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Abstract: We consider annuity designs in which the benefit amount is allowed to fluctuate (up or
down), based on a given mortality/longevity experience. This way, guarantees are relaxed in respect
of traditional annuity arrangements. On the other hand, while the annuitant is exposed to the risk
of a future reduction of the benefit amount because of higher longevity, he/she can immediately
take advantage of a lower premium loading, as well as of a future increase of the benefit amount in
the case of higher mortality. Flexibility in the annuity design could be welcomed by individuals, as
the conservative features of traditional products partly explain their lack of attractiveness in most
markets. To further contribute to the flexibility of the product, we suggest a pricing structure based
on periodic fees applied to the policy fund, instead of the usual upfront loading at issue. Periodic fees
are more suitable to support a revision of the arrangement after issue, which is currently not allowed
in traditional annuity products. We show that periodic fees can be introduced by identifying a
discount factor to be used for pricing and reserving. We assume stochastic mortality, and we compare
alternative mortality/longevity linking solutions, by assessing the periodic fees and other quantities.

Keywords: mortality/longevity-linked annuities; aggregate longevity/mortality risk; longevity
guarantee; periodic longevity fee

JEL Classification: G22

1. Introduction

The need for individuals to take autonomous decisions regarding their post-retirement
income is widely recognized. Such a need has become more urgent after the adoption
of Defined Contribution principles (in place of Defined Benefit) in Pillar I and II pension
systems of many countries, as individuals are thus exposed to significant financial and
longevity risks when in retirement. Among the private arrangements providing a post-
retirement income, traditional life annuities are perhaps the most protective form for
individuals, thanks to the longevity and financial guarantees they provide. This suggestion
is supported by the classical result by (Yaari 1965), which identifies annuities as the optimal
choice for a retiree. However, guarantees of traditional annuities expose the provider to
major risks, furthermore over a long-term time horizon; this is why guarantees are matched
by a conservative structure of benefits and investments, with loadings judged to be very
high. These are some of the reasons explaining the so-called annuity puzzle, i.e., the fact
that individuals are not attracted by life annuities and markets remain underdeveloped
(see, for example, (Davidoff et al. 2005) and, for a recent contribution and updated list of
references, (Peijnenburg et al. 2016)).

The current pandemic may suggest that planning the post-retirement income is no
longer a topical issue. On the contrary, longevity remains a matter not to be disregarded,
neither by individuals nor by providers. While it is clear that the COVID-19 pandemic
is currently causing a mortality shock, different scenarios about the future mortality are
possible, including an increase in the life expectancy of the survivors (see, for example,
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Cairns et al. 2020; Milevsky 2020). Furthermore, social security could be in greater difficulty
in the near future, due to the economic crises that have occurred in the latest years. It is,
therefore, still relevant to consider situations where a significant part of the post-retirement
income will have to be covered with private resources. Individuals will have to decide
whether to self-annuitize their money, retaining all risks, or transfer all or part of the risks
to providers, who then in turn have to develop cost-effective and attractive solutions.

In a scenario characterized by longevity but also by mortality shocks (which in the cur-
rent pandemics are particularly severe at high ages), it is convenient to redefine longevity
guarantees, so as to make them cheaper and more appealing both for individuals and
providers. In particular, if the benefit amount is contingent on an appropriate mortal-
ity/longevity experience, possible profits and losses originated by unanticipated mortal-
ity/longevity are (at least partially) shared between individuals and providers, resulting
in lower loadings, but also providing the opportunity to design a more flexible product
structure.

Mortality/longevity-linked annuity benefits have been addressed in several contribu-
tions in the latest decade; see, in particular, (Bravo and de Freitas 2018; Chen and Rach
2019; Chen et al. 2019; Denuit et al. 2011; Milevsky and Salisbury 2015; Richter and Weber
2011; Weinert and Gründl 2021). Some forms already exist in the market; for example, in
Danish deferred group annuities the benefit amount is increased by a bonus if the actual
investment performance exceeds the guaranteed return or if the mortality experience is
higher than expected (see Andersen and Skjodt 2007). While alternative linking coefficients
have been examined in the literature, the problems mainly discussed are the fair valua-
tion of the contract, as well as optimality issues for the individual, in an expected utility
framework. The idea of linking a post-retirement income benefit to a mortality/longevity
experience has not been developed for the first time in the latest decade, however. Con-
versely, such an idea is very old, dating back to the 17th century, when the so-called tontine
investments were conceived. However, tontine annuities were originally designed not for
protecting against the longevity risk, but for speculative purposes; see (McKever 2009) and
(Milevsky 2014) for historical notes. Recently, mortality/longevity-linking structures have
been adopted within pooled arrangements; while the best known are Group-Self Annuiti-
zation pools (see, for example, Piggott et al. 2005; Qiao and Sherris 2012), other schemes
are investigated in (Stamos 2008), (Donnelly et al. 2013) and (Donnelly 2015), to cite some
contributions. Pooled arrangements are self-insured: no guarantee is provided; individ-
uals pool together their money, trying to take advantage of pooling effects. Self-insured
solutions are cheaper than annuities, but individuals retain all risks, as members of the
pool. In contrast, some forms of guarantees should be kept in mortality/longevity-linked
annuities. A general description of linking coefficients, including as particular cases most
of the solutions analysed in the literature both for insured and self-insured arrangements,
is developed by (Olivieri and Pitacco 2020a).

As mentioned above, annuities are usually viewed as a very conservative product by
individuals, as they represent an inflexible and illiquid asset, they imply an irreversible
decision at issue, they do not satisfy bequest needs or they meet bequest preferences only
partially, if a death benefit is included (see Pitacco 2016). Innovation can be pursued in
various respects. Making the benefit amount contingent on mortality/longevity is un-
doubtedly an important innovation. In particular, it favours the adoption of not excessively
prudential assumptions about future mortality, otherwise necessary given that annuities
extend over a very long time-horizon. Bequest preferences can be met by introducing
death benefits. While this is customary in annuities (as mentioned above), with death
benefits payable up to some (not very high) age, Bernhardt and Donnelly (2019) introduce
bequest in pooled arrangements. Several opportunities for innovation can be obtained
when combining different benefits, such as the just mentioned case of annuities and death
benefits. Particularly interesting in this regard is the combination of different forms of
annuities; Chen et al. (2019, 2020) and Chen and Rach (2019) consider the case of fixed
annuity benefits combined with mortality/longevity linked-benefits.
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Another line of innovation can be developed in respect of the structure of the fees. It
is traditional for life annuities to define and charge the premium loading at issue, when
the individual transfers their money to the provider. Such a pricing structure concurs
to the inflexibility of the product, as on one hand pricing assumptions are fully chosen
at issue, on the other the provider is required to pre-define the management over time
of the upfront loadings. Conversely, periodic fees can pave the way for greater product
flexibility, for example making it easier to switch to different forms of benefits after issue,
or making it possible to revise the pricing assumptions. In this latter regard, we note that
while the possibility of revising pricing assumptions can be viewed with suspicion by
individuals, any change will not necessarily be to the advantage of the provider (rather,
it may be favourable to the individual); in principle, any change in pricing assumptions
will be limited by the policy conditions underwritten at issue. Periodic fees are a natural
choice when periodic premiums are paid, i.e., usually in the case of endowments. In a
mortality/longevity linking framework, Hanbali et al. (2019) focus in particular on the
case of pure endowments, by assuming level premiums (subject to possible adjustments
in time). Periodic fees are common in variable annuities, independent of the time-profile
of the premium stream. Here, guarantees are priced by charging a periodic fee to the
policy account value, with the possibility for the policyholder to waive the guarantee at
any time (except for agreed time windows), with a consequent interruption of the relevant
fee charge; for a general overview, see (Bacinello et al. 2011). In a recent contribution by
(Chen et al. 2021) periodic fees are introduced in a tontine scheme, and are expressed as a
proportion of the benefit amount; the size of the fee that makes the individual indifferent
between choosing a fixed-benefit or a tontine annuity is in particular examined, identifying
this way the range of acceptable fee levels in tontine arrangements.

In this paper, we consider mortality/longevity-linked annuities, that include guaran-
tees in the form of barriers for the benefit amount. We further develop Olivieri and Pitacco
(2020a, 2020b), by introducing periodic fees instead of an upfront fee at issue. Periodic fees
are charged to the policy fund value and their level is assessed based on the losses and
profits retained by the provider, which in turn depend on the linking coefficient and the
barriers for the benefit amount. The metric we use to assess the required fees is the business
value for the provider; this quantity, defined as the present value of future profits net of
the cost of capital, is suitable as a joint summary of the losses and profits retained by the
provider. We show that the periodic fee identifies a discount factor to be used for pricing
and reserving. We then define the individual reserve, and split it into two components, one
covering the value of future benefits and one the value of future fees; such an information
can be useful in some applications.

The remainder of the paper is organized as follows. In Section 2, we describe the
model, in particular the mortality/longevity-linking annuity benefits examined in the
paper (Section 2.1), the structure of periodic fees and the corresponding discount factor
(Section 2.2), the individual reserve and its components (Section 2.3), the business value to
the provider (Section 2.4); finally, we discuss how to assess the required fees, based on an
assessment of the business value (Section 2.5). Some numerical findings are illustrated in
Section 3, more specifically in Section 3.3, after having sketched the stochastic mortality
model adopted (Section 3.1) and provided details about the arrangements analysed in the
numerical implementation (Section 3.2). Finally, Section 4 concludes the paper, with some
final comments.

2. Model Setup
2.1. Mortality/Longevity-Linked Annuity Benefits

We consider a discrete-time annuity immediate in arrears, i.e., with payments at the
end of the year. For simplicity, one cohort only is addressed, homogeneous in all respects.
The entry time is 0 and the entry age is x. In this paper, we focus on mortality/longevity
risk only, while we disregard other risks. For this reason, a deterministic financial setting is
adopted.
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We follow the general linking structure described in (Olivieri and Pitacco 2020a), to
which we refer for a detailed discussion about the rationale and actuarial technique backing
the annuity benefit adjustment. We consider the following two alternative mortality/
longevity-linked annuity benefits:

bt = bt−1 ·
px+t−1(0)

p̃x+t−1
; (1)

bt = b0 ·
1 + ax+t(0)
1 + ax+t(t)

, (2)

where b0 is chosen at time 0 in both cases. The meaning of the quantities in Equations (1)
and (2) is as follows: px+t−1(0) denotes the annual survival probability at age x + t −
1 provided by a best-estimate mortality assumption (i.e., life table) at time 0; p̃x+t−1
represents the proportion of survivors (or longevity index) observed in a chosen population;
ax+t(0), ax+t(t) denote the actuarial value at age x + t of a unitary discrete-time annuity in
arrears, based on the best-estimate mortality assumptions (namely, life tables), respectively,
at time 0 and t. An interpretation about the two adjustments coefficients follows below.

In Equation (1), which we will call linking by means of the survival probability, the
benefit amount is adjusted based on the comparison between the survival rate realized
in a given population, p̃x+t−1, and a benchmark, px+t−1(0), chosen at time 0. An increase
(decrease) of the benefit amount follows from px+t−1(0) > p̃x+t−1 (px+t−1(0) < p̃x+t−1),
i.e., in the case of higher realized mortality (longevity) than predicted by the benchmark.
We note that, for an annuity business, a profit (loss) is typically reported by the provider
in the case of higher mortality (longevity); thus, the benefit adjustment in (1) serves to
mitigate such a profit (loss), partially transferring it to the individuals. The strength of the
mitigation effect depends, however, on the population in which p̃x+t−1 is measured (as
well as on other policy conditions, such as any barriers set for the benefit amount).

As far as the population is concerned, the choice is between the provider’s pool or
a reference population. While the provider’s pool usually shows a small size and is thus
subject to major random fluctuations, large reference populations are more appropriate, so
that deviations between p̃x+t−1 and px+t−1(0) can be mainly attributed to an unanticipated
underlying mortality/longevity trend. Random fluctuations represent a traditional risk
for insurers (and annuity providers), and the relating risk management actions should
be arranged using the well-known pooling arguments. Conversely, mortality/longevity-
linking benefits are recommended to cope with unanticipated mortality/longevity trends.
In the following, we then assume that p̃x+t−1 is measured on a large population. We finally
note that any possible difference between the mortality/longevity in the provider’s pool
and the reference population may be due not only to random fluctuations, but also to
different underlying trends. A basis risk follows for the provider, which we do not address
in this paper.

It is interesting to note that rule (1) is equivalent to the following:

bt = b0 · t px(0)
t p̃x

, (3)

where t px(0) is the survival probability from age x to age x + t provided by the best-
estimate mortality assumption at time 0, while t p̃x is the proportion of survivors from age
x to age x + t in the reference population. Equation (3) shows an important feature, which
does not emerge explicitly from Equation (1): the adjustment coefficient should be applied
to the benefit amount defined at the time the benchmark is referred to, namely time 0 in
this case. In other words, there must be a consistency between the time-frame involved by
the adjustment coefficient and the reference time of the quantity to which such a coefficient
is applied.

Coming to the benefit adjustment in Equation (2), which we will call linking by means
of the actuarial value of the annuity, we first note that ax+t(h) = ∑

ω−(x+t)
s=1 (1 + i)−s ·
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s px+t(h), where i is a chosen discount rate, s px+t(h) the survival probability (from age
x + t to age x + t + s) based on best-estimate assumptions at time h, and ω the maximum
attainable age (that we assume to be deterministic). The ratio 1+ax+t(0)

1+ax+t(t)
then involves a

comparison between possibly different mortality assumptions (or life tables) adopted to
assess the actuarial value of a unitary annuity, at time 0 and time t. The actuarial value
in the numerator, in particular, is a benchmark. If higher (lower) mortality is forecasted
at time t, then ax+t(0) > ax+t(t) (ax+t(0) < ax+t(t)), implying an increase (reduction) of
the benefit amount. Updated mortality/longevity assumptions in the actuarial value of
the annuity can result in a profit (loss) for the provider, which is (partially) mitigated by
the benefit adjustment. We note that, in line with what commented above for the linking
by means of the survival probabilities, having set the benchmark at time 0, the benefit
adjustment is applied to the benefit amount at the same time.

Both in the linking by means of the survival probability and by means of the actuarial
value of the annuity, explicit guarantees can be introduced, for example, by setting bounds
for the benefit amount or the benefit adjustment. Furthermore, it is also reasonable to
accept a maximum age to apply the benefit adjustment (say, age 95), in order to avoid that
the individual is exposed to the risk of benefit reductions at very advanced ages.

2.2. Policy Fund and Periodic Fees

In this section, we describe the main setting for periodic fees. As with other annuity
products, each individual only pays an initial capital S at entry time 0, and then will cash
the annuity benefit annually, until death. Unlike the usual setting for annuities, where
the premium loading is charged entirely to the initial capital at time 0, we assume that
periodic fees are charged to the policy fund at the beginning of each year. This is similar
to what happens in variable annuities. In our discussion, we disregard expenses; the fee
(whether it is obtained as a single initial or a periodic loading) is justified by the logic of
the safety loading, i.e., by the fact that the arrangement incorporates guarantees whose
cost is charged to the individual. When expenses are also addressed, periodic expenses can
be added to the periodic fee, while an upfront loading to cover initial expenses could be
included.

In this paper, we are mainly concerned with identifying appropriate pricing and
reserving logics when fees are periodic. Any possible revision after issue of the fee level
requires criteria that we do not address in this paper. In what follows, we assume that
the periodic fee level is chosen at time 0, and kept fixed over the whole policy duration;
some comments about the possible revision of the fee level after issue will be made later, in
Section 3.3.

As stated in Section 2.1, in this paper we consider a pool consisting of one cohort only,
homogeneous in all respects (entry age, risk class, benefit amount). With Nx+t we denote
the number of individuals in the pool at time t (age x + t). At time 0, Nx = nx known,
while Nx+t is random because of the mortality in the cohort.

Let At denote the individual fund (or policy fund) for a policy in-force at time t. No
death benefit is paid out by the provider, so that upon death the policy fund is released to
the pool (as a form of mortality credit). The dynamics of the policy fund is then described
by the following balance equation:

At · Nx+t = At−1 · Nx+t−1 · (1− ξ) · (1 + i)− bt · Nx+t , (4)

where: ξ is the proportional premium loading (or fee) that is charged to each policy fund at
the beginning of each year and i is the (deterministic) return on investments. At time 0,
A0 = S.

The policy fund is random because of the mortality in the pool and the path of the
benefit amount; in a more general setting, random financial returns can also be addressed.
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Solving backwards Equation (4) (note that Aω−x = 0), we find:

A0 =
ω−x

∑
s=1

bs · ((1− ξ) · (1 + i))−s · Nx+s

nx
. (5)

Equation (5) shows that the periodic fee ξ identifies a discount factor, to be used for
pricing. However, in order to quantify ξ, we still need a valuation principle. While we
know that A0 = S, the expression on the right hand side of Equation (5) is still random,
as both the sequences bs and Nx+s are random. Furthermore, there are two unknowns in
Equation (5), namely b0 and ξ. We further discuss this problem in Section 2.5, after having
introduced some quantities. We point out, however, that the approach we suggest to assess
the periodic fee will not directly make use of Equation (5); the discussion just developed
allows us to say that the periodic fee identifies a discount factor to be used for pricing
purposes (as well as for reserving; see Section 2.3).

We note that, if policy conditions admit, the periodic fee could be updated after issue
first extending Equation (5) and then implementing an appropriate valuation principle. As
already mentioned, in this paper we do not develop the discussion in this respect.

2.3. Individual Reserve and Components

In order to define the individual reserve, we make the following comments. As is
well-known, the individual reserve corresponds to the best-estimate value of liabilities
plus a risk margin. We assume that the risk margin can be measured through the periodic
fee, which (as noted in Section 2.2) identifies a discount factor. We further assume that, to
be consistent, the best-estimate assumptions should be those defined when the periodic
fee was assessed, i.e., at time 0 in this paper. Consider a policy in-force at time t. The
individual reserve is defined as follows:

Vt = bt ·
ω−(x+t)

∑
s=1

((1− ξ) · (1 + i))−s · s px+t(0) . (6)

It is useful to note that no future update of the benefit amount is explicitly considered
in the definition of the individual reserve, as the periodic fee already includes in the reserve
an allowance for the future benefit adjustments.

For shortness, we denote the sum in Equation (6) as ax+t(0; ξ), where the symbol
ξ refers to the fact that discounting is based also on the periodic fee (conversely, the
notation ax+t(0) will be kept to denote the expression commented in Section 2.1, i.e., when
discounting is based on the interest rate only).

It could be useful to split the individual reserve into components. A possible splitting
is the following:

Vt = bt · ax+t(0; ξ) = bt · ax+t(0) + bt · (ax+t(0; ξ)− ax+t(0)) . (7)

The first quantity, V[ben]
t = bt · ax+t(0) is the best-estimate value of future benefits, while the

second, V[fee]
t = bt · (ax+t(0; ξ)− ax+t(0)), can be interpreted as the part of the individual

reserve accounting for fees. This decomposition could be useful first to identify the risk
margin included in the individual reserve. It could be further useful in the case of a switch
to a different benefit structure, as the provider could only use V[ben]

t to determine the new
benefit level or, in the case of revision of the fee, the revision itself could be limited to the
component V[fee]

t . These aspects are not further developed in this paper.

2.4. Pool Fund, Present Value of Future Benefits, Present Value of Future Profits and
Business Value

We now address quantities defined in the provider’s perspective. Each individual
in the pool pays the initial capital S at time 0, and will cash the annual amount bt at time
t, t = 1, 2, . . . , until death. The following quantity describes what we call the pool fund, i.e.,
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the remaining money at time t of the total amount of initial capital, net of the benefits paid
so far and including interest on investments:

Ft = Ft−1 · (1 + i)− bt · Nx+t , (8)

with F0 = S · nx. Periodic fees do not enter the assessment of the pool fund; indeed, as
individuals transfer money to the pool only at time 0, periodic fees do not originate a real
periodic cash flow. Rather, they consist in a loading which is charged annually to the policy
funds of the survivors, as expressed by Equation (4).

The difference between the pool fund and the pool reserve, namely

SPt = Ft −Vt · Nx+t , (9)

expresses the surplus cumulated by the provider in the time-interval (0, t). If we consider
the surplus cumulated over the whole pool duration (0, ω− x), we find:

SPω−x = S · nx · (1 + i)ω−x −
ω−x

∑
s=1

bs · (1 + i)ω−x−s · Nx+s (10)

= nx · (1 + i)ω−x ·
(

S−
ω−x

∑
s=1

bs · (1 + i)−s · Nx+s

nx

)
, (11)

where: PVFB0 = ∑ω−x
s=1 bs · (1 + i)−s · Nx+s

nx
represents the Present Value of Future Benefits

(PVFB) at time 0, expressed per policy issued. The quantity PVFP0 = S − PVFB0 then
represents the total profit, usually called Present Value of Future Profits (PVFP) at time 0,
expressed per policy issued.

The PVFB and the PVFP are quantities of great interest for the assessment of the
business value. Their definition can easily be extended to times after issue. If nx+t is the
number of policies in-force (i.e., in the portfolio) at time t, then

PVFBt =
ω−(x+t)

∑
s=1

bt+s · (1 + i)−s · Nx+t+s

nx+t
(12)

expresses the PVFB at time t per policy in-force at that time, while PVFP at time t can be
assessed as follows:

PVFPt = Vt − PVFBt . (13)

Alternative valuation assumptions can be adopted in the assessment of PVFB, PVFP, in
particular with regard to mortality. The proportions Nx+t+s

nx+t
in (12) lead to an entity-specific

assessment , as the size of the total amount of future payments to be made by the provider
(namely, the amounts bt+s · Nx+t+s) is measured with the number of survivors in the pool,
which in their turn results from the mortality in the pool itself. Entity-specific assessments
are convenient, for example, to perform a realistic valuation of provider’s liabilities. The
adoption of the proportion of survivors in the reference population, s p̃x+t, in place of Nx+t+s

nx+t
is to be preferred in market-consistent assessments, such as those involved by pricing issues.
In this case, mortality/longevity risks to which the provider is exposed (e.g., because of a
small pool size or a pool composition affected by adverse-selection), but could be offset
by appropriate market transactions, should be excluded from the valuation. Since we are
discussing the setting of appropriate fees, in this paper we follow a market-consistent logic,
and we disregard risks specific to the provider. In particular, we do not consider different
mortality situations between the provider’s pool and the reference population, so that we
accept Nx+t+s

nx+t
= s p̃x+t at any age.

For further details about the assessment of PVFB and PVFP in more general situations,
we refer to Olivieri and Pitacco (2020a, 2020b).
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We now assess the business value for the provider, which is the part of PVFP net
of the cost of capital that the provider is required to hold to manage the business (for
references and an application to traditional annuities, see Blackburn et al. 2017). We assess
the cost of capital in a market-consistent style, i.e., as frictional costs net of the value of the
limited liability put option. The limited liability put option takes a positive value when,
because of the possible depletion of capital, the provider may fail to meet (at least in part)
its obligations. We assume that the provider can always obtain the extra capital necessary
to fulfil all obligations, in the case the amount initially allocated to the pool becomes
insufficient. In this case, the limited liability put option takes a null value. Frictional costs
(which arise mainly because of agency costs) are usually assessed as a proportion ρ of the
capital held on top of the pool reserve. We assume that such a capital is in the amount
required by regulation; we denote with RCt the capital required at time t per policy in-force
at that time. The annual frictional cost per policy in-force at the beginning of the year
is then:

FCt = ρ · RCt−1. (14)

The present value of frictional costs at time t, per policy in-force, is obtained as follows:

PVFCt =
ω−(x+t)

∑
s=1

FCt+s · (1 + i)−s · s p̃x+t . (15)

We assess RCt following the Solvency 2 principles, which require an amount of capital
so to avoid default with 99.5% probability, allowing only for risks non-diversifiable on
the market. A long-term time horizon in which to assess possible defaults seems the
most logical choice in respect of longevity risk, due to its long-term nature. We obtain the
required capital at time t per policy in-force from the following condition:

Pr(RCt + Vt < PVFBt) = 0.005 . (16)

Finally, we define the business value at time t, per policy in-force, as follows:

BVt = PVFPt − PVFCt . (17)

2.5. Setting the Periodic Fee

As is well-known (see, for example, Duffie 2001), the market price of a security is given
by the present value of its expected cash flows, where the present value is assessed with the
risk-free rate and the expected value is obtained with a suitably risk-adjusted probability
measure. When the market is incomplete, as is the case for example of insurance and
pension markets, there are infinite suitable probability measures, among which the provider
has to choose one to price the annuity contract. This approach apparently contrasts with
the traditional insurance pricing model, which first employs best-estimate assumptions,
and then adds an implicit or explicit safety loading. The safety loading, in particular,
represents the expected profit to the provider and its size should be justified by the risks
taken by the provider itself. What is common to both approaches is that the expected profit
to the provider is 0 under the chosen valuation assumptions; however, a reward for the
retained risks is included, either through the risk-adjustment of the probabilities or the
safety loading.

Mortality/longevity-linked annuities certainly require an innovative pricing approach,
as they imply a new concept of longevity guarantee, as we have commented in Sections 1
and 2.1. It could be convenient to match somehow market principles with the traditional
model. To this aim, we note that of the various quantities described so far, there is one
explicitly affected both by expected profits and the risks borne by the provider, which is
the business value. Risks, in particular, affect the business value via frictional costs, as they
are proportional to the required capital, whose size in turn depends on the potential losses
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reported by the provider, apart from the largest losses as identified by the accepted default
probability.

We extend the 0 expected profit principle to the business value. Adopting the periodic
fee structure described in Section 2.2, at time 0 we assess the periodic fee ξ so that

E[BV0] = 0 . (18)

Such an equation can be solved once a (stochastic) mortality model describing the mor-
tality/longevity of the reference population has been chosen. In Section 3.1, we briefly
describe the model that we have adopted in the numerical implementation.

We now address some computational issues. First we note that Equation (18) reason-
ably requires stochastic simulation, although this depends on the mortality model (however,
one can hardly count on closed formulae). Second, as already noted (see Section 2.2), given
S, there are two unknowns in the relevant equations, namely b0 and ξ, which among
other things are related, as the higher is ξ, the lower is b0, and vice versa. Whatever is
the approach adopted (market-based, traditional or the one we are discussing), there is
one degree of freedom, in respect of which we proceed as follows. First we set ξ = 0
and assess b0 solving Equation (6), for t = 0 (having V0 = S, at that time). We denote
such an initial benefit amount as b∗0 ; in practice, b∗0 = S

ax(0)
. Then we assess the expected

business value, under b∗0 ; we use the notation BV∗0 = E[BV0; b∗0 ]; if such a quantity is 6= 0
(reasonably, it takes a negative value), we adjust (typically, we reduce) the initial benefit
amount, so to reach a value 0 for the business value. In practice, we set V[fee]

0 = −BV∗0 and

we find b0 =
S−V[fee]

0
ax(0)

(see Equation (7)). Finally, we find the periodic fee ξ by solving at
time t = 0 Equation (6) (which has now only one unknown) in respect of ξ (here, we can
use a routine for the internal rate of return). We point out that once b0 and ξ have been
set, we cannot exclude that E[BV0] 6= 0. This is because the components of BV0 are not
necessarily proportional to b0 and usually they are not proportional to ξ. Equation (18) is
used to set the fee in a consistent way in the various situations (in particular, working with
different mortality/longevity-linking coefficients), but (as we will see in the numerical
implementation in Section 3) the fee thus determined can still entail value creation for the
provider.

3. Results
3.1. Mortality Model

A stochastic mortality model is required to simulate the survival rates realized in
the reference population and in the pool, as well as to obtain updated best-estimate
assumptions at every time, consistently with the simulated experience. After the seminal
paper by (Lee and Carter 1992), a very prolific research has developed on the stochastic
modelling of mortality. Several models are described in the literature; most of them are
suitable to obtain accurate projections at the initial time, but can present computational
complexity when processing future best-estimate assumptions. Here we adopt a model
discussed in (Olivieri and Pitacco 2009), which fits the evaluation needs mentioned above,
and is computationally tractable. Below, we recall the main features of the model, referring
to (Olivieri and Pitacco 2009) for details.

We refer to a given cohort and denote with q̃x+t = 1− p̃x+t the random mortality rate
at age x + t. We define q̃x+t as follows:

q̃x+t = qx+t(0) · Zx+t , (19)

where: qx+t(0) = 1− px+t(0) is the mortality rate based on best-estimate assumptions at
time 0; Zx+t is a (positive) random coefficient (ensuring 0 ≤ q̃x+t ≤ 1) which measures the
deviation of the observed mortality rate compared to the best-estimate one at time 0. We
assume:
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Zx+t ∼ Gamma(αx+t, βx+t) ; (20)

a Gamma distribution also follows for q̃x+t, with parameters obtained from those in (20). If
the Poisson distribution is accepted for the annual number of deaths reported by the cohort,
conditional on a given value for the mortality rate, then the unconditional distribution of
the annual number of deaths is described by a negative binomial (or Poisson-Gamma) law.
We point out that while the Poisson distribution describes random fluctuations in mortality,
the Gamma (i.e., the coefficient Zx+t, whatever is its probability distribution) describes
aggregate deviations.

The parameters of (20) are first chosen at time 0 , when the cohort starts being observed;
thus, αx+t = ᾱ0 and βx+t = β̄0 at time 0, where ᾱ0, β̄0 are given values. Then, year
after year the parameters are updated, through an inferential procedure based on the
information carried by the observed annual number of deaths. In particular, after h years of
observation, once the numbers of deaths dx, dx+1, . . . , dx+h−1 and the number of survivors
nx, nx+1 = nx − dx, . . . , nx+h−1 = nx+h−2 − dx+h−2 have been reported, the initial ᾱ0, β̄0
are replaced with the following values: ᾱh = ᾱ0 + dx + dx+1 + · · ·+ dx+h−1, β̄h = β̄0 +
nx · qx(0) + nx+1 · qx+1(0) + · · ·+ nx+h−1 · qx+h−1(0). Updating the parameters αx+t, βx+t
introduces an implicit correlation among the coefficients Zx+t’s, which is something one
expects when an underlying longevity trend drives mortality. Nevertheless, fluctuations
in the number of deaths in the opposite direction in respect of the prevailing trend are
still admitted at any time. We point out that updating the parameters of the probability
distribution of Zx+t allows to update the current best-estimate assumptions, as well as
the projection of the future number of survivors in the cohort. Details of the inferential
procedure are described in (Olivieri and Pitacco 2009).

In the numerical implementation, we consider a cohort initial age x = 65. We set
ᾱ0 = β̄0, so to have E0[Zx+t] = 1, E0[q̃x+t] = qx+t(0) (we specify in the subscript of
the symbol E the time at which the expected value is assessed, thus meaning that the
state of information about mortality is specified at that time). Based on the information
gained from the observed number of deaths up to time h, the best-estimate mortality rate
is reassessed as qx+t(h) = ᾱh

β̄h
· qx+t(0), where ᾱh

β̄h
Q 1, depending the realized mortality

path. The best-estimate mortality rates qx+t(0) are modelled through a Gompertz law with
parameters as in (Bacinello et al. 2018). The remaining expected lifetime at age 65 is almost
20 years at time 0; to avoid distortions from major random fluctuations at the highest ages,
the cohort is examined up to age 100 (any payments beyond that age is disregarded). The
values ᾱ0 = β̄0 = 100 ᾱ0 = β̄0 = 1000 are alternatively adopted; if ᾱ0 = β̄0 = 100, the
coefficient of variation of Zx+t at time 0 is 0.1, while it is 0.0316 if ᾱ0 = β̄0 = 1000. Given
the meaning of Zx+t, the former choice of ᾱ0, β̄0 then depicts a situation with a higher
dispersion in aggregate mortality than the latter choice. To distinguish the two alternative
scenarios, shortly we will refer to the choice ᾱ0 = β̄0 = 100 as to a scenario with major
aggregate deviations; the term moderate aggregate deviations will be used instead to refer
to the choice ᾱ0 = β̄0 = 1000 (it is useful to stress that the adjectives ’moderate’ and ’major’
do not have an absolute meaning here, but they are used in comparative terms between
the two situations).

3.2. Benefit Arrangements

We examine the following arrangements:

1. Fixed benefit : bt = b0 for all times t.
2. Linking by means of the survival probability, with benefit amount defined by

Equation (3).
3. Linking by means of the actuarial value of a unitary annuity, with benefit amount

defined by Equation (2).

Arrangement 1 represents a standard case, to which arrangements with a mortal-
ity/longevity linking can be compared. For arrangements 2 and 3, barriers to the benefit
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amount are adopted, both on an annual and a global basis. Year by year, we require
0.9 · bt−1 ≤ bt ≤ 1.1 · bt−1, so to avoid strong variations in the benefit amount from one
year to the next. In respect of the possible total variation of the benefit amount we consider
two cases, implying a different proportion of the risk sharing between the provider and the
individual. Specifically, we require alternatively:

• Case (a): 0.75 · b0 ≤ bt ≤ 1.25 · b0;
• Case (b): 0.9 · b0 ≤ bt ≤ 1.1 · b0.

Finally, we admit that the benefit amount can be updated up to age 95; beyond that
age, the benefit amount keeps flat, at the latest updated level.

As mentioned earlier, we disregard financial risk and we adopt a deterministic setting
in this regard. Our aim is to make a comparison of the periodic fees and other quantities
for the alternative linking solutions. These comparisons are not affected by the interest rate
level, when it is deterministic. Thus, we simplify and take i = 0, supported in this choice
by the low level of interest rates in recent years.

3.3. Implementation and Discussion

In the implementation discussed in this section, the main purpose is to compare the
periodic fees required for alternative annuity designs. Some of the quantities described in
Section 2 are additionally quoted, in particular the components of the individual reserve, the
present value of future profits and the business value. Rather than the absolute values we
have obtained for the various quantities, it is the comparison between them that is significant.
While absolute values are affected by the various choices made, in particular with regard to
the mortality model and the interest rate, their comparison allows a better understanding of
what the various linking mechanisms imply, in respect of alternative choices. All assessments
have been developed simulating the number of survivors in the reference population; the
same proportion of survivors than those of the reference population has been adopted for
the pool. The information gained from the mortality observed in the reference population
has also been used to update the best-estimate mortality assumptions after issue. The initial
capital paid by each individual is S = 100 monetary units.

Table 1 quotes the periodic fee, assessed as described in Section 2.5, for alternative
arrangements. The proportion ρ of frictional costs has been set to 2%, following market
practice (see Blackburn et al. 2017). Tables 2 and 3 list the expected value, the 0.01- and the
0.99-quantiles of the benefit amounts for some times t and for the various arrangements. It
is convenient to analyse these three tables jointly, as the time-profile of the benefit amounts
helps understanding the size of the fee, while the latter explains the differences among the
initial benefit amounts b0 under the different arrangements.

The arrangement with fixed benefits can be used as a reference case. It requires the
highest fees, due to the absence of any form of risk sharing between the provider and the
individual. In comparison, mortality/longevity-linking arrangements require lower fees, as
they imply, in particular, possible reductions of the benefit amount. When interpreting the
results, it should be remembered that when the benefit is linked to a mortality/longevity
experience, either by means of the survival probability or the actuarial value of the annuity,
the benefit is allowed both to decrease (and this implies a sharing of losses due to higher
longevity) and increase (in this case, profits due to higher mortality are shared). The size of
the fee is affected by the extent of the possible reduction in losses to the provider, but also
by that of profits.

Overall, it seems that the fee is much affected by the loss sharing effect. This emerges,
for example, when comparing the cases (a) and (b) for the linking by means of the survival
probability; indeed, narrower barriers for the benefit amount imply in particular a reduced
participation to possible losses.
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The importance of the magnitude of possible losses as a key to interpreting the level
of the required fee also emerges when comparing (for any given arrangement) a scenario
with moderate deviations in aggregate mortality to one with major deviations. Higher fees
are required under the latter scenario. In this regard, it is useful to note that deviations are
admitted in terms both of higher and lower mortality rates. Under a scenario with major
deviations, higher fees are required; this suggests that the fee itself is in particular affected
by the possibility to share the possible losses occurring because of lower mortality rates.

When comparing the fees required for arrangement where benefits are linked by
means of the survival probability in the different cases, a univocal behaviour emerges. The
same does not happen for arrangements where benefits are linked by means of the actuarial
value of the annuity; in this latter case, it seems that the trade-off between profits and
losses assumes a different balance depending on the parameters accepted for the benefit
barriers and the mortality scenario. For example, ξ takes the same value in a scenario of
moderate aggregate deviations, independent of the barriers we have tested for the benefit
amount (clearly, a different choice for such barriers could result in a different value for the
required fee). From Table 2 we see also that the expected benefit amount and the 0.01- and
0.99-quantiles coincide (apart from roundings) in the two cases (a) and (b).

In principle, the coefficient linking the benefits to the survival rate implies a different
time-profile of the adjustments when compared to the coefficient linking the benefit to the
actuarial value of the annuity. This is shown, for example, by the quantiles of the benefit
amounts quoted in Tables 2 and 3. For a given mortality scenario, the coefficient linking the
benefits to the actuarial value of the annuity implies a larger benefit adjustment in earlier
times than the coefficient linking the benefit to the survival probability; on the other hand,
lower adjustments are then required later in time by the former coefficient. This effect can
be explained by the time-horizon referred to by the quantities in the adjustment coefficient;
if we compare (3) with (2), we can realize that the actuarial value of the annuity refers to
a longer time-horizon than the survival probability in the early years of the annuity (i.e.,
when t is small); the opposite happens when t is high. The time-profile of the adjustments
has an impact on the size of the cash flows, and then on the proportion of the total profits
and losses retained by the provider, as well as on the fee.

Table 1. Periodic fee ξ (to be charged each year to the policy fund value).

Arrangement Moderate Aggregate
Deviations

Major Aggregate
Deviations

Fixed benefits 0.069% 0.242%
Benefits linked to surv. prob.,
case (a)

0.003% 0.025%

Benefits linked to act. value,
case (a)

0.013% 0.033%

Benefits linked to surv. prob.,
case (b)

0.006% 0.093%

Benefits linked to act. value,
case (b)

0.013% 0.019%
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Table 2. Benefit amount bt (expected value and 0.01- and 0.99-quantiles) for selected times. Moderate aggregate deviations.

Time t Fixed
benefits

Benefits Linked to Surv.
Prob., Case (a)

Benefits Linked to Act.
Value, Case (a)

Exp.
value

0.01-
quant.

0.99-
quant.

Exp.
value

0.01-
quant.

0.99-
quant.

0 5.199 5.242 5.236
5 5.199 5.242 5.213 5.272 5.236 5.069 5.408
10 5.199 5.242 5.168 5.320 5.236 5.052 5.426
15 5.199 5.242 5.097 5.398 5.236 5.037 5.443
20 5.199 5.243 4.984 5.526 5.236 5.029 5.454
25 5.199 5.246 4.805 5.741 5.236 5.037 5.447
30 5.199 5.253 4.527 6.114 5.236 5.093 5.388

Time t Benefits Linked to Surv.
Prob., Case (b)

Benefits Linked to Act.
Value, Case (b)

Exp.
value

0.01-
quant.

0.99-
quant.

Exp.
value

0.01-
quant.

0.99-
quant.

0 5.240 5.236
5 5.240 5.211 5.270 5.236 5.069 5.408
10 5.240 5.166 5.318 5.236 5.052 5.426
15 5.240 5.095 5.396 5.236 5.037 5.443
20 5.241 4.982 5.524 5.236 5.029 5.454
25 5.243 4.804 5.739 5.236 5.037 5.447
30 5.244 4.716 5.764 5.236 5.093 5.388

Table 3. Benefit amount bt (expected value and 0.01- and 0.99-quantiles) for selected times. Major aggregate deviations.

Time t Fixed
benefits

Benefits Linked to Surv.
Prob., Case (a)

Benefits Linked to Act.
Value, Case (a)

Exp.
value

0.01-
quant.

0.99-
quant.

Exp.
value

0.01-
quant.

0.99-
quant.

0 5.090 5.228 5.223
5 5.090 5.228 5.143 5.326 5.221 4.717 5.784
10 5.090 5.228 5.011 5.487 5.222 4.671 5.846
15 5.090 5.231 4.806 5.757 5.223 4.629 5.905
20 5.090 5.240 4.494 6.223 5.224 4.607 5.946
25 5.090 5.253 4.030 6.534 5.225 4.635 5.929
30 5.090 5.247 3.921 6.534 5.226 4.804 5.736

Time t Benefits Linked to Surv.
Prob., Case (b)

Benefits Linked to Act.
Value, Case (b)

Exp.
value

0.01-
quant.

0.99-
quant.

Exp.
value

0.01-
quant.

0.99-
quant.

0 5.184 5.231
5 5.185 5.101 5.282 5.229 4.725 5.755
10 5.185 4.970 5.442 5.229 4.708 5.755
15 5.187 4.767 5.703 5.229 4.708 5.755
20 5.185 4.666 5.703 5.229 4.708 5.755
25 5.179 4.666 5.703 5.231 4.708 5.755
30 5.175 4.666 5.703 5.233 4.812 5.745

Table 4 quotes the initial fee π equivalent to the periodic fees in Table 1, obtained from
the following condition:
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S = b0 · ax(0) · (1 + π) . (21)

We note that Equation (21) represents the standard approach to premium loading for
annuities. As for the periodic fee, a valuation principle is required, or an explicit choice
of π, given that Equation (21) has two unknowns (namely, b0 and π). Here, we assess π
consistently with what performed for ξ, i.e., solving Equation (18).

The fees quoted in Table 4 can be compared as discussed for Table 1. When comparing
Table 4 with Table 1, we obtain an assessment of the overall loading implied by a given
periodic fee. Among the advantages of periodic fees when compared to an upfront loading,
we mention the fact that their structure is similar to that of other products, in particular
financial investments; then, periodic fees can represent a solution in which individuals
are more confident, being more familiar with such a pricing structure. Furthermore, as
already mentioned, the application of periodic fees makes it easier to change the guarantee
at some point in time, since in the event of a switch from a benefit structure to another the
provider can stop applying the current fee and determine the new level according to the
new underwritten guarantee, similarly to what happens (for example) in variable annuities.
We also note that periodic fees may allow a revision of the pricing basis after issue, if
justified by the emerging scenario and if admitted by policy conditions. In this respect, it is
necessary to predefine appropriate triggers identifying situations where a revision of the
fee is justified. Triggers could, for example, be related to a mortality/longevity index, or
a measure of value to the provider, or the default probability of the provider. This topic
deserves a specific research, and is not further developed in this paper.

Table 4. Equivalent initial fee π (to be charged to the initial capital).

Arrangement Moderate Aggregate
Deviations

Major Aggregate
Deviations

Fixed benefits 0.845% 2.933%
Benefits linked to surv. prob.,
case (a)

0.038% 0.311%

Benefits linked to act. value,
case (a)

0.155% 0.400%

Benefits linked to surv. prob.,
case (b)

0.076% 1.132%

Benefits linked to act. value,
case (b)

0.155% 0.236%

Table 5 lists the individual reserve Vt and its components, namely V[ben]
t and V[fee]

t ,
for a sample of times and a sample of linking arrangements. First we note that at time 0

the proportion V[fee]
t
Vt

corresponds to the equivalent initial fee π; then, such a proportion
decreases in time, as it is quite natural, given that the time-horizon of the obligation of the
provider gradually reduces. In the table we only include some arrangements and only a
scenario of moderate aggregate deviations, as other situations suggest similar comments.
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Table 5. Individual reserve Vt and components V[ben]
t , V[fee]

t , at selected times t. Moderate aggre-
gate deviations.

Fixed Benefits

Time t Age x + t Vt
V [ben]

t
Vt

V [fee]
t
Vt

0 65 100.000 99.155% 0.845%
5 70 80.512 99.286% 0.714%
10 75 62.970 99.410% 0.590%
15 80 47.576 99.525% 0.475%
20 85 34.378 99.632% 0.368%
25 90 23.095 99.736% 0.264%
30 95 12.387 99.847% 0.153%

Benefits Linked to Surv. Prob., Case (a)

Time t Age x + t Vt
V [ben]

t
Vt

V [fee]
t
Vt

0 65 100.000 99.962% 0.038%
5 70 80.614 99.968% 0.032%
10 75 63.126 99.974% 0.026%
15 80 47.750 99.979% 0.021%
20 85 34.545 99.984% 0.016%
25 90 23.242 99.988% 0.012%
30 95 12.496 99.993% 0.007%

Benefits Linked to Act. Value, Case (a)

Time t Age x + t Vt
V [ben]

t
Vt

V [fee]
t
Vt

0 65 100.000 99.845% 0.155%
5 70 80.597 99.869% 0.131%
10 75 63.102 99.892% 0.108%
15 80 47.721 99.913% 0.087%
20 85 34.515 99.933% 0.067%
25 90 23.207 99.952% 0.048%
30 95 12.458 99.972% 0.028%

In Table 6, we quote the expected value of the Present Value of Future Profits and the
Business Value at time 0, per policy issued, for the various arrangements examined so far.
We first note that the magnitude of E[PVFP0] is in line with that of the overall loading (see
Table 4). Indeed, a large part of the profit is originated by the loading. As is well-known,
large loadings impact negatively on the demand; while PVFP0 measures the profit per
policy issued, the total profit gained by the provider also depends on the pool size. This
should not be disregarded when performing a profit test of the business with the purpose
of identifying a cost-effective solution that may prove attractive to the individual.

As to the business value, first we note that it is not 0. As commented in Section 2.5,
condition (18) is a notional reference, which is useful to set the fee consistently in different
situations; not necessarily such a condition leads to a situation of a 0 expected value for the
business value, as it emerges from Table 6. In such a table, the business value is quoted as a
proportion of the present value of future profits. We see that such a proportion is different,
depending both on the arrangement and the scenario. In view of practical implementations,
the fee obtained under condition (18) could be taken as the minimum acceptable fee for the
provider. An additional loading could be suggested by further assessments; for example,
instead of condition (18), reference to the tail of BV0 could be made, by setting an accepted
level for the probability of incurring into a negative business value, or setting a target
value for the expected business value. In any case, clearly, the loading must prove to be
acceptable for individuals. Investigating this aspect is outside the scope of this paper.
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Table 6. Present Value of Future Profits and Business Value (expected values), at time 0.

Arrangement
Moderate
Aggregate
Deviations

Major Aggregate
Deviations

PVFP[pool]
0

BV[pool]
0

PVFP[pool]
0

PVFP[pool]
0

BV[pool]
0

PVFP[pool]
0

Fixed benefits 0.820 25.160% 2.713 29.071%
Benefits linked to surv. prob.,
case (a)

0.034 52.960% 0.341 28.146%

Benefits linked to act. value,
case (a)

0.151 42.137% 0.387 23.347%

Benefits linked to surv. prob.,
case (b)

0.076 17.690% 1.140 24.734%

Benefits linked to act. value,
case (b)

0.151 42.137% 0.246 9.468%

We finally note that the annual profits, the present value of future profits and the
business value can be affected by basis risk in mortality, i.e., by a different mortality in
the pool than in the reference population; however, such an aspect is not included in the
assessments summarized in this section.

4. Conclusions

In this paper, we investigate annuity designs in which the benefit amount is adjusted
in time in relation to a given mortality/longevity experience, compared to a chosen bench-
mark. Such designs imply a new definition of the longevity guarantee, which deserves
attention, given that individuals prove to be dissatisfied with traditional annuities, but
need to obtain longevity protection in the private market.

In this paper, in particular, we are concerned with a pricing structure which is innova-
tive for an annuity product. Instead of the traditional upfront single loading, we consider
periodic fees, which seem more versatile to introduce opportunities of flexibility into the
product. We consider a periodic fee charged year by year to the policy fund value, and we
show that this identifies a discount factor, to be used for pricing and reserving. Trying to
match traditional with market pricing rules, we assess the periodic fee using a condition
expressed in terms of business value. This way, the fees incorporate an allowance for both
the expected profit and the risk retained by the provider.

Future steps in the research may concern an assessment of individual preferences
in respect of the alternative linking solutions. The business value for the provider could
be further examined, by addressing the demand function, as well as the limited liability
put option. The implications of switching between alternative linking rules or guarantees
require a specific study, as well as the possibility of updating the periodic fee after issue.
Addressing a pool consisting of multiple cohorts or heterogeneous in other respects is
also significant, in particular to detect possible smoothing effects if the linking coefficient
accounts for the mortality experienced over different cohorts. An explicit pricing of the
guarantees is a topic to further develop. In this regard, modelling guarantees as financial
options offers the possibility to test pricing models developed in that field. Matching the
mortality/longevity with a financial linking should also be considered, as most annuities
in the market are participating in respect of the return on investments.
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