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Abstract: We investigate the performance of the Deep Hedging framework under training paths
beyond the (finite dimensional) Markovian setup. In particular, we analyse the hedging performance
of the original architecture under rough volatility models in view of existing theoretical results for
those. Furthermore, we suggest parsimonious but suitable network architectures capable of capturing
the non-Markoviantity of time-series. We also analyse the hedging behaviour in these models in
terms of Profit and Loss (P&L) distributions and draw comparisons to jump diffusion models if the
rebalancing frequency is realistically small.

Keywords: deep learning; rough volatility; hedging

1. Introduction

Deep learning has undoubtedly had a major impact on financial modelling in the past
years and has pushed the boundaries of the challenges that can be tackled: not only can
existing problems be solved faster and more efficiently (Bayer et al. 2019; Benth et al. 2020;
Cuchiero et al. 2020; Gierjatowicz et al. 2020; Hernandez 2016; Horvath et al. 2021; Liu et al.
2019; Ruf and Wang 2020), but deep learning also allows us to derive (approximative)
solutions to optimisations problems (Buehler et al. 2019), where classical solutions have so
far been limited in scope and generality. Additionally these approaches are fundamentally
data driven, which makes them particularly attractive from business perspectives.

It comes as no surprise that the more similar (or “representative”) the data presented
to the network in the training phase is to the (unseen) test data that the network is later
applied to, the better is the performance of the hedging network on real data in terms of
Profit and Loss (P&L). It is also unsurprising that, as markets shift sufficiently far away
from a presented regime into new, previously unseen territories, the hedging networks
may have to be retrained to adapt to the new environment.

In the current paper we go a step further than just presenting an ad hoc well-chosen
market simulator (see Buehler et al. 2020b, 2020a; Henry-Labordere 2019; Wiese et al. 2019,
2020; Cuchiero et al. 2020; Kondratyev and Schwarz 2019; Xu et al. 2020): we investigate a
situation where the relevant data are structurally so different from the original Markovian
setup that it calls for an adjustment of the model architecture itself. In a well-controlled
synthetic data environment, we study the behaviour of the hedging engine as relevant
properties of the data change.

A good candidate class of models comprises the rough volatility models, which have
experienced a surge of research interest in recent years starting with the seminal papers of
(Alòs et al. 2007; Bayer et al. 2015; Fukasawa 2010; Gatheral et al. 2018), where a crucial
difference was introduced in comparison to classical stochastic models, due to their non-
Markovianity. The main difference is parametrized by the so-called Hurst parameter
H ∈ (0, 1) in the volatility process, which models the “memoryness” and the roughness
of the driving fractional Brownian motion. These models reflect much more closely the
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stylized facts and essential properties of the financial markets. Therefore, now, after several
years of research of their asymptotic and numerical behaviour, they provide ideal synthetic
data sets to test different machine learning models.

More specifically, in our case, we used synthetic data generated from a rough volatility
model with varying levels of the Hurst parameter. In its initial setup, we set the Hurst
parameter to H = 1/2, which reflects a classical (finite dimensional) Markovian case, which
is well-aligned with the majority of the most popular classical financial market models,
such as, e.g., the Heston model, which the initial version of the deep hedging results
were demonstrated on. We then gradually altered the level of the Hurst parameter to
(rough) levels around H ≈ 0.1, which more realistically reflects market reality as observed
in (Alòs et al. 2007; Bolko et al. 2020; Fukasawa 2010; Gatheral et al. 2018; Livieri et al. 2018),
thereby introducing a non-Markovian memory into the volatility process.

Since rough volatility models are known to reflect the reality of financial markets
(as well as the stylised statistical facts) better than classical, finite-dimensional Markovian
models do, our findings also give an indication of how a naive application of model
architectures to real data could lead to substantial errors. With this, our study allows us
to make a number of interesting observations about deep hedging and the data that it
is applied to: apart from drawing parallels between discretely observed rough volatility
models and jump processes, our findings highlight the need to rethink (or carefully design)
risk management frameworks of deep learning models as significant structural shifts in the
data occur.

To recap, we compare different methods for hedging under rough volatility models.
More precisely, we analyse the perfect hedge for the rBergomi model from (Viens and
Zhang 2019) and its performance against the deep hedging scheme in (Buehler et al. 2019),
which had to be adapted to a non-Markovian framework. We are particularly interested
in the dependence of the P&L on the Hurst parameter and conclude that the deep hedge
with our fRNN architecture performs better than the discretised perfect hedge for all H.
Moreover, we find that the hedging P&L distributions for low H are highly left-skewed
and have significant mass in the left tail under the model hedge as well as the deep hedge.
Increasing hedging frequency was explored to mitigate the heavy losses in cases when H is
close to zero. Intriguingly, slow response to increased hedging frequency and left-skewed
P&L distribution under the rough Bergomi are also characteristic for delta hedges under
jump diffusion models (Sepp 2012).

The paper is organised as follows: Section 2 recalls the setup of the original deep
hedging framework used in (Buehler et al. 2019). Section 3 gives a brief reminder on
hedging under rough volatility models and compares the performance of (feed-forward)
hedging network on a rough Bergomi model compared to a theoretically derived model
hedge. In Sections 3.3 and 3.4, we draw conclusions with respect to the model architecture,
and in Section 3.5, we propose a new architecture that is better suited to the data. Section 4
lays out the hedging under the new architecture and draws conclusions to the existing
literature, which outlines some parallels between (continuous) rough volatility models and
jump processes in this setting, while Section 5 summarizes our conclusions.

2. Setup and Notation

We adopt the setting in (Buehler et al. 2019) and consider a discrete finite-time financial
market with time horizon [0, T] for some T ∈ (0, ∞) and a finite number of trading dates
0 = t0 < t1 < · · · < tn = T, n ∈ N. We work on a discrete probability space (Ω,F ,P), with
Ω = {ω1, . . . , ωN} and a probability measure P for which P[{ωi}] > 0 for all i ∈ {1, . . . , N}
and N ∈ N. Additionally, we fix the notation X := {X : Ω → R} for the set of all R-
valued random variables on Ω. Later we shall consider a continuous setup (Ω,F ,P), of
which the discrete setup will be a precise approximation via Monte Carlo sampling and
time discretisation.

The filtration F =
(
F k
)

k=0,...,n is generated by the Rr-valued information process
(Ik)k=0,...,n for some n, r ∈ N. For any k ∈ {0, . . . , n}, the variable Ik denotes all available



Risks 2021, 9, 138 3 of 20

new market information at time tk and F k represents all available market information up
to time tk.

The market contains d ∈ N financial instruments, which can be used for hedging, with
mid-prices given by an Rd-valued F-adapted stochastic process S = (Sk)k=0,...,n. In order to
hedge a claim Z : Ω→ R, we may trade in S according to Rd-valued F-adapted processes
(strategies), which we denote by δ := (δk)k=0,...,n−1 with δ−1 = δn := 0 for notational
convenience, where δk = (δ1

k , . . . , δd
k ). Here, δi

k denotes the agent’s holdings of the i-th asset
at time tk. We denote the initial cash injected at time t0 by p0 > 0.

Furthermore, in order to allow for proportional trading costs, for every time tk and
change in position s ∈ Rd we consider costs ck : s 7→ c ∈ [0, ∞), where ck is F k-adapted,
upper semi continuous and for which ck(0) = 0 for all k ∈ {0, . . . , n}. The total costs
up to time T, when trading according to a trading strategy δ are denoted by CT(δ) :=
∑n

k=0 cksk−1(δk − δk−1) again with the notation s−1 := 0. Finally, we denote by H a set of
all admissible trading strategies.

We consider optimality of hedging under convex risk measures (see, e.g., Föllmer and
Schied (2016) for the definition) as in (Buehler et al. 2019; Ilhan et al. 2009; Xu 2005). Let us
for a moment consider the following problem. Say the agent’s terminal portfolio value for
a contingent claim Z ∈ X at T is given as

P&L(p0, δ, Z; T) := −Z + p0 + (δ · S)T − CT(δ), (1)

where (δ · S)T := ∑n−1
k=0 δk · (Sk+1− Sk) is the discrete stochastic integral and p0 > 0 denotes

the expectation of Z with respect to Q, i.e., the given risk-neutral price. The price is
exogenously given, meaning either quoted in the market or calculated using some other
pricing method, separate from our methodology. In complete markets, there exists δ ∈ H
such that P&L(p0, δ, Z; T) = 0 for any Z ∈ X ; however, this cannot be said for incomplete
markets with frictions. In this setting, the agent has to accept some risk and specify an
optimality criterion. Now in the case of no trading costs, there is an alternative view point
of variance optimal hedging (Schweizer 1995), which will be taken in this paper. Consider
an equivalent pricing measure Q of our financial market; then, we can also minimise
the variance

π(Z) = inf
δ∈H

E
[
(−Z + (δ · S)T + p0)

2
]
, (2)

In the rest of this paper, the above optimisation (2) problem and corresponding
optimisers are considered in terms of their numerical approximation in the framework of
hedging in a neural network setting as formulated in (Buehler et al. 2019). In the remainder of
this section, we recall the notation and definitions to formulate this approximation property
and the conditions that ensure its validity.

Definition 1 (Set of Neural Networks (NNs) with a fixed activation function). We denote by
NN σ

∞,d0,d1
the set of all NNs mapping from Rd0 → Rd1 with a fixed activation function σ. The set

{NN σ
M,d0,d1

}M∈N is then a sequence of subsets in NN∞,d0,d1 for which NN σ
M,d0,d1

= {Fθ : θ ∈
ΘM,d0,d1} with ΘM,d0,d1 ⊂ Rq for some q(M), M ∈ N.

Definition 2. We callHM ⊂ H the set of unconstrained neural network trading strategies:

HM =
{
(δk)k=0,...,n−1 ∈ H : δk = Fk(I0, . . . , δk−1), Fk ∈ NNM,r(k+1)+d,d

}
=
{
(δk)k=0,...,n−1 ∈ H : δk = Fθk

k (I0, . . . , δk−1), θk ∈ ΘM,r(k+1)+d,d

} (3)



Risks 2021, 9, 138 4 of 20

We now replace the set H in (2) by the finite subset HM ⊂ H. The optimisation
problem then becomes

πM(Z) := inf
δ∈HM

E
[
(−Z + (δ · S)T + p0)

2
]

= inf
θ∈ΘM

E
[
(−Z + (δθ · S)T + p0)

2
] (4)

where ΘM = ∏n−1
k=0 ΘM,r(k+1)+d,d denotes the network parameters from Definition 2.

With (3), (4) and Remark 1, the potentially infinite-dimensional problem of finding an
optimal hedging strategy is therefore reduced to a finite-dimension and corresponds to
finding the optimal NN parameters for the problem (4). Notice that in general, i.e., before
time and space discretisation, the problem is inherently infinitely dimensional. We shall
always consider appropriate discretisations, which are sufficiently close to the continuous
time model by results from numerical analysis, on which we apply the above theory.

Remark 1. Note that in the above, we do not assume that S is an (F,P)-Markov process and that
the contingent claim is of the form Z := g(ST) for a pay-off function g : Rd → R. This would
allow us to write the optimal strategy δk = fk(Ik, δk−1) for some fk : Rr+d → Rd.

The next proposition, which is a direct use of Lemma 4.4 in (Buehler et al. 2019), recalls
the central approximation property, which states that the optimal trading strategy δ∗ ∈ H
that minimizes (2) can be approximated by a semi-recurrent neural network of the form
Figure 1 in the sense that the functional πM(Z) converges to π(Z) as M becomes large.

Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹² Output Layer ∈ ℝ² Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹² Output Layer ∈ ℝ²

St

δS
t−1

δV t−1

St+1

δS
t

δV t

Vt+1δS
t

δV t

δS
t+1

δV t+1

t t+1
Output

Figure 1. Original Network Archiecture.

Proposition 1. DefineHM as in (3) and πM as in (4). Then for any Z ∈ X

lim
M→∞

πM(Z) = π(Z),

where π(Z) denotes the optimal solution of the original optimisaton problem (2).
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Corollary 1. As a direct consequence, the optimal neural network trading strategy δθ∗ that min-
imises (4) converges to the minimiser of (2) in the sense that

lim
M→∞

δθ∗M = δ∗,

where θ∗M ∈ ΘM are the optimal neural network parameters for M ∈ N.

In (Buehler et al. 2019), this approximation property is demonstrated for Black–Scholes
and Heston models both in their original form and in variants including market frictions
such as transaction costs. These results demonstrate how deep hedging, which allows us
to take a leap beyond the classical type, results in scenarios where the Markovian structure
is preserved.

A natural question to ask is how the approximation property of the neural network is
affected if the assumption of Markovian structure of the underlying process is no longer
satisfied. Rough volatility models (Alòs et al. 2007; Bayer et al. 2015; Fukasawa 2010;
Gatheral et al. 2018) represent such a class of non-Markovian models. It is also well-
established in a series of recent articles, including the aforementioned works, that rough
volatility dynamics are superior to standard Markovian models (such as Black–Scholes
and Heston) in terms of reflecting market reality and also that rough volatility models are
superior to a number of in terms of allowing close fits to market data.

By taking hedging behaviour under rough volatility models under a closer examina-
tion, we gain insight into the non-Markovian aspects of markets in a controlled numerical
setting: varying the Hurst parameter H ∈ (0, 1) of the process (see Gatheral et al. (2018)),
which governs the deviation from the Markovian setting in a general fractional (or rough)
volatility framework, enables us to control for the influence of the Markovianity assump-
tion on the hedging performance of the deep neural network. Therefore, in this work, we
investigate the effect of the loss of Markovianity property of the underlying stochastic
process by considering market dynamics that are governed in a rough volatility setting.
With this in mind, by applying the original feedforward network architecture to a more
realistic model class (represented by rough volatility models), we in particular demonstrate
how the choice of the network architecture may affect the performance of the deep hedging
framework and how it could potentially break down on real-life data. We also note in
passing that the approach we take can be applied as a simple routine sanity check for
model governance of deep learning models on real data:

• Take a well-understood model class that generalises the modelling to more realistic
market scenarios, but where the generalisation no longer satisfies assumptions made
in the original architecture.

• Test the robustness of the method if the assumption is violated by controlling for the
error as the deviation from the assumption increases.

• Modify the network architecture accordingly if necessary.

3. Hedging and Network Architectures for Rough Volatility
3.1. Hedging under Rough Volatility

Let us now consider the problem of hedging under rough volatility models in gen-
eral, with an aim to present a theoretical solution, which we use as a benchmark of the
deep hedging approach. In this section, we introduce a new filtered probability space
(Ω,F ,Q,F), where F := {Ft}0≤t≤T is now a continuous filtration.1 We know that for a
Markovian process of the form

X̃t = x +
∫ t

0
b(r, Xr)dr +

∫ t

0
σ(r, Xr)dWr,
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where b and σ satisfy suitable conditions. Then the price of a contingent claim Z̃t :=
E[g(X̃T)|Ft] can be written as

Z̃t = u(t, X̃t),

where u solves a parabolic PDE by the Feynman–Kac formula (Kac 1949). However, it
was shown in (Bayer et al. 2015) that rough volatility models are not finite-dimensional
Markovian, and we therefore have to consider a more general process X and assume it to
be a solution to the d-dimensional Volterra SDE:

Xt = x +
∫ t

0
b(t; r, X.)dr +

∫ t

0
σ(t; r, X.)dWr, t ∈ [0, T], (5)

where W is a m-dimensional standard Brownian motion, b ∈ Rd and σ ∈ Rm×d. Both are
adapted in a sense that for ϕ = b, σ it holds ϕ(t; r, X.) = ϕ(t; r, Xr∧.).

In this general non-Markovian framework, the contingent claim in the form Zt :=
E[g(XT)|Ft] will depend on the entire history of the process X := (Xt)t≥0 up to time t and
not just on the value of the process at that time, i.e.,

Zt = u(t, X[0,t]) with notation X[0,t] := {Xr}r∈[0,t],

where u this time solves a Path-dependent PDE (PPDE). The setting where X is a semi-
martingale has already been explored in, e.g., (Cont and Fournié 2013; Dupire 2019). Be
that as it may, we know that fBm is not a semi-martingale in general, and as a conse-
quence, the volatility process is not a semi-martingale. Viens and Zhang (2019) are able to
cast the problem back in to the semi-martingale framework by rewriting Xt as a orthog-
onal decomposition to an auxiliary process Θt and a process It, which is independent of
the filtration

Xs = x +
∫ t

0
b(s; r, X.)dr +

∫ t

0
σ(s; r, X.)dWr

+
∫ s

t
b(s; r, X.)dr +

∫ s

t
σ(s; r, X.)dWr

(6)

=: x + Θt
s + It

s (7)

for 0 ≤ t ≤ s. By exploiting the semi-martingale property of Θ, they go on to show that the
contingent claim can be expressed as a solution of a PPDE

Zt = u(t, X[0,t) ⊗t Θt
[t,T]), (8)

where ⊗t denotes concatenation of a path at time t. Moreover, they develop an Itô-
type formula for a general non-Markovian process Xt from (5), which we present in the
Appendix B. We have to consider different additional hedging instruments to complete
such markets. Most convenient from a theoretical as well as from a practical perspective are
variance swaps with different maturities, which are, according to the Breeden–Litzenberger
formula, just a linear superposition of plain vanilla European calls.

3.2. The Rough Bergomi Model (rBergomi)

As an example we consider the rBergomi with a constant initial forward variance
curve ξ0(t) = V0:

St = S0 +
∫ t

0
Sr
√

Vr

[√
1− ρ2dBr + ρdWr

]
(9a)

Vt = V0E
(√

2Hν
∫ t

0
(t− r)H− 1

2 dWr

)
, V0=v0>0, (9b)
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The model fits into the affine structure of our Volterra SDE in (5) after a simple
log-transformation of the volatility process. In this case, we take our auxiliary process to be

Θt
s =
√

2Hν
∫ t

0
(s− r)H− 1

2 dWr, t < s. (10)

It is easy to check that Θt
s is a true martingale for a fixed s. The option price dynamics

are obtained by using the Functional Itô formula in (A3). From this, the perfect hedge in
terms of a forward variance Θ̂t

T with maturity T and a stock St follows:

dZt = ∂xu(t, St, Θt
[t,T])dSt +

(T − t)
1
2−H

Θ̂t
T

〈
∂ωu(t, St, Θt

[t,T]), at
〉

dΘ̂t
T (11)

with at
s = (s− t)H− 1

2 . The path-wise derivative in (11) is the Gateaux derivative along the
direction at. For more details and discretisation of the Gateaux derivative, see Appendix A.

3.3. Performance of the Deep Hedging Scheme (with the Original Feedforward Architecture)
Compared to the Model Hedge under rBergomi

We choose to hedge a plain vanilla called option ZT := max(ST − K, 0) with K = 100
and a monthly maturity T = 30/365. The hedging portfolio consists of a stock S with
S0 = 100 and a forward variance with maturity TFwd = 45/365 and is rebalanced daily.
For the rBergomi model, forward variance is equal to

Θ̂t
TFwd

:= EQ

[∫ TFwd

0
Vsds

∣∣∣∣Ft

]
= V0 exp

[
Θt

TFwd
+

1
2

ν2
[
(TFwd − t)2H − T2H

Fwd

]]
, (12)

with Θt
TFwd

defined as in (10). Applying classical Itô’s Lemma to Θ̂t
TFwd

= Θ̂t
TFwd

(t, Θt
TFwd

)
yields the dynamics of the forward variance under the rough Bergomi

dΘ̂t
TFwd

= Θ̂t
TFwd

√
2Hν(TFwd − t)H− 1

2 dWt, (13)

which is well defined for t ∈ [0, TFwd). Therefore, choosing the maturity of the forward
variance to be longer than the option maturity allows us to avoid the singularity as t→ T.
In practice, this would correspond to hedging with a forward variance with a slightly
longer maturity than that of the option.

For the simulation of the forward variance, we used the Euler–Mayurama method,
whereas paths of the volatility process were simulated with the “turbo-charged” version
of the hybrid scheme proposed in (Bennedsen et al. 2017; McCrickerd and Pakkanen 2018).
The parameters were chosen such that they describe a typical market scenario with a flat
forward variance: ξ0 = 0.235× 0.235, ν = 1.9 and ρ = −0.7. We were particularly interested
in the dependence of the hedging loss on the Hurst parameter. Finally, a quadratic loss
function was chosen, and the minimising objective was therefore

π(Z) = inf
δθ∈HM

E
[
(−Z + p0 + (δθ · S)T)

2
]

where price p0 was obtained with a Monte-Carlo simulation (e.g., for H = 0.10, p0 = 2.39).
Next we implement the perfect hedge from (11) (the details of the discretisation of

the Gateaux derivative are presented in Appendix C). For evaluation of the option price,
we once again use Monte-Carlo, this time with the generating parameters. In practice,
we would calibrate the parameters to the market data. Perfect hedge was implemented
on the sample of 103 different paths for the same parameters as in the deep hedging case.
The results of both hedges under quadratic loss for different Hurst parameters are shown in
Table 1. We also take a closer look at the P&L distributions of the deep hedge as well as the
model hedge for H = 0.10 in Figure 2. Curiously enough, the distributions are very similar
to each other. The deep hedge seems to have slightly thinner tails, which is interesting,
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considering the semi-recurrent architecture makes a strong assumption of Markovianity of
the underlying process.

Table 1. Comparison of the quadratic loss between model and deep hedges trained 75 epochs for
different H.

Quadratic Hedging Loss

H Model Hedge Deep Hedge

0.10 1.45 1.16 (*1.12)
0.20 0.52 0.67
0.30 0.34 0.46
0.40 0.24 0.36

*—on 200 epochs.

Figure 2. rBergomi model hedge (blue) compared to the deep hedge (red) trained on 75 epochs on
rBergomi paths with H = 0.10. Note that the option price is only p0 = 2.39 and that such a hedge
can result in a substantial loss.

Indicators that the assumption of finite dimensional Markovianity is violated might
be the heavy left tail of the P&L distribution as well as relatively high hedging losses. This
prompted us to question the semi-recurrent architecture and devise a way to relax the
Markov assumption on the underlying. Note that the heavy tails of these distributions may
also imply a link to jump diffusion models. We expand on this in Section 4.3.

3.4. Implications on the Network Architecture

As discussed before, in (Buehler et al. 2019) authors heavily rely on Remark 1, where
they use the Markov property of the underlying process in order to write the trading
strategy at time tk as a function of the information process at tk and trading strategy in the
previous time step k− 1. Of course, in the case of rough volatility models, one would have
to include the entire history of the information process up to tk in order to get the hedge
at that time. However, this would result in numerically infeasible scheme. To illustrate
this, take for example a single vanilla call option with maturity T = 30/365, where we
hedge daily under say the rough Bergomi model. In the 30th time step, the number of
input nodes of the NN cell Fθ

30 would be 30× 2 + 2 = 62 or if we hedged twice a day
30 × 2 × 2 + 2 = 122. Obviously, this scheme quickly becomes very computationally
expensive even for a single option with a short maturity.

The fBm in (9b) can be written as a linear functional of a Markov process, albeit
an infinite-dimensional one. Therefore, if the original Markovian-based architecture can
be applied to this setting, we would expect to recover the Hurst parameter also from a
Markovian-based sampling procedure, justifying the continued use of the original feed
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forward architecture. This, however, is not the case: it is known that fBm in (9b) can
be rewritten as an infinite-dimensional Markov process in the following way. Take the
Riemann–Liouville representation of fBm:

BH
t :=

1
Γ(H + 1

2 )

(∫ t

0
(t− s)H− 1

2 dWs

)
,

where W is a standard Brownian motion. Using the fact that for α ∈ (0, 1) and fixed
x ∈ [0, ∞),

(t− s)α−1

Γ(α)
=
∫ ∞

0
e−(t−s)xµ(dx), with µ(dx) =

dx
xαΓ(α)Γ(1− α)

(14)

we obtain by the Fubini Theorem

BH
t =

∫ t

0

∫ ∞

0
e−(t−s)xµ(dx)dWs

=
∫ ∞

0

∫ t

0
e−(t−s)xdWsµ(dx)

=
∫ ∞

0
Yx

t µ(dx)

with Yx
t =

∫ t
0 e−(t−s)xdWs. Observe that for a fixed x ∈ [0, ∞), (Yx

t )t≥0 is an Ornstein-
Uhlenbeck process with mean reversion zero and mean reversion speed x, i.e., Gaussian
semi-martingale Markov process solution with the dynamics of

dYx
t = −xYx

t dt + dWt.

Therefore, we have shown that BH is a linear functional of the infinite-dimensional
Markov process. Being able to simulate from Yx

t would mean that we can still use the
architecture in Figure 1, even for a rough process. A numerical simulation scheme for such
a process is presented in (Carmona et al. 1998). Regrettably, the estimated Hurst parameter2

from the generated time series stayed around H ≈ 0.5 for any chosen input Hurst parameter
to the simulation scheme. For a fixed time-step ∆t, the scheme does not produce the desired
roughness, even if we used a number of OU terms well beyond what authors propose.
We believe that this is because the scheme is only valid in the limit, i.e., when the number
of terms goes to infnity and ∆t→ 0. Failure to recover the Hurst parameter, together with
the fact that the architecture does not allow for any path dependent contingent claims,
encouraged us to change the Neural Network architecture itself.

3.5. Proposed Fully Recurrent Architecture

Based on the above insights, we hence modify the original architecture. In this section,
we suggest an alternative architecture and show that it is well-suited to the problem. When
constructing a new architecture, we would like to change the semi-recurrent structure as
little as possible for our purpose, since it seems to perform very well in the Markovian cases.
However, in order to account for non-Markovianity, we propose a completely recurrent
structure.3 To that end, we now introduce a hidden state δ̃k = (δ̃S

k−1, δ̃V
k−1) with δ̃0 = 0,

which is passed to the cell at time tk along the information process Ik. Therefore, instead
of adding layers to each of the state transitions separately as in (Pascanu et al. 2014), we
simply concatenate the input vector Ik with the hidden state vector and feed it into a the
neural network cell Fθ

k (·):
Fθ

k
(

Ik ⊕ δ̃k
)
= δk ⊕ δ̃k
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For the visual representation, see Figure 3. The output is still a trading strategy
δk = (δS

k , δV
k ), and it is evaluated on the same objective function as before:

L(θ) := E
[(
−Z + p0 + (δθ · S)T

)2
]

,

whereas the hidden state δ̃k is passed forward to the next cell Fθ
k+1. These states can take any

value and are not restricted to having any meaningful financial representation as trading
strategies do. We illustrate the fact that the fRNN architecture is truly recurrent by showing
how hidden states are able to encode the relevant history of the information process. Let
us say for example that the information process Ik = (S1

k , S2
k) is simply the price of both

hedging instruments. The strategies at time tk now do not depend on the asset holdings
δx

k−1, but on δ̃x
k−1 for x ∈ {S, V}:

δx
k := δx

k (S
1
k , S2

k , δ̃S
k−1, δ̃V

k−1).

For some Fk−1-measurable function gk−1, it holds for the hidden states themselves that

δ̃x
k−1 = gx

k−1(S
1
k−1, S2

k−1, δ̃S
k−2, δ̃V

k−2).

Recursively, the hidden states are implicitly dependent on the entire history

δ̃x
k−1 = gx

NN (S
1
k−1, S2

k−1, S1
k−2, S2

k−2, . . . , S1
0, S2

0, δ̃0),

where gx
NN is again Fk−1-measurable. Structuring the network this way, we hope that

the hidden states at time tk will be able to encode the history of the information process
I0, . . . , Ik. More precisely, what we expect is that the network will itself learn the function
gx
NN : R2k → R for x ∈ {S, V} and with that the path dependency inherent to the liability

we are trying to hedge.

Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹² Output Layer ∈ ℝ² Input Layer ∈ ℝ⁴ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹² Output Layer ∈ ℝ²

St

δS
t−1

δV t−1

St+1

Vt+1

t t+1

δS
t

δV t

δS
t+1

δV t+1

~

~
δS

t

δV t
~

~ δS
t

δV t
~

~
δS

t+1

δV t+1
~

~

Output

Figure 3. Fully Recurrent Neural Network (fRNN) Architecture. The recurrent structure of this architecture is clearly visible
as hidden states are passed on to the next cell at each time step.
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Remark 2. We remark that in order to account for the history of the information process one could
also write the trading strategy as

δk := δk(Ik, Ĩk−1),

where Ĩn
k−1 = {Ii}k−1

i=(k−1)−n is the history of the information process with a window length of
n ∈ {1, . . . , k− 1}. However, in this case, we would have to optimise the window length and would
inevitably face an accuracy and computational efficiency trade-off. We would rather outsource this
task to the neural network.

Remark 3. While we do think the LSTM architecture (Hochreiter and Schmidhuber 1997) would be
more appropriate to capture the non-Markovian aspect of our process, we find that our architecture
is adequate in that regard as well. Our architecture therefore has the advantage of being tractable
(we can still appeal to the Proposition 1), all while being much simpler and easier to train.

4. Hedging Performance and Hedging P&L under the Rough Bergomi Model
4.1. Deep Hedge under Rough Bergomi

Since the fRNN should perform just as well in Markovian case as the original one
does, we first convinced ourselves that our architecture produces comparable results in the
classical case. Quadratic losses as well as the training time for the Heston model were very
similar for both.4,5 We were now ready to test it on the rough Bergomi model. We hedge
the ATM call from Section 3.3; the parameters were again ξ0 = 0.235× 0.235, ν = 1.9 and
ρ = −0.7, and we investigate the dependence of the hedging loss on the Hurst parameter.
The results are shown in Table 2. Again, the loss seems to exponentially decrease with
increasing Hurst parameter and reaches quadratic losses comparable to classic stochastic
volatility models at H & 0.5.

Table 2. Quadratic loss for different Hurst parameters. Run time on 75 epochs was approximately
2 h for each parameter.

Hurst Parameter

H 0.10 0.20 0.30 0.40 0.60 0.70 0.80 0.90

Quad. loss 0.834
(*0.628) 0.376 0.263 0.244 0.204 0.206 0.197 0.191

*—loss on 200 epochs.

Comparing these results with both the model hedge and the deep hedge from
Section 3.3 (see Table 3), we notice the fRNN does indeed perform notably better. With the
number of epochs in the training phase increased from 75 to 200, the loss in the case of the
deep hedge with original architecture does not improve, while the improvement with the
proposed architecture is clearly visible. This indicates that while the semi-recurrent NN
saturates at a given error, the new architecture keeps converging and improving. Since the
training at 200 epochs was computationally costly (in terms of both memory and time), and
since we have reached the model hedge’s numbers at the higher end of H range, we did not
keep increasing the number of epochs. However, we expect that to keep improving as the
number of epochs increases, which definitely indicates the second approaches suitability.

In Figure 4, it is particularly interesting that the P&L distribution becomes increasingly
left tailed with lower Hurst parameters. Even under the new architecture, the distribution
for H = 0.10 is left-skewed with an extremely heavy left tail, where relative losses reached
cca. −1000% in one of 105 sample paths. What is even more compelling is that the sizeable
losses occurred, when the discretised stock process jumped by several thousand basis points
during the hedging period. An example of such a path is shown in Figure 5. Although
jumps are not featured in the rough Bergomi model (the price process is a continuous
martingale (Gassiat 2019)), the model clearly exhibits jump-like behaviour when discretised.



Risks 2021, 9, 138 12 of 20

Table 3. Comparison of the quadratic loss between model and deep hedges with fRNN architecture
trained on 75 epochs for different H.

Quadratic Hedging Loss

H Model Hedge Deep Hedge Deep Hedge—fRNN

0.10 1.45 1.16 (*1.12) 0.83 (*0.63)
0.20 0.52 0.67 0.38
0.30 0.34 0.46 0.26
0.40 0.24 0.36 0.22

*—on 200 epochs.

Figure 4. Empirical P&L distributions in log-scale for different Hurst parameters under the fRNN hedge. Loss on test denotes
the realised quadratic loss on the test set for a network trained on 75 epochs.

Naturally, for H = 0.10, where this effect was the most noticeable, we tried increasing
the training, test and validation set sizes, as well as number of epochs to 200. By doing this,
we managed to decrease the realised loss to 0.628. The performance was notably better
compared to 0.834 on smaller set sizes, but still far from the loss of 0.162 we obtained under
the Heston model.

As can be seen in Figure 6, model hedge loss distribution exhibits very similar be-
haviour as the deep hedge distribution. Higher losses of the model hedge can be explained
by the slightly fatter tail in comparison to the fully recurrent hedge. We remark that this
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behaviour is somewhat understandable, since re-hedging is done daily and the hedging
frequency is far from being a valid approximation for a continuous hedge. In the next
section, we thus implement hedges at different frequencies to see whether the Hölder
regularity of the underlying process is problematic only for the deep hedging procedure or
is the heavy left-tailed P&L distribution, a general phenomenon, when hedging under a
discretised rough model.

Figure 5. Under the discretised rough Bergomi model, the stock can jump by more than ±30% in a
single time step. This stock path caused extreme loss of −27.73 seen in Figure 4.

(a) H=0.10 (b) H = 0.20

(c) H = 0.30 (d) H = 0.40
Figure 6. P&L distributions of rBergomi model hedge (red) vs. deep hedge with proposed architecture (blue) for different
Hurst parameters realised on 103 sample paths.
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4.2. Rehedges

We implement deep hedges on rBergomi paths with the Hurst parameter H = 0.10,
where we re-hedged from every two days, up to four times a day. Again, one can see in
Figure 7 that the distribution became slightly less leptocurtic, with more frequent rebal-
ancing. The quadratic losses also decreased with higher frequency (see Table 4). However,
this seems to happen at a slower rate than expected. This would essentially mean that as
soon as transaction costs are present, small gains from more frequent rebalancing would be
completely outweighed by higher transaction fees. As a matter of fact, for the four-time
daily re-hedge the loss slightly increased, which indicates the model once again saturates,
this time with respect to the hedging frequency. This is quite surprising considering higher
hedging frequency usually translates to better performance in a continuous models. This is
because the approximation is getting closer and closer to the continuous setting.

Figure 7. fRNN deep hedge for different hedging frequencies (with H = 0.10). The plot was rescaled,
because of the massive outliers in the two day rehedge case. Non-central t distribution was fit for
better visiblity.

Table 4. Comparison of the fRNN deep hedge quadratic losses for different hedging frequencies
(with H = 0.10).

Rehedging Frequency

H = 0.10 Every Two Days Daily Twice Daily Four Times Daily

Quadratic loss 1.11 0.65 0.46 0.52
Training time (h) 3.1 7.5 19.6 45.3

Behaviour of distributions as well as hedging losses is in fact quite reminiscent of
the behaviour of jump diffusion models analysed by Sepp (2012), which we recall in the
following section.

4.3. Relation to the Literature

It is rather interesting that Sepp (2012) observes a similar behaviour when delta
hedging under jump diffusion models. Similarly to our observations above, he finds (in the
presence of jumps) that after a certain point the volatility of the P&L cannot be reduced by
increasing the hedging frequency. More precisely, he shows that for jump diffusion models,
there is a lower bound on the volatility of the P&L in relation to the hedging frequency.
Not only that, the P&L distributions in Figure 8 for delta hedges under jump diffusion
models are generally fairly similar to ours.
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Figure 8. Profit and loss distributions for delta hedging under jump diffusion models (JDM) from (Sepp 2012).

This gives us the idea to treat the discretised rough models as jump models. In this case,
the market is incomplete, and it is not possible to perfectly hedge a contingent claim with a
portfolio containing a finite number of instruments (He et al. 2007). In practice, traders try
to come as close as possible to the perfect hedge by trading a number of different options.

Unfortunately, when trying to implement the hedge approximation, we are quickly
faced with the absence of analytical pricing formulas and limitations of the slow Monte-
Carlo scheme. In order for us to train the deep hedge, we would have to calculate option
prices on every time step of each sample path. In a typical application, we would need
around 10 options with different strikes and at least 105 sample paths.

5. Conclusions

In this work, we presented and compared different methods for hedging under rough
volatility models. More specifically, we analysed and implemented the perfect hedge for
the rBergomi model from (Viens and Zhang 2019) and used the deep hedging scheme from
(Buehler et al. 2019), which had to be adapted to a non-Markovian framework.

We were particularly interested in the dependence of the P&L on the Hurst parameter.
We conclude that the deep hedge with the proposed architecture performs better than the
discretised perfect hedge for all H. We also find that the hedging P&L distributions for low
H are highly left-skewed and have a lot of mass in the left tail under the model hedge as
well as the deep hedge.

To mitigate the heavy losses in cases when H is close to zero, we explored increasing
the hedging frequency up to four times a day. The loss did improve and the P&L distribu-
tion became less leptocurtic, however only slightly. Intriguingly, slow response to increased
hedging frequency and left-skewed P&L distribution are characteristic of delta hedges
under jump diffusion models (Sepp 2012). We therefore observe that in terms of hedging,
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there is a relation between jump diffusion models and rough models. In accordance with
the literature, we find that the price process, despite being a continuous martingale, ex-
hibits jump-like behaviour (McCrickerd and Pakkanen 2018). We believe this is an excellent
illustration of rough volatility models dynamics. Explosive, almost jump-like patterns in
the stock price might be the reason why they can fit the short end of implied volatility
so well.

In our view, it is crucial to take into account the jump aspect, when looking for an
optimal hedge in discretised rough volatility models. Our suggestion for future research
is adapting the objective function in the deep hedge scheme for jump risk optimisation.
The first step would be optimisation of the expected shortfall risk measure. Next, more
appropriate jump risk measures for discretised rough models can be developed. These risk
measures cannot be completely analogous to the risk measures in (Sepp 2012), since rough
models themselves do not feature jumps.
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Appendix A. Path Derivatives

Denote by D0 a càdlàg space and by Dt and Ct the space of càdlàg functions on [t, T]
and the space of continuous functions on [t, T], respectively. Additionally, we denote by ω
the sample paths on [0, T], with ωt as its value at time t and define

Λ := [0, T]× C([0, T],Rd), Λ̄ :=
{
(t, ω) ∈ [0, T]×D0 : ω|[t,T] ∈ C

}
;

‖ω‖T := sup
t∈[0,T]

|ωt|, d
(
(t, ω), (t′, ω′)

)
:= |t− t′|+ ‖ω−ω′‖T .

Furthermore, we denote the set of all d-continuous functions u : Λ̄ → R by C(Λ̄).
Define the usual horizontal time derivative for u ∈ C(Λ̄) as in (Dupire 2019):

∂tu(t, ω) := lim
δ↓0

u(t + δ, ω)− u(t, ω)

δ
for all (t, ω) ∈ Λ̄, (A1)

requiring of course that the limit exists. For the spatial derivative with respect to ω,
however, we use the definition of the Gateaux derivative for any (t, ω) ∈ Λ̄:

〈∂ωu(t, ω), η〉 = lim
ε→0

u(t, ω + εη1[t,T])− u(t, ω)

ε
for any η ∈ Ct. (A2)

Note that the function u(t, ·) in the definition of the derivative is “lifted” only on [t, T]
and not on [0, t). Hence, the convention we follow is actually

〈∂ωu(t, ω), η〉 :=
〈

∂ωu(t, ω), η1[t,T]

〉
for any s < t and η ∈ Cs.

The definition of Gateaux derivative is clearly also equal to

〈∂ωu(t, ω), η〉 = d
dε

u(t, ω + εη1[t,T])
∣∣∣
ε=0

.
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Remark A1. We remark that our definition of the spatial derivative is different from the one in
(Cont and Fournié 2013; Dupire 2019), where functional derivative quantifies the sensitivity of the
functional to the variation solely in the end point of the path, i.e., ωt. While in our definition, the
perturbation takes place throughout the whole interval [t, T].

We define two more spaces necessary for our analysis:

C1,2(Λ̄) :=
{

u ∈ C(Λ̄) : ϕ ∈ C(Λ̄) for ϕ ∈ {∂tu, ∂ωu, ∂2
ωωu}

}
,

C1,2
+ (Λ̄) :=

{
u ∈ C(Λ̄) : ϕ has polynomial growth for ϕ ∈ {∂tu, ∂ωu, ∂2

ωωu} and〈
∂2

ωωu, (η, η)
〉

is locally uniformly continuous in ω with polynomial growth
}

.

Appendix B. Functional Itô Formula

We have to differentiate two cases. The regular case where H ∈ ( 1
2 , 1) and the singular

case where the coefficients b, σ explode, because of the power-kernel in Riemann–Liouville
fractional Brownian motion whenever the Hurst exponent H lies in (0, 1

2 ). In the singular
case, the coefficients b, σ /∈ Ct, and thus they cannot serve as the test function in the right
side of (A2), since Gateaux derivative would not make sense any more. In order to develop
an Itô formula for the singular case, definitions need to be slightly amended. Nonetheless,
Viens et al. show that both cases yield a similar functional Itô formula.

Assumption A1.

i The SDE (5) admits a weak solution (X, W).

ii E
[
supt∈[0,T]|Xt|p

]
< ∞ for all p ≥ 1.

Assumption A2.

i (Regular case) For any r ∈ [0, T], ∂tb(t; r, ·), ∂tσ(t; r, ·) exist for t ∈ [r, T] and for ϕ =
b, σ, ∂tb, ∂tσ,

|ϕ(t; r, ω)| ≤ C0(1 + ‖ω‖κ0
T ) C0, κ0 > 0.

ii (Singular case) For any r ∈ [0, T], ∂t(t; r, ·) exists for t ∈ (r, T] with ϕ = b, σ. There exists
H ∈ (0, 1

2 ) s.t., for some C0, κ0 > 0

|ϕ(t; r, ω)| ≤ C0(1 + ‖ω‖κ0
T )(t− r)H− 1

2 and |ϕt(t; r, ω)| ≤ C0(1 + ‖ω‖κ0
T )(t− r)H− 3

2

Theorem A1 (Functional Itô formula). Let X be a weak solution to the SDE (5) for which
E
[
supt∈[0,T]|Xt|p

]
< ∞ for all p ≥ 1 and Assumption A2 hold. Then

du(t, X⊗t Θt) = ∂tu(t, X⊗t Θt)dt +
1
2

〈
∂ωωu(t, X⊗t Θt), (σt,X , σt,X)

〉
dt+〈

∂ωu(t, X⊗t Θt), bt,X
〉

dt +
〈

∂ωu(t, X⊗t Θt), σt,X
〉

dWt, P-a.s.
(A3)

for u ∈ C1,2
+ (Λ) in the regular case and u ∈ C1,2

+,β(Λ) with regularised Gateaux derivative for the

singular case. For ϕ = b, σ the notation ϕt,ω
s := ϕ(s; t, ω) only emphasises the dependence on

s ∈ [t, T]. For the definition of C1,2
+,β(Λ) and precise statement of the theorem in the singular case,

see Theorem 3.17 and Theorem 3.10 in (Viens and Zhang 2019)

Appendix C. Discretisation of the Gateaux Derivative

It can be easily shown that Θ̂t
s = f (Θt

s) for some f : R → R. Therefore, we have a
direct relation between the auxiliary process Θ and the forward variance Θ̂, which allows
us to write the option price as the function of the entire forward variance curve Θ̂t

[t,T] at
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time t ∈ [0, T], namely u(t, St, Θt
[t,T]) = ũ(t, St, Θ̂t

[t,T]). This is important, when performing
Monte-Carlo, since in the rough Bergomi model, the forward variance curve is directly
modelled in the variance process with ξt(·) = Θ̂t

· .
Let us suppose that we are able to trade at times 0 = t0 < t1 < · · · < tn = T. In order
to get the hedging weights at trading times ti, we have to discretise the derivatives. The
Gateaux derivative with respect to the stock simplifies to the usual derivative, and the
discretisation is straightforward:

∂xũ(t, St, Θ̂t
[t,T]) ≈

ũ(t, St + ε, Θ̂t
[t,T])− ũ(t, St, Θ̂t

[t,T])

ε
for small ε > 0. (A4)

For the path-wise derivative, the discretisation is not immediately obvious, especially
because of the dependence of the option price ũ at time t on functional over the whole
interval [t, T], more precisely since u : [0, T]× [0, ∞)× C([0, T] → R). First, we remind
ourselves of the definition of the Gateaux derivative on a path ω:

〈∂ωu(t, ω), η〉 = lim
ε→0

u(t, ω + εη1[t,T])− u(t, ω)

ε
for any η ∈ Ωt.

We proceed as in (Jacquier and Oumgari 2019) by approximating Θ̂t
[t,T] as a piecewise

constant function

Θ̂t
s ≈ ∑

i∈I
Θ̂t

i1[ti ,ti+1)
(s) at

i = at
s1[ti ,ti+1)

(s), (A5)

where I := {i ∈ N : t ≤ ti ≤ T}. We introduce the following approximations of the path
derivatives along the direction at:

〈
∂ω ũ(t, St, Θ̂t

[t,T]), at
〉
≈ ∂εũ

(
t, St, ∑

i∈I
(Θ̂t

i + εat)1[ti ,ti+1)
(s)
∣∣∣
s∈[t,T]

)∣∣∣∣∣
ε=0

= ∂εû
(

t, St,
(
Θ̂t

i + εat
i
)

i∈I

)∣∣∣
ε=0

= ∑
i∈I

∂Θ̂t
i
û(t, St, θt)at

i ,

with θt := (Θ̂t
i)i∈I and û acts on [0, T]× [0, ∞)×R#I . Further discretising the derivative,

we have for the flat forward variance ξ(t) = ξ0:

〈
∂ω ũ(t, St, ξ0), at〉 ≈ ũ(t, St, ξ0 + ε)− ũ(t, St, ξ0)

ε
at for small ε > 0.

The option prices ũ can now be evaluated using Monte-Carlo at each time step to
get the hedging weights. Note that the discretisation of the Gateaux derivative is purely
heuristic and that a rigorous proof of the convergence to the true derivative is out of scope
of this work. For more details we refer to (Jacquier and Oumgari 2019).

Notes
1 For the numerical implementation of the resulting strategies that we consider in the following sections, we naturally consider

again the discrete filtration introduced above in Section 2, representing a discretisation of the continuous market.
2 Several estimation procedures of the Hurst parameter were used; see, e.g., (Di Matteo 2007; Di Matteo et al. 2005). Estimations of

the paths simulated with the hybrid scheme (Bennedsen et al. 2017; McCrickerd and Pakkanen 2018) were on the other hand in
alignment with the input parameter.

3 Note that by completely recurrent we do not mean the same network is used at each time step, but that the hidden state is passed
on to the cell in the next time step along with current portfolio positions.

4 For Heston parameters α = 1, b = 0.04, σ = 0.8, V0 = 0.04, S0 = 100 and ρ = −0.7 the quadratic losses were 0.20 under original
architecture and 0.162 under the fully recurrent one. Both training times were fairly similar as well.
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5 All the experiments were performed on a Dell-HQIQ2UV laptop with Intel i7-8550U CPU using TENSORFLOW V1.3.
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