω gj(t) X(j)

0 +
∫ t

0
ψj
(
ω gj(t− u)

)
du
)

.

Deriving mgf allows us to find the first moments of X(j)
t conditionally to the initial

information. On the other hand, from the following representation:

rt = ϕ(t) +
d

∑
j=1

gj(t)X(j)
0 +

d

∑
j=1

∫ s

0
gj(t− u) dL(j)

u +
d

∑
j=1

∫ t

s
gj(t− u) dL(j)

u , (13)

of rt, we infer that the conditional expectation of the short-term rate is given by the following.

E(rt |Fs) = ϕ(t) +
d

∑
j=1

gj(t)X(j)
0 +

d

∑
j=1

∫ s

0
gj(t− u) dL(j)

u , (14)
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On the other hand, the conditional variance of rt is equal to the sum of variances of
Lévy processes times the integral of the squared kernels.

V(rt|Fs) =
d

∑
k=1

(
σ2

j +
∫
R

z2νj(dz)
) ∫ t

s
gj(t− u)2du . (15)

Unfortunately the integral of gj(.)2 does not admit a closed form expression for the ML
and PML kernels. Nevertheless, they can be numerically estimated. A direct calculation
allows us to infer that autocovariance between rt and ru for u ≤ t is given by:

C(rtru|Fs) =
d

∑
k=1

E
(∫ t

s
gj(t− v) dL(j)

v

∫ u

s
gj(u− v) dL(j)

v

)
(16)

=
d

∑
k=1

(
σ2

j +
∫
R

z2νj(dz)
) ∫ u

s
gj(t− v)gj(u− v) dv .

Contrary to the exponential case, this covariance function between rt and rt−∆ does
not admit any closed form expression when t→ ∞.

3. Empirical Motivation

This short section provides some empirical arguments motivating the developments
performed in this article, particularly the choice of a ML or PML memory kernel. We fit
univariate Gaussian models (d = 1) with exponential ML and PML kernels to the Eonia
time series from 13 March 2016 to 1 August 2019. The dataset counts nobs =866 daily
observations. We select this time window mainly because Eonia was relatively stable
during this period, as illustrated in the right plot of Figure 3. This allows us to assume that
the trend function, ϕ(t), is constant. Considering a larger dataset would raise the question
of modelling a non-linear trend in view of the left plot of Figure 3.

2000 2005 2010 2015 2020

0
1

2
3

4
5

13/3/2000 to 1/2/2021

Date

E
on

ia
 %

2017 2018 2019

−
0.

38
−

0.
34

−
0.

30
−

0.
26

13/3/2016−1/8/2019

Date

E
on

ia
 %

Figure 3. (Left plot): Eonia time series from 13 March 2000 to 1 February 2021. (Right plot): dataset
used to estimate parameters.

The dates of observations are denoted by t0, t1, . . . , tnobs−1, whereas the step of time
between two successive observations is ∆t. We first consider a one dimensional exponential
kernel model as detailed in Appendix A. Under the assumption that ϕ(tk) = ϕ(tk + ∆t)
and X0 = 0, we find the following:

∆Lk+1 = Ltk+1 − Ltk ≈ rtk+1 − rtk −
k

∑
j=0

(
e−κ(tk+1−tj) − e−κ(tk−tj)

)
∆Lj ,

for k = 1, . . . , nobs − 1. Under the assumption that Lt is a Brownian motion without drift
and of variance σ2, parameters are estimated by log-likelihood maximization. We next
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consider models with ML and PML kernel functions. In this cases, the variations of the
underlying Lévy process are approached by the following:

∆Lk+1 = Ltk+1 − Ltk ≈ rtk+1 − rtk −
k

∑
j=0

(
g(tk+1 − tj)− g(tk − tj)

)
∆Lj ,

for k = 1, . . . , nobs − 1 where g(.) is either the ML or the PML function. Under the assump-
tion of normality, parameters are estimated by log-likelihood maximization whereas the
goodness of fit is measured with the Akaike Information Criterion (AIC). The results of this
procedure are reported in Table 1. In terms of log-likelihood, exponential and ML models
achieve the same goodness of fit but the exponential model is more parsimonious and
preferred. They share the same estimated volatilities but the parameters of reversion κ and
β slightly differ. The best fit, based on the AIC, is obtained with a power Mittag–Leffler
kernel. The parameter α that drives the decay of the memory is small. This means that the
process has a longer-term memory than the exponential model. On the other hand, the
mean reversion speed is significantly higher than the ones of other models. We recall to the
reader that estimated parameters reflect the dynamic of rt under the real measure P and
not the risk neutral one.

Table 1. Parameter estimates by log-likelihood maximization of one dimensional models with
exponential, ML and PML kernels.

Exponential ML PML

σ 1.4763 × 10−3 σ 1.4767 × 10−3 1.3927× 10−3

κ 0.6926 α 0.9954 0.1924
β 0.7218 1.2171

Log-likelihood 6809.75 Log-likelihood 6809.93 6861.15

AIC −13,615.50 −13,613.86 −13,716.30

4. Alternative Formulation

If the memory is not exponential decaying, the interest rate process (rt)t≥0 is not
Markovian. This feature makes difficult the evaluation of bond prices or interest rate
derivatives because their values depend on the entire history of the rate process. Never-
theless, if the memory kernel admits a representation as a Laplace–Stieltjes integral, we
can convert the short-term rate into an infinite dimensional Markov process. Approxi-
mating this process allows us to infer the dynamic of bond prices. As developments are
similar in both cases, we denote by γj(.) the measures γ

(j)
αj ,β j

(.) or γ
p(j)
αj ,β j

(.) of Eαj(−β jt)

and Eαj(−β jt
αj). Let us recall that the function gj(t) =

∫ ∞
0 e−ξtdγj(ξ). Using the Fubini’s

theorem, the processes X(j)
t are then rewritten as follows:

X(j)
t = X(j)

0

∫ ∞

0
e−t ξ dγj(ξ) +

∫ t

0

∫ ∞

0
e−ξ(t−u)dγj(ξ) dL(j)

u

=
∫ ∞

0

(
e−t ξY(j,ξ)

0 +
∫ t

0
e−ξ(t−u) dL(j)

u

)
︸ ︷︷ ︸

Y(j,ξ)
t

dγj(ξ)

for j = 1, . . . , d. The Y(j,ξ)
t are Ornstein–Uhlenbeck processes for j = 1, . . . , d and for all

ξ ∈ R+. Their initial values are X(j)
0 = Y(j,ξ)

0 , and they obey to the following stochastic
differential equation (SDE).

dY(j,ξ)
t = −ξY(j,ξ)

t dt + dL(j)
t . (17)
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As this SDE admits the following solution:

Y(j,ξ)
t = e−ξ(t−s)Y(j,ξ)

s +
∫ t

s
e−ξ(t−u)dL(j)

u , (18)

the short-term rate is then a sum of integrals of Y(j,ξ)
t .

rt = ϕ(t) +
d

∑
j=1

∫ ∞

0
Y(j,ξ)

t dγj(ξ) . (19)

Given that γ
(j)
αj ,β j

(.) and γ
p(j)
αj ,β j

(.) are probability measures, the differential of rt is, on
the other hand, equal to the following.

drt = dϕ(t)−
d

∑
j=1

∫ ∞

0
ξY(j,ξ)

t dγj(ξ) +
d

∑
j=1

∫ ∞

0
dγj(ξ)︸ ︷︷ ︸
=1

dL(j)
t .

Combining Equations (18) and (19) allows us to rewrite the short-term rate as the
following sum:

rt = ϕ(t) +
d

∑
j=1

∫ ∞

0

(
e−ξ(t−s)Y(j,ξ)

s +
∫ t

s
e−ξ(t−u)dL(j)

u

)
dγj(ξ) (20)

= ϕ(t) +
d

∑
j=1

∫ ∞

0
e−ξ(t−s)Y(j,ξ)

s dγj(ξ) +
d

∑
j=1

∫ t

s
gj(t− u)dL(j)

u

which does not depend anymore upon information prior to s. This relation emphasizes
that rt and

(
Y(j,ξ)

t

)
ξ∈R+ ,j∈{1,...,d}

form well an infinite dimensional Markov process. If we

remember that E(L(j)
t ) = 0, we infer an equivalent representation of Equation (14) for the

conditional expectation of rt in terms of Y(j,ξ)
t .

E(rt|Fs) = ϕ(t) +
d

∑
j=1

∫ ∞

0
e−ξ(t−s)Y(j,ξ)

s dγj(ξ) .

We will explain in the next section how to approximate the infinity of processes by
discretizing measures γj(ξ). However, we evaluate zero coupon bonds and instantaneous
forward rates in this setting first.

5. Bond Prices and Forward Rates

A zero-coupon bond of maturity t delivers a unit cash-flow at expiry. Its price at time
s prior to t is denoted by P(s, t) and in absence of arbitrage, and it is the expected discount

factor under the risk neutral measure, P(s, t) = E
(

e−
∫ t

s ru du | Fs

)
. The next proposition

presents a semi-closed form expression for this price.

Proposition 1. Let us, respectively, define functions B(ξ)(s, t) and hj(s, t) as follows:

B(ξ)(s, t) =
1
ξ

(
1− e−ξ(t−s)

)
, (21)

hj(s, t) =
∫ ∞

0
B(ξ)(s, t) dγj(ξ) , (22)
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for s ≤ t and j = 1, . . . , d. The zero coupon bond price is equal. to

P(s, t) = exp

(
−
∫ t

s
ϕ(u)du +

d

∑
j=1

∫ t

s
ψj(−hj(u, t))du (23)

−
d

∑
j=1

(
X(j)

0

∫ t

s
gj(u)du +

∫ s

0

∫ ∞

0
e−ξ(s−u)Bξ(s, t) dγj(ξ) dL(j)

u

))
.

Proof. From Equation (13), we infer, after a change of the integration order, the following.

∫ t

s
ru du =

∫ t

s
ϕ(u)du +

d

∑
j=1

X(j)
0

∫ t

s
gj(u)du+

d

∑
j=1

∫ s

0

∫ t

s
gj(u− v) du dL(j)

v +
d

∑
j=1

∫ t

s

∫ t

v
gj(u− v) du dL(j)

v .

A direct calculation allows us to rewrite the integrals of gj(.) in this last expression
as follows. ∫ t

s
gj(u− v) du =

∫ ∞

0
e−ξ(s−v)Bξ(s, t) dγj(ξ) ,∫ t

v
gj(u− v) du =

∫ ∞

0
Bξ(v, t) dγj(ξ) = hj(v, t) .

The zero-coupon bond price becomes the following.

E
(

e−
∫ t

s ru du | Fs

)
= E

(
exp

(
−

d

∑
j=1

∫ t

s
hj(v, t) dL(j)

v

)
| Fs

)
×

exp

(
−
∫ t

s
ϕ(u)du−

d

∑
j=1

(
X(j)

0

∫ t

s
gj(u)du +

∫ s

0

∫ ∞

0
e−(s−v)Bξ(s, t) dγj(ξ) dL(j)

v

))
.

Finally, the expectation in this last expression is calculated with Equation (4).

Remark that limξ→∞ B(ξ)(v, t) = 0 and that limξ→0 B(ξ)(v, t) = t− v. Furthermore, the
function B(ξ)(v, t) admits a single maximum ξ∗ < ∞ such that B(ξ∗)(v, t) ≥ B(ξ)(v, t) for a’l
ξ ∈ R+. Therefore, the integral hj(v, t) =

∫ ∞
0 B(ξ)(v, t) dγj(ξ) is bounded by B(ξ∗)(v, t) and

is well defined. Equation (23) emphasizes the dependence of the bond price to the history
of Levy processes. A more convenient formulation in terms of

(
Y(j,ξ)

s

)
ξ≥0

for j = 1, . . . , d

is presented in the next proposition. In this alternative valuation formula, the bond price is
exclusively calculated with information available at the time of valuation.

Proposition 2. The value at time s > 0 of a zero coupon bond price expiring at t > s is also
equal to the following:

P(s, t) = exp

(
−
∫ t

s
ϕ(u)du−

d

∑
j=1

∫ ∞

0
Y(j,ξ)

s B(ξ)(s, t) dγj(ξ)

)
(24)

×
d

∏
j=1

exp
(∫ t

s
ψj
(
−hj(u, t)

)
du
)

,

where B(ξ)(s, t) and hj(v, t) for j = 1, . . . , d are defined by Equations (21) and (22).
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Proof. Starting from Equation (23), we rewrite the last terms as follows.

X(j)
0

∫ t

s
gj(u)du +

∫ s

0

∫ ∞

0
e−ξ(s−u)Bξ(s, t) dγj(ξ) dL(j)

u

=
∫ ∞

0
Bξ(s, t)

(
X(j)

0 e−sξ +
∫ s

0
e−ξ(s−v) dL(j)

v

)
dγj(ξ)

=
∫ ∞

0
Bξ(s, t)Y(j,ξ)

s dγj(ξ) .

We conclude that the bond price is well given by Equation (24).

The integrals in the bond price formula do not admit closed form expressions. Never-
theless, the integrals

∫ t
s ψj

(
−hj(u, t)

)
du can be numerically computed without any partic-

ular difficulty whereas
∫ ∞

0 Y(j,ξ)
s B(ξ)(s, t) dγj(ξ) is approached by a discretization scheme

developed in the following section.
Let us recall that the initial values of processes

(
Y(j,ξ)

t

)
t≥0,j∈{1,...,d}

are null, that is

Y(j,ξ)
0 = 0, for all ξ ∈ R+ and j = 1, . . . , d. Therefore, Equation (24) provides us a method to

estimate the function ϕ(.) such that the model perfectly matches the initial term structure
of bond prices. More precisely, the integral of ϕ(.) is the following.

∫ t

0
ϕ(u)du = − ln(P(0, t)) +

d

∑
j=1

∫ t

0
ψj
(
−hj(v, t)

)
dv .

Deriving this last expression results in the following function.

ϕ(t) = − ∂

∂t
ln(P(0, t))−

d

∑
j=1

ψj
(
−hj(0, t)

)
. (25)

The dynamic of interest rates can also be reformulated in terms of instantaneous
forward rates. Let us recall that the instantaneous forward rate, denoted by f (s, t), is such
that P(s, t) = exp

(
−
∫ t

s f (s, u) du
)

and is, therefore, equal to the following.

f (s, t) = − ∂

∂t
ln P(s, t) 0 ≤ s ≤ t.

The next proposition states that the forward rate is the sum of the expected interest rate
under the risk neutral measure and of an adjustment that directly depends upon the
memory kernel.

Proposition 3. The instantaneous forward rate at time s and of maturity t is given by the following:

f (s, t) = E(rt|Fs) +
d

∑
j=1

∫ t

s
gj(t− v)

(
µj − hj(v, t) σ2

j

)
dv (26)

+
d

∑
j=1

∫ t

s
gj(t− v)

∫
R

(
z e−hj(v,t) z − z1|z|<ε

)
νj(dz) dv ,
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where the following is the case. E(rt|Fs) = ϕ(t) + ∑d
j=1
∫ ∞

0 e−ξ(t−s)Y(j,ξ)
s dγj(ξ) . Its dynamic is

independent from processes Y(j,ξ)
s and is equal to the following.

d f (s, t) =
d

∑
j=1

gj(t− s) dL(j)
s −

d

∑
j=1

gj(t− s)
(

µj − hj(v, t) σ2
j

)
ds

−
d

∑
j=1

gj(t− s)
(∫

R

(
z e−hj(v,t) z − z1|z|<ε

)
νj(dz)

)
ds .

Proof. From Equation (24) and ∂B(ξ)(s,t)
∂t = e−ξ(t−s), we have the following.

− ∂

∂t
ln P(s, t)

= E(rt|Fs)−
d

∑
j=1

∫ t

s

∂

∂t
ψj

(
−
∫ ∞

0
B(ξ)(v, t) dγj(ξ)

)
dv .

If we remember expression (24) of the characteristic exponent, we immediately in-
fer the following.

∂

∂t
ψj

(
−
∫ ∞

0
B(ξ)(v, t) dγj(ξ)

)
=

− µj

∫ ∞

0
e−ξ(t−v) dγj(ξ) +

(∫ ∞

0
B(ξ)(v, t) dγj(ξ)

) ∫ ∞

0
e−ξ(t−v) dγj(ξ) σ2

j

+
∫
R

z
(
−
∫ ∞

0
e−ξ(t−v) dγj(ξ)e

−
∫ ∞

0 B(ξ)(v,t) dγj(ξ) z +
∫ ∞

0
e−ξ(t−v) dγj(ξ) 1|z|<ε

)
νj(dz).

As
∫ ∞

0 e−ξ(t−v) dγj(ξ) = gj(t− v), we obtain Equation (26). The differential of f (s, t)
is obtained by applying the Itô’s lemma for Lévy processes.

This last proposition emphasizes that our short-term rate model can be reformulated
as a forward rate model in which the forward rate dynamic is independent from processes(

Y(j,ξ)
s

)
ξ≥0

for j = 1, . . . , d.

6. Discretization Scheme

Instead of considering an infinity of processes
(

Y(j,ξ)
t

)
t≥0,j∈{1,...,d}

, we approach the

model with a finite number of equivalent processes. This presents several advantages.
Firstly, this makes the implementation of our model. Secondly, we can rely on Itô’s calculus
in most developments. This allows us to deduce the dynamic of bond prices both in the
approximated and original models. The key step consists in approximating γj(.) by discrete
measures with a finite numbers of atoms. For this purpose we consider a partition of the
following: E (n) := {0 < ξ

(n)
0 < ξ

(n)
1 < · · · < ξ

(n)
n < ∞}. On each interval (ξ(n)i , ξ

(n)
i+1), we

define the barycenter of γj(.):

b(j)
k+1 =

∫ ξ
(n)
k+1

ξ
(n)
k

z dγj(z)∫ ξ
(n)
k+1

ξ
(n)
k

dγj(z)
j = 1, . . . , d (27)

and the mass of corresponding atoms is defined as the measure of intervals of the following
partition:

m(j)
k+1 =

∫ ξ
(n)
k+1

ξ
(n)
k

dγj(z) , (28)
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for k = 0, . . . , n− 1. In practice, we choose ξ
(n)
0 = 0 and set ξ

(n)
n to a percentile of the density

γj(z) (e.g., 95%). The discrete measure for a partition of size n is defined as follows:

γ
(n)
j (z) =

n

∑
k=1

m(j)
k δ

b(j)
k
(z) , (29)

where δ
b(j)

k
(z) is the Dirac measure located at point b(j)

k . We consider that the following

assumption holds for the partition E (n) :

• ξ
(n)
0 → 0 and ξ

(n)
n → ∞ when n→ ∞;

• max |ξ(n)i+1 − ξ
(n)
i | → 0 when n→ ∞;

• E (n) ⊂ E (n+1).

In this case, for any function f (.) integrable with respect to γj(.), we have limn→∞
∫ ∞

0 f (z)

dγ
(n)
j (z)=

∫ ∞
0 f (z) dγj(z).

Figure 4 shows the differential of measures dγ(.) of the ML and PML kernels. For the
ML kernels (left plot), decreasing α clearly makes the right tail of dγ(.) larger. The right
plot also reveals that the construction of the partition requires a particular care for the PML
kernel as we have to integrate numerically measure γ

(p)
α,β(z) that is not defined for z = 0.

The two next propositions, respectively, present the expressions of integrals needed for
calculating the discrete equivalent distributions of γj(.) in the ML and PML cases.
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Figure 4. Left and right plots: measures γ(.) of the Mittag–Leffler (ML) and power Mittag–Leffler
(PML) kernels. β = 0.5.

Proposition 4. For the ML kernel, the discrete probability mass of atoms is given by the following:

m(j)
k+1 =

∫ ξ
(n)
k+1

ξ
(n)
k

dγj(z) (30)

=
1

παj

∞

∑
l=1

(−1)l−1

l βl
j l!

sin
(
παjl

)
Γ
(
αjl + 1

)[(
ξ
(n)
k+1

)l
−
(

ξ
(n)
k

)l
]

,

whereas the numerator in the expression of barycenters (27) is the following.

∫ ξ
(n)
k+1

ξ
(n)
k

zdγj(z) =
1

παj

∞

∑
l=1

(−1)l−1

βl (l + 1)!
sin
(
παjl

)
Γ(αjl + 1)

[(
ξ
(n)
k+1

)l+1
−
(

ξ
(n)
k

)l+1
]

. (31)

This result is a direct consequence of the definition of the ML function. To the best of
our knowledge, these expressions does not admit any other representations. In the PML
case, barycenters have a closed-form expression.
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Proposition 5. For the PML kernel, the discrete probability mass of atoms is given by the following.

m(j)
k+1 =

∫ ξ
(n)
k+1

ξ
(n)
k

dγj(z) =
1

παj
arctan


(

ξ
(n)
k+1

)αj
+ β j cos(παj)

β j sin(παj)

 (32)

− 1
παj

arctan


(

ξ
(n)
k

)αj
+ β j cos(παj)

β j sin(παj)

 .

The numerator in the expression of barycenters (27) does not admit a closed form expression
but may be approached by the following.

∫ ξ
(n)
k+1

ξ
(n)
k

zdγj(z) ≈

 ξ
(n)
k+1 + ξ

(n)
k

2παj


arctan


(

ξ
(n)
k+1

)α
+ β j cos(παj)

β j sin(παj)

 (33)

− arctan


(

ξ
(n)
k

)α
+ β j cos(παj)

β j sin(παj)


 .

Proof. The expression of the probability mass m(j)
k+1 comes from the following relation.

β sin(απ)

π

∫ zα−1

z2α + 2βzα cos(απ) + β2 dz =
1

πα
arctan

(
zα + β cos(πα)

β sin(πα)

)
The second result is obtained with an integration by parts in which the integral is

approached with the trapezoidal method.

To lighten further developments, we adopt the following notations Y(j,k)
s := Y

(j,b(n)k )
s

for k = 1, . . . , n and j = 1, . . . , d. Let us first recall that Y(j,k)
0 = 0 and therefore Y(j,k)

s is an
integral from zero to s with respect to the jth Lévy process.

Y(j,k)
s =

∫ s

0
e−b(j)

k (s−u)dL(j)
u . (34)

Replacing the continuous measures
(
γj
)

j=1...d by their discrete equivalents results in

approximation r(n)s of the short-term rate rs.

r(n)s = ϕ(n)(s) +
d

∑
j=1

n

∑
k=1

m(j)
k Y(j,k)

s . (35)

We adopt the following notation B(j,k)(s, t) = 1
b(j)

k

(
1− e−b(j)

k (t−s)
)

for k = 1, . . . , n and

j = 1, . . . , d. The bond price in the discretized model with partitions of size n is denoted by
P(n)(s, t) and is equal to the following:

P(n)(s, t) = exp

(
−
∫ t

s
ϕ(n)(u)du−

d

∑
j=1

n

∑
k=1

Y(j,k)
s B(j,k)(s, t)m(j)

k

)
(36)

×
d

∏
j=1

exp

(∫ t

s
ψj

(
−

n

∑
k=1

B(j,k)(v, t)m(j)
k

)
dv

)
,
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where ϕ(n)(t) is the discretized version of ϕ(t).

ϕ(n)(t) = − ∂

∂t
ln(P(0, t))−

d

∑
j=1

ψj

(
−

n

∑
k=1

B(j,k)(0, t)m(j)
k

)
. (37)

As the number of processes in the discretized model is finite, we can apply Itô’s lemma
in order to establish the dynamic of P(n)(s, t).

Proposition 6. The zero coupon bond price P(n)(s, t) is a geometric Lévy processes solution of
the SDE:

dP(n)(s, t)
P(n)(s, t)

= r(n)s ds−
d

∑
j=1

σj

n

∑
k=1

B(j,k)(s, t)m(j)
k dW(j)

s (38)

+
d

∑
j=1

∫
R

(
e−z

(
∑n

k=1 m(j)
k B(j,k)(s,t)

)
− 1
)(

Jj(ds , dz)− νj(dz)ds
)

.

with the terminal condition P(n)(t, t) = 1.

Proof. If we remember that dY(j,k)
s = dL(j)

s − b(j)
k Y(j,k)

s ds, the Itô’s lemma provides us with
the following differential for P(n)(s, t).

dP(n)(s, t) =
∂P(n)(s, t)

∂s
ds−

d

∑
j=1

n

∑
k=1

∂P(n)(s, t)
∂Y(j,k)

b(j)
k Y(j,k)

s ds (39)

+
d

∑
j=1

n

∑
k=1

∂P(n)(s, t)
∂Y(j,k)

µjds +
d

∑
j=1

n

∑
k=1

∂P(n)(s, t)
∂Y(j,k)

∫
R

z J̃j(dt , dz)

+
d

∑
j=1

n

∑
k=1

∂P(n)(s, t)
∂Y(j,k)

σjdW(j)
s +

1
2

d

∑
j=1

n

∑
k=1

n

∑
l=1

∂2P(n)(s, t)
∂Y(j,k)∂Y(j,l)

σ2
j ds

+
d

∑
j=1

∫
R

P(n)(s, t)
(

e−z
(

∑n
k=1 m(j)

k B(j,k)(s,t)
)
− 1
)
− z

n

∑
k=1

∂P(n)(s, t)
∂Y(j,k)

Jj(ds , dz) .

The first and second order partial derivatives of P(n)(s, t) are equal to the following.

∂P(n)(s, t)
∂Y(j,k)

= −P(n)(s, t) B(j,k)(s, t)m(j)
k , (40)

∂2P(n)(s, t)
∂Y(j,k)∂Y(i,l)

= P(n)(s, t) B(j,k)(s, t)B(i,l)(s, t)m(j)
k m(i)

l . (41)

On the other hand, its partial derivative with respect to time is given by the following:

∂P(n)(s, t)
∂s

= P(n)(s, t)

(
ϕ(n)(s) +

d

∑
j=1

n

∑
k=1

Y(j,k)
s e−b(j)

k (t−s) m(j)
k (42)

−
d

∑
j=1

ψj

(
−

n

∑
k=1

B(j,k)(s, t)m(j)
k

))
,
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where the characteristic exponent is developed as the following sum.

ψj

(
−

n

∑
k=1

B(j,k)(s, t)m(j)
k

)
= −µj

n

∑
k=1

B(j,k)(s, t)m(j)
k +

1
2

(
n

∑
k=1

B(j,k)(s, t)m(j)
k

)2

σ2
j (43)

∫
R

(
e−
(

∑n
k=1 B(j,k)(s,t)m(j)

k

)
z − 1 +

(
n

∑
k=1

B(j,k)(s, t)m(j)
k

)
z1|z|<ε

)
νj(dz) .

Combining Equations (39)–(43) allows us to rewrite the dynamic of bond prices
as follows.

dP(n)(s, t) = P(n)(s, t)

(
ϕ(n)(s) +

d

∑
j=1

n

∑
k=1

Y(j,k)
s e−b(j)

k (t−s) m(j)
k

)
ds

+P(n)(s, t)
d

∑
j=1

n

∑
k=1

Y(j,k)
s B(j,k)(s, t)m(j)

k b(j)
k ds

−P(n)(s, t)
d

∑
j=1

σj

n

∑
k=1

B(k)(s, t)m(n)
k dW(j)

s

+P(n)(s, t)
d

∑
j=1

∫
R

(
e−z

(
∑n

k=1 m(j)
k B(j,k)(s,t)

)
− 1
)(

Jj(ds , dz)− νj(dz)ds
)

.

We infer the result if we remember Equation (35) and notice that the following is
the case.

n

∑
k=1

Y(j,k)
s e−b(j)

k (t−s) m(j)
k +

n

∑
k=1

Y(j,k)
s B(k)(s, t)m(j)

k b(j)
k =

n

∑
k=1

Y(j,k)
s m(j)

k .

As by construction limn→∞ γ
(n)
j (z) = γj(z), we immediately infer the dynamic of the

bond price in the non-discretized model by considering the limit of Equation (38).

Corollary 1. If the short-term rate is driven by Equation (19), the bond price is solution of the
following SDE:

dP(s, t)
P(s, t)

= rsds−
d

∑
j=1

σjhj(s, t)dW(j)
s (44)

+
d

∑
j=1

∫
R

(
e−zhj(s,t) − 1

)(
Jj(ds , dz)− νj(dz)ds

)
.

where hj(s, t) =
∫ ∞

0 B(ξ)(s, t) dγj(ξ) and with the terminal condition P(t, t) = 1.

In order to understand the role played by the memory kernel in the evolution of the
term structure of interest rates, we analyze the expectation and variance of bond yields.
The bond yield of a zero-coupon bond in the discretized model is defined as follows.

y(n)(s, t) = − ln P(n)(s, t)
t− s

.
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From Equation (36), we infer that this yield is proportional to a weighted sum of
mean reverting processes Y(j,k)

s . Since E
(

Y(j,k)
s |F0

)
= 0 by construction, the expected yield

conditionally to the initial filtration is equal to the following.

E
(

y(n)(s, t) | F0

)
=

1
t− s

(∫ t

s
ϕ(n)(u)du−

d

∑
j=1

∫ t

s
ψj

(
−

n

∑
k=1

B(j,k)(v, t)m(j)
k

)
dv

)
. (45)

The variance of the yield is the sum of d variances of a linear combination of processes
Y(j,k)

s . If we remember that the covariance Y(j,k)
s and Y(l,k)

s is equal to the following:

C
(

Y(j,k)
s Y(j,l)

s |F0

)
=

(
σ2

j +
∫
R

z2νj(dz)
) ∫ s

0
e−
(

b(j)
k +b(j)

l

)
(s−u)du (46)

=
σ2

j +
∫
R z2νj(dz)

b(j)
k + b(j)

l

(
1− e−

(
b(j)

k +b(j)
l

)
s
)

,

the variance of the yield, conditionally to F0, is the following triple sum.

V
(

y(n)(s, t) | F0

)
=

d

∑
j=1

V

 n

∑
k=1

B(j,k)(s, t)m(j)
k

t− s
Y(j,k)

s |F0

 (47)

=
d

∑
j=1

 n

∑
k=1

n

∑
l=1

B(j,k)(s, t)m(j)
k

t− s
B(j,l)(s, t)m(j)

l
t− s

C
(

Y(j,k)
s Y(j,l)

s |F0

) .

To illustrate these results, we consider an univariate jump-diffusion model (d = 1) in
which a single Lévy process is ruled by the following SDE.

dL(1)
t = −λ1η1dt + σ1dW(1)

t + η1 dN(1)
t . (48)

N(1)
t is a Poisson process with constant intensity λ1. The characteristic exponent is in

this case equal to the following:

ψ1(ω) = −λ1η1ω +
1
2

ω2σ2
1 + λ1(eωη1 − 1), (49)

whereas the Lévy measure is ν1(z) = λ1δη1(z) where δη1(z) is the Dirac measure located at

z = η1. The instantaneous variance of dL(1)
t is equal to the following.

σ2
1 +

∫
R

z2ν1(dz) = σ2
1 + λ1η2

1 .

Of course, we can consider other types of Lévy processes such as the variance gamma
and the Normal inverse gaussian, but this does not fundamentally modify the conclusions
drawn in this section. We first fit the curve ϕ(t) to the term structure of zero-coupon bond
yields, bootstrapped from the ICE swap rates on the 26/2/21 at noon. Since this function is
proportional to instantaneous forward rates, we have to interpolate bond yields. For this
purpose, we use a Nelson–Siegel (NS) model. Appendix B recalls this model and reports
the swap rates curve on the 26/2/21 and parameter estimates. There exist more advanced
interpolation methods such as, e.g., splines or kriging techniques as detailed in Cousin
et al. (2016) but the NS model is sufficiently accurate for our purposes to understand the
dynamic of yields over time.

We calculate the term structure of expected yields in 5, 10 and 15 years with
n = 40 atoms. Increasing n does not significantly modify the results. A sensitivity analysis
with respect to the number of atoms is proposed in Section 7. For the parameters, we
set β = 1.5, λ1 = 0.5, σ1 = 0.01 and η1 = −0.0002, which are possible realistic values in
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view of results from Section 3. We remind the reader that α is the parameter tuning the
memory of the model. If α = 1, the memory kernel is exponential and the model forgets
in an exponential manner past fluctuations of interest rates. On the other hand, for lower
values of α, the model forgets these variations according to a power decaying function.
Figures 5 and 6 show expected yields computed with the ML and PML models for α = 0.5
and α = 0.9. We use a discretization scheme with 40 atoms that cover ML and PML density
up to their 90% percentiles. For both models, the range between short and long-term yields
is narrowing with the time horizon. In the ML model, the lower α is, the longer the memory
and the quicker the convergence to a bumped (but nearly flat) yield curve. In the PML
model, expected yield curves with a low α dominate those with a high α and have a more
pronounced curvature.
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Figure 5. Expected yield curves in 5, 10 and 15 years; α = 0.5 and 0.9; β = 1.5; λ1 = 0.5; η1 = −0.002;
σ1 = 0.01. ML kernel with n = 40 atoms.
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Figure 6. Expected yield curves in 5, 10 and 15 years; α = 0.5 and 0.9; β = 1.5; λ1 = 0.5; η1 = −0.002;
σ1 = 0.01. PML kernel with n = 40 atoms.

Figures 7 and 8 report the expected standard deviations of future yields calculated with
ML and PML models. In both cases, the term structures of expected standard deviations do
not significantly evolve with the time horizon and are decreasing functions of the maturity.
We also notice that standard deviations are, respectively, inversely and directly proportional
to α in ML and PML models.
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Figure 7. Expected standard deviations of yields in 5, 10 and 15 years; α = 0.5 and 0.9; β = 1.5;
λ1 = 0.5; η1 = −0.002; σ1 = 0.01. ML kernel with n = 40 atoms.
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Figure 8. Expected standard deviations of yields in 5, 10 and 15 years; α = 0.5 and 0.9; β = 1.5;
λ1 = 0.5; η1 = −0.002; σ1 = 0.01. PML kernel with n = 40 atoms.

7. Pricing of Bond Options

The purpose of this section is to illustrate how long-term memory models can be used
for the pricing of derivatives. We investigate this for European options written on a zero
coupon bond. Our choice is motivated by the fact that these are the building blocks of
many structured products. The underlying bond has a maturity noted t2 while the option
expires at time t1 ≤ t2 with a strike price K. Without loss of generality we focus on a call
option but all developments remain valid for any other type of European options. The
value at time s ≤ t1 ≤ t2 of the call option is denoted by C(s) and is equal to the expected
discounted payoff under the risk neutral measure Q.

C(s) = E
(

e−
∫ t1

s ru du(P(t1, t2)− K)+ | Fs

)
.

This price does not admit any closed form expression. Nevertheless, we can apply the
standard technique of changes of numeraire combined with a discrete Fourier’s transform
(DFT) to evaluate this call option. The first stage consists to define a forward measure,
denoted by F that has P(s, t1) as numeraire, i.e., every assets discounted by P(s, t1) is a

martingale. If S(0)
t = e

∫ t
0 ru du is the cash account (numeraire of Q), the Radon–Nykodym

derivative defining this change of measure is dF
dQ

∣∣∣
t1
=

S(0)
0

S(0)
t1

P(0,t1)
. Using standard arguments,

the call price is equal to the product of a discount bond and of the expected payoff under
this forward measure.

C(s) = P(s, t1)EF((P(t1, t2)− K)+ | Fs
)

. (50)
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The next proposition details the dynamics of underlying Lévy processes under the
forward measure.

Proposition 7. Under the forward measure F with P(s, t1) as numeraire, the process
(

W(j)F
s

)
s≥0

is the following:
dW(j)F

s = dW(j)
t + hj(u, t1)du . (51)

for j = 1, . . . d is a Brownian motion. Furthermore, the random measure is the following:

J̃Fj (du, dz) = J̃j(du, dz)− 1|z|<ε

(
e−hj(u,t1)z − 1

)
νj(dz)du , (52)

for j = 1, . . . d defines a jump process under P̃ with the time-varying measure νFj (dt, dz) =

e−hj(u,t1)zνj(dz).

Proof. From Applebaum (2004, chap. 5, secs. 2 and 4), the forward change of the following
measure:

dF
dQ

∣∣∣∣
t1

=
S(0)

0

S(0)
t1

P(0, t1)
(53)

= exp

(
d

∑
j=1

∫ t1

0
−hj(u, t1)σjdW(j)

u −
1
2

hj(u, t1)
2σ2

j du

−
d

∑
j=1

∫ t1

0

∫
R

(
e−hj(u,t1)z − 1 + hj(u, t1)z1|z|<ε

)
νj(dz)du

+
d

∑
j=1

∫ t1

0

∫
|z|≥ε
−hj(u, t1)z J̃j(du , dz)

)

is a martingale under the measure Q, which defines an equivalent measure F under which(
W(j)F

s

)
s≥0

and J̃Fj (du, dz) for j = 1, . . . d are, respectively, Brownian motions and random

jump measures satisfying Equations (51) and (52).

Combining Corollary 1 and Proposition 7 allows us to infer that a zero-coupon bond
of maturity t ≥ t1 is ruled under the forward measure by the SDE.

dP(s, t)
P(s, t)

=

(
rs +

d

∑
j=1

σjhj(s, t1)
2 +

d

∑
j=1

∫
R

(
e−zhj(s,t1) − 1

)2
νj(dz)

)
ds (54)

+
d

∑
j=1

∫
R

(
e−zhj(s,t1) − 1

)(
JFj (ds , dz)− e−hj(s,t1)zνj(dz)ds

)
−

d

∑
j=1

σjhj(s, t1)dW(j)F
s .

This equation emphasizes that the average bond return under the forward measure is
the risk-free rate plus a positive time varying premium that converges toward zero when
s→ t1. The next proposition reveals that the processes Y(j,ξ)

t do not revert anymore toward
zero under F.

Proposition 8. Let us define the following function.

θ(j,ξ)(u) =

{
−
(

hj(u, t1)σj +
∫
R z
(

1− e−hj(u,t1)z1|z|<ε

)
νj(dz)

)
ξ > 0

0 ξ = 0
. (55)
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Under the forward measure F, Y(j,ξ)
t is a process reverting to θ(j,ξ)(t)/ξ at a speed ξ such that

the following is the case:

Y(j,ξ)
t = e−ξ(t−s)Y(j)

s +
∫ t

s
e−ξ(t−u)θ(j,ξ)(u)du (56)

+ σj

∫ t

s
e−ξ(t−u)dW(j)F

u +
∫ t

s
e−ξ(t−u)

∫
R

zJ̃Fj (du, dz) ,

for all j = 1, . . . , d and ξ ∈ R+.

Proof. By definition of Y(j,ξ)
s and from Corollary 1, we immediately infer its dynamic under

the forward measure.

dY(j,ξ)
s = −ξY(j,ξ)

s ds + σjdW(j)F
s +

∫
R

zJ̃Fj (ds, dz) (57)

+

(
µj − hj(s, t1)σj +

∫
|z|<ε

z
(

e−hj(s,t1)z − 1
)

νj(dz)
)

ds .

Since we impose that µj = −
∫
R

(
z− z1|z|<ε

)
νj(dz) for j = 1, . . . , d in order to ensure

that E
(

L(j)
t

)
= 0, we deduce that Y(j,ξ)

s reverts to θ(j,ξ)(t)/ξ:

dY(j,ξ)
s = ξ

(
1
ξ

θ(j,ξ)(s)−Y(j,ξ)
s

)
ds + σjdW(j)F

s +
∫
R

zJ̃Fj (ds, dz) ,

and the solution of this SDE is Equation (56).

Equations (53) and (57) are useful for simulating sample paths of interest rates and
bond prices under the forward measure, e.g., for pricing exotic options. One solution to
price a call option on a zero-coupon bond consists in numerically inverting the Fourier’s
transform of the density of its bond log-return under the forward measure. This step is
performed with a standard discrete Fourier’s transform algorithm (DFT) that approximates
the probability density function of the log-return under the forward measure F. The
expectation of the payoff under the forward measure is next computed with this distribution.
The moment generating function of the bond log-return, presented in the next proposition,
admits a closed form formula and is a key result to implementing the DFT procedure.

Proposition 9. The moment generating function (mgf) of ln P(t1, t2) under measure F, condition-
ally to the filtration Fs, is given by the following.

EF
(

eω ln P(t1,t2)|Fs

)
= (58)

exp

(
−

d

∑
j=1

∫ t1

s
ψj
(
−hj(u, t1)

)
du−ω

∫ t2

t1

ϕ(u)du + ω
d

∑
j=1

∫ t2

t1

ψj
(
−hj(u, t2)

)
du

)

× exp

(
−ω

d

∑
j=1

∫ ∞

0
Y(j,ξ)

s e−ξ(t1−s)B(ξ)(t1, t2) dγj(ξ)

)

exp

(
d

∑
j=1

∫ t1

s
ψj

(
−
∫ ∞

0

1
ξ

(
1− (1 + ω)e−ξ(t1−u) + ωe−ξ(t2−u)

)
dγj(ξ)

)
du

)
.
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Proof. The mgf can be rewritten as an expectation under the risk neutral measure using
Bayes’ rule:

EF
(

eω ln P(t1,t2)|Fs

)
=

E
(

dF
dQ

∣∣∣
t1

eω ln P(t1,t2)|Fs

)
E
(

dF
dQ

∣∣∣
t1
|Fs

) , (59)

where dF
dQ

∣∣∣
t1

is detailed in Equation (53). From Equation (24) and due to the independence

between the processes Y(j,ξ)
t1

and Y(k,ξ)
t1

for j 6= k, expectation (59) becomes the following.

EF
(

eω ln P(t1,t2)|Fs

)
=

exp

(
−

d

∑
j=1

∫ t1

s
ψj
(
−hj(u, t1)

)
du−ω

∫ t2

t1

ϕ(u)du + ω
d

∑
j=1

∫ t2

t1

ψj
(
−hj(u, t2)

)
du

)

×
d

∏
j=1

E
(

exp
(
−
∫ t1

s
hj(u, t1) dL(j)

u −ω
∫ ∞

0
Y(j,ξ)

t1
B(ξ)(t1, t2) dγj(ξ)

)
| Fs

)
.

From Equation (18) and after a change of integration order, the integral of processes
Y(j,ξ)

t1
is the following.

∫ ∞

0
Y(j,ξ)

t1
B(ξ)(t1, t2) dγj(ξ)

=
∫ ∞

0
Y(j,ξ)

s e−ξ(t1−s)B(ξ)(t1, t2) dγj(ξ) +
∫ ∞

0

∫ t1

s
e−ξ(t1−u)dL(j)

u B(ξ)(t1, t2) dγj(ξ)

=
∫ ∞

0
Y(j,ξ)

s e−ξ(t1−s)B(ξ)(t1, t2) dγj(ξ) +
∫ t1

s

∫ ∞

0
e−ξ(t1−u)B(ξ)(t1, t2) dγj(ξ) dL(j)

u .

This allows us to rewrite EF
(

eω ln P(t1,t2)|Fs

)
as follows,

EF
(

eω ln P(t1,t2)|Fs

)
=

exp

(
−

d

∑
j=1

∫ t1

s
ψj
(
−hj(u, t1)

)
du−ω

∫ t2

t1

ϕ(u)du + ω
d

∑
j=1

∫ t2

t1

ψj
(
−hj(u, t2)

)
du

)

× exp

(
−ω

d

∑
j=1

∫ ∞

0
Y(j,ξ)

s e−ξ(t1−s)B(ξ)(t1, t2) dγj(ξ)

)

×
d

∏
j=1

E
(

exp
(
−
∫ t1

s

(
hj(u, t1)−ω

∫ ∞

0
e−ξ(t1−u)B(ξ)(t1, t2) dγj(ξ)

)
dL(j)

u

)
| Fs

)
.

By definition of hj(u, t) :=
∫ ∞

0 B(ξ)(u, t) dγj(ξ), we have the following:

hj(u, t1)−ω
∫ ∞

0
e−ξ(t1−u)B(ξ)(t1, t2) dγj(ξ) =∫ ∞

0

(
B(ξ)(u, t1)−ωe−ξ(t1−u)B(ξ)(t1, t2)

)
dγj(ξ) ,

wherein the integrand is equal to the following.

B(ξ)(u, t1)−ωe−ξ(t1−u)B(ξ)(t1, t2)

=
1
ξ

(
1− (1 + ω)e−ξ(t1−u) + ωe−ξ(t2−u)

)
.
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Combining these three last equations leads to the result.

The expression (58) of the mgf involves integrals of Y(j,ξ)
s with respect to ξ ∈ R+.

These integrals do not admit analytical formulas and are in practice approached with
the discretization scheme introduced in Section 6. Let n be the number of atoms of the
discrete approximation of γj for j = 1, . . . , d. To lighten future developments, we adopt the
following notation:

h(n)j (u, t) :=
n

∑
k=1

m(j)
k

b(j)
k

(
1− e−b(j)

k (t−u)
)

,

g(n)j (ω, u, t1, t2) :=
n

∑
k=1

m(j)
k

b(j)
k

(
1− (1 + ω)e−b(j)

k (t1−u) + ωe−b(j)
k (t2−u)

)
,

for j = 1, . . . , d. The discretized version of the mgf of the bond log-return under the forward
measure is as follows:

EF
(

eω ln P(n)(t1,t2)|Fs

)
=

exp

(
d

∑
j=1

∫ t1

s
ψj

(
−g(n)j (ω, u, t1, t2)

)
− ψj

(
−h(n)j (u, t1)

)
du

)

× exp

(∫ t2

t1

ω
d

∑
j=1

ψj

(
−h(n)j (u, t2)

)
−ω ϕ(n)(u) du

)

× exp

(
−

d

∑
j=1

n

∑
k=1

m(j)
k Y(j,k)

s e−b(j)
k (t1−s)B(j,k)(t1, t2)

)
,

where ϕ(n)(t), the discretized version of ϕ(t) is detailed in Equation (37). The integrals
with respect to times are numerically computed, e.g., with a Simpson’s rule. Let us denote
by f (n)(x) the probability density of ln P(n)(t1, t2) conditionally to Fs and the following.

Υ(n)(iω) = EF
(

ei ω ln P(n)(t1,t2) | Fs

)
=
∫

eiωx f (n)(x)dx ,

The above is its Fourier’s transform. The probability density function can, therefore,
be expressed as the real part of the inverse Fourier’s transform:

f (n)(x) =
1

2π

∫ +∞

−∞
Υ(n)(iω) e−i x ωdω (60)

=
1
π

Re
(∫ +∞

0
Υ(n)(iω)e−i x ωdω

)
,

and is numerically computed with the algorithm detailed in the next proposition.

Proposition 10. Let M be the number of steps used in the Discrete Fourier Transform (DFT) and
∆x = 2xmax

M−1 be this step of discretization. Let us denote ∆ω = 2π
M ∆x

and the following:

ωm = (m− 1)∆ω,

for m = 1 . . . M. The values of f (n)(x) and the pdf of ln P(n)(t1, t2)|Fs at points xk = −M
2 ∆x +

(k− 1)∆x are approached by the following sum:

f (n)(xk) ≈
2

M ∆x
Re

(
M

∑
m=1

$mΥ(n)(i ωm)(−1)m−1e−i 2π
M (m−1)(k−1)

)
. (61)
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where $m = 1
2 1{m=1} + 1{m 6=1} .

The proof of this result is based on the trapezoidal approximation of the integral in
Equation (60).

Figure 9 shows the probability density functions of P(n)(5, 10) under the forward
measure of numeraire P(n)(0, 5). We consider for this illustration a one factor Lévy model
(d = 1) in which the driving process is a jump-diffusion such as presented in Equation (48),
with the same parameters as those of Section 6. The DFT parameters are xmax = 0.2
and M = 210. The plots reveals that variances under F of bond prices display the same
sensitivity to memory parameter α as under the risk of neutral measures. PML and ML
bond variances are, respectively, directly and inversely proportional to α.
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Figure 9. Probability density function of P(n)(5, 10) under the forward measure of numeraire
P(n)(0, 5), α = 0.5 and 0.9; β = 1.5; λ1 = 0.5; η1 = −0.002; σ1 = 0.01. ML and PML kernels
with n = 40 atoms.

After computation of the log-bond density, the call price is calculated by the following sum:

C(s) = P(s, t1)EF((P(t1, t2)− K)+ | Fs
)

≈ P(s, t1)
M

∑
k=1

1{xk≥ln K}(e
xk − K) f (n)(xk)∆x ,

where 1{xk≥ln K} is an indicator variable equal to one on [ln L,+∞) and zero otherwise.
Figure 10 shows call prices on P(n)(5, 10) for various strike prices in ML and PML kernels.
In the PML model, increasing the memory parameter α drives up the option values with
respect to whatever the strike price is. For the ML kernel, we observed the opposite trend.
This is relevant with our previous conclusions about the variance that is the main driving
factor of option prices.

Figure 11 allows us to confirm the convergence of the call option when the number, n,
of atoms in the discretization scheme grows. We recall that the partition ranges from ξ0 = 0
up to ξn that is a percentile of γj(z). Here, percentiles 90%, 95% and 97% are considered.
For the ML kernel (right plot), the convergence is quick and the difference between prices
computed with the 90% and 97% is negligible (around 2.6 10−5). For the PML model (left
plot), prices are higher (and then conservative) with a 90% percentile and converge with
less atoms than with a partition covering 97% of γj(.).
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Figure 10. Call prices on P(n)(5, 10), α = 0.5 and 0.9; β = 1.5; λ1 = 0.5; η1 = −0.002; σ1 = 0.01. ML
and PML kernels with n = 40 atoms.
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Figure 11. Call prices on P(n)(5, 10) in function of n, α = 0.5 and 0.9; β = 1.5; λ1 = 0.5; η1 = −0.002;
σ1 = 0.01. Strike = 0.97.

8. Conclusions

This article contributes to the literature on interest rate models by proposing an
alternative to standard mean reverting processes. The latter have an exponential decaying
memory of the interest rate sample path. Motivated by observations of Section 3, our
approach instead considers models in which the memory kernels are sub-exponential
functions. In this setting, the short-term rate remembers its recent history for a longer
period than in the exponential framework.

Even if the interest rate process is not Markovian anymore, the model preserves a high
level of analytical tractability by taking advantage of the Laplace–Stieltjes representation
of the memory function. The short-term rate can indeed be reformulated as an infinite
dimensional Markov process. In this setting, bond prices admit closed form expressions and
a discretization scheme allows inferring their dynamics. Furthermore, Section 7 proposes
a procedure based on a change of numeraire to evaluate European bond options. The
numerical analysis underlines the differences between models with Mittag–Leffler (ML) or
power Mittag–Leffler (PML) memory kernels. The main one being that standard deviations
of bond yields are, respectively, directly and inversely proportional to parameter α.

This article paves the path for further research. For instance, the model could be
adapted to a multi-curves framework or could serve as basis for a deeper empirical analysis.
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Other possible extensions are the modulation of parameters by a Markov chain to capture
economic regimes or the introduction of clustered jumps.
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33658713.
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Appendix A

When the memory kernel is exponentially decreasing, i.e., gj(t − u) = e−κj(t−u),(
X(j)

t

)
t≥0

consist of Ornstein–Uhlenbeck (OU) processes defined by the following.

X(j)
t = e−κj(t−s)X(j)

s +
∫ t

s
e−κj(t−u)dL(j)

u , j = 1, . . . , d. (A1)

Their differential is the following:

dX(j)
t = −κjX

(j)
t dt + dL(j)

t , j = 1, . . . , d (A2)

and emphasizes that
(

X(j)
t

)
t≥0

processes revert to zero at a speed κj. In this particular case,

the influence on X(j)
t of the past sample paths of L(j)

t decays in an exponential manner. If

the short term rate is the sum of a deterministic function ϕ(t) and of X(j)
t for j = 1, . . . , d, as

formulated in Equation (5), the conditional variance of the short-term rate is a function of
the time horizon:

V(rt|Fs) =
d

∑
j=1

(
σ2

j +
∫
R

z2νj(dz)
)(1− e−2κj(t−s)

)
2κj

, (A3)

whereas the autocovariance of rt and ru for t ≥ u ≥ s is given by the following.

C(rt ru|Fs) =
d

∑
j=1

(
σ2

j +
∫
R

z2νj(dz)
)

e−κj(t−u) − e−κj(t+u−2s)

2κj
.

This last equation reveals that the autocovariance between the current short rate and
the future one decays exponentially. Notice that the covariance between rt and rt−∆ for any
∆ > 0 converges to a function of ∆ when t→ ∞.

lim
t→∞

C(rt rt−∆|F0) =
d

∑
j=1

(
σ2

j +
∫
R

z2νj(dz)
)

e−κj∆

2κj
. (A4)

Appendix B

The Nelson–Siegel model postulates the following representation of the curve of
instantaneous forward rates:

f (0, t) = b0 + (b10 + b11t) exp(−c1t) , (A5)

the parameters b0, b10 and b11, respectively, determine the mean level, the slope and the
curvature of the forward rates curve. The zero-coupon rate in the Nelson–Siegel model
(A5) is obtained by integrating these forward rates and by dividing the result by maturity.

ym(t) = b0 +
1
t

b10

c1

(
1− e−c1t)+ 1

t
b11

(c1)
2

(
1− (c1t + 1)e−c1t) . (A6)



Risks 2022, 10, 2 27 of 28

Parameters are estimated by minimizing the quadratic spread between market and
model zero-coupon yields. In the numerical illustration, this model is fitted to ICE Euro
swap rates on the 26/2/21 at 12 o’clock, presented in Table A1. The corresponding Nelson–
Siegel parameters are reported in Table A2.

Table A1. ICE Euro swap rates on the 26/2/21, 12:00. Source: https://fred.stlouisfed.org/ (accessed
on 8 November 2021).

Maturity Swap Rates (%) Maturity Swap Rates (%)

1 −0.466 8 −0.027

2 −0.419 9 0.036

3 −0.363 10 0.148

4 −0.298 12 0.275

5 −0.229 15 0.376

6 −0.160 20 0.393

7 −0.092 25 0.373

Table A2. Nelson–Siegel parameters for the ICE Euro swap rates on the 26/2/21.

Parameters Values

b0 0.00504905

b10 −0.00892662

b11 −0.00350623

c1 0.29428630
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