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Abstract: Cyber insurance ratemaking (CIRM) is a procedure used to set rates (or prices) for cyber
insurance products provided by insurance companies. Rate estimation is a critical issue for cyber
insurance products. This problem arises because of the unavailability of actuarial data and the
uncertainty of normative standards of cyber risk. Most cyber risk analyses do not consider the
connection between Information Communication and Technology (ICT) sources. Recently, a cyber
risk model was developed that considered the network structure. However, the analysis of this
model remains limited to an unweighted network. To address this issue, we propose using a graph
mining approach (GMA) to CIRM, which can be applied to obtain fair and competitive prices based
on weighted network characteristics. This study differs from previous studies in that it adds the
GMA to CIRM and uses communication models to explain the frequency of communications as
weights in the network. We used the heterogeneous generalized susceptible-infectious-susceptible
model to accommodate different infection rates. Our approach adds up to the existing method
because it considers the communication frequency and GMA in CIRM. This approach results in
heterogeneous premiums. Additionally, GMA can choose more active communications to reflect
high communications contribution in the premiums or rates. This contribution is not found when the
infection rates are the same. Based on our experimental results, it is apparent that this method can
produce more reasonable and competitive prices than other methods. The prices obtained with GMA
and communication factors are lower than those obtained without GMA and communication factors.

Keywords: CIRM; communication; GMA; HG-SIS; weighted network

1. Introduction

In 2020, the World Economic Forum placed cyberattacks in the top 10 categories of
risks over the next ten years (World Economic Forum 2020). The rapid development of
information and communication technology (ICT) has led to the need for proper risk man-
agement. Cyber insurance is one option that can protect ICT sources from losses incurred
due to cyberattacks (Bodin et al. 2018; Camillo 2017). Empirical studies have shown the
adequacy of the use of cyber insurance to manage cyber risks (Biener et al. 2015). Cyber
insurance ratemaking (CIRM) is one of cyber insurance products’ main problems (Marotta
et al. 2017). The uncertainty of cyber risk factors has caused companies to price cyber
insurance products conservatively at high prices. Several existing risk models have been
built without paying attention to network structure and computer information (Bohme and
Schwartz 2010). The connectedness of ICT sources in the network and the transmission
process occurring via connections between them are two distinctive characteristics of cyber
risks. Therefore, the analysis of cyber threats must consider the network structure and the
characteristics of computer information.
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To characterize the structure, we propose using a graph mining approach (GMA) for
CIRM on weighted networks. The weights describe the communication frequency (the num-
ber of connections made while sending and receiving information) in a computer communi-
cation network (Chou 1975). Several studies of network traffic and cyberattacks have shown
a relationship between them (Almutairi et al. 2020; Pimenta Rodrigues et al. 2017; Wang
and Jones 2020). Consequently, graph mining serves to acquire groups with intense commu-
nication. GMA has three stages. Stage 1 comprises the steps used to generate a weighted
network based on probability distribution information. Miller and Childers (2012) treated
the arrival of messages (packets) to a node as an example of a random process in the
computer communication network and modeled it following the Poisson process. In this
study, we modeled the number of connections using a probability distribution with two
perspectives. These are node- and link-based models. The node-based model uses the
analogy of the weighted co-purchase product network formation for market basket analysis
(Kim et al. 2012; Raeder and Chawla 2011; Videla-Cavieres and Ríos 2014). The link-based
model directly treats the weights on the links as random variables.

Stage 2 is the process of obtaining communication characteristics using the GMA
(Zhang et al. 2011). This stage comprises three parts—namely, community detection, thresh-
old setup, and a filtering process. Community detection is used for identifying structural
similarity (Boobalan et al. 2016; Chang et al. 2017; Karatas and Sahin 2018; Remy et al.
2018). Especially in the spread of viruses, community detection can be used to find groups
with more dense contacts than inter-group contacts (Wang et al. 2020). In every community,
some nodes or links are rarely used. Threshold setting and filtering processes are used to
determine the communication threshold. Nodes and links that are lower than the threshold
are not involved in the CIRM simulation. The company can choose the level of risk desired
based on the proportion of the threshold in each community. Nodes that do not meet
the threshold are not covered by insurance. Hence, the insurance rate can be adjusted
according to the company’s capabilities.

In stage 3, a Monte Carlo simulation is conducted to evaluate the network security
level and calculate losses in each filtered community. We use the heterogeneous generalized
susceptible- infectious-susceptible (HG-SIS) model by Ottaviano et al. (2018, 2019) as the
basis of the simulation to include the effects of communication weight. The HG-SIS model
is an extension of the ε-SIS model (Van Mieghem 2014; Van Mieghem and Cator 2012). The
ε-SIS model has been used as the basis for previous CIRM simulations in the unweighted
network (Xu and Hua 2019). Our previous study also extended the compartmental SIS
model (Kermack and McKendrick 1991) to estimate cyber risk using the average degree
for several particular network topologies (Indratno and Antonio 2019). This model was
not used because it could not detect the individual status of the microlevel perspective
simulations.

The main research objective of the GMA is to obtain a more appropriate and more
competitive insurance rate (or price) by characterizing the network structure. This approach
adjusts rates based on more active communication to overcome overpricing issues. The
main contributions of this paper are as follows:

• incorporating the effects of communication intensity in the CIRM process.
• developing GMA procedures to homogenize high communications for CIRM in

weighted networks.
• extending the CIRM simulation with different link infection rates (according to com-

munication intensity) using the HG-SIS model.
• applying the GMA procedure for CIRM in two networks: a hybrid network and

a random network. Then, the results are compared with those obtained without
GMA cases.
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The remainder of this paper is organized as follows. In Section 2, the CIRM from two
perspectives—namely, model and network—is reviewed. Detailed procedures of a new
approach (GMA) for CIRM are provided in Section 3. In Section 4, the process of involving
communication factors in the model is described. Some significant experimental results
are presented and discussed in Section 5. In Section 6, conclusions and future work are
summarized.

2. Cyber Insurance Models

Several methods and models used for pricing or ratemaking in cyber insurance have
been developed. Generally, to date, studies related to CIRM or pricing can be divided into
two major groups—namely, those that do not consider the network structure (Böhme and
Kataria 2006; Eling and Wirfs 2015; Herath and Herath 2011; Mukhopadhyay et al. 2013)
and those that evaluate the network structure (Fahrenwaldt et al. 2018; Hua and Xu 2020;
Xu and Hua 2019). As state-of-the-art tables, Tables 1 and 2 provide a detailed comparison
from the model and network viewpoints.

From the model’s perspective, the methods can be differentiated by model, total loss
calculation, input, and loss type. Table 1 presents the comparisons of CIRM models from
several previous studies. From a network viewpoint, methods can be distinguished by
network type, network weight, risk selection, and communication effect. Table 2 shows
comparisons of the CIRM networks used in several previous studies.

Research that considers network structure uses the stochastic process to simulate
dynamic transmission. In Fahrenwaldt et al. (2018), the authors used the SIS model and
found higher-order estimates of the mean-field approximation. The mean-field aggregate
and the marked process point were used to calculate the total loss. Xu and Hua (2019)
determine premium using a more general stochastic model—that is, ε-SIS. The total loss
is calculated using the loss functions, and the infection data are generated using Monte
Carlo simulation. Hua and Xu (2020) expanded the model with dependent dynamic
infection and omitted the exact network structure from calculations for large and complex
networks. Antonio et al. (2021) introduced a local clustering coefficient to reduce the
transition probability in the Markov model through the inhibition function. However, they
did not consider the frequency of communication as a cybersecurity factor and did not
consider these factors in selecting and classifying risks through the GMA. Additionally,
all pre-existing models were created using homogeneous infection rates. The activeness
of computer communications can affect the infection rate, so each link’s infection rate
depends on the number of communications. Therefore, it is more realistic to consider the
infection rate.

Based on the comparison of Tables 1 and 2, some of the limitations of the previous
study that become overcome in this paper are as follows:

• None of the works used GMA for selecting risk, especially from a network model
perspective. We propose the use of GMA before the CIRM simulation.

• The last three studies used epidemic models with similar infection rates. We adjusted
the link infection rate based on the communication weights using the HG-SIS model.

• Some works included network structures, but none used weighted networks. We
considered the communication weight factor in the CIRM process.

• Only one work included the communication effect—that is, the average arrival traffic
per attack. However, there is none from the network model perspective. We consider
the communication effect (the frequency of communication) from the network model
perspective.
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Table 1. Comparison of the CIRM model. The-state-of-the-art of our proposed model, total loss, model input, and loss type.

Reference Model Total Loss Input Loss Type

Böhme and
Kataria (2006)

Beta-binomial and
one-factor latent model

Internal failure
correlation Cyberattack data Loss function of stopping

operation

Herath and
Herath (2011) Copula based model Integrated copula-based

simulation

The number of infected
computers and their
total loss.

First party damage due
to a breach

Mukhopadhyay
et al. (2013) Collective risk model Copula-aided Bayesian

belief network (CBBN)

Twenty indicator
variables (loss, system
update, etc.)

General cybersecurity
breaches

Eling and Wirfs
(2015) Extreme value theory Value-at-Risk (VaR) dan

Tail Value-at-Risk (TVaR)
Operational risk data of
ICT assets

Internal and external
errors of systems and
humans

Fahrenwaldt et al.
(2018)

Stochastic process (SIS
model)

Marked point process
and mean field aggregate

Network topology,
infection and recovery
rate, initial infections

Losses due to infections

Xu and Hua
(2019)

Stochastic processes.
Markov (ε-SIS model),
non-Markov, and Copula

Monte Carlo simulation
of infection and recovery
process

Network topology,
infection, recovery, and
self-infection rate

Losses due to infection
and losses due to service
downtime

Hua and Xu
(2020)

Stochastic
process/non-Markov
(Copula)

Monte Carlo simulation
of infection and recovery
process

The number of nodes
and links, scale-free
index, etc.

Losses due to service
interruptions and losses
related to computer
repair costs

Antonio et al.
(2021) (this paper)

Stochastic
process/Markov
(HG-SIS)

Monte Carlo simulation
of infection and recovery
process

Network topology,
communication weight,
and spreading
parameters

Losses due to infection
and losses due to service
downtime

Table 2. Comparison of CIRM networks. The-state-of-the-art of our proposed network, risk selection, and communication effect.

Reference Network Weighted/ Unwighted Risk Selection Communication Effect

Böhme and Kataria
(2006) None None None Average arrival traffic

per attack

Herath and Herath
(2011) None None None None

Mukhopadhyay et al.
(2013) None None None None

Eling and Wirfs
(2015) None None None None

Fahrenwaldt et al.
(2018)

Homogeneus, clustered,
and star-shaped Unweighted None None

Xu and Hua (2019)
Small network (10 nodes)
and large real email
network

Unweighted None None

Hua and Xu (2020) Large-scale network or
scale-free network Unweighted None None

Antonio et al. (2021)
(this paper)

Hybrid and random
network (150 nodes) Weighted Graph mining

approach
The frequency of
communications
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3. Graph Mining Approach

In this section, we explain the GMA used to study the structure of weighted networks
for CIRM. Figure 1 shows the proposed approach used for the ratemaking process in
cyber insurance products. This method comprises three stages: generating a weighted
network, selecting risks using graph mining, and processing the ratemaking simulation.
The methodology and algorithms at each stage are described in this section.

Figure 1. Graph mining approach (GMA) used for cyber insurance ratemaking (CIRM).

Stage 1 requires information on the frequency of communications in the network or
the distribution of communication frequencies. Two models used for the study of commu-
nication frequency are the node-based model and the link-based model. In a node-based
model, we use a co-purchase product network formation analogy. This model involves
two random variables: the number of communications and the number of communicating
nodes. The link-based model assumes the number of communication on the link to be a
random variable. Synthesis data during the contract period can be obtained through the
random communication process simulation based on statistical distribution assumptions.

In stage 2, the graph mining procedure is conducted on the weighted network formed
in stage 1. Community detection on the weighted network is used to classify risks. In each
community, threshold settings and filtering processes are conducted to select links with
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a high level of communication. Connections with small contacts are not involved in rate
simulation.

The simulation of CIRM is conducted in communities that have been filtered in stage 3.
Before carrying out the simulation, the infection rate for each link, which was initially
the same, is adjusted to the communication frequency of each link. Therefore, we obtain
different infection rates for each connection. The Monte Carlo simulation for capturing
dynamic transmission is conducted using the HG-SIS model, with heterogeneous infection
rates (different for each link). Insurance rates are finally obtained by calculating the total
loss and using the standard deviation premium principle.

3.1. Connectivity Models
3.1.1. Node-Based Model

To build a communication network, we need a model to represent random events in
the network. We consider the analogy of basket market analysis to create an interconnected
network using the number of communications in every link. Then, we build the weighted
network based on the number of co-purchase products derived from the data of each
transaction in the market basket analysis using the network. Each transaction includes
several co-purchase products. This analogy can be used to build a communication model on
a computer network by assuming transactions as communications, and each transmission
can involve several nodes or computers.

The communication calculation between two nodes produces a weighted communica-
tion network based on the node or computer that communicates in a specific transaction.
The weights are the frequency or quantity of communications. This approach is called
the node-based model and is explained in Figure 2. Suppose that a company has four
nodes (computers). In one day, there are three communications where C1 denotes the
first communication, C2 denotes the second communication, and C3 denotes the third
communication. The first communication involves Node 1, Node 2, and Node 4. In the
second communication, Node 2, Node 3, and Node 4 send data. The interaction between
Node 3 and Node 4 occurs during the third communication.

Figure 2. An analogy based on a co-product purchases network used in market basket analysis to generate a communication
network in the node-based model.

Let X denote a random variable representing the number of communications that
follow a discrete distribution with a probability mass function pX = P(X = c) . Also,
let Y is a random variable representing the number of nodes that communicate in each
communication, which follows a discrete distribution with the probability mass function
pY = P(Y = n). Both are independent, and they can follow binomial distributions, Poisson
distributions, or negative binomial distributions. If the random variables X and Y are
drawn from Poisson distributions, they indicate the number of communications or nodes
within a specific time. If both have binomial distributions, they represent the number of
successful communications or nodes linked successfully. They might also be interpreted
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as the number of successful communications. When the total number of communication
failures are known, they exhibit negative binomial distributions.

A formula for the number of connected pairs of nodes in a day is (n
2)c. For this, we

assume a company that has 100 computer units. Consequently, the maximum number
of nodes connected to the communication is also 100. We assume that the company’s
computer network can accommodate up to a thousand contacts per day. Figure 3 shows
the effect of c and n on the total communication that occurs in all links. If given a value
around the mean of the random variable Y equal to n, then the change in the value of c will
have a linear relationship to the total number of communications in a day (see Figure 3a).
Meanwhile, the value of n and the total number of communications have a nonlinear
relationship if a value around the mean of the random variable X equals c (see Figure 3b).
The algorithm used for the node-based model is given by Algorithm 1.

(a) Change of c for given n. (b) Change of n for given c.
Figure 3. Effect of c and n on the number of communications in the network during a day. (a) Change in c for a given n.
(b) Change in n for a given c.

Algorithm 1: Network construction simulation using a node-based model.
Input: Network topology, the number of computers N, time T, pX , and pY.
Generate link list/set L.
Generate N sampling probabilities from U ∼ [0, 1].
for i = 1 to T do

Generate the number of communication c from pX .
for j = 1 to c do

Generate the number of nodes in each communication n from pY.
Select at random n node from node-set based on its sampling probability.
Construct link list luv for each co-node u and v.
Match luv with k ∈ L.
for k in L do

Calculate the accumulation of match link.
end

end
return communication wight vector.

end
Construct a weighted network until T.
Output: communication weight.

3.1.2. Link-Based Model

A simpler model that is also used as a communication quantity model treats the
number of communications on each link as a random process. This model is called the
link-based model. Let Zk denote a random variable of the number of communications in
each link k with the probability mass function pl = P(Zk = l). The difference with the



Risks 2021, 9, 224 8 of 34

node-based model is building a weighted network process where the weight of each link is
the number of communications through the link. Thus, this model only uses one random
variable. Following the previous model, Zk is an identical binomial random variable, a
Poisson random variable, or a negative binomial random variable, implying the same
distribution for every k. Table 3 explains the probability mass function for each distribution
of Zk.

Table 3. Distribution of Zk.

No. Distribution Parameter pl = P(Zk = l)

1 Poisson λ e−λλl

l!
2 Binomial m, and p (m

l )pl(1− p)m−l

3 Negative Binomial r, ρ̄ (l+r−1
l )ρ̄l(1− ρ̄)r

All distributions depend on the value of the parameter. Suppose a network has `
links. Thus, Zk, k = 1, 2, · · · , ` are the independent and identically distributed random
variables. The distribution of the total communication in a network is the sum of Zk
equal to Z = Z1 + Z2 + · · ·+ Z`. The following properties show the distribution of the
number of communications in the network Z for each distribution of Zk in Table 3 using
the characteristics function.

Proposition 1 (Dekking et al. (2005)). Let Zk for k = 1, 2, · · · , ` denote a random variable for
the number of communication in k-th link with an independent and identically Poisson distribution
and parameter λ for every k. The distribution of the total number of communications Z =
Z1 + Z2 + · · ·+ Z` in a network is a Poisson distribution with the parameter λ`.

Proposition 2 (Dekking et al. (2005)). Let Zk for k = 1, 2, · · · , ` denote a random variable for the
number of communications in the k-th link with an independent and identically binomial distribution
and parameters m and p for every k. The distribution of the total number of communications
Z = Z1 + Z2 + · · ·+ Z` in a network is a binomial distribution with the parameters m` and p.

Proposition 3 (Dekking et al. (2005)). Let Zk for k = 1, 2, · · · , ` denote a random variable
for the number of communications in the k-th link with an independent and identically negative
binomial distribution and the parameter r,ρ̄ for every k. The distribution of the total number of
communications Z = Z1 + Z2 + · · ·+ Z` in a network is a negative binomial distribution with
the parameter r`,ρ̄.

Algorithm 2 provides the rule used for creating weights using a link-based model.
First, we generate a random number of communications in a network from the given
distribution. Then, we choose an active link for each contact based on its probability.
The link weight denotes how much the link is selected as an active link. This step runs
until time T. We used the beta distribution as a sampling probability for the algorithm
to accommodate different communication patterns rather than assuming the patterns to
be uniform.

3.2. Community Detection

The structural properties of node interactions in its group are the output of community
detection procedures. Community detection algorithms are widely used in the fields of
computer science and mathematics. Community detection for communication networks
has been used to find efficient mobile networks (Nguyen et al. 2014). Community detection
is also used to obtain the similarity of communication structures in mobile phone com-
munication networks (Blondel et al. 2008). After we obtain a graph with communication
weight in a computer network, the next step is to find the similarity of its structure through
community detection methods.
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Algorithm 2: Network construction simulation using link-based model.
Input: Network topology, the number of computers N, time T, the distribution of

Z.
Generate link list/set L.
Generate ` sampling probability from Beta(a, b).
for i = 1 to T do

Generate a total frequency of communication z in the network based on the
distribution of Z.

Select at random z link from link set based on its sampling probability.
Match l with k ∈ L.
for k in L do

Calculate the accumulation of each selected link.
end
return communication wight vector

end
Construct a weighted network until T time
Output: communication weight

There are two major groups of community detection algorithms: disjoint community
detection algorithms and overlapping community detection algorithms (Javed et al. 2018).
In this case, we want a node to only be in one risk group so that the detection of the
selected communities results in disjoint communities. One of the disjoint community
detection algorithms is the modularity-based algorithm. Suppose that G = (G1,G2, · · · Gζ)
is a disjoint sequence of ζ subgraphs and the number of subgraphs ζ is assumed to
be unknown. The number of subgraphs should be determined using an algorithm for
maximizing the modularity function Q, where Q is equal to

Q =
ζ

∑
i=1

(`ij − ai). (1)

where `ij is the total number of links that have one end node in the community i and the
other in community j, while the term ai is the total number of edges that connect to nodes
in the community i (Newman and Girvan 2004).

Three algorithms can be used to solve this problem. First, modularity-based algorithms
use a heuristic searching method to approximate the optimization problem, called extremal
optimization Boettcher and Percus (2001a, 2001b). Second, spectral optimization (Chen
et al. 2014; Newman 2006; Newman and Girvan 2004) uses spectral information from
matrix data, eigenvalues, and eigenvectors to maximization the modularity. Finally, greedy
optimization (Blondel et al. 2008; Clauset et al. 2004; Danon et al. 2006; Newman and Girvan
2004) runs the modularity optimization of the largest number of communities (treating
every node as a community).

Because of the time complexity issue, the greedy algorithm from Blondel et al. (2008),
which we can call the Louvain algorithm, is chosen for our problem. A communication
network is a weighted network where the link weight is the communication between two
nodes. We need a modularity function for a weighted network (Newman 2004). For a
weighted network, the modularity function QW can be defined as:

QW =
1

2m ∑
i,j

[
wij −

kik j

2m

]
δ(Gi,Gj), (2)

where wij is denoted as the weight of nodes i and j, ki and k j are the cumulative weight
of the link between nodes i and j, and m is the total weight of a network. Gi and Gj are
denoted as the community locations of nodes i and j, respectively, and δ(.) is the Kronecker
delta function.
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δ(Gi,Gj) =

{
1, if Gi = Gj

0, otherwise
. (3)

Afterwards, we need to define the threshold setup and network filter methodology.

3.3. Threshold Setup

We should define the threshold of η to extract a strong connection. The threshold
is created because the entire co-product network contains high degrees and spurious
edges (Videla-Cavieres and Ríos 2014). We also assume that the connections between the
computers in the computer communication network have high degrees (similar to the fully
connected network topology) and contains spurious connections. Then, it is necessary to
determine η. This methodology find a new graph that meets the criteria that remove the
weight of all edges wuv, u, v = 1, 2, · · · , N lower than η, wuv < η.

Although there is no standard method for this step, several ways have been used to
determine η of the co-purchase network. The threshold η can be chosen from a specific
constant value even though it cannot apply to all networks. Alternatively, η is selected from
the average weight on the network or using the top three heavy edge thresholds (tthet)
(Videla-Cavieres and Ríos 2014). We consider applying this method for our weighted com-
puter communication network and adding other two criteria, namely, the top four heavy
edge thresholds (tfhet) and the top five heavy edge thresholds (tvhet), as a comparison.

Suppose the descending ordered set of m weighted links in the network is
W = {ω1, ω2, · · · , ωm}. Therefore, tthet, tfhet, and tvhet are defined as the average
of the top three weights, the top four weights, and the top five weights according to the
following term :

tthet =
ω1 + ω2 + ω3

3
, (4)

t f het =
ω1 + ω2 + ω3 + ω4

4
, (5)

tvhet =
ω1 + ω2 + ω3 + ω4 + ω5

5
, (6)

where ω1 is the heaviest edge weight and ω2 to ω5 are the second to fifth heaviest edge
weights, respectively.

3.4. Network Filter

We also use network filter methodology (Videla-Cavieres and Ríos 2014) for filtering
our communication network. This filtering step can make a new graph more flexible
than only using a threshold set-up methodology. Sometimes only a little edge weight
will satisfy the minimum threshold. The filtering step is the proportion or percentage of
tthet, tfhet, and tvhet. Consider every 5% of thresholds tthet, tfhet, and tvhet until 100%
are p̃ = {0.05, 0.1, 0.15, · · · , 0.95, 1}. A new set of thresholds is found, with 20 members
for each.

Using dot product between p̃ and thresholds, the set of filters can be written as:

f ilters = p̃ · threshold

= {0.05 ∗ threshold, 0.1 ∗ threshold, · · · , 0.95 ∗ threshold, 1 ∗ threshold}. (7)

With this methodology, we can find the limit of weight that makes the network
structure represent each risk not only for high-risk categories but also for medium- and
low-risk categories.

4. HG-SIS Model Ratemaking

After obtaining communication, the next step is to simulate CIRM for the graphs that
have been received. Previous studies have used homogeneous infection rates and recovery
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rates for ratemaking. These rates can vary. Figure 4 illustrates the processes that occur
at each node by using the SIS, ε-SIS, H-SIS, and HG-SIS models. All models are worked
as node-level models. In the SIS model (Van Mieghem 2014; Van Mieghem et al. 2009),
each node can have a vulnerable or infected status at a rate that remains assumed to be the
same. In this model, the infection occurs because of contact with other infected nodes (see
Figure 4a). The ε-SIS model (Van Mieghem and Cator 2012) generalization adds the source
of infection through self-inflicted access to malicious sites, opening e-mails containing
worms, downloading files that are inserted with malicious software, etc. (see Figure 4b).

Cyber insurance pricing uses a homogeneous ε-SIS model (Fahrenwaldt et al. 2018;
Xu and Hua 2019). Heterogeneous models have also been described for the case of the
spread of computer viruses at different infection rates. Heterogeneous SIS (H-SIS) allows
the rate of each link to be different (see Figure 4c) Ottaviano et al. (2018, 2019). The H-SIS
model enables infection rates that depend on the type of connection between the two
nodes. This model is more realistic and has a broader scope. We included the possibility
of self-infection in the H-SIS model. Hence, we call this the HG-SIS model. The HG-SIS
model is a generalization of the heterogeneous SIS model (H-SIS) with a self-infection rate.
In other words, HG-SIS is a ε-SIS with different link infection rates (see Figure 4d).

(a) SIS model (b) ε-SIS model

(c) Heterogeneous SIS model (d) HG-SIS model

Figure 4. Illustration for the difference in the SIS model, ε-SIS model, heterogeneous SIS model, and
HG-SIS model in the node-level framework. (a) SIS model. (b) ε-SIS model. (c) Heterogeneous SIS
model. (d) HG-SIS model.

4.1. HG-SIS Model

Let us consider a network represented by a graph G = (N ,L), where N is the node-
set, and L is the link set (Diestel 2017). Computer viruses spread in this network through
links. Graph G is a loopless graph that does not accommodate a connection to itself.
Representation graph G as an undirected graph is based on the assumption that each node
can send and receive data, or this attack is called a two-way attack. Graph G is a weighted
graph where the weight of the link (u, v) ∈ L for u, v ∈ N is given by wuv and wuu = 0 for
every u ∈ N because G is an undirected graph. Weights in this network are the number of
communication on each link obtained from the node-based or link-based models.

Suppose that βuv is the infection rate for connection types between u and v for u, v ∈ N .
Because the network type does not have a loop, there is no connection to itself or βuu = 0
for every u ∈ L. Given that G is an undirected graph, the infection rate matrix B = [βuv],
for u, v = 1, 2, · · ·N, is a symmetric matrix. At the node, v recovery and infection can occur
depending on the type of computer, δv and εv. The infection, recovery, and self-infection
process follows the Poisson process, where the infection rate is βuv, the recovery rate is
δv, and the self-infection rate is εv. Hence, the time to infection for node u due to an
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attack from infected node v is an exponential random variable with mean βuv. Next, the
time to recovery for node v is an exponential random variable with mean δv. The time to
self-infection for the v node is an exponential random variable with mean εv. They follow
a homogeneous Poisson process, which is a Poisson process that does not depend on time.
However, links or nodes have non-identical (heterogeneous) rates.

The infection rate is a function of the communication weight in the network. Assume
that for communication weights, there are a maximum and a minimum infection rate so
that ∀(u, v) ∈ E, min(βuv) < βuv < max(βuv). The relationship between the network
weight and infection rate is given by the positive sigmoid function βuv = f (wuv), where
f (wuv) is defined as:

f (wuv) =

{
0, for wuv = 0

β−δβ

1+exp(−k(wuv−w̄))
+ δβ, for wuv > 0

, (8)

where β > δβ and k > 0. The infection rate matrix B = [βuv] becomes:

B =


0

β−δβ

1+exp(−k(w12−w̄))
+ δβ · β−δβ

1+exp(−k(w1N−w̄))
+ δβ

β−δβ

1+exp(−k(w21−w̄))
+ δβ 0 · β−δβ

1+exp(−k(w2N−w̄))
+ δβ

...
...

...
...

β−δβ

1+exp(−k(wN1−w̄))
+ δβ

β−δβ

1+exp(−k(wN2−w̄))
+ δβ · · · 0

, (9)

where β > 0 and δβ > 0. The average communication weight is given by w̄ = ∑u,v wuv/2m
and the growth rate of function is given by k = 1/σ, where:

σ =
∑u,v |wuv − w̄|

2m
, (10)

and m is the number of links |L|. The following proposition describes the characteristics of
the function regarding the infection rate.

Proposition 4. For a function defined by a positive sigmoid function, the infection rate βuv satisfies
the following properties:

• max(βuv) = β and min(βuv) = δβ

• If wuv → w̄ and σ > 0, then βuv =
β+δβ

2
• If wuv → ∞ and σ > 0, then βuv = β
• If wuv → 0, w̄� 0 and σ > 0, then βuv = δβ

The full proof of Proposition 4 can be found in Appendix A. Figure 5 shows a transfor-
mation function f (wuv) for βuv. In practice, the upper and lower limits of the infection rate
(β and δβ) can be determined by the upper and lower limits of the confidence interval of
the point estimator for the link infection rate: β̂.

Let Iv(t) be the random variable that explains the status of node v, where
Iv(t) ∈ {0, 1}. If at time t, node v is infected, then Iv(t) = 1 with probability
pv(t) = P(Iv(t) = 1). If node v is vulnerable at time t, then Iv(t) = 0 with probability
1 − pv(t) = P(Iv(t) = 0). The transition probabilities of node v, which is
pv,xy(t) = P(Iv(t + h) = y|Iv(t) = x), of the HG-SIS model can be written as follows:

pv,xy(t) =

{(
∑N

j=1 βvj Ij(t) + εv

)
h + o(h) ; x = 0, y = 1

δvh + o(h) ; x = 1, y = 0
. (11)
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Figure 5. Transformation function for βuv in the range [δβ, β] using communication weight wuv.

Clearly, Iv(t) is a Bernoulli random variable with E[Iv(t)] = pv(t). Consider the
conditional probability of infected node v at time t + h:

P(Iv(t + h) = 1|Iv(t)) = (1− Iv(t))

(
N

∑
j=1

βvj Ij(t) + εv

)
h + Iv(t)(1− δvh) + o(h). (12)

Equation (12) is also equal to E[Iv(t + h)|Iv(t)]. By the law of total expectation
(Ross 2019) and the same perspective as the SIS model (Van Mieghem 2014), we can obtain:

E[Iv(t + h)] = E

[
(1− Iv(t))

(
N

∑
j=1

βvj Ij(t) + εv

)
h + Iv(t)(1− δvh) + o(h)

]
(13)

= E

[
(1− Iv(t))

(
N

∑
j=1

βvj Ij(t) + εv

)]
h + E[Iv(t)](1− δvh) + o(h) (14)

=

(
N

∑
j=1

βvjE[Ij(t)] + εv

)
h−

(
N

∑
j=1

βvjE[Ij(t)Iv(t)] + εvE[Iv(t)]

)
h

+ E[Iv(t)](1− δvh) + o(h). (15)

The dynamic equation for the infection probability of the HG-SIS model can be driven
using N-intertwined mean-field approximation (NIMFA) (Van Mieghem 2014) as follows:

pv(t + h)− pv(t) = (1− pv(t))

(
N

∑
j=1

βvj pj(t) + εv

)
h− pv(t)δvh + o(h) (16)

pv(t + h)− pv(t)
h

=
N

∑
j=1

βvj pj(t) + εv −
N

∑
j=1

βvj pj(t)pv(t)− (δv + εv)pv(t) + o(h) (17)

for h→ 0,

dpv(t)
dt

=
N

∑
j=1

βvj pj(t)−
N

∑
j=1

βvj pj(t)pv(t)− (δv + εv)pv(t) + εv. (18)
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The other approximation uses the upper bound of infection probability. Cator and
Mieghem (Cator and Van Mieghem 2014) showed that:

E[Xi(t)Xj(t)] ≥ E[Xi(t)]E[Xj(t)], (19)

where Xi(t) and Xj(t) are non-negatively correlated for all finite graphs. This result leads us
to find the upper bound of infection probability (Xu and Hua 2019), which was previously
found for the ε-SIS model.

Theorem 1 (extended version of Xu and Hua (2019)). Let Q̄ = diag
(

δv
δv+εv

)
B− diag(εv +

δv) and B = [βuv] for u, v = 1, 2, · · · , N, then, for the HG-SIS model, the upper bound for
infection probabilities is given by:

p*(t) = eQ̄tp(0) + Q̄−1
∞

∑
k=1

Q̄ktk

k!
εεε.

We can show that the result of Theorem 1 can be obtained in the same way as Xu
and Hua (2019) (see Appendix B). The difference between this theorem and the previous
theorem (Xu and Hua 2019) is a generalization of the adjacency matrix to the link-infection
rate matrix. Note that the stationary probability of NIMFA is the upper bound for the SIS
model, which is: pv∞ = p∗v .

Proposition 5. The stationary distribution for the infection probability of the HG-SIS model using
NIMFA is given by:

pv∞ =
∑N

j=1 βvj pj(t) + εv

∑N
j=1 βvj pj(t) + δv + εv

. (20)

Proof of Proposition 5 is given in Appendix C.

4.2. Ratemaking

A rate is the total losses or price per unit of exposure (Michael and Rejda 2017).
Exposure is a quantity that corresponds to the risk of the policyholder (Parodi 2014). Prices
comprise pure premiums used to pay total losses and loading factors as price adjustments
for expanding sales and company profits. We consider the standard deviation premium
principle (Tse 2009) for pricing the premium, which is:

P = E[S] + θ
√

Var(S), (21)

where P is the premium, S is the total loss, and θ is the loading factor.
The exposure has a criterion that is proportional to the expected loss. If the exposure

increases, the loss expectation also increases. Consider the communication weight on
the link (u, v), which is wuv; the total weight on the network is chosen as the exposure
factor—i.e., e = ∑u,v wuv

2 . The cyber insurance rate for the whole network during a time [0, t]
is proportional to:

Rate =
P
e
=

2(E[S(t)] + θ
√

Var(S(t)))
∑u,v wuv

, (22)

where P is the premium and e is the exposure factor. Conversely, the rate for each node is
given by:

Ratev =
Pv

ev
=

2(E[sv(t)] + θ
√

Var(sv(t)))
∑u wuv

, (23)
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where Ratev is the rate of node v, Pv is the premium using the standard deviation premium
principle of node v, and ev is the exposure of node v.

Now, we define the total loss using the same perspective with two losses factors
(Xu and Hua 2019). Let Lv(i) denote the i-th loss of node v caused by infection (stolen infor-
mation; destroyed data; unauthorized use of an asset; exposed personal data, passwords,
or records, etc.). Also, let Rv(i) denote the i-th loss of node v caused by the time needed
for the system recovery system downtime, where it cannot work as usual to obtain profit.
Both of these are modeled by the cost functions µv(Lv(i)) and ξv(Rv(i)). The commutative
loss for node v to time t is given as follows:

sv(t) =
Mv(t)

∑
i=1

[
µv(Lv(i)) + ξv(Rv(i))

]
, (24)

where for node v, the total number of infections during (0, t] is given by Mv(t). The total
network loss up to time t is a summation of each node loss that is equal to:

S(t) =
N

∑
i=1

sv(t) =
N

∑
i=1

[
µv(Lv(i)) + ξv(Rv(i))

]
. (25)

Therefore, the rate for each node v can be determined using the concept in Equation (22)
for substitution with a total loss for node v in Equation (23).

Assume that the losses caused by infection Lv follow a generalized beta distribution
with the following density function:

fLv(φ|a, b, c, w̃v) =
c

φB(a, b)

(
φ

w̃v

)ac(
1−

(
φ

w̃v

)c)b−1

, 0 < φ < w̃v, (26)

where w̃v is the scale parameter that explains the initial wealth or information resources of
node v, a, b, c > 0 are shape parameters, and B is the beta function. The loss profile of this
model is explained in Figure 6.

(a) w̃v = 1000 (b) w̃v = 2000
Figure 6. Profile of losses caused by infection following a generalized beta distribution for the given parameters.

The generalized beta distribution was selected as a loss distribution because it has a
loss value that does not exceed the computer wealth w̃v. This distribution is also a flexible
distribution that can cover all profiles of losses depending on the selected parameter.
Figure 6a shows several types of loss profiles that depend on the selected parameter of the
loss profile collected at small, center, and large values for the scale parameter w̃v = 1000.
The scaling distribution for w̃v = 2000 is given by Figure 6b, which uses the same shape
parameter values and gives the same profile with a different variability. Consider the linear
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cost function for the loss caused by infection and the loss caused by the time taken to
recover are defined as:

µv(Lv = φ) = αφ, ξv(Rv = rv) = α1w̃v + α2rv, (27)

where α, α1, α2 are rates related to the infection, initial wealth, and recovery process. We
used Algorithm 3 to simulate the total loss. The algorithm is a slight modification of the
algorithm created by Xu and Hua (2019).

Algorithm 3: Simulation of cyber security risk with different infection rates
Input: Infection rate matrix B, intial status, the number of simulations ns, contract

period T, secure node set .
for i = 1 to ns do

while t < T do
Calculate the number of infected nodes M̃.
Generate random time-to-recovery r1, r2, · · · , rM̃ from exp(δ).
for v in secure nodes do

Determine the infected neighbors of node v, j1, · · · , jdv where dv is the
number of infected neighbors of node v.

Generate random time-to-infection yvj1
, yvj2

, · · · , yvjdv
based on link

infection rate of (v, j1), (v, j2), · · · , (v, jdv) from exp(βvjS
),

S = 1, 2, · · · , dv.
Generate time-of-self-infection zv from exp(εv).

end
Determine time for the first event

t1 = min{r1, r2, · · · , rM̃, yvj1
, yvj2

, · · · , yvjdv
, zv}.

if infection occurs then
change status from 0 to 1 and calculate the loss.

else
change status from 1 to 0 and calculate the loss.

end
end
return t, network status, the loss for every node.

end
Calculate insurance rate using exposure (network weight) for T time contract.
Output: dynamic of the network status, total loss, and insurance rate for every

node.

5. Experimental Results and Discussion

Suppose that two companies have two different types of network topologies. There
are three divisions in the first company with 50 computers connected to the complete
network topology and connected by one bridge. The second company has 150 units of
the computer using a network topology that follows a random network (van der Hofstad
2016). Figure 7 shows both of the topologies.

They want to ensure their computer and provide data related to the number of
communications in the network. The number of communications can be modelled by the
node-based model or the link-based model given in Section 2. It appears that the first
topology has three communities based on their structure. The second topology is generated
from a random network with N = 150 and p = 0.1, where N is the number of nodes and p
is the probability. The process of generating random graphs is an evolutionary process that
starts with N isolated node. Then, the process develops with a successful link that exceeds
the value of p. In these networks, procedures are performed using the following steps:
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(a) (b)
Figure 7. Topological structure of the first and second company. (a) Network of the first company.
(b) Network of the second company.

• Generating weighted graphs. In practice, link weight can be formed by communi-
cation data. Then, we can fit and simulate the distribution of communication using
Algorithms 1 or 2 to predict future risk.

• Finding risk group. To reduce the size of the network, we separate the network into
some communities using community detection.

• Threshold setting and filtering. Some of the activities or areas of contact between
nodes are small. This step excludes the low communication in each community.

• Ratemaking. A simulation for infection risk is carried out for every community after
the threshold setting and filtering processes. Then, the total premium or rate is the
total premium or rate in every community.

The results are described and discussed in the following subsections.

5.1. Generating Weighted Networks

Weighted network modelling in this section uses models in Section 3, specifically
node-based models using Algorithm 1 and link-based models using Algorithm 2. Consider
the computer network of the first company and the second company—they are as shown
in Figure 7. First, the node-based model requires the distribution of the number of com-
munication pc in a day and the number of nodes involved in each communication. Both
companies want a one-year contract period of T = 365. Let the number of communications
and the number of nodes involved in each communication follow the Poisson distribution
with mean λc and λn. The values of λc and λn affect the communication weight distribution
in links. Assume that, on average, there are λc = 400 communications in the network and
that each communication involves λn = 20 nodes on average each day.

Figure 8 shows the distributions of each topology. Based on these results, the first
network with 3678 links gives 9,369,070 total communications in the network. Conversely,
the second network with 1126 links provides 2,756,208 total communications in the network.
Although both networks have the same number of nodes equal to 150, the number of links
dramatically affects the total number of communications in the network. Figure 8 also
shows a high number of spurious connections or connections with small weights. This
result indicates that the model represents many real cases, where not all nodes communicate
with high intensity, and some are even connected with sporadic communication.
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Figure 8. Distribution of the number of communications for a 1-year contract follows a Poisson distribution with λc = 400
and λn = 20 according to a node-based model. (a) Distribution in the first network. (b) Distribution in the second network.

Table 4 explains descriptive statistics for both networks. These results provide similar
mean values of weights for the first and second networks. The mean value of the first
network is 2547.33, and the mean is 2447.79 for the second network. The maximum weights
for each network are 11,154 and 10,773, with minimum values of 0 and 7, respectively. The
standard deviation of weight in the second network is equal to 2352.23 and more generous
than the standard deviation of weight in the first network equals 2162.83.

Table 4. Descriptive statistics for the weight of both networks according to the node-based model.

Network n Links Mean SD Median Min Max 95th Perc.

First 3678 2547.33 2162.83 2009.5 0 11,154 6787
Second 1126 2447.79 2352.23 1742 7 10,773 7635.8

Next, we introduce the process of generating weighted networks by a link-based
model with the procedure given in Algorithm 2. This algorithm requires the number of
links ` and the distribution of Zk, k = 1, 2, · · · , `. The distribution is assumed to be selected
from the three distributions given in Table 3. This algorithm uses the beta distribution as
a sampling probability because this distribution is in the (0, 1) interval. The model can
adjust parameters a, b so that there are many spurious weighted links. If we use a uniform
distribution as we did before, the frequency of each weight will be similar.

We select the parameters used for the sampling probability distribution of a = 1 and
b = 4. From the information given in Table 5, there are `1 = 3678 links in the first network
and `2 = 1126 in the second network. Suppose that the average number of communication
per link per day is 20. Thus, for the Poisson distribution we select λ = 20, for the binomial
distribution we select n = 100 and p = 0.2, and for the negative binomial distribution we
choose r = 60 and ρ̄ = 0.25.

Figure 9 shows the results for each distribution in each link. During one year, 26.8 mil-
lion communications took place in the first network, and 8 million communications took
place in the second network based on simulations conducted using a link-based model.
This result is due to the number of links in the first network being three times the number
of links in the second network. An identical link weight distribution is obtained, which
implies that two networks have the same average communication on the link for each
distribution. The descriptive statistics in Table 5 show how close the central tendency
is and measure of dispersion for each distribution in both networks. Thus, the models
can always obtain a distribution of communication weights on the network with much
spurious weight. Both the node-based and link-based models can be used to model the
number of connections in each link. In the next section, we consider the results of the
node-based model, as shown in Figure 8.
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Figure 9. Distributions of the number of communication for one year contract usiang a link-based model.

Table 5. Descriptive statistics for the weight of both networks created using a link-based model.

Desc. Stat. Pois. 1st Pois. 2nd Bin. 1st Bin. 2nd Nbin. 1st Nbin. 2nd

Mean 7300.75 7303.28 7301.78 7299.8 7298.26 7299.78
SD 5904.14 6178.82 5883.68 5961.65 5974.05 6218.04
Median 5922.5 5727 5897.5 5799 5798.5 5622
Min 1 2 2 8 3 2
Max 32,931 32,539 31,020 33,972 32,629 32,290
95th perc. 19,310.8 19,681 19,001.8 19,000 19,407.6 20,258

5.2. Finding Risk Group

After the previous step, including modelling network weight, community detection
is obtained by maximizing the modularity for weighted networks using the Louvain
algorithm provided in Section 3. Figure 10 explains the results of community detection,
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where there are three communities in the first network and six communities in the second
network. The same colour indicates that the nodes are in the same community. Different
colours imply that the nodes are in various communities. As discussed earlier, the first
network comprises three communities, with each group connected to a complete network.

(a) The first network with three communities. (b) The second network with six communities.
Figure 10. Community detection of the weighted network for the first and the second company using the Louvain algorithm.

Next, assume that each group or community or subgraph is mutually exclusive.
Figure 11 describes each of the subnetworks from the first and second networks. The
maximum modularity is 0.666 for the first network and 0.210 for the second community. The
three subnetworks in the first network have the same nodes—i.e., 50 nodes per community.
Conversely, six subnetworks in the second network have different numbers of nodes—i.e.,
30, 18, 28, 27, 24, and 23 sequentially from the first to the sixth community.

(a) Subgraphs of the first network.

Figure 11. Cont.
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(b) Subgraphs of the second network.
Figure 11. Subgraphs or subnetworks of the first and second networks.

5.3. Threshold Setup and Filtering Process

We want to eliminate the spurious link—for example, a link with a weight equal
to 0, which causes the infection rate to be 0. In this step, removing the link is achieved
using the threshold setup and filtering process methodology. Considering the thresholds
in Equations (5) and (6), Table 6 provides the results of the threshold for each community
in the first and second networks. Every community in every network has a threshold near
the maximum value. It means that only a few links meet the thresholds. The threshold in
Table 6 gives decreasing values for tthet, tfhet, and tvhet. Thus, by increasing the average
threshold, we can obtain a more relaxed threshold value, allowing the inclusion of more
nodes. Based on these results, we choose to use tvhet to provide a more flexible threshold
and use filtering processes to adjust the number of links and the number of nodes in
this case.

Table 6. Threshlods for each community of the first and second networks.

Thresholds
Network Community tthet tfhet tvhet

First
1 (orange) 10,483.67 10,144 9928
2 (cyan) 10,757.67 10,543.25 10,413.4
3 (green) 10,082.33 10,055.25 9964.0

Second

1 (orange) 8565.67 8520 8460.4
2 (cyan) 9462 8916 8532.6
3 (green) 9808.67 9263 8714
4 (yellow) 9747.33 9294 8903
5 (blue) 8453.33 8120.75 7786.4
6 (red) 7192.67 6749 6473.6
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For the filtering step, we consider the proportion of the thresholds that have been
predetermined.

f ilters = p̄ · tvhet (28)

where p̄ is a proportion set {0.05, 0.1, · · · , 0.95, 1}. Figure 12 explains the relationship
between the number of nodes and the number of edges. If the proportion selection of
the filter is large, fewer nodes and links are involved in it. Therefore, it is necessary to
consider selecting a good filter to delete the spurious link but not too many to eliminate the
connection in the network. The relationship between the number of nodes and the number
of links in the first network has the same pattern, although the community in the second
network has a different pattern. This pattern is dependent on the link structure and its
weight in each community, where the three communities in the first network have a similar
structure.

Figure 12. Effect of filtering on the number of nodes and edges for each community in the first and second network.

5.4. Infection Characteristics and Ratemaking

Let us consider three communities in the first network and six communities in the
second network. In each community, we build a weight matrix and use the functions
in Equation (8) to show the upper bounds of the infection probability using Theorem 1
and premium simulation using Algorithm 3 for all nodes. As an adjustment, the weight
is divided by 365 to obtain the average number of communications per day. Further-
more, βuv for u, v = 1, 2, · · · , N is applied using a positive sigmoid function. Consider
(β, δβ, δv, εv) = (0.02, 0.01, 0.05, 1), for v = 1, 2, · · · , N; this parameter is chosen based on
the assumption that the average time taken for one node to infect its neighbours via the
link is between 50 and 100 days and ns = 1000. The average time taken until one node
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becomes infected with self infection is 20 days. The average repair time is one day. β and
δβ are the maximum and minimum infection rates for all nodes.

Moreover, consider the risk profile in Figure 6; assume that the wv parameter for
computer unit wealth is 2000; and follow a red profile pattern where most of the losses
occur between 0 and 1000 with parameters a = 2, b = 5, and c = 0.7. Suppose the
parameter value for the linear cost function (α, α1, α2) equals (0.01, 5× 10−6, 2× 10−5).
To demonstrate the significance of the results, we consider several conditions. These
conditions are:

• Full network without GMA (without community detection and filtering).
• With GMA (using community detection and filtering). In this case, the percentages of

the filter are 0% (no filter), 5%, 10%, 15%, and 20%. We set the maximum percentage
to 20% to avoid too many links not being considered in the simulation, which would
lead to underestimation.

The three conditions were carried out at homogeneous (ε-SIS) and heterogeneous in-
fection rates (IH-SIS). Homogeneous cases used an infection rate of 0.02. Figures 13 and 14
show the upper bound of stationary infection probabilities and the premiums of nodes for
cases without and with GMA. Additionally, Figures 15 and 16 depict the total premium and
covered nodes in each scenario. These four figures can help explain some of the impacts on
the upper bound, premium, and total premium.

Figure 13. Stationary infection probabilities of nodes based on filters and infection rates in the first and second network.
There are two cases for homogeneous and heterogeneous infection rates: (1) without GMA (Full), and (2) with GMA (using
filter 0% (No Filter), 5%, 10%, 15% and 20%).
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Figure 14. Premiums of nodes based on filters and infection rates in the first and second network. There are two cases for
homogeneous and heterogeneous infection rates: (1) without GMA (Full) and (2) with GMA (using filter 0% (No Filter), 5%,
10%, 15% and 20%).

Figure 15. Comparison of homogeneous total premium and heterogeneous total premium in the first and second network
for two cases: (1) without GMA (Full) and (2) with GMA (using filter 0% (No Filter), 5%, 10%, 15% and 20%.
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Figure 16. Comparison of homogeneous total premium ( ), heterogeneous total premium ( ) and covered nodes
( ) in the first and second network for two cases: (1) without GMA (Full), and (2) with GMA (using filter 0% (No Filter),
5%, 10%, 15% and 20%.

5.4.1. Filter Selection and Community Detection Effects

We discuss the effect of selecting a percentage of tvhet on communities in the first
and second networks. Based on Figure 12, the number of nodes and links for each filter
percentage is significantly reduced. The stationary probability given by Equation (20) can
be used to approximate rates or premiums. We consider five filter percentages—namely,
0%, 5%, 10%, 15%, and 20%. Theorem 1 and Proposition 5 are used to obtain the effect of
the filtering process on the upper bound of the stationary infection probability.

Figures 13–15 show the results of the filtering process for the upper bound, the
premium estimation, and the total premium for the first and second network. The findings
for the upper bound of the infection probabilities using Theorem 1 follow the same pattern
as the results of the premium simulation. As a result, this upper bound of infection
probabilities can be used to approximate the premium. In the first network, all the results
showed significant decreases in the upper bound, the premium, and the total premium.
These results indicate that although the first network density is high, many nodes were
not actively communicating. Conversely, the drop in upper bound, premium and total
premium for each filter percentage is not statistically significant in the second network, with
an extremely low density. By selecting this risk, we can provide more realistic premiums
or rates. The first network is more than three times denser (3678 links) than the second
network (1126 links). The filter’s effect on the upper bound, premium and total premium
in a low-density network is not very visible.

Both networks produce intriguing results when a 0% filter is used (no filter). The
premium is calculated in this situation just by identifying the community. The modularity
of the first network is 0.666, while the modularity of the second network is 0.210. As a
result, the first network produces extremely comparable results for the full network (no
community detection and no filter). Meanwhile, the second network delivers a signifi-
cant reduction. This is because networks with low modularity eliminate a large number
of connections between communities. Thus, community detection is recommended for
networks with high modularity (more than 0.6). Figure 16 shows the percentage reduction
achieved against no filter (filter 0%) and nodes covered for every case. The decrease in
premium occurred due to a decrease in the number of covered nodes. On the 20% filter,
only 128 (first network) and 120 (second network) are covered. The decrease in premium
was faster than the decrease in covered nodes. The selection of a large filter can lead to
underestimation. However, our approach could identify risk and allow policyholders to
adjust the number of nodes covered (% filter) based on their capacity to pay premiums.
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5.4.2. Different Infection Rate and Communication Effects

We compare the model used by Xu and Hua (2019)—namely, ε-SIS and the model with
different link infection rates: HG-SIS. Figure 4 shows the difference between the two models.
Considering Figures 13–15, the results obtained for the upper bound, premium, and total
premium with heterogeneous infection rates give lower premiums than homogeneous ones.
As with the scenario that included filtering, the heterogeneous infection rate was more
significant in the high-density network (first network) than in the low-density network
(second network). According to Figure 16, the heterogeneous infection rate lowered the
total premium by 35.6% in the first network and 22.77% in the second network without
filtering (0% filter).

Xu and Hua (2019) and Antonio and Indratno (2021) obtained results showing that the
insurance premiums they produce are greatly influenced by the degree of the node. Thus,
the weight factor or communication frequency is not considered in this model. To illustrate
the importance of these findings, we plot the relationship between the total communication
weight of neighbours and the premiums provided by the model with homogeneous and
heterogeneous infection rates. Figure 17 shows the results obtained for the first network,
while Figure 18 shows the results obtained for the second network. In the first network,
both full and unfiltered scenarios with homogenous infection rates demonstrate a lack of
connection between communication weights and premiums, where correlation coefficients
of ρ = 0.057 and ρ = −0.021 with p-values > 0.05. The relationship is seen in the 5–20% filter
with the results ρ > 0.5 and p-value < 0.05. However, this relationship seems to be affected
only by degrees because ∑u wuv is also the sum of the degree. All cases demonstrated
significant findings for the first network with heterogeneous infection rates, with a ρ > 0.9
and a p-value < 0.05.

The premiums of the second network effectively lead to the same conclusion. For
homogenous infection rates, the premium demonstrates no relationship between the
premiums and communication weights (ρ < 0.3) in any of the cases. Meanwhile, the
premium based on heterogeneous infection rates produced significant results in all cases
with ρ > 5.9, although the results were lower than the first network. Therefore, the model
developed has some highly appealing outcomes. The heterogeneous model could handle
risk based on the intensity of contact or communication in the network.

5.4.3. GMA Effects on Microlevel

At the micro-level (node level), we compare the premium or rate obtained without
GMA (full and homogenous) to the premium or rate obtained with GMA (community
detection, filtering, and heterogeneous infection rate) for fifteen selected nodes. To display
the most comprehensive comparison, we chose to use the 20% filter. Table 7 represents
the premium calculation simulation results without GMA and with GMA for the 15 se-
lected nodes.

In the first network without GMA, it appears that each node has a mean infection in the
interval 63–68, with a principal value of 49 degrees. The premiums show almost the same
results of approximately 25 in one currency unit. At node 2 (N2) in the first network (see
Table 7A), GMA succeeded in reducing the premium estimate to 6.827 currency units with
a 20% filter. Using this method, the premium for Node 2 is diminished by 73.6% compared
to the premium without GMA. The previous procedure was conducted in uniform network
conditions. GMA considers active communications to acquire risk groups to offer lower
prices. The effect of rate adjustment is seen at node 2 (N2). N2 has four neighbours (degree
is equal to 4), and the premium is 6.827. Meanwhile, node 142 (N142), with 24 degrees, has
a premium of 6.795. Thus, the degree is no longer an influential factor affecting premiums.
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Figure 17. Relationship between the total weight of the neighbors and their premium (homogeneous and heterogeneous) for two cases:
(1) without GMA (Full), and (2) with GMA (using filter 0% (No Filter), 5%, 10%, 15%, and 20% in the first network. ρ is the Pearson
correlation coefficient and p is the probability value.
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Figure 18. Relationship between the total weight of neighbors and their premium (homogeneous and heterogeneous) for two cases:
(1) without GMA (Full), and (2) with GMA (using filter 0% (No Filter), 5%, 10%, 15%, and 20% in the second network. ρ is the Pearson
correlation coefficient and p is the probability value.
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Table 7. Premiums and rates for the 15 selected nodes without GMA and with GMA with a 20% filter.

Without GMA (Full-Homogeneous) With GMA with 20% Filter (Heterogeneous)
Node Degree Mean Premium Exposure Rate Degree Mean Premiums Exposure Rate

Panel A: The First Network

N2 49 65.94 25.334 53.932 0.47 4 17.632 6.827 9.123 0.748
N9 49 63.78 24.619 134.328 0.183 29 18.73 7.164 114.069 0.063
N12 49 67.12 25.617 141.949 0.18 29 19.616 7.636 120.692 0.063
N33 49 64.62 24.494 63.816 0.384 11 17.523 6.766 26.368 0.257
N50 49 66.32 25.105 79.67 0.315 20 17.408 6.752 52.929 0.128
N51 51 64.42 23.937 251.816 0.095 41 25.759 9.889 235.85 0.042
N78 49 64.94 24.8 239.146 0.104 40 25.915 9.971 225.796 0.044
N79 49 66.8 25.49 215.663 0.118 40 24.258 9.283 203.809 0.046
N89 49 65.16 24.296 77.454 0.314 12 17.256 6.614 30.648 0.216

N100 49 67.08 26.56 60.916 0.436 4 17.375 6.7 8.855 0.757
N140 49 67.12 25.449 157.99 0.161 34 20.699 7.938 144.656 0.055
N142 49 67.68 25.934 87.413 0.297 24 17.558 6.795 64.526 0.105
N143 49 65.66 24.2 68.076 0.355 14 17.445 6.863 33.304 0.206
N144 49 66.54 25.75 83.511 0.308 23 17.528 6.765 59.724 0.113
N145 49 67.7 25.698 184.6 0.139 36 22.655 8.697 173.27 0.05

Panel B: The Second Network

N2 11 22.310 8.627 91.107 0.095 3 18.470 7.305 18.280 0.400
N3 16 24.330 9.379 58.154 0.161 6 18.663 7.217 39.821 0.181
N21 19 25.330 9.837 45.069 0.218 7 17.270 6.604 12.012 0.550
N22 10 21.180 8.110 34.107 0.238 5 17.452 6.791 15.228 0.446
N23 15 23.950 9.361 24.643 0.380 4 17.330 6.534 23.772 0.275
N24 23 27.150 10.526 70.357 0.150 6 17.956 6.941 7.767 0.894
N37 14 23.000 8.757 37.510 0.233 4 17.670 6.744 17.073 0.395
N38 8 21.490 8.327 23.573 0.353 2 17.920 6.921 17.073 0.395
N63 25 26.560 10.024 17.509 0.573 5 17.629 6.863 5.520 1.254
N71 19 25.040 9.490 16.572 0.573 6 17.522 6.761 10.929 0.619
N97 19 24.900 9.608 44.824 0.214 7 18.063 6.930 9.881 0.701

N115 9 21.870 8.301 57.222 0.145 8 18.450 6.940 5.389 1.288
N116 13 22.930 9.076 30.211 0.300 4 17.366 6.719 3.546 1.895
N126 23 26.630 10.337 24.692 0.419 5 17.742 6.869 6.951 0.988
N127 13 23.660 9.180 46.640 0.197 5 17.749 6.868 19.743 0.348

In Table 7B, the second network was constructed from random networks. Thus,
the degree of each node is different. Although the degrees are different, the premium
calculation performed without GMA shows that the 15 nodes are between 21 and 27. The
degree effect was also seen in the non-GMA results, where nodes with high degrees had
more mean infections. For cases without GMA, node 24 (N24) had a mean infection of
27.150 and a premium of 10.526 in currency units with 23 degrees. The premium obtained
for N23 was successfully reduced by 37.9% using GMA.

This result also supports the previous outcome (Figures 13–16), showing that the
first network achieved a considerable reduction in the total premium or total loss. These
results show that by using a 20% filter, the contraction that occurred reached 70% or
more. Filter selection is highly dependent on network density. For dense networks, a
20% filter is too high. However, in low-density networks, the 20% filter yields reasonable
improvements. The results of the second network also improve the total premiums. Thus,
this method has the potential to be developed and evaluated as a method for adjusting
cyber insurance premiums using a network structure to obtain premiums or rates that are
genuinely appropriate (not overpriced).

6. Conclusions

We propose the use of a GMA for CIRM in this study. CIRM performed using
GMA has three stages. In stage 1, a network is built with communication weight. In
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stage 2, community detection and filtering are carried out as the essence of GMA. Stage 3
simulates the premium or rate. The experiments were carried out using two types of
networks: a hybrid network and a random network with 150 nodes. The proportion of
filters applied during the filtering operation substantially affects the premium or rate
outcomes. According to the premium calculation, network density substantially affects
the filter’s efficiency and the heterogeneous infection rate. Low-density networks tend
to produce fewer improvements and vice versa. Community detection is advised if the
network’s modularity is sufficiently strong (more than 0.6).

Comparisons of the ε-SIS and HG-SIS models show very significant levels of premium
reduction. This result is more visible in the network with a high density (first network)
than in the second network. The relationship between the communication weights and
premiums shows that the proposed model successfully accommodates the communication
factor. The correlation between the premium obtained using a heterogeneous infection
rate and the weight of the communication was much higher than that obtained for the
premium with a homogeneous infection rate. The experimental comparison of the total
loss and premium for the first and second networks shows that the GMA results are lower
than those obtained without GMA. Consequently, GMA can be developed and evaluated
to reduce insurance rates based on the characteristics of communication networks.

This study is still limited to two network characteristics—namely, communication
weight and network density. In the future, other network characteristics should be ex-
plored. Additionally, this approach disregards the importance of cybersecurity expertise
and internal threats posed by employees. Macro-level models, such as those suggested
by Xu and Hua (2019) must also consider these variables. Network analyses such as
centrality measure degrees, random-walk betweenness, shortest-path betweenness, and
farness (Christley et al. 2005) can be considered for the identification of high-risk nodes in
future studies. The average degree is also a network size that greatly affects the epidemic
thresholds (Kim et al. 2021). In large networks, simulations face complex computational
time problems. We suggest using the SIS process simulation approach with the Gillespie
Algorithm (Indratno and Antonio 2019; Kiss et al. 2017), which is one of the cornerstones
of analysing dynamical processes in complex networks in future studies. Individual-level
epidemic models or other agent-based models that can explain the process of computer
virus infection still require exploration.
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Appendix A. Proof of Proposition 4

Function in Equation (8) was chosen because we want βuv to be at an interval that
depends on β and δβ.

• The first and second derivatives for βuv = f (wuv) are:

f ′(wuv) =
(β− δβ)exp(−k(wuv − w̄))k

(1 + exp(−k(wuv − w̄)))2

f ′′(wuv) =
2(β− δβ)k2exp(−k(wuv − w̄))2

(1 + exp(−k(wuv − w̄)))3 −
(β− δβ)k2exp(−k(wuv − w̄))

(1 + exp(−k(wuv − w̄)))2

By substituting βuv, we obtain:

f ′(wuv) = k(βuv − δβ)

[
exp(−k(wuv − w̄))

1 + exp(−k(wuv − w̄))

]
= k(βuv − δβ)

[
1− 1

1 + exp(−k(wuv − w̄))

]
= k(βuv − δβ)

[
1−

βuv − δβ

β− δβ

]
Since k > 0, the function reaches its maximum or minimum value when f ′(wuv) = 0.
Consider the following equation:

k(βuv − δβ)

[
1−

βuv − δβ

β− δβ

]
= 0

These conditions are met for two cases—namely, βuv − δβ = 0 or
βuv−δβ

β−δβ
= 1. Thus,

the maximum or minimum value that meets the conditions is βuv = δβ or βuv = β.
We can use the second derivative test for local extremes to determine the maximum
and minimum values. For βuv = β or βuv = δβ, f ′′(w) is 0. Thus, βuv = β and
βuv = δβ can be the maximum value or the minimum value. As a result of δβ < β,
max(βuv) = β and min(βuv) = δβ.

• For wuv → w̄:

lim
wuv→w̄

βuv = lim
wuv→w̄

β− δβ

1 + exp(−k(wuv − w̄))
+ δβ =

β− δβ

1 + exp(0)
+ δβ =

β + δβ

2
• For wuv → ∞:

lim
wuv→∞

βuv = lim
wuv→∞

β− δβ

1 + exp(−k(wuv − w̄))
+ δβ =

β− δβ

1 + exp(−∞)
+ δβ = β

• Consider wuv → 0:

lim
wuv→0

βuv = lim
wuv→0

β− δβ

1 + exp(−k(wuv − w̄))
+ δβ =

β− δβ

1 + exp(kw̄)
+ δβ

Since k > 0 and w̄� 0, then ekw̄ → ∞, such that: lim
wuv→0

βuv =δβ
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Appendix B. Proof of Theorem 1

Considering Equation (15) for h→ 0, we can obtain the dynamic of expectation in this
equation:

dE[Iv(t)]
dt

=
N

∑
j=1

βvjE[Ij(t)]−
N

∑
j=1

βvjE[Ij(t)Iv(t)]− (δv + εv)E[Iv(t)] + εv. (A1)

Using the result in Equation (19) (Cator and Van Mieghem 2014):

dE[Iv(t)]
dt

≤
N

∑
j=1

βvjE[Ij(t)]−
N

∑
j=1

βvjE[Ij(t)]E[Iv(t)]− (δv + εv)E[Iv(t)] + εv (A2)

which is equal to:

dpv(t)
dt

≤
N

∑
j=1

βvj pj(t)−
N

∑
j=1

βvj pj(t)pv(t)− (εv + δv)pv(t) + εv (A3)

Let B = [βuv] for u, v = 1, 2, · · · , N. The result of two-state continuous Markov chain
is pv(t) ≥ εv

δv+εv
(Xu and Hua 2019), and Equation (A3) can be written in the following

matrix form:

dp(t)
dt
≤ Bp(t)− diag(pv(t))Bp(t)− diag(εv + δv)p(t) + εεε (A4)

≤ Bp(t)− diag
(

εv

δv + εv

)
Bp(t)− diag(εv + δv)p(t) + εεε (A5)

=

[(
I − diag

(
εv

δv + εv

))
B− diag(εv + δv)

]
p(t) + εεε (A6)

where p(t) = (p1(t), p2(t), · · · , pN(t))′ dan εεε = (ε1, ε2, · · · , εN)
′. Suppose

Q̄ = diag
(

δv

δv + εv

)
B− diag(εv + δv) (A7)

We consider that the equation for the upper bound for dynamic infection probability is:

p*′(t) = Q̄p(t) + εεε (A8)

That equation is a non-homogeneous system of differential equations with order 1 in
matrix form. Using integrating factor u(t) = e−

∫
Q̄dt, the solution is given by:

p*(t) = eQ̄t
[

C +
∫ t

0
e−Q̄sεεεds

]
(A9)

= eQ̄tC +
∫ t

0
eQ̄(t−s)dsεεε (A10)

= eQ̄tC + Q̄−1[eQ̄t − I]εεε (A11)

Assume that at t = 0 the infection probability is equal to p*(0). Finally, the solution
of the upper bound for infection probability is p*(t) = eQ̄tp*(0) + Q̄−1[eQ̄t − I]εεε. Since,

Q̄ = ∑∞
k=0

Q̄ktk

k! = ∑∞
k=1

Q̄ktk

k! + I, we obtain:

p*(t) = eQ̄tp*(0) + Q̄−1
∞

∑
k=1

Q̄ktk

k!
εεε. (A12)
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Appendix C. Proof of Proposition 5

Clearly, pv∞ holds when dpv(t)
dt = 0. Using simple algebraic manipulation in Equation (18)

for dpv(t)
dt = 0, the proposition is proven.
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