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Abstract: A comprehensive auto insurance policy usually provides the broadest protection for the
most common events for which the policyholder would file a claim. On the other hand, some
insurers offer extended third-party car insurance to adapt to the personal needs of every policyholder.
The extra coverage includes cover against fire, natural hazards, theft, windscreen repair, and legal
expenses, among some other coverages that apply to specific events that may cause damage to the
insured’s vehicle. In this paper, a multivariate distribution, based on a conditional specification, is
proposed to account for different numbers of claims for different coverages. Then, the premium
is computed for each type of coverage separately rather than for the total claims number. Closed-
form expressions are given for moments and cross-moments, parameter estimates, and for a priori
premiums when different premiums principles are considered. In addition, the severity of claims can
be incorporated into this multivariate model to derive multivariate claims’ severity distributions. The
model is extended by developing a zero-inflated version. Regression models for both multivariate
families are derived. These models are used to fit a real auto insurance portfolio that includes five
types of coverage. Our findings show that some specific covariates are statistically significant in
some coverages, yet they are not so for others.

Keywords: automobile insurance; conditional distribution; coverage; insurance pricing; multivariate
zero-inflated models; regression

1. Introduction

In the automobile insurance sector, it is natural to calculate the a priori premium taking
into account the number of claims and individual characteristics of each insured, such as
gender, age, years of validity of the policy, etc. This procedure to compute the a priori pre-
mium is usually completed via parametric models rather than using the ordinary regression
model, which can predict values of the number of claims even if negative. For this purpose,
parametric models based on the use of the Poisson, negative binomial, and Poisson-inverse
Gaussian distributions, among others, are the standard models considered in the univariate
case. As of today, most insurance companies distinguish, apart from the total number of
claims, individualized claims for different coverages, such as windscreen claims, thefts and
fire claims, etc. So far, most actuarial models aim to differentiate only between two types of
coverage when computing an appropriate premium based on different coverage. Perhaps
one of the reasons for that is due to the lack of models capable of describing more than two
coverages. The most often considered approach to tackle this problem is the one based on
the bivariate Poisson distribution (see Bermúdez 2009; Bermúdez and Karlis 2017, among
others). See also Gómez-Déniz (2016); Gómez-Déniz and Calderín-Ojeda (2018); Gómez-
Déniz and Calderín-Ojeda (2020); Denuit et al. (2009), and Frees (2010) for more details
related to this topic. Alternative references for a review of count regression are Cameron and
Trivedi (1986); Cameron and Trivedi (1998); Winkelmann (2003), and Boucher et al. (2007).
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A copula-based correlated random effects model that accommodates dependence between
claim frequency and severity was examined in Oh et al. (2020).

Traditionally, the business associated with insurance consists of selling risk coverage
to buyers. In particular, in automobile insurance, the insurer provides financial protection
against physical damage or bodily injury resulting from an incident (see Frees et al. 2016).
However, it is common today, mainly due to the existing competition, that the insurance
companies offer coverage of different claims within the same product not only to gain in
competitiveness, but also to benefit from risk diversification and volatility. In this paper,
we consider a motor vehicle insurance portfolio with policies observed during some time
period that contain, apart from other known factors (gender, age, years of validity of the
driver’s license, etc.), information about the claims number concerning different coverages
that are considered as response variables. This includes windscreen, parking, theft and
fire, etc.

Therefore, it is assumed that the insurance company collects information on the
claims for these coverages and the total number of claims given by the sum of the claims
in all the coverages. Thus, every policyholder generates a sequence of claims numbers
for each coverage; one of them is the total claims number, which includes the sum of
the coverages’ claims. Then, based on a conditional specification, a multivariate model
that allows a simple way to describe the use of a finite but sufficiently large number of
coverages is proposed. The resulting multivariate discrete distribution obtained enables
us to study the dependence structure of a limited number of coverages in automobile
insurance and include covariates such as gender, age, etc. We start by using a Poisson
model for the random variable total claims number, and then by conditioning, we introduce
the remaining variables in a branch architecture structure. Finally, closed-form expressions
are given for parameter estimates, and a priori premiums are provided when different
premium principles are used.

The purpose of this paper is to introduce a novel methodology based on a mul-
tivariate distribution via a conditional specification, proposed to account for different
numbers of claims in different coverages and also for the total claims frequency. This
approach enable us to examine the dependence structure of a finite number of cover-
ages in motor vehicle insurance and also incorporate heterogeneity in the model through
explanatory variables. Then, we use this procedure to calculate premiums based only
on the claims frequency. Next, we show that the amount of claims can be incorporated
into this multivariate model to derive multivariate claims’ severity distributions. For
this, we assume that the claims size in the joint coverages follows a multivariate Erlang
distribution. As multivariate probability distributions are complex, it is argued that ana-
lytical solutions are highly unlikely as compared to those derived under univariate and
bivariate cases (see Cummins and Wiltbank 1983, 1984); nevertheless, in this work, we
derive a multivariate model where the total number of claims that affect the portfolio is
the result of the interaction of multivariate processes. The main advantage of the mod-
elization presented in this work is that it avoids working with copulas (see, for instance,
Balakrishnan and Lai 2009, chp. 1, p. 59). Although the copula approach for modeling
multivariate models has been proven to be very useful, it has also been criticized due to the
difficulty of choosing an appropriate copula structure and the complication of estimating
the parameters that control the dependency. In addition, a multivariate zero-inflated model
to account for the excess of common zeros in the empirical distribution is developed. Fi-
nally, these two multivariate distributions can be reparameterized to incorporate covariates
to determine which factors and explanatory variables have an influence on the mean of the
corresponding coverage. As an illustration, in this work, we use the French Motor Personal
Line datasets available in the package “CASdatasets” in R, which include five response
variables.

Although the modeling proposed here was developed ad hoc for the auto insurance
market, it is unquestionable that other insurance lines in general insurance might benefit
from it. For example, in home insurance, the whole premium could be split into different
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coverages such as moisture damage, theft, pipe repairs, locksmiths, and even protection
against tenant rent default.

The rest of the paper is structured as follows. Section 2 describes the primary model
and some of its properties. Then, premium calculations based on this basic model are
discussed. Finally, a multivariate zero-inflated model and multivariate regression proce-
dures are shown. Some methods of estimation are provided in Section 3. Next, a numerical
application pertaining to a private motor French insurer is developed in Section 4. Finally,
conclusions are drawn in Section 5.

2. The Branch Architecture Model

Let us consider a portfolio with N observed policies during T periods of time and also
assume that the insurance company gathers information on the number of claims related
to several types of coverages. Example of these coverages may include windscreens, fire
and theft, etc. Therefore, the insurer collects information about these coverages, as well
as the total number of claims for each policyholder given by the sum of the claims in all
different coverages. For the ith policyholder, we consider the multivariate random variable
expressed as the following sequence, Nji = (Nji1, Nji2, . . . , NjiT)

′ of claims numbers for
coverage j, with j = 1, 2, . . . ,J , assuming that one of them, i.e., the first one, is the total
number of claims, which includes the sum of the claims for all types of coverages purchased
by this policyholder.

Furthermore, we assume that N1i, the total number of claims recorded in the auto
insurance portfolio, follows a Poisson distribution with mean Θ1i > 0 for i = 1, 2, . . . , N,
where N is the total number of policyholders. Now, let us suppose that the policyholders
have purchased some of the types of coverages, such as windscreen protection, fire and
theft, parking, etc. That is, once the policyholder has made a claim, this can be of any of
these types. Let us denote by Z1iκ , κ = 1, . . . , N1i, a random variable associated with the
number of claims corresponding to the first type of coverage and policyholder i, resulting
from the κth claim of the total claims reported by the ith policyholder assumed to be
independent and identically distributed, following also a Poisson distribution with mean
Θ2i > 0. Then, the conditional distribution of N2i given N1i = n1i, N2i = ∑N1i

κ=1 Z1iκ ,
the total number of claims of this first coverage, among the N1i total claims is a Poisson
distribution with parameter n1iΘ2i and the joint distribution of (N1i, N2i) has a probability
function given by,

f (n1i, n2i|Θ1i, Θ2i) = Pr(n2i|n1i, Θ2i)Pr(n1i|Θ1i)

=
1

n1i!n2i!
Θn1i

1i (Θ2in1i)
n2i exp[−(Θ1i + Θ2in1i)],

for n1i, n2i = 0, 1, . . . , and i = 1, 2, . . . , N and with the convention that 0j = 0 for j = 0 and
1 otherwise. This bivariate distribution appears in Leiter and Hamdan (1973) (see also
Cacaoullos and Papageorgiou 1980; Johnson et al. 1996, chp. 37, p. 136 in the context of
accident analysis)

Let Z2iκ , κ = 1, . . . , N1i now be a random variable associated with the total number
of claims corresponding to the second type of coverage and policyholder i, resulting
from the κth claim of the total claims reported by the ith policyholder assumed to be
independent and identically distributed Poisson distribution with mean Θ3i > 0 and
conditionally independent of N2i. Then, the conditional distribution of N3i given N1i = n1i,
N3i = ∑N1i

κ=1 Z2iκ , the total number of claims of this second coverage, among the N1i total
claims is a Poisson distribution with parameter n1iΘ3i, and now, the joint distribution of
(N1i, N2i, N3i) has a probability function given by,

f (n1i, n2i, n3i|Θ1i, Θ2i, Θ3i) = Pr(n1i, n2i)Pr(n3i|(n1i, n2i)) = Pr(n1i, n2i)Pr(n3i|n1i)

=
Θn1i

1i
n1i!

3

∏
j=2

(
Θjin1i

)nji

nji!
exp

[
−
(

Θ1i + n1i

3

∑
j=2

Θji

)]
,
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where the hypotheses of conditional independence between the two types of coverages
were assumed.

Following the same argument, it is easy to see that if we have J types of coverages,
then the joint probability function of (N1i, N2i, . . . , NJ i) ∈ NJ is given by:

f (n1i, . . . , nJ i|Θi) =
Θn1i

1i
n1i!

J
∏
j=2

(
Θjin1i

)nji

nji!
exp

[
−
(

Θ1i + n1i

J
∑
j=2

Θji

)]
, (1)

where Θi = (Θ1i, . . . , ΘJ i). For this multivariate distribution, it is allowed that n1i takes
larger or smaller values than nji; however, in the proposed model, it is verified that n1i
is larger than or equal to nJ i for all J > 1. In this case, it is obvious that Θ1 must be
larger than Θj, j = 2, . . . ,J . The latter statement is confirmed in the numerical application
section.

This distribution is a multivariate extension of the bivariate one proposed in
Leiter and Hamdan (1973) (see also Cacaoullos and Papageorgiou 1980).

The ordinary probability-generating function of (N1, . . . , NJ ) with the probability
mass function (pmf) given in (1) is given by:

GN1,...,NJ (z1, . . . , zJ ) = exp

{
Θ1

[
z1 exp

(
J
∑
j=2

Θj(zj − 1)

)
− 1

]}
,

for |zj| ≤ 1, j = 1, . . . ,J .
From here, it is easy to see that the marginal distribution of N1i is Poisson with

parameter Θ1i, while Nji, j = 1, . . . ,J have a Neyman Type A distribution with parameters
Θ1i and Θji. Recall that the probability function of the Neyman Type A distribution (see
Neyman 1939; Douglas 1955; Kemp 1967; Johnson et al. 2005, chp. 8, among others) is
given by:

f (nji) =
Θ

nji
ji exp(−Θ1i)

nji!

∞

∑
n1i=0

[
Θ1i exp(−Θji)

]n1i n
nji
1i

n1i!
, nji = 0, 1, . . . , (2)

for j = 1, . . . ,J .
Some computations provide the marginal and cross-moments, which are given by:

E(N1i|Θ1i) = Θ1i, (3)

E(Nji|Θ1i, Θji) = Θ1iΘji, j = 2, . . . ,J , (4)

E(N1i Nji|Θ1i, Θji) = Θ1i(1 + Θ1i)Θji, j = 2, . . . ,J ,

E(Nji Nli|Θ1i, Θji) = Θ1i(1 + Θ1i)ΘjiΘli, j, l = 2, . . . ,J , j 6= l,

from which it is simple to see that:

cov(N1i, Nji) = Θ1iΘji, j = 2, . . . ,J
cov(Nji, Nli) = Θ1iΘjiΘli, j, l = 2, . . . ,J , j 6= l,

and therefore, the model admits only a positive correlation between pairs of random
variables. The marginal variances are given by:

var(N1i|Θ1i) = Θ1i, (5)

var(Nji|Θ1i, Θji) = Θ1iΘji
(
1 + Θji

)
, j = 2, . . . ,J . (6)

Observe that, using (5) and (6) together with (3) and (4), the model is equidispersed
(variance equal to the mean) for N1i and overdispersed (variance larger than the mean) for
the rest of the coverages.
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Finally, the correlation can easily be computed as:

ρ(N1i, Nji) =

√
Θji

1 + Θji
, j = 2, . . . ,J , (7)

ρ(Nji, Nli) =

√
ΘjiΘli

(1 + Θji)(1 + Θli)
, j, l = 2, . . . ,J , j 6= l. (8)

One can be interested also in the distribution of N1i given Nji = nji. The probability-
generating function of this conditional distribution is given by:

GN1i |Nji=nji
(z) = exp

[
Λj(z− 1)

]Bnji (Λjz)
Bnji (z)

, |z| ≤ 1,

where Λj = Θ1i exp
[
−Θji

]
and Bn(τ) are the Bell numbers given by:

Bn(τ) =
n

∑
k=0

S(n, k)τk,

with:

S(n, k) =
1
k!

k

∑
i=0

(−1)i
(

k
i

)
(k− i)n

being the Stirling number of the second kind.1

Now, the conditional mean of N1i given by Nji = nji can be written as:

E
(

N1i|Nji = nji
)
=

Bnji+1(Λ)

Bnji (Λ)
.

2.1. Some Results in Risk Theory

Observe that due to the model construction, we have that ∑Jj=2 Θji = 1, i.e., every
claim in coverage j is a proportion of the total claims N1i. Then, if the actuary decides to use
the net premium principle, i.e., P(X) = E(X), to compute the premium, then for the ith pol-
icyholder and coverage s with s ∈ {2, . . . ,J }, the premium results Psi = Θ1iΘsi = P1iΘsi,
where P1i = Θ1i is the net premium for the total coverage, that is the sum of the premiums
in each of the coverages purchased. A similar result is obtained by using the expected
value principle. A catalog of premium principles can be found in Young (2006).

Let us now consider that the actuary decides to use the variance premium principle,
i.e., P(X) = E(X) + var(X)/E(X) with E(X) > 0, to calculate the premium. Then, in this
case, we obtain that P1i = 1 + Θ1i and Pji = 1 + ΘjiP1i. However, in this case, we have that

∑Jj=2 Pji = J − 1 + P1i, which is different from P1i, except for the case in which J = 1 and
no coverages exist.

However, a model solely based on the number of claims is not realistic. In risk theory,
it is common to incorporate the amount associated with each of the claims to build the
compound model. That is, the property and/or casualty ratemaking are generally based
on a claim frequency distribution and a loss distribution. Due to the complex derivation of
this multivariate compound model, the subscript i is removed from the text in the remain-

der of this section. For this purpose, let us now assume that Yj = ∑
Nj
i=1 Ei, j = 1, . . . ,J ,

where Ei is the random variable denoting the size or amount of the ith claim, following an
exponential distribution with probability density function (pdf) h(yj) = σ−1 exp(−yj/σ).
Furthermore, we assume that E1, E2, . . . , are independent and identically distributed ran-
dom variables and also independent of the number of claims Nj. It is well known (see
for example Rolski et al. 1999) that Yj follows a piecewise distribution with pdf given by
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g(yj) = ∑∞
nj=1 fNj(nj)h

∗nj(yj), yj > 0, and g(0) = fNj(0). Then, by following the method-
ology given in Lee and Lin (2012), we have that YYY = (Y1, . . . , YJ ) follows a multivariate
Erlang distribution with scale parameter σ > 0 and shape parameter nj > 0, j = 1, 2, . . . ,J .
Their marginal distributions are a univariate Erlang mixture.

Then, simple computations provide,

g(y1) =


√

Θ1
y1σ exp

[
−
(
Θ1 +

y1
σ

)]
I1

(
2
√

Θ1y1
σ

)
, y1 > 0,

exp(−Θ1), y1 = 0.

Here, I1(·) represents the modified Bessel function of the first kind, which admits the
following series representation,

Iν(z) =
∞

∑
k=0

1
Γ(k + ν + 1)k!

( z
2

)2k+ν
.

The distribution for the coverages can be computed by using (2) in the following way,

g(yj) =
∞

∑
nj=1

Θ
nj
j exp(−Θ1)

nj!

∞

∑
n1=0

[
Θ1 exp(−Θj)

]n1 n
nj
1

n1!

y
nj−1
j exp(−yj/σ)

σnj Γ(nj)
.

Now, taking into account that:

∞

∑
nj=1

(Θjn1yj/σ)nj

nj!Γ(nj)
= I1

(
2
√

n1yjΘj/σ
)

we finally obtain the aggregate claim size pdf for the different coverages given by,

g(yj) =


√

Θj
yjσ

exp
[
−
(

Θ1 +
yj
σ

)]
∑∞

n1=0

√
n1Λ

n1
j

n1! I1

(
2
√

Θjn1yj
σ

)
, yj > 0,

exp
(
−Θ1 + Λj

)
, yj = 0,

for j = 2, . . . ,J . Thus, they are also given as a piecewise distribution. For practical
purposes, the infinite sum that appears in this expression can be replaced by a finite sum
from one to k, where k can take values around one-hundred. From the assumption of the
independence between the number of claims and the claims size, we have that:

E(Y1) = σΘ1,

E(Yj) = σΘ1Θj, j = 2, . . . ,J ,

which can be considered as the net premium when both the number and size are considered
at the same time.

Finally, we have that:

var(Y1) = 2σ2Θ1,

var(Yj) = σ2Θ1Θj(2 + Θj), j = 2, . . . ,J ,

while the covariance (see Lee and Lin 2012) is given by:

cov(Yj, Yl) = σ2cov(Nj, Nl), j 6= l.

2.2. Multivariate Zero-Inflated Model

In many automobile insurance portfolios, the claims are rarely observed as compared
to the no-claims situation. Univariate and bivariate zero-inflated models have been intro-
duced in the statistical literature in many fields. In the setting of auto insurance, we refer
to Boucher et al. (2007) and Frees et al. (2016) for the univariate case and Bermúdez (2009)
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and Bermúdez and Karlis (2017) for the bivariate case. Multivariate ones are scarce in the
general statistical literature. References in the statistical literature are Li et al. (1999) and
Liu and Tian (2015). In the actuarial literature, there are no references of models of this
nature that go beyond the two variables. However, multivariate zero-truncated models
were considered in Zhang et al. (2020).

A multivariate zero-inflated model can be constructed as a mixture of the multivariate
distribution given in (1) and a point mass at (0, . . . , 0) ∈ RJ in the following way,

g(n1i, . . . , nJ i|Θi) =

{
1−Φ + Φ f (0, . . . , 0|Θi), (n1i, . . . , nJ i) = (0, . . . , 0),
Φ f (n1i . . . , nJ i|Θi), (n1i, . . . , nJ i) 6= (0, . . . , 0),

(9)

where 0 ≤ Φ ≤ 1 is an inflation parameter. Obviously, this model reduces to (1) for Φ = 1.
Under this model, the marginal means and cross-moments are given by:

E(N1i|Θ1i) = Φ Θ1i,

E(Nji|Θ1i, Θji) = Φ Θ1iΘji, j = 2, . . . ,J ,

E(N1i Nji|Θ1i, Θji) = Φ Θ1i(1 + Θ1i)Θji, j = 2, . . . ,J ,

E(Nji Nli|Θ1i, Θji) = Φ Θ1i(1 + Θ1i)ΘjiΘli, j, l = 2, . . . ,J , j 6= l,

from which the covariance between pairs of marginal random variables can be obtained.
They are given by:

cov(N1i, Nji) = Φ Θ1iΘji(1 + Φ̄ Θ1i), j = 2, . . . ,J
cov(Nji, Nli) = Φ Θ1iΘjiΘli(1 + Φ̄ Θ1i), j, l = 2, . . . ,J , j 6= l,

where Φ̄ = 1−Φ.
Again, if the actuary computes the premium by using the net premium principle, then

for each coverage, the premiums are not affected by the inflation parameter Φ. A complete
model would allow inflating each coverage with inflation parameters Φj; however, they
are not included in this work due to the computational cost of estimating a large number
of parameters.

The marginal variances are given by:

var(N1i|Θ1i) = Φ Θ1i(1 + Φ̄ Θ1i),

var(Nji|Θ1i, Θji) = Φ Θ1iΘji
[
1 + Θji(1 + Φ̄ Θ1i)

]
, j = 2, . . . ,J .

Finally, the correlations are:

ρ(N1i, Nji) =

√
Θji(1 + Φ̄ Θ1i)

1 + Θji(1 + Φ̄ Θ1i)
, j = 2, . . . ,J , (10)

ρ(Nji, Nli) =

√√√√ ΘjiΘli(1 + Φ̄ Θ1i)
2[

1 + Θji(1 + Φ̄ Θ1i)
]
[1 + Θli(1 + Φ̄ Θ1i)]

, (11)

for j, l = 2, . . . ,J , j 6= l.

2.3. A regression Model

For the sake of convenience, the model (1) can be rewritten in a different way to facili-
tate the implementation of covariates to determine which factors and explanatory variables
have an influence on the mean of the corresponding coverage. Then, by equating Θ1i to
µ1i and Θji to µji/µ1i, j = 2, . . . ,J , µ1i 6= 0, we obtain the normalized joint distribution,
which can be expressed as,

f (n1i, . . . , nJ i) = µ
n1i
1i

J
∏
j=2

[
1

nji!

(n1iµji

µ1i

)nji
]

exp

[
−
(

µ1i +
n1i
µ1i

J
∑
j=2

µji

)]
, (12)
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for n1i = 0, 1, . . . , nji = 0, 1, . . . , n1i, j = 2, . . . ,J .
The probability function (12) satisfies the condition that the marginal means are given

by E(Nji) = µji, j = 1, 2, . . . ,J , assuming that µji 6= 0, for all j. Thus, it is suitable for
including covariates. Then, to carry out this regression model, we suppose that the observed
counts (N1i, . . . , NJ i) have independent distributions given by (12) with E(Nji) = µji,
j = 1, 2, . . . ,J . Now, it is assumed that a set of observable covariates useful to subdivide
the portfolio into classes of risks with homogeneous characteristics are included in the
linear predictor, ηji. To guarantee a positive expected value of the response variables, it is
reasonable and common to use a logarithmic link for this function and therefore express
the mean as:

ηji = log µji = xjiγ
>
j , i = 1, 2, . . . , N, j = 1, 2, . . . ,J ,

where xji = (xji1, . . . , xjim) is a vector of m covariates for the ith observation µji and γj =

(γj1, . . . , γjm) denotes the corresponding vector of regression coefficients to be estimated,
which usually includes a constant term. Without loss of generality, it is assumed that
for each j = 1, . . . ,J , Nji is related to the same set of covariates. In addition, one of
the covariates may be identified as an exposure term to calibrate the size of a potential
outcome variable by assuming that the mean varies proportionally with the exposure eji
(see Frees 2010; Frees et al. 2016),

µji = eji exp{xjiγ
>
j }, i = 1, 2, . . . , N, j = 1, 2, . . . ,J .

Similarly, the covariates can be implemented in the multivariate zero-inflated regres-
sion model by simply regressing the mean value of the different coverages. It should be
pointed out, although it is not considered here, that it could also be assumed that the in-
flated parameter Φ could depend on certain regressors. This issue seems not to be possible
here, and thus, it could be a subject that merits further investigation in future research.

3. Estimation of the Parameters

In this section, we firstly describe the methodology for the maximum likelihood
estimation and derivation of the entries of Fisher’s information matrix for the basic model.
Next, the same development is illustrated for the associated regression model. Finally, the
expression of the log-likelihood function, score equations, and the second derivative of
the log-likelihood function with respect to the parameters for the zero-inflated model are
exhibited.

In general, the statistical inference for multivariate models is not trivial, and the
computational procedure is often expensive (see, for instance, Selch and Scherer 2010).
Nevertheless, the estimation procedure for the model proposed here is straightforward.
To see this, we first consider the case without covariates. Let us assume that a sample
ñ := {(ñ11, . . . , ñJ 1), . . . , (ñ1n, . . . , ñJ n)} that includes n independent observations in each
one of the J types of coverage is collected. The log-likelihood function is proportional to:

`(Θ1, . . . , ΘJ ; ñ) ∝
n

∑
i=1

ñ1i log Θ1 +
n

∑
i=1

J
∑
j=2

ñji log Θj −
n

∑
i=1

Θ1 − Θ̃
n

∑
i=1

ñ1i,

where Θ̃ = ∑Jj=2 Θj. After differentiating the latter expression, it is possible to obtain in
closed-form the maximum likelihood estimators of the parameters. They are given by:

Θ̂1 = n̄1,

Θ̂j =
n̄j

n̄1
, j = 2, . . . ,J ,

where n̄k, k = 1, . . . ,J , represents the sample mean, i.e., ∑n
i=1 ñ1k/n.



Risks 2021, 9, 137 9 of 18

The elements that provide the entries of Fisher’s information matrix are as follows:

E

(
−∂2`(Θ1, . . . , ΘJ ; ñ)

∂Θ2
1

)
=

n
Θ1

,

E

(
−∂2`(Θ1, . . . , ΘJ ; ñ)

∂Θ2
j

)
=

nΘ1

Θj
, j = 2, . . . ,J ,

E
(
−∂2`(Θ1, . . . , ΘJ ; ñ)

∂Θl∂Θk

)
= 0, l, k = 1, . . . ,J , l 6= k.

For the regression model, the log-likelihood function contains J ×m parameters, and
it is proportional to:

`(γ1, . . . , γJ ; ñ) ∝
n

∑
i=1

ñ1i log µ1i +
n

∑
i=1

J
∑
j=2

ñji log µji −
n

∑
i=1

J
∑
j=2

ñji log µ1i

−
n

∑
i=1

µ1i −
n

∑
i=1

ñ1i
µ1i

J
∑
j=2

µji,

where µji = exp{xjiγ
>
j }, i = 1, 2, . . . , n and j = 1, . . . ,J .

The score equations are given by:

∂`(γ1, . . . , γJ ; ñ)

∂γ1k
=

n

∑
i=1

(
ñ1i
µ1i
− 1
)

xik +
n

∑
i=1

J
∑
j=2

(
ñ1iµji

µ2
1i
−

ñji

µ1i

)
xik

∂`(γ1, . . . , γJ ; ñ)

∂γjk
=

n

∑
i=1

(
ñji

µji
− ñ1i

µ1i

)
xik,

with j = 2, . . . ,J and k = 1, . . . , m.
Fisher’s information matrix is made up of four blocks, as can be seen below:

E


− ∂2`

∂γ1kγ1l
− ∂2`

∂γ1kγ2l
. . . − ∂2`

∂γ1kγJ l

− ∂2`
∂γ2lγ1k

− ∂2`
∂γ2kγ2l

. . . 0
...

...
. . .

...
− ∂2`

∂γJ lγ1k
0 . . . − ∂2`

∂γJ kγJ l


where:

E
(
− ∂2`

∂γ1kγ1l

)
=

n

∑
i=1

(
1

µ1i
+
J
∑
j=2

µji

µ2
1i

)
xikxil ,

E

(
− ∂2`

∂γ1kγjl

)
= −

n

∑
i=1

1
µ1i

xikxil ,

E

(
− ∂2`

∂γjkγjl

)
=

n

∑
i=1

1
µji

xikxil , E

(
− ∂2`

∂γjkγhl

)
= 0, with j 6= h,

where j, h = 2, . . . ,J ; l, k = 1, . . . , m, and 0 is the zero matrix with dimension m×m.
For the zero-inflated model, the log-likelihood is proportional to:

`(Θ1, . . . , ΘJ , Φ; ñ) ∝ n∗ log(1−Φ + Φ exp(−Θ1)) + (n− n∗)[log Φ−Θ1]

+ log Θ1

n

∑
i=n∗+1

n1i − Θ̃
n

∑
i=n∗+1

n1i +
n

∑
i=n∗+1

J
∑
j=2

nji log(n1iΘj),
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where n∗ is the number of zeroes of the random variable N1i. The normal equations that
provide the maximum likelihood estimates are given by,

∂`(Θ1, . . . , ΘJ , Φ; ñ)
∂Φ

=
n∗(exp(−Θ1)− 1)

1−Φ + Φ exp(−Θ1)
+

n− n∗

Φ
= 0, (13)

∂`(Θ1, . . . , ΘJ , Φ; ñ)
∂Θ1

= − n∗Φ exp(−Θ1)

1−Φ + Φ exp(−Θ1)
− (n− n∗) +

1
Θ1

n

∑
i=n∗+1

n1i = 0, (14)

∂`(Θ1, . . . , ΘJ , Φ; ñ)
∂Θj

= −
n

∑
i=n∗+1

n1i +
1

Θj

n

∑
i=n∗+1

nji = 0, j = 2, . . . ,J . (15)

From (13), we obtain that Φ = (n∗ − n)/(n(exp(−Θ1)− 1)), which can be carried
out to (15) to obtain the estimator of Θ1, say Θ̂1. This value is carried out now to (13) to
obtain the estimator of the inflated parameter, Φ. Finally, from (15), the estimator of Θj, j =
2, . . . ,J is obtained in the closed-form expression given by Θ̂j = ∑n

i=n∗+1 nji/ ∑n
i=n∗+1 n1i.

The second partial derivatives are as follows,

∂2`(Θ1, . . . , ΘJ , Φ; ñ)
∂Φ2 = − n∗(exp(−Θ1)− 1)2

(1−Φ + Φ exp(−Θ1))2 −
n− n∗

Φ2 ,

∂2`(Θ1, . . . , ΘJ , Φ; ñ)
∂Φ∂Θ1

= − n∗ exp(−Θ1)

(1−Φ + Φ exp(−Θ1))2 ,

∂2`(Θ1, . . . , ΘJ , Φ; ñ)
∂Θ2

1
=

n∗Φ(1−Φ) exp(−Θ1)

(1−Φ + Φ exp(−Θ1))2 −
1

Θ2
1

n

∑
i=n∗+1

n1i,

∂2`(Θ1, . . . , ΘJ , Φ; ñ)
∂Θ2

j
= − 1

Θ2
j

n

∑
i=n∗+1

nji, j = 2, . . . ,J ,

∂2`(Θ1, . . . , ΘJ , Φ; ñ)
∂Φ∂Θj

= 0, j = 2, . . . ,J ,

∂2`(Θ1, . . . , ΘJ , Φ; ñ)
∂Θ1∂Θj

= 0, j = 2, . . . ,J ,

Observe that the analytic expressions of ∑n
i=n∗+1 n1i and ∑n

i=n∗+1 nji are not feasi-
ble. For computational reasons, for large values of n, this is evaluated by ignoring the
expectation operator and replacing it by ∑n

i=n∗+1 n1i and ∑n
i=n∗+1 nji. The asymptotic

variance–covariance matrix is approximated by inverting the observed information matrix.
When covariates are introduced under the inflated model, we proceed first by re-

placing in (9) the pmf f by its corresponding (12), where again, µji = exp{xjiγ
>
j }, i =

1, 2, . . . , n, and j = 1, . . . ,J . In practice, as shown in the numerical applications below,
the parameter estimation and computation of standard errors were carried out by the
method of maximum likelihood using Mathematicar v.12.0. We directly maximized the
log-likelihood function by using different maximum search methods available in the Find-
Maximum built-in function in the Mathematicasoftware package. This software package
also provides at least two methods of obtaining the elements of the Hessian matrix. The first
one consists of retrieving them from the Cholesky factors (this package is available on the
web upon request). The second one, which is faster, derives them by finite differentiation.
Results were also confirmed with WinRATS v.7.0.

4. Numerical Application

For our empirical analysis, we used the French Motor Personal Line datasets available
in the package “CASdatasets“ in R. This is a collection of ten datasets that comes from a
private motor French insurer. Each dataset includes risk features such as claim amount,
risk area, gender of the policyholder, number of claims for different coverages, etc. In
particular, we chose the freMPL10 dataset, which includes 32,100 policies for the year
2004. In our study, we considered six response variables, which are shown in Table 1.
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Note that the dependent variable Claims for each policyholder comprises the sum of the
individual claims in all other variables. The details of the joint claims frequency for all
types of coverage and the total number of claims are illustrated in Appendix A (Table A1).
Note that the maximum number of claims reported by an insured is six. The number of
policyholders who did not report a claim is 12,257 (38.18%), and the number of customers
that only declared a claim in any of the coverages is 10,803 (33.65%).

Table 1. Description of the response variables considered.

Claims Total number of claims made by the policyholder.
Nonresponsible Number of nonresponsible claims in the four preceding years.
Responsible Number of responsible claims in the four preceding years.
Parking Number of parking claims in the four preceding years.
Windscreen Number of windscreen claims in the four preceding years.
Fire and theft Number of fire and theft claims in the four preceding years.

Together with all the responses, this dataset includes a set of explanatory variables.
Table 2 below describes the factors and explanatory variables used in the investigation. We
also considered an offset variable when modeling the claims frequency, exposure, the time
exposed to risk during the investigation period.

In Table 3, the parameter estimates and their corresponding p-values are provided for
the basic and zero-inflated models without covariates. Some measures of model selection
are also provided in the bottom part of this table. For comparisons purposes, we used
the multivariate negative binomial distribution (MNB) provided in (Johnson et al. 1996,
chp. 36, p. 94) with the pmf given by:

Pr(n1, . . . , nk) =
Γ(α + ∑k

i=1 ni)

Γ(α)∏k
i=1 ni!

Θα
1

k

∏
i=2

Θni
i ,

where α > 0, 0 < Θi < 1, i = 1, 2, . . . , k, and ∑k
i=1 Θi = 1. As can be seen in Table 3,

the multivariate Poisson distribution studied in this paper has a better performance than
the MNB for this dataset. Furthermore, it is observable that the the zero-inflated model
improves the basic one due to the high frequency of zeros. On the other hand, we also tried
to fit the two multivariate Poisson distributions provided in Bermúdez and Karlis (2011);
however, we were unable to derive the maximum likelihood estimates of this model for
this dataset.

Table 2. Description of factors and explanatory variables considered.

Variable Description

lic age the driving license age, in months;

veh age takes the value 1, if the age of the vehicle is less than or equal to five years,
0 otherwise;

gender takes the value 1 if male, 0 if female;
status takes the value 0 if alone, 1 if other;
private 1 takes the value 1 if the usage of the vehicle is private, 0 otherwise;
private 2 takes the value 1 if the usage of the vehicle is private + trip to office, 0 otherwise;
professional takes the value 1 if the usage of the vehicle is professional, 0 otherwise;
driver age the driver age, in years;
has km limit takes the value 1 if there is a km limit, 0 otherwise;
risk area Unknown risk area between 1 and 13, possibly ordered;

bonus takes the value 1 if the numerical value for bonus/malus is less than 100,
0 otherwise;

malus takes the value 1 if the numerical value for bonus/malus is larger than 100,
0 otherwise.
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Table 3. Parameter estimates and p-values for the basic model (second and third columns) and
zero-inflated model (fourth and and fifth columns). Some measures of model selection are also given
for comparison purposes.

Parameter
MNB Basic Model Zero-Inflated Model

Estimate p-Value Estimate p-Value Estimate p-Value

α̂ 1.043 <0.001
Θ̂1 0.329 <0.001 1.060 <0.001 1.197 <0.001
Θ̂2 0.335 <0.001 0.254 <0.001 0.254 <0.001
Θ̂3 0.092 <0.001 0.274 <0.001 0.274 <0.001
Θ̂4 0.085 <0.001 0.057 <0.001 0.057 <0.001
Θ̂5 0.019 <0.001 0.367 <0.001 0.367 <0.001
Θ̂6 0.123 <0.001 0.047 <0.001 0.047 <0.001

Inflation parameter, Φ̂ 0.886 <0.001
`max −118,828.250 −106,895.00 −106,692.00
AIC 237,671.00 213,803.00 213,398.00
BIC 237,729.00 213,853.00 213,457.00

CAIC 237,736.00 213,859.00 213,464.00

Table 4 below exhibits the empirical Pearson’s correlation between the different fre-
quencies associated with each response variable for the total number of claims, and each
one of the different coverages (first row), the correlation derived computed via the basic
model (second row) and zero-inflated model (third row), and that computed by using (7)
and (10), respectively, are also shown. It is observable that there exists a weak positive corre-
lation between Claims and the rest of the dependent variables for each one of the coverages,
and the empirical values are near the theoretical values. These figures were calculated
before incorporating the effect of the explanatory variables for the different coverages.
We also calculated the correlation coefficient between the rest of the response variables.
Again, there is a weak positive correlation, ranging from 0.0480 between Responsible and
Nonresponsible and 0.0035 between Parking and Windscreen.

Table 4. Correlation between empirical frequencies associated with the total claims number and each
response variables (first row) and the correlation derived by means of the basic model (second row)
and zero-inflated model (third row).

Nonresponsible Responsible Parking Windscreen Fire and Theft

Claims
0.5150 0.5606 0.2606 0.6287 0.2378
0.4499 0.4637 0.2334 0.5183 0.2123
0.4733 0.4874 0.2479 0.5428 0.2258

Empirical marginal distributions and fitted marginals under the basic model (Fit 1)
and zero-inflated model (Fit 2) are illustrated below in Table 5 using the estimates computed
in the previous section. Note that the total number of observations equals 32,100.

We fit the multivariate regression model in (12) and the zero-inflated regression model
described in the second section. Parameter estimates and their corresponding p-values are
displayed in Tables 6 and 7, respectively. It is observable that for the former regression
model, the explanatory variables private 1 and risk area are statistically significant at
the 5% significance level. This is also verified by the intercept term of the model, i.e.,
constant. Furthermore, some other covariates (private 2, profession and has km limit)
are significant at the same level for all the responses except for Fire and Theft; similarly,
driver age is not significant for the dependent variable Responsible. On the other hand,
with respect to the zero-inflated regression model, the explanatory variables risk area
and constant are statistically significant at the same significance level for all responses;
moreover, the covariate private 1 is not significant for the response variable Parking and
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has km limit for Fire and Theft. In terms of the four measures of model selection considered,
the zero-inflated regression model is preferable over the model (12).

Table 5. Empirical and fitted homogeneous marginal distributions using the basic model (Fit 1) and zero-inflated model (Fit 2).

Count
Claims Non Responsible Responsible

Obs. Fit 1 Fit 2 Obs. Fit 1 Fit 2 Obs. Fit 1 Fit 2

0 12,257 11,121.20 12,257.00 24,694 25,310.10 25,407.1 24,343 24,898.80 25,008.50
1 10,803 11,788.50 10,279.50 6311 5283.81 5125.42 6426 5498.24 5322.11
2 5571 6247.91 6153.96 970 1222.22 1254.89 1124 1360.30 1392.85
3 2296 2207.59 2456.09 110 235.15 255.965 183 279.81 303.63
4 794 585.01 735.183 15 40.95 47.1004 19 52.13 59.75
5 274 124.02 176.05 0 6.63 8.02949 3 9.03 10.90
6 87 21.91 35.13 0 1.01 1.28651 2 1.47 1.87
≥7 18 3.81 7.03 0 0.16 0.22 0 0.26 0.35

Count
Parking Windscreen Fire and Theft

Obs. Fit 1 Fit 2 Obs. Fit 1 Fit 2 Obs. Fit 1 Fit 2

0 30,287 30,251.40 30,257.80 22,306 23,173.20 23,345.9 30,595 30,567.70 30,572.00
1 1686 1743.15 1730.42 7607 6249.06 5992.86 1407 1460.07 1451.36
2 110 100.41 106.135 1772 1990.30 2013.38 93 69.36 73.43
3 15 4.82 5.42 327 525.77 562.70 5 2.74 3.093
4 1 0.21 0.25 72 126.06 142.33 0 0.09 0.11
5 1 0.01 0.01 13 28.19 33.46 0 0.00 0.00
6 0 0.00 0.00 3 5.95 7.41 0 0.00 0.00
≥7 0 0.00 0.00 0 1.47 1.94 0 0.00 0.00

Now, we are interested in comparing the six mixed random variables’ aggregate claims
amount for Claims (Y1) and the different coverages, i.e., Nonresponsible, Responsible,
Parking, Windscreen, and Fire and Theft, (Y2, . . . , Y6). In order to estimate the scale
parameter σ of the exponential distribution, we considered the variable ClaimAmount
available in the dataset freMPL10. The estimate of this parameter is σ̂ = 1.96265. The
pdf/pmf associated with the mixed random variables is displayed in Figure 1. As expected,
the density of the random variable Claims fades away to zero slower than the random
variables of the different coverages. Among the different coverages, the Responsible
variable is the one that approaches zero faster compared to the other coverages.

Table 6. Parameter estimates and p-values for the regression model with the density function (12). Some measures of the
model selection are also exhibited.

Parameter
Claims Non Responsible Responsible Parking Windscreen Fire and Theft

Estimate p-Value Estimate p-Value Estimate p-Value Estimate p-Value Estimate p-Value Estimate p-Value

lic age −0.206 0.000 −0.238 0.000 −0.211 0.000 −0.127 0.279 0.008 0.874 −0.565 0.000
veh age 0.021 0.084 0.047 0.093 −0.003 0.907 0.279 0.000 0.004 0.843 −0.034 0.558
gender 0.073 0.000 0.006 0.796 0.015 0.538 −0.095 0.050 0.196 0.000 0.024 0.643
status −0.002 0.857 −0.074 0.035 0.022 0.511 0.000 0.995 0.079 0.010 −0.299 0.000

private 1 −0.592 0.000 −0.615 0.000 −0.579 0.000 −0.493 0.001 −0.584 0.000 −0.422 0.036
private 2 −0.430 0.000 −0.500 0.000 −0.342 0.000 −0.517 0.000 −0.431 0.000 −0.142 0.461

professional −0.380 0.000 −0.397 0.000 −0.394 0.000 −0.556 0.000 −0.322 0.000 −0.204 0.301
driver age 0.346 0.000 1.103 0.000 0.128 0.263 0.806 0.000 −0.417 0.000 0.635 0.006

has km limit −0.378 0.000 −0.379 0.000 −0.289 0.000 −0.317 0.000 −0.522 0.000 −0.110 0.260
risk area 0.018 0.000 0.015 0.001 0.058 0.000 0.083 0.000 −0.036 0.000 0.125 0.000

bonus −0.761 0.000 −1.827 0.000 −0.204 0.038 −0.150 0.535 −0.263 0.002 −0.245 0.209
malus 0.056 0.230 0.102 0.190 0.067 0.571 0.078 0.788 −0.183 0.096 −0.445 0.086

constant 1.752 0.000 −1.205 0.000 0.523 0.017 −4.317 0.000 2.125 0.000 −1.477 0.001
`max −117,736.00
AIC 23,5628.00
BIC 23,6281.00

CAIC 23,6359.00
Observations 32,100
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Table 7. Parameter estimates and p-values for the zero-inflated regression model. Some measures of the model selection are
also exhibited.

Parameter
Claims Non Responsible Responsible Parking Windscreen Fire and Theft

Estimate p-Value Estimate p-Value Estimate p-Value Estimate p-Value Estimate p-Value Estimate p-Value

lic age 0.050 0.091 0.316 0.000 −0.036 0.527 −0.049 0.663 0.332 0.000 −0.516 0.000
veh age −0.011 0.422 −0.045 0.109 0.007 0.786 0.168 0.003 −0.029 0.233 −0.105 0.073
gender 0.082 0.000 −0.014 0.583 0.039 0.119 −0.071 0.142 0.202 0.000 0.024 0.647
status −0.059 0.000 −0.177 0.000 0.035 0.307 −0.006 0.929 0.019 0.534 −0.368 0.000

private 1 −0.175 0.000 −0.299 0.000 −0.180 0.031 0.048 0.762 −0.170 0.024 −0.434 0.012
private 2 −0.099 0.021 −0.329 0.000 −0.086 0.279 −0.054 0.730 −0.106 0.135 −0.256 0.116

professional −0.048 0.275 −0.218 0.006 −0.117 0.152 −0.061 0.701 −0.012 0.861 −0.265 0.115
driver age −0.211 0.000 −0.035 0.771 −0.439 0.000 0.580 0.009 −1.111 0.000 0.374 0.099

has km limit −0.303 0.000 −0.291 0.000 −0.159 0.001 −0.291 0.001 −0.426 0.000 −0.081 0.422
risk area 0.018 0.000 0.014 0.003 0.056 0.000 0.077 0.000 −0.035 0.000 0.126 0.000

bonus −0.436 0.000 −1.510 0.000 0.013 0.882 −0.502 0.004 0.135 0.134 0.740 0.004
malus 0.157 0.001 0.311 0.000 −0.036 0.757 −0.743 0.003 −0.021 0.849 0.056 0.859

constant 2.067 0.000 −0.099 0.650 1.403 0.000 −3.671 0.000 2.513 0.000 −1.327 0.006
Inflation

parameter, Φ 0.841 0.000

`max −116,856.00
AIC 233,870.00
BIC 234,532.00

CAIC 234,611.00
Observations 32,100

Total claims
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Figure 1. pdf/pmf associated with the mixed random variables of the aggregate claims amount for
Claims (Y1) and the different coverages (Y2, . . . , Y6) obtained from the estimated value of the mean
of the claims size, σ̂ = 1.96265.

5. Final Comments and Future Research

It is common today, mainly due to the existing competition, that insurers offer coverage
of different claims within the same product not only to gain in competitiveness, but also
to benefit from risk diversification and volatility. Up to date, most insurance companies
differentiate, apart from the total number of claims, individualized claims for different
coverages, such as windscreen claims and thefts and fire claims, among others. Therefore,
it seems reasonable to assume that every policyholder generates a sequence of claims
numbers for each coverage; one of them is the total claims number, which includes the sum
of the claims in all the coverages. In this work, we introduced a new methodology based
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on a multivariate discrete distribution via conditional specification to explain the claims
frequency in different coverages and the total claims number. This procedure allows us to
analyze the dependence structure of a finite number of coverages in motor vehicle insurance
and also to include heterogeneity via explanatory variables. Closed-form expressions were
given for model parameter estimates, and a priori premiums were provided when different
premiums principles were used. Numerical applications revealed that specific covariates
are statistically significant in some coverages, yet they are not so for others. In this way,
it allows us to discern how the different explanatory variables affect each coverage when
calculating the corresponding premiums.

The approach introduced in this work avoids the use of copula-based modeling.
The latter methodology has been very useful, but at the same time, very criticized in the
statistical literature when modeling multivariate data. Although there exists a wide catalog
of copulas, it has been mentioned that a weakness of the copula approach is in choosing
an appropriate copula structure for the model at hand (Balakrishnan and Lai 2009, chp.
1, p. 59). Furthermore, any copula includes a parameter that controls the dependence
structure, and this parameter is sometimes difficult to estimate since it must fall into the
admissible support. As explored in the second section of this work, the model depends
extremely on the parameter Θ1, and for that reason, a more flexible dependence structure
based on multivariate subordination is an issue that deserves to be studied. In this regard,
using this approach would be interesting to compare this family of distributions with the
multivariate regression model based on the multivariate Sarmanov distribution, similar
to the models derived in Bolancé and Vernic (2019). This model could be used to explain
situations where the policyholder wishes to extend the third-party motor vehicle insurance
to account for different coverages that adapt to their personal needs. Alternatively, it could
be feasible to implement a multivariate version with elliptical copula-based models to
accommodate a wide range of dependence. It is essential to mention that the properties
of the copula are not the same as for continuous random variables since the probability
of ties in the data is positive. Thus, the estimation cannot be directly carried out, and a
continuous extension of integer-valued random variables is needed by using the approach
proposed by Denuit and Lamber (2005).

The purpose of the work is not to compare other models, as models of this nature
are not known to our knowledge in the actuarial literature. However, the cases with two
coverages were discussed via the bivariate Poisson case (see Bermúdez and Karlis 2017)
and the case with all the coverages using the multivariate negative binomial distribution
in (Johnson et al. 1996, chp. 36, p. 94). Obviously, the fit obtained with the proposed mod-
eling does not seem entirely reasonable (as judged by the chi-squared test statistics, which
was not shown in the paper). Then, the model could be improved by using a similar model,
but assuming that the total number of claims and all the coverages follow a negative
binomial distribution instead. It would be also possible to zero-inflate all the different
coverages. This issue could be the subject of future research.
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Appendix A

Table A1 displays the empirical joint claims frequency for all types of coverage and the total number of claims.

Table A1. Empirical joint claims frequency corresponding to the response variables Claims (N1), Nonresponsible (N2), Responsible (N3), Parking (N4), Windscreen (N5), and Fire and Theft (N6).

N1 N2 N3 N4 N5 N6 Count N1 N2 N3 N4 N5 N6 Count N1 N2 N3 N4 N5 N6 Count N1 N2 N3 N4 N5 N6 Count N1 N2 N3 N4 N5 N6 Count

0 0 0 0 0 0 12,257 3 2 0 0 1 0 147 4 2 1 1 0 0 13 5 2 2 1 0 0 4 6 3 2 0 1 0 2
1 0 0 0 0 1 447 3 2 0 1 0 0 24 4 2 2 0 0 0 19 5 2 3 0 0 0 7 6 4 1 0 1 0 2
1 0 0 0 1 0 3947 3 2 1 0 0 0 137 4 3 0 0 1 0 11 5 3 0 0 2 0 3 7 0 5 0 2 0 1
1 0 0 1 0 0 590 3 3 0 0 0 0 47 4 3 0 1 0 0 2 5 3 0 1 1 0 2 7 0 6 0 1 0 2
1 0 1 0 0 0 2924 4 0 0 0 2 2 4 4 3 1 0 0 0 12 5 3 1 0 0 1 4 7 1 0 1 5 0 1
1 1 0 0 0 0 2895 4 0 0 0 3 1 4 4 4 0 0 0 0 7 5 3 1 0 1 0 4 7 1 1 0 5 0 2
2 0 0 0 0 2 28 4 0 0 0 4 0 36 5 0 0 0 4 1 4 5 3 1 1 0 0 4 7 1 4 0 2 0 1
2 0 0 0 1 1 193 4 0 0 1 3 0 7 5 0 0 0 5 0 7 5 3 2 0 0 0 3 7 2 0 2 3 0 1
2 0 0 0 2 0 817 4 0 0 3 1 0 2 5 0 0 1 2 2 2 5 4 0 0 1 0 2 7 3 2 0 2 0 2
2 0 0 1 0 1 34 4 0 1 0 1 2 3 5 0 0 1 3 1 1 5 4 1 0 0 0 4 7 3 2 2 0 0 1
2 0 0 1 1 0 238 4 0 1 0 2 1 15 5 0 0 2 1 2 2 6 0 0 0 6 0 1 8 0 2 5 1 0 1
2 0 0 2 0 0 33 4 0 1 0 3 0 60 5 0 0 2 2 1 1 6 0 1 0 4 1 2 8 1 4 0 3 0 2
2 0 1 0 0 1 150 4 0 1 1 0 2 1 5 0 0 3 2 0 4 6 0 1 0 5 0 1 8 3 3 0 2 0 2
2 0 1 0 1 0 1038 4 0 1 1 1 1 3 5 0 1 0 3 1 1 6 0 1 1 4 0 2 10 1 3 0 6 0 2
2 0 1 1 0 0 180 4 0 1 1 2 0 20 5 0 1 0 4 0 6 6 0 2 0 3 1 1 2 0 2 0 0 0 436
4 0 1 2 0 1 3 5 0 1 1 3 0 4 6 0 2 0 4 0 2 2 1 0 0 0 1 138 4 0 1 2 1 0 9
5 0 1 2 0 2 2 6 0 2 1 2 1 2 2 1 0 0 1 0 954 4 0 2 0 0 2 2 5 0 1 4 0 0 1
6 0 2 1 3 0 1 2 1 0 1 0 0 151 4 0 2 0 1 1 13 5 0 2 0 0 3 1 6 0 3 0 3 0 2
2 1 1 0 0 0 783 4 0 2 0 2 0 48 5 0 2 0 1 2 1 6 0 3 1 2 0 3 2 2 0 0 0 0 398
4 0 2 1 0 1 1 5 0 2 0 2 1 4 6 0 4 0 0 2 1 3 0 0 0 0 3 2 4 0 2 1 1 0 10
5 0 2 0 3 0 8 6 0 4 0 2 0 2 3 0 0 0 1 2 19 4 0 2 2 0 0 4 5 0 2 1 2 0 1
6 0 4 2 0 0 1 3 0 0 0 2 1 55 4 0 3 0 0 1 3 5 0 2 3 0 0 3 6 0 5 0 1 0 2
3 0 0 0 3 0 136 4 0 3 0 1 0 17 5 0 3 0 1 1 12 6 1 0 0 5 0 2 3 0 0 1 0 2 2
4 0 3 1 0 0 2 5 0 3 0 2 0 5 6 1 1 0 3 1 2 3 0 0 1 1 1 11 4 0 4 0 0 0 4
5 0 3 1 1 0 10 6 1 1 0 4 0 6 3 0 0 1 2 0 45 4 1 0 0 0 3 2 5 0 4 0 1 0 2
6 1 1 1 3 0 1 3 0 0 2 0 1 1 4 1 0 0 1 2 1 5 1 0 0 3 1 4 6 1 2 0 1 2 2
3 0 0 2 1 0 7 4 1 0 0 2 1 20 5 1 0 0 4 0 13 6 1 2 0 3 0 8 3 0 0 3 0 0 4
4 1 0 0 3 0 50 5 1 0 1 3 0 2 6 1 2 1 2 0 1 3 0 1 0 0 2 8 4 1 0 1 1 1 2
5 1 1 0 1 2 1 6 1 2 2 1 0 1 3 0 1 0 1 1 45 4 1 0 1 2 0 16 5 1 1 0 2 1 7
6 1 2 3 0 0 2 3 0 1 0 2 0 268 4 1 0 2 0 1 1 5 1 1 0 3 0 23 6 1 3 0 2 0 4
3 0 1 1 0 1 10 4 1 0 2 1 0 7 5 1 1 1 1 1 1 6 1 4 1 0 0 2 3 0 1 1 1 0 49
4 1 1 0 1 1 22 5 1 1 1 2 0 3 6 2 0 0 3 1 1 3 0 1 2 0 0 12 4 1 1 0 2 0 78
5 1 2 0 0 2 2 6 2 0 0 4 0 1 3 0 2 0 0 1 23 4 1 1 1 0 1 5 5 1 2 0 1 1 2
6 2 0 2 1 1 1 3 0 2 0 1 0 211 4 1 1 1 1 0 12 5 1 2 0 2 0 20 6 2 1 0 3 0 1
3 0 2 1 0 0 20 4 1 1 2 0 0 10 5 1 2 1 1 0 2 6 2 1 1 2 0 1 3 0 3 0 0 0 74
4 1 2 0 0 1 7 5 1 3 0 0 1 2 6 2 2 0 1 1 1 3 1 0 0 0 2 7 4 1 2 0 1 0 62
5 1 3 0 1 0 7 6 2 2 0 2 0 4 3 1 0 0 1 1 52 4 1 2 1 0 0 16 5 1 3 1 0 0 7
6 2 2 1 1 0 2 3 1 0 0 2 0 257 4 1 3 0 0 0 20 5 1 4 0 0 0 2 6 2 3 0 1 0 3
3 1 0 1 0 1 9 4 2 0 0 0 2 5 5 2 0 0 2 1 1 6 2 3 1 0 0 1 3 1 0 1 1 0 59
4 2 0 0 1 1 5 5 2 0 0 3 0 6 6 2 4 0 0 0 2 3 1 0 2 0 0 9 4 2 0 0 2 0 35
5 2 1 0 1 1 9 6 3 0 0 2 1 3 3 1 1 0 0 1 40 4 2 0 1 0 1 1 5 2 1 0 2 0 13
6 3 0 0 3 0 1 3 1 1 0 1 0 284 4 2 0 1 1 0 25 5 2 1 1 1 0 3 6 3 0 1 2 0 2
3 1 1 1 0 0 61 4 2 0 2 0 0 2 5 2 1 2 0 0 2 6 3 1 0 2 0 2 3 1 2 0 0 0 144
4 2 1 0 0 1 8 5 2 2 0 0 1 2 6 3 1 1 1 0 2 3 2 0 0 0 1 17 4 2 1 0 1 0 47
5 2 2 0 1 0 21 6 3 2 0 0 1 1
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Note
1 The Stirling number of the second kind can be computed in Mathematica with the command StirlingS2[n, τ] (see,

for instance, Ruskeepaa 2009; Olver et al. 2010).
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