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Abstract: In insurance rate-making, the use of statistical machine learning techniques such as artificial
neural networks (ANN) is an emerging approach, and many insurance companies have been using
them for pricing. However, due to the complexity of model specification and its implementation,
model explainability may be essential to meet insurance pricing transparency for rate regulation
purposes. This requirement may imply the need for estimating or evaluating the variable impor-
tance when complicated models are used. Furthermore, from both rate-making and rate-regulation
perspectives, it is critical to investigate the impact of major risk factors on the response variables,
such as claim frequency or claim severity. In this work, we consider the modelling problems of
how claim counts, claim amounts and average loss per claim are related to major risk factors. ANN
models are applied to meet this goal, and variable importance is measured to improve the model’s
explainability due to the models’ complex nature. The results obtained from different variable
importance measurements are compared, and dominant risk factors are identified. The contribution
of this work is in making advanced mathematical models possible for applications in auto insurance
rate regulation. This study focuses on analyzing major risks only, but the proposed method can be
applied to more general insurance pricing problems when additional risk factors are being considered.
In addition, the proposed methodology is useful for other business applications where statistical
machine learning techniques are used.

Keywords: rate-making; machine learning; insurance rate filing; artificial neural network; explainable
data analytics; variable importance

1. Introduction

Predictive modelling techniques have been widely used in auto insurance pricing (Xie
and Lawniczak 2018; Xie 2019; Ayuso et al. 2019; Parodi 2012; Yunos et al. 2016; Yan et al. 2009)
and other fields of study such as bankruptcy prevention and prediction (Kliestik et al. 2018;
Kovacova et al. 2019). In auto insurance, the main reason for the prevalence of predictive
modelling is their superior power in accurately pricing insurance contracts and the statistical
soundness of the approaches used, mostly when auto insurance rates are regulated (Verbelen
et al. 2018). If insurance rates are not regulated, then the merit of predictive modelling is
still apparent as its use in pricing helps to avoid the adverse selection of insurance policies
(Dionne et al. 1999). Recently, the use of machine learning techniques such as artificial neural
networks (ANN) has been an emerging approach for insurance pricing. They can often
achieve a high level of model prediction accuracy (Fialova and Folvarcna 2020; Gao and
Wüthrich 2018; lseri and Karlık 2009; Sun et al. 2017; Wuthrich 2019; Yeo et al. 2001). When
ANNs are used for pricing, the high prediction accuracy of loss costs is mainly due to its
capability to model the non-linear relationships between the independent variables and the
response variable. For instance, in Yunos et al. (2016), the backpropagation neural network
(BPNN) model was used as a tool to model both claim frequency and claim severity. This
study illustrates the capability of BPNN in explaining the non-linear relationships of loss data.
Furthermore, the predictive modelling techniques of machine learning have been successfully
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used for detecting insurance claim fraud (Bhowmik 2011). Due to models’ natural complexity,
ANN and other sophisticated models have not been heavily used by insurance companies
and regulators. From the rate regulation perspective, the major downside of using ANN is its
low explainability due to the iterative nature of the neural network algorithms and the non-
closed form, non-linear relationships between input variables and the output response. Thus,
insurance companies often have difficulty explaining the model output, so the justification of
methodologies’ appropriateness becomes challenging. It is often difficult to derive the risk
relativities for risk factors when using ANNs due to non-linearity among the risk factors and
the complex nature of ANNs. It is also hard to obtain consistent estimates of risk factors’
impact on the model response, which different network architectures may cause. Therefore,
an ANN model is often treated as a black box, particularly for the multiple hidden-layer
models. It provides minimal explanatory insights into the input variables’ relative influence
on the output variable in the model prediction process (Olden and Jackson 2002).

Explainable artificial intelligence (AI) or explainable machine learning is now a new
focus and an essential aspect when using machine learning techniques or algorithms
for real-world applications (Adadi and Berrada 2018; Dosilovic et al. 2018; Samek et al.
2017; Wuthrich 2019). This concept has also played an essential role in auto insurance
rate regulation. The interest in explainable AI has dramatically increased since 2016, and
various review papers have been recently published. In Arrieta et al. (2020), the existing
literature and contributions already made in the field of explainable AI have been surveyed.
A series of challenges faced by explainable AI, including the model explainability, was
also addressed. In Beaudouin et al. (2020), context-specific explainable AI was discussed
using a multidisciplinary approach. However, the concept of explainability could be
dated back to the 1970s when applied expert systems and rule-based models became
popular (Adadi and Berrada 2018). Explainable data analytics, a sub-field of explainable
AI, has recently attracted considerable attention in the machine learning community. For
instance, the 2019 IEEE Symposium on Explainable Data Analytics (EDA) in Computational
Intelligence is the first conference focusing on explainable data analytics. EDA aims to
study suitable analytical tools, which can be used to produce information from data that
facilitates decision-making or gives meaningful explanations on the impact of the input
variables on the outputs in modelling. The analytical techniques in EDA include, but are
not limited to, statistical measures, feature extraction, dimension reduction, and sparse
methods (Lu et al. 2005; Maitra and Yan 2008; Ribeiro et al. 2006). In business intelligence
for risk management, the explainability of models becomes a critical aspect as it leads to a
better understanding of how the decisions are being made. The better the understanding of
the models used, the more confidence and the better control of the risk, in particular for auto
insurance rate-making (Hsiao et al. 1990; Kim and Canny 2018; Farbmacher et al. 2019).
This is why explainable machine learning is attracting dramatic attention when machine
learning techniques are used for real-world applications. The main effort to research
explainable AI is to better understand the algorithms used, mathematically, statistically, or
computationally, as they can be extremely complicated. This may call for methods that are
able to balance the model complexity and the desired explainability of the model used.

From both insurance pricing and rate regulation perspectives, it is essential to in-
vestigate the impact of risk factors on claim frequency or claim severity (Gilenko and
Mironova 2017). When a complicated mathematical model is used for pricing or capturing
the loss pattern, it is critical to study the impact or conduct a sensitivity analysis of risk
factors in the model (Asmussen and Rubinstein 1999). In rate regulation, the requirement
of model explainability may imply the need to estimate or evaluate the importance of
risk factors (Frees 1998). Different machine learning techniques and applications require
different types of explainability. Algorithms used by governments are subject to higher
explainability requirements (Beaudouin et al. 2020). In the machine learning community,
many techniques used for capturing variable importance have been investigated. Inter-
pretable models, including linear regression, logistic regression, generalized linear models
(GLM), generalized additive models (GAM), and decision tree, have been well studied
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and used for evaluating variable importance due to the fact that model coefficients can be
easily used for the study of the effect size of the variables. Although these models are more
interpretable, they are limited in capturing more complicated non-linear relationships,
which usually lack functionality. The second type of approach to study the interpretability
of data is the model-agnostic method, and it has been successfully used in actuarial science
(Henckaerts et al. 2020). Partial dependence plot (PDP) (Friedman 2001), permutation
feature importance (Fisher et al. 2019), and shapely values (Sundararajan and Najmi 2019)
are examples of the model-agnostic methods. The most significant benefit of using the
agnostic approach is the flexibility of using machine learning methods, including the black
box models, which are crucial for more complex real-world problems. A PDP plot shows
the marginal effect of the variable on the predicted outcome of selected machine learning
models, while permutation feature importance measures the increase of model error af-
ter permuting the feature variables. The model-agnostic methods provide friendly and
convenient graphical tools for machine learning approaches.

In this work, we aim at improving the explainability of input factors in ANN for rate
regulation purposes. We try to better understand the impact of various risk factors on
statistical data reporting, which is of high-level statistical plan data (Furst et al. 2019). The
statistical plan information is a crucial source for insurance regulation, and it summarizes
the loss information at the industry level. However, the statistical plan data’s direct
use without further processing by the mathematical model is quite limited due to its
descriptive nature. Furthermore, it is difficult to know what contributes more or less to
the insurance loss if only focusing on the descriptive measures in the statistical plan data
reporting. Thus, it is difficult to see the driving force of insurance loss and decide the
benchmark measures associated with risk factors by looking at these statistical data reports.
Therefore, the benchmarks used for rate regulation are obtained by applying rate-making
methodologies to these statistical plan data, typically through statistical modelling, such
as GLMs, GAMs or ANNs. Unlike insurance pricing, which mainly targets the study of
risk factors that significantly impact the calculation of insurance prices, we focus on major
risk factors for insurance rate regulation purposes. In the current research, ANNs and their
importance measures of predictors have not yet been investigated in the field of insurance
rate-makings from the regulation perspective. This objective makes our contribution to the
current research novel and unique. In this work, to better understand the constructed ANN
models and their model outputs, we study the importance of major risk factors affecting
the claim frequency and the claim severity. We consider accident year (AY), reporting
year (RY), territory, coverage, and the Size-of-Loss (in terms of log-scale of the upper limit
of Size-of-Loss intervals) as major risk factors. Here, the Size-of-Loss is the loss bracket,
rather than the insurance loss amount caused by drivers. The level associated with this
factor can be predefined based on the historical pattern of the loss data, mainly on range of
loss amounts. Considering both the accident year and reporting year as risk factors, data
from different accident years or other reporting years may significantly affect the analysis
results. The risk affecting insurance pricing could be due to the information associated
with different accident years or other reporting years. From year to year, the general level
of claims may fluctuate heavily (Dugas et al. 2003). The data variability may also be due
to the case reserve update for different accident years or various data reporting years.
For territory, coverage, and Size-of-Loss, they are common risk factors that appear in rate
regulation and are commonly used for auto insurance pricing (McClenahan 2014).

This work emphasizes measuring and interpreting the importance of risk factors
using ANN. We aim to estimate and evaluate the importance of risk factors, although the
modelling techniques may deal with the problem at each risk factor’s level. The significance
of this work is to propose a novel approach for analyzing major risk factors, in terms of
their impact to claim counts, claim amounts, and average loss per claim, for rate regulation
purposes. To the best of our knowledge, this study is the first attempt to model claim
counts and claim amounts using neural network models and Size-of-Loss data in the
actuarial domain. This paper is organized as follows. In Section 3, the methods, including
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artificial neural networks and variable importance measures, are discussed. In Section 4,
the obtained results using industry size of loss data are presented and analysed. Finally,
we conclude our findings and provide further remarks in Section 6.

2. Data

In this work, we use datasets from the Insurance Bureau of Canada (IBC), which is a
Canadian organization responsible for insurance data collections and their statistical data
reporting in the area of property and casualty insurance (Xie and Chua-Chow 2020). During
the data collection process, insurance companies report the loss information, including the
number of claims, number of exposures, loss amounts, as well as other key information
such as territories of loss, coverages, driving records associated with loss, and accident
years. These statistical data are reported regularly (i.e., weekly, biweekly, or monthly).
At the end of each half-year, the total claim amounts and claim counts reported by all
insurance companies are aggregated by territories, coverages, accident years, etc. The
statistical data reporting is then used for insurance rate regulation to ensure the premiums
charged by insurance companies are fair and exact. The dataset used in this work consists
of summarized claim counts, claim amount, and average loss cost by different sizes of
loss, which are represented by a set of non-overlapping intervals. These summary of loss
information are aggregated by major coverages, i.e., Bodily Injuries (BI) and Accident
Benefits (AB). The data were also summarized by different accident years, by different
report years and by different territories, i.e., Urban (U) and Rural (R).

To carry out the study, we organize data by coverages (AB and BI) and by territories (U
and R). We consider the data from different reporting years and accident years as repeated
observations. There are two reporting years, 2013 and 2014, respectively. There is a set of
rolling most recent five years of data corresponding to five accident years for each reporting
year. Therefore, for this study, we have in total ten years of observation. In addition, since
we have both Accident Benefits and Bodily Injuries as the coverage type and Urban and
Rural as the territory, we consider the following four different combinations, Accident
Benefits and Urban (ABU), Accident Benefits and Rural (ABR), Bodily Injuries and Urban
(BIU), and Bodily Injuries and Rural (BIR). These data are then formed into a data matrix
with a 40× 24 dimension, where 40 is the total number of observations, and 24 is the
number of total intervals of the Size-of-Loss.

3. Methods

In this work, we focus on improving the explainability of neural network models. We
first identify the suitable model by balancing the model errors and network architecture
complexities. This process is like the cross-validation procedure in the usual predictive
modelling. Due to the non-linearity of neural networks, the model error does not need
to decrease when increasing the network architecture. The model selection is made by
searching for a suitable scale of network architecture that achieves the minimum model
error within a set of small-scale neural networks and cross-validated by the root mean
square error (RMSE). In this section, we mainly discuss how artificial neural networks
work as a regression modelling problem. To give a more understandable explanation, we
focus on the discussion of low scale neural networks. We then discuss how to measure the
importance of the variables in ANN models.

3.1. Artificial Neural Networks

Let us first discuss the case of an Artificial Neural Network (ANN) with one hidden
layer. That is, the network includes the input layer, one hidden layer, and the output layer.
Suppose in the ANN model that there are D inputs x1, x2 , . . . , xD, and M1 hidden units
z(1)1 , z(1)2 , . . . , z(1)M1

in the hidden layer. A unit zj within the hidden layer is defined as

z(1)j = h(a(1)j ) = h
( D

∑
i=1

w(1)
ji xi + w(1)

j0

)
, (1)
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where a(1)j is the activation that is composed of the linear combination of input variables

xi, their weights w(1)
ji , and the bias w(1)

j0 . The superscript (1) in the weights indicates that
components correspond to the first hidden layer. This allows us to extend the model for
multiple layers, instead of just one. The function h(·) is called the activation function,
which is usually non-linear and differentiable. In most cases, the activation function is
chosen to be sigmoidal (Bishop 2006). If the function h(·) is an identity, the hidden unit
becomes a linear combination of input variables. Within this case, if we further assume that
the weight values at the hidden value is a set of values resulting in a maximum variance of
z(1)j , then z(1)j is exactly the jth principal component of the inputs variable x1, x2 ,. . . , xD.

Given the hidden unit zj in the hidden layer, the resulting output unit activation a(2)j in the
output layer (which becomes the second hidden layer for the multiple hidden layer case) is
defined as

a(2)j =
M1

∑
i=1

w(2)
ji z(1)i + w(2)

j0 , for j = 1, . . . , M2, (2)

where w(2)
ji represents the weights and w(2)

j0 is the bias term. The superscript (2) in the
weights implies that the components correspond to the output layer or the second hidden
layer if the model has multiple hidden layers. The units z(2)1 , z(2)2 , . . . , z(2)M2

in the output
layer or the second hidden layer using the same activation function h(·) become

z(2)j = h(a(2)j ) = h
( M1

∑
i=1

w(2)
ji z(1)i + w(2)

j0

)
. (3)

Let us now consider a more general case with multiple hidden layers. Assume that
the total number of hidden layers is L, and there are Ml hidden units z(l)1 , z(l)2 , . . . , z(l)Ml

in
the lth hidden layer; we can write the l + 1 hidden layer units as follows:

z(l+1)
j = h(a(l+1)

j ) = h
( Ml

∑
i=1

w(l+1)
ji z(l)i + w(l+1)

j0

)
, (4)

for j = 1, . . . , Ml+1, and l = 1, . . . , L− 1. If we further assume that the total number of
observations is N, the final output of the ANN for the kth input vector of X becomes

yk =
ML

∑
i=1

w(L)
i z(L)

i + w(L)
0 + εk, where k = 1, . . . , N. (5)

3.2. Measuring and Evaluating Importance of Risk Factors in ANN

For Equation (5), by realizing that z(L)
i is a function of x1, x2, . . . , xD, we can think of a

new form of y in terms of x1, x2, . . . , xD as follows

y = f (x1, x2, . . . , xD). (6)

To further investigate the importance of the risk factors, we first consider the Taylor
series expansion of y at the first order, which is given as follows

∆y = f (x1 + ∆x1, x2 + ∆x2, . . . , xD + ∆xD) ≈
∂ f
∂x1

∆x1 +
∂ f
∂x2

∆x2 + . . .
∂ f

∂xD
∆xD. (7)

Here, ∂ f
∂xi

is referred to the sensitivity coefficient of xi and may be used to represent
the effect of risk factor xi when holding other variables constant. Since we do not have
the explicit functional form of f (x1, x2, . . . , xD) in ANN, deriving the sensitivity coefficient
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is impossible. A possible solution is the Lek’s profile method (Gevrey et al. 2003). The
Lek’s profile approach evaluates the effect of each input variable to the output variable by
holding the remaining explanatory variables constant.

In 1991, a method based on the weight values of ANN was proposed by Garson; hence,
it is referred to as Garson Algorithm (Garson 1991). This algorithm can be illustrated using
an ANN with three layers, namely the input layer, the hidden layer and the output layer.
Suppose that wij is the connection weight values between input variable i and the neuron j
at the hidden layer. vj is the connection weight value between the jth neuron at the hidden
layer and the final regression output. The importance of risk factor i based on the Garson
algorithm for the non-linear regression using ANN is defined as

G(i) =
∑M1

j=1 |wijvj|/ ∑D
i=1 |wij|

∑D
k=1{∑

M1
j=1 |wkjvj|/ ∑D

i=1 |wkj|}
. (8)

It is a doubly normalized, weighted average. This weighted average is the average
of connection weights between the hidden layer and the output layer, which is vj, using
the connections weight values between the input layer and hidden layer, normalized by
the total weight values, which is |wij|/ ∑D

i=1 |wij|. Their total sum further normalizes the
obtained weighted average to get the final importance measure of risk factors. This is to
force the variable importance measure to be between 0 and 1. However, the definition in (8)
is sensible within a given ANN model. It may not be ideal for comparison among ANN
models due to the different variable importance measures for different models. In this
work, we propose an approach by further re-scaling the G(i) to facilitate the comparisons
among different models, which is given as follows.

Gs(i) =
G(i)−min{∀ i}{G(i)}

max∀ i{G(i)} −min{∀ i}{G(i)} , (9)

so that Gs(i) ∈ [0, 1]. This implies that the Garson algorithm can only capture the mag-
nitude, but not the sign of variable importance. In addition, the Garson algorithm is
applicable for single hidden-layer networks only. This may be considered a drawback, but
the main benefit of using the Garson algorithm is the better explainability for a simple
network (i.e., single layer network). For the multiple hidden layers network, we must
consider another similar measure, called the Olden function (Olden et al. 2004), which is
given as follows

O(i) =
L−1

∑
l=0

Ml+1

∑
j=1

w(l)
ij w(l+1)

j . (10)

The function calculates variable importance as the product of the raw input-hidden
and hidden-output connection weights between each input and output neuron and sums
the product across all hidden neurons. This measure is then re-scaled to ensure the results
obtained from different ANN models are comparable. This re-scaling is given as follows.

Os(i) =
2(O(i)−min{∀ i}{O(i)})

max∀ i{O(i)} −min{∀ i}{O(i)} − 1, (11)

so that Os(i) ∈ [−1, 1]. This re-scaling reflects both the magnitude and the sign of variable
importance by the Olden function. Since the weight values can be positive or negative, and
the sum of the product across all hidden neurons may be cancelled out, the effect of input
factors can be reduced.

To avoid the effects of the network’s initial weight values on estimating variable im-
portance, we apply a re-sampling approach. By running the ANN model fitting repeatedly
(e.g., 100 times in this work), we obtain a set of weight values to estimate the mean variable
importance measure and its sampling error, respectively, for each risk factor. This repeated
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Monte Carlo experiment is applied to each ANN architecture that we consider. Still, we are
particularly interested in the results corresponding to the best ANN architecture among
all the models we considered, obtained from the evaluation of goodness-of-fit on different
ANN models.

For a practitioner, the Garson or Olden approaches’ choice seems to make a significant
difference in terms of the variable importance. Our study shows that the Garson function
achieves a consistent result for claim counts and claim amounts. The single-layer network
with multiple units performs almost the same as the multiple layer models, as their model
standard errors are close. Therefore, in regulatory review, when a single-layer network
architecture can capture the data, the Garson function should be considered. The main
benefit of using the Garson function is its evaluation of the variable importance of input
factors using the factor’s effect size, which is more comparable to the factor’s effect size in
GLM or GAM.

The average loss per claim count involves both claim frequency and severity; a
more complicated network architecture may be required. Therefore, the Olden function
becomes a better choice to quantify the variable importance. It is suitable for the situation
when multiple layer networks are needed. In terms of the accuracy measure of variable
importance using the Garson algorithm or the Olden function, since they are directly linked
to network architecture, they are not comparable.

4. Results

We use Size-of-Loss distributions, by different territories and different coverages, at the
industry level from a regulator in Canada to illustrate the proposed method’s application.
The sample data from the 2009 accident year in 2013 statistical data reporting are presented
in Table 1. This table shows Size-of-Loss distributions for different combinations of coverage
(AB or BI) and territory (Urban or Rural) for both claim counts and claim amounts. The
claim counts are the reported counts, and the claim amounts (in thousand) are the ultimate
losses. The claim counts and claim amounts are further used to derive the average loss per
claim count, which is computed by dividing the loss by the count associated with each
Size-of-Loss interval. Therefore, we have three different response variables: claim counts,
claim amounts, and the average loss per claim count. All observations from those three
response variables are transformed using the logarithmic function to improve the fitted
model’s variance stability. (Note that, in rate regulation, we deal with aggregate loss, in
which we do not have zero loss problems, unlike the case for individual loss.) For input
variables, there is accident year (AY), reporting year (RY), log-scale of the upper limit of
Size-of-Loss interval (i.e., log.UpperLimit), territory, and coverage. All input and output
variables’ observations are normalized before fitting to the ANN models with the logistic
activation function.

To know more about the Size-of-Loss data distributional behaviour, we present the
frequency distribution in Figure 1. The distributions in all types appear to be heavy-tailed,
with AB frequency distributions being very extreme. Also, the frequency distributions
for AB type seem to have more modes than the data distribution for BI. Within the same
coverages, the distributions behave similarly for both Urban and Rural. To see which
ANN is more suitable for our data, we first study the network architectures. We consider
various combinations of the number of hidden layers and the number of the hidden unit.
We consider the cases with one and two hidden layers only. The further increase in the
neural network complexity is not recommended due to the constraint of the model stability
requirement. Figure 2 displays the network architectures that use the claim counts as the
output variable, while Figure 3 presents the ones associated with claim amounts. For each
connection within the network, the obtained weight values are displayed. These weight
values are used to evaluate the variable importance, which will be discussed later. The
blue colour connections are referred to as the weight values of the networks’ bias term, and
they are similar to the intercept term in a linear regression model.
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Table 1. The Size-of-Loss distribution by claim counts and claim amounts of ABU, ABR, BIU, and BIR, respectively, for the
accident year 2009 of the 2013 reporting year data. The loss amounts are projected to be ultimate and in thousand.

Counts Loss (1000)
Lower Upper ABU ABR BIU BIR ABU ABR BIU BIR
CAD 1 CAD 1000 6887 2730 760 175 5963 1920 4532 1059

CAD 1001 CAD 2000 4674 1369 152 51 10,434 3068 1463 253
CAD 2001 CAD 3000 2913 790 123 33 10,762 2861 1591 298
CAD 3001 CAD 4000 2015 468 60 23 10,559 2398 719 172
CAD 4001 CAD 5000 1478 384 184 22 9797 2525 3015 223
CAD 5001 CAD 10,000 4656 1082 574 105 49,897 11,077 11,386 1918

CAD 10,001 CAD 15,000 2904 591 594 81 53,392 10,592 15,913 1894
CAD 15,001 CAD 20,000 2372 408 707 74 61,501 10,128 23,797 2452
CAD 20,001 CAD 25,000 2112 311 686 83 70,757 10,096 27,950 3246
CAD 25,001 CAD 30,000 2154 242 783 87 87,569 9477 38,807 3973
CAD 30,001 CAD 40,000 4038 441 1218 157 207,673 21,475 70,837 8945
CAD 40,001 CAD 50,000 3588 312 1076 158 235,205 19,755 77,793 11,592
CAD 50,001 CAD 75,000 6532 527 1922 287 572,207 45,740 184,719 27,673
CAD 75,001 CAD 100,000 3685 286 1179 236 452,033 34,217 155,658 31,077

CAD 100,001 CAD 150,000 3106 299 1171 253 532,499 52,289 215,933 46,238
CAD 150,001 CAD 200,000 1316 154 641 133 316,374 37,159 161,659 33,977
CAD 200,001 CAD 300,000 900 120 510 174 299,158 41,266 178,656 61,136
CAD 300,001 CAD 400,000 252 56 227 87 117,028 25,931 111,573 41,664
CAD 400,001 CAD 500,000 97 24 133 57 59,335 14,739 83,219 36,338
CAD 500,001 CAD 750,000 78 32 133 70 64,619 27,317 112,154 59,464
CAD 750,001 CAD 1,000,000 38 20 68 36 46,514 23,906 82,210 43,715

CAD 1,000,001 CAD 2,000,000 122 74 69 29 244,275 147,528 111,314 47,676
CAD 2,000,000 ∞ 55 29 5 4 171,899 88,723 14,872 11,515

As we can see from the (a) of Figures 2 and 3, the variables of coverage and log.
UpperLimit have considerably higher weight values than other input variables. This
simplest ANN model gives us some degree of model explainability in terms of the input
variables’ contribution through the weight values. However, this simplest model leads
to a higher sum of squared errors, which may not be acceptable in terms of model fitting
accuracy. When the model complexity is increased, it becomes difficult to observe the
variable importance by looking at the weight values. This is why we consider how to
improve the model explainability in this work. On the other hand, as shown by the sum
of squared errors for the models, the model has four hidden units in the first hidden
layer, and three hidden units in the second layer (denoted by ANN-c(4,3)) outperform
others. However, ANN-c(4,3) has the highest model complexity that leads to the poorest
explainability. According to our experiments, model fitting results are easily affected by
initial values, so model stability is low for a high complexity model. However, the model
with a lower network complexity, i.e., the network with a single hidden layer and four units
within the layer (denoted by ANN-c(4)) seems to be a better choice from both the sum of
squared error and network stability perspectives. After identifying the suitable models for
modelling claim counts and claim amounts, we then measure the variable importance using
the fitted model’s weight values. In this focus, we use the Garson algorithm and Olden
function to compute variable importance measures for the selected model (i.e., ANN-c(4)).
Figure 4 shows the results by the Garson algorithm, while Figure 5 presents the ones by
Olden function. These results are obtained by running the ANN-c(4) model fitting for the
given data independently, repeatedly, for 100 times, and the average measures of variable
importance are computed for each risk factor. This re-sampling approach aims to minimize
both the bias of the estimate and the uncertainty caused by different network architectures
and the networks’ initial values.
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Figure 1. The Size-of-Loss patterns of different accident years and different combinations of coverage and territory for the
2013 reporting year.
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Figure 2. The ANN models with different hidden layer and hidden units, for the input variables of reporting year, accident
year, log-scale upper limit of Size-of-Loss intervals, territory and coverage, respectively, and the output variable of claim
counts. The obtained model errors for each network architecture are cross-validated errors.
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Figure 3. The ANN models with different hidden layer and hidden units, for the input variables of reporting year, accident
year, log-scale upper limit of Size-of-Loss intervals, territory and coverage, respectively, and the output variable of claim
amount. The obtained model errors for each network architecture are cross-validated errors.
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Figure 4 shows that the results using the Garson algorithm for claim counts and claim
amounts as the response variable are reported. From Figure 4, we observe that Size-of-Loss
and coverage are more important than others in contributing to the explanation of the
variation of the response variable. This may suggest that, for the model we consider, i.e.,
ANN-c(4), these two risk factors are essential to both claim counts and claim amounts. The
result has coincided with the case of using the average loss per claim count, which will be
discussed later. Due to the Garson algorithm, only the magnitude of the weight values is
considered, but not the sign of the weight values. We are unable to see if the risk factors
contribute to the response variable positively or negatively through the weight values of
ANN. However, the obtained results for the models we consider are consistent among all
response variables, which essentially suggest that coverage and Size-of-Loss are the driving
forces for differentiating the patterns of claim counts and claim amounts. To compare
the results using different methods, Figure 5 shows the variable importance measures
produced by Olden function, which takes both the sign and the magnitude of weight
values into consideration. Interestingly, we observe that Size-of-Loss has a negative effect
on the claim counts, while the effect on claim amounts becomes positive. This makes sense
because we expect that with the increase of Size-of-Loss, the claims counts are decreased.
The positive impact on the claim amount may be due to the significant increasing losses.
Another important observation is that territory is the most critical variable that leads to
the positive effect on claim counts, while AY is the most dominant variable that leads to
the negative impact on claim amounts. Since we label the data from urban as one and the
data from rural as zero, the positive effect on claim counts implies that urban areas cause
significantly more claim counts than the rural area. For the claim amounts model, AY is the
most dominant variable and has a negative effect on claim amounts. This may indicate that
the decrease of projected loss amounts for more recent accident year. Since the impact from
RY on claim amount is also negative, part of the reduction in the projected claim amount
may be due to adjustment of case reserve in the new reporting year.

AY RY Territory Coverage log.UpperLimit
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(b) Claim Amounts

Figure 4. The variable importance measures by Garson algorithm for three layer ANN models with four hidden units. The
results are the mean values of importance measures by 100 runs of ANN model fitting.
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Figure 5. The variable importance measures by Olden function for three layer ANN models with four hidden units. The
results are the mean values of importance measures by 100 runs of ANN model fitting.

When the claim counts and claim amounts are used to calculate the average loss
per claim count, and it is then used as the response variable for the ANN models, the
variable importance results behave differently from either claim counts or claim amounts
models when the Olden function is used, but the most important variable remains the
same. However, this result is consistent with the claim counts and claim amounts models
if the Garson algorithm is used. This can be seen from Figure 6, which displays the Garson
algorithm and Olden function results, respectively. Moreover, in Figure 6, the Garson
algorithm shows that AY is the third most crucial variable, whereas, in the Olden function,
AY has the most considerable magnitude of any variable by far. Similarly, the Garson
algorithm shows that log.UpperLimit is important, but the Olden function shows a distant
second in terms of importance. We should note that the Garson function only works for a
single layer network, and the variable importance measure is based on the weight value
of this first layer network. However, the Oden function uses the weight values from all
hidden layers of the network. Because of this difference in measuring variable importance,
we do not expect similar results from these two methods. This is why we observe the
different results. Since the Oden function is applied to the multiple layers network and
the model performs better than a single layer network, we believe that the results are
considered more credible than the results of the Garson function.

In this work, we compare the Garson function results to the feature importance mea-
sures obtained using the random forest model to train a model, which is displayed in
Figure 7. We observe that these two approaches behave similarly in identifying the im-
portance of the input variables. Still, the results corresponding to the Garson function are
more distinguished. The Garson function suggests that log.UpperLimit variable is the most
influential, while the Territory variable is the most important feature by the feature impor-
tance method. Since Garson’s variable importance measures are more distinguishable, we
conclude that the Garson function results are more appealing than the feature importance
measures. We also present the partial dependence plots for both AY and log.UpperLimit as
an example, which is displayed in Figure 8. These partial dependence plots were obtained
using the random forest method to train a model for making predictions of claim amounts.
We observe that the predicted values of claim amounts are quite sensitive to these two
variables. Within our approaches, the variable importance for log.UpperLimit is picked
up well by the Garson method, while the importance of the AY variable was achieved by
using the Olden function for the multiple-layer ANN model.
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Figure 6. The variable importance measures by Garson algorithm and Olden function for three-layer ANN models with
four hidden units in the hidden layer and taking the average loss per claim count as the response variable. The results are
the mean values of importance measures by 100 runs of ANN model fitting.
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Figure 7. The feature importance measures obtained by fitting the data to the random forest model using claim counts and
claim amounts, respectively, as a dependant variable.
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Figure 8. Partial dependence plot for selected variable in the random forest model using claim amount as the model
response variable.

To better understand how the variable importance measures are affected by different
ANN models, we estimate the sample means of variable importance and sampling errors.
The results are displayed in Tables 2–4, and they were calculated using the normalized
Olden function. Different models lead to different estimates of the variable importance.
The experimental results shown in all these tables may suggest the difficulty of interpreting
the results when different models are considered. Therefore, it is critical to identify a most
reliable model and make inferences by conditioning on the assumption that the selected
model is the true model. With this in mind, we compare the variable importance measures
for major risk factors under the best ANN architecture, and these results are presented
in Table 5. Overall, the variable importance measures all appear to be large and not very
different, except for the case of the claim count as the input, in which the importance
measure of AY is smaller than other variables.

Table 2. The sample mean and the sampling error of variable importance measured by normalized Olden function for the
average loss per claim as an input for various ANN models. The first row of the table indicates the structure of hidden
layer; for instance, 2 means one hidden layer with two hidden units, and c(2,1) means two hidden layers with two units in
the first and one unit in the second layer.

Hidden
c(2) c(4) c(2,1) c(3,2) c(4,2) c(4,3)

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Coverage −0.82 0.06 −0.01 0.09 −0.94 0.03 −0.74 0.06 −0.59 0.07 −0.50 0.08
Territory −0.35 0.06 −0.12 0.08 −0.75 0.04 −0.33 0.07 −0.36 0.07 −0.23 0.08

Size-of-Loss +0.82 0.06 −0.02 0.09 +0.94 0.03 +0.70 0.07 +0.58 0.08 +0.38 0.09
AY −0.65 0.05 −0.40 0.08 −0.79 0.03 −0.47 0.06 −0.53 0.07 −0.36 0.08
RY −0.40 0.06 −0.12 0.08 −0.75 0.04 −0.35 0.07 −0.34 0.08 −0.26 0.08
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Table 3. The sample mean and the sampling error of variable importance measured by normalized Olden function for the
claim counts as an input for various ANN models. The first row of the table indicates the structure of hidden layer; for
instance, 2 means one hidden layer with two hidden units and c(2,1) means two hidden layers with two units in the first
and one unit in the second layer.

Hidden
c(2) c(4) c(2,1) c(3,2) c(4,2) c(4,3)

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Coverage 0.44 0.08 0.26 0.09 0.40 0.08 0.40 0.08 0.37 0.08 0.30 0.09
Territory 0.63 0.06 0.30 0.07 0.83 0.04 0.43 0.07 0.40 0.07 0.22 0.08

Size-of-Loss −0.49 0.09 −0.29 0.09 −0.58 0.09 −0.43 0.07 −0.50 0.08 −0.40 0.09
AY 0.45 0.05 0.13 0.07 0.59 0.05 0.26 0.06 0.21 0.06 0.03 0.07
RY 0.56 0.07 0.10 0.08 0.74 0.05 0.35 0.07 0.33 0.07 0.11 0.07

Table 4. The sample mean and the sampling error of variable importance measured by normalized Olden function for the
claim amounts as an input for various ANN models. The first row of the table indicates the structure of hidden layer; for
instance, 2 means one hidden layer with two hidden units and c(2,1) means two hidden layers with two units in the first
and one unit in the second layer.

Hidden
c(2) c(4) c(2,1) c(3,2) c(4,2) c(4,3)

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

Coverage −0.52 0.05 0.10 0.09 −0.05 0.08 0.36 0.08 0.27 0.09 0.20 0.09
Territory −0.79 0.02 −0.38 0.08 −0.76 0.04 −0.52 0.07 −0.32 0.08 −0.13 0.08

Size-of-Loss 0.95 0.02 −0.00 0.09 0.40 0.08 −0.12 0.09 −0.26 0.09 −0.17 0.09
AY −0.88 0.03 −0.61 0.07 −0.90 0.03 −0.68 0.06 −0.56 0.06 −0.29 0.07
RY −0.92 0.03 −0.45 0.08 −0.93 0.03 −0.60 0.07 −0.41 0.08 −0.21 0.08

Table 5. The comparison of average variable importance measured by normalized Olden function
based on the best ANN architecture, respectively for the claim count, claim amounts and average
loss per claim as an input.

Average Loss Per Claim Claim Count Claim Amount

Coverage −0.50 +0.30 +0.27
Territory −0.23 +0.22 −0.32

Size-of-Loss +0.38 −0.40 −0.26
AY −0.36 +0.03 −0.56
RY −0.26 +0.11 −0.41

Finally, to see the performance of the model that we chose, we display the plots of
predicted values versus actual output values in Figure 9, for both cases of the claim amount
and average loss per claim as response variables. From the result, we can see that the
ANN-c(4) with the average loss per claim count outperforms the ANN-c(4) with the claim
amount. This result was also compared to GLM results, where the selected one are reported
in Figure 9, and we found that ANN-c(4) outperforms the GLM.



Risks 2021, 9, 126 17 of 21

●

●

●

●

●

●

●

●
●

● ● ●● ●●●●
●●●●●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●● ●●●●●

●
●

●●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●●●● ●●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●● ●●●

●

●

●

●

●

●

●

●

●
●

●● ●● ●●
●●

●●●● ●

●●

●

●

●

●

●

●

●

●

●
●

●
●● ●● ●● ●●●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●● ●●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●● ●●
●

●

●

●

●

●

●

●

●

●
●●
● ●● ●●

●●
●●● ●●

●●

●

●

●

●

●

●

●

●
●
●● ●● ●● ●●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●●● ●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●●● ●●

●

●

●●

●

●

●

●

●
● ●●● ●● ●●

●
●

●●● ●●

●●

●

●

●

●

●

●

●

●
●

● ● ●● ●● ●●●●●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●● ●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●● ●●
●

●

●

●

●

●

●

●

●
●●● ● ●●

●●
●

●
●●● ●●

●●

●

●

●

●

●

●

●

●
●●
● ●● ●●●●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●● ●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●●●●●
●

●

●

●

●

●

●

●

●

●
●

●● ●● ●●●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●● ●● ●●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●● ●●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●● ●●
●

● ●

●

●

●

●

●

●

●
●●● ●● ●●
●●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●● ●● ●● ●● ●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●●● ●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●● ●●

●

●

●

●

●

●

●

●

●
●●

●● ●● ●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●● ●● ●●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●● ●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●● ●●● ●●
●

●

●

●

●

●

●

●

●
●●●● ●●

●●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●● ●● ●●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●● ●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●●●● ●
●

●

●

●

●

●

●
●

●
●●●● ●●

●●
●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●
●●●● ●● ●●

●●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●● ●●●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●● ●●● ●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

Actual

P
re

di
ct

ed

(a) Claim Amount

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Actual

P
re

di
ct

ed

(b) Average Loss Per Claim

0 10000 20000 30000 40000

0
10

00
0

20
00

0
30

00
0

Claim Counts

F
itt

ed
 C

la
im

 C
ou

nt
s

(c) GLM with Gaussian

0 10000 20000 30000 40000

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Claim Counts

F
itt

ed
 C

la
im

 C
ou

nt
s

(d) GLM with Poisson

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

Loss Cost

F
itt

ed
 L

os
s 

C
os

t

(e) GLM with Gaussian
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(f) GLM with Gamma

Figure 9. The (a,b) plots are predicted values versus actual for claim amounts and average loss per claim count, respectively,
as the response variable for the ANN-c(4). The (c,d) plots are predicted values versus actual claim counts from the GLM
models with the Gaussian error function and the Poisson error function, respectively. The (e,f) plots are predicted values
versus actual loss cost from the GLM models with the Gaussian error function and the Gamma error function, respectively.
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5. Discussion

In the context of interpretable machine learning, interpretable models have been
widely used. In actuarial science, linear models (LM), GLM, and GAM are popular mod-
elling tools in auto insurance pricing to obtain risk relativities (Ohlsson and Johansson
2010; Xie and Lawniczak 2018). A linear model is a suitable choice when variables appear
to be linearly related to the model response variable; it does not work well for the situation
where interaction among variables or non-linear relationships are found. GLM overcomes
the limitation of multiple linear regression models, where the normality and constant
variance are often assumed. By extending the error probability distribution from a normal
distribution to an exponential family (Dobson and Barnett 2008), GLM enables a line of
choices for the error distribution. It also allows one to specify the functionality between the
variance of the response variable and the mean response so that the model can capture the
extra dispersion caused by the data. However, in the context of measuring the importance
of risk factors, GLM has certain limitations. In auto insurance rate-making, many inde-
pendent variables or risk factors are categorical types. The independent variables within
the GLM are designed as dummy variables based on the levels of categorical variables.
Measuring the importance of the variable within GLM can be done easily for each factor
level but not for the whole factor itself. The model captures the contribution of different
combinations of the levels among the factors considered. Unlike ANN, the input variables
are the factors with various levels, and the weight values are obtained for each input
variable. It is possible to derive the variable importance for a numeric variable in GLM by
calculating the t-test statistics for the coefficients or obtaining the p-value of the statistical
test. When the GLM contains categorical variables, an F-test may be used to address the
significance of the contribution of the variables, but it is difficult to measure the importance
using the F-statistics. This is because the F test is quite sensitive to the violation of normality,
which is often the case when dealing with loss distribution. Therefore, it requires further
consideration of some suitable approaches to derive the importance measures of each
underlying categorical variable when using GLM for pricing, but this is out of the scope
of this paper. The use of ANN enables us to measure the variable importance directly, no
matter the type of the input variables. It does not require the error distribution assumption
or running statistical tests, which may be sensitive to the assumption on the sampling
distribution. These are considered another advantage for ANN when comparing with
other predictive modelling techniques. Furthermore, our empirical study shows that ANN
outperforms the GLM when modelling the size of loss data. The mean square errors of the
model residuals are much smaller than the GLM approach. The residuals of ANN model
are much more homogeneous than the ones from GLM models. Evaluating ANN with
the study of variable importance measure leads to a better understanding of risk factors’
effects to make more informed decisions in rate-making or rate regulation. When this is
the case, insurance regulators are more comfortable in judging the appropriateness of risk
relativity in rate fillings conducted by insurance companies.

According to the recent survey of Kagglers in terms of choice for machine learning
tools, R has been a preferred tool for Business Analyst, Data Analyst, Data Miner, Predictive
Modeller, and Statistician, who are often involved in insurance rate making. Due to
this work’s nature, we adopt R and its package, called "neuralnet", to implement our
study results. The main reason for making this choice is that it has been widely used for
machine learning applications. It is an excellent tool for graphical representation of the
model with the weights on each connection in neural network models, particularly for
a small number of input variables, like in our case. This package uses backpropagation
for parameter calibration and allows flexible settings through custom-choice of error and
activation function.

6. Conclusions and Future Work

A single metric such as prediction accuracy is an incomplete description of most
real-world tasks in predictive modelling. The need for model interpretability is due to
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incompleteness in a given problem formulation. It is not enough to get higher prediction
accuracy; it is also necessary to know how the model accurately predicts. There is no
explicit mathematical definition of model interpretability or data explainability. A non-
mathematical description is of how much a model user can understand the cause of the
decisions in the decision marking or how consistently a learned model can predict an
accurate result. Our work belongs to the first type. It aims at providing some guidance on
what advanced rate-making methodologies are suitable for facilitating the rate-filing review
process. From the insurance regulator’s point of view, it is critical to know the insights of
methods used for rate-making and the potential impact of risk factors and the mathematical
model used to conduct the analysis. This makes the justification of any decision made
more accessible and transparent to management responsible for a higher level of impact
from regulatory policies, particularly the determination of reform and significant change of
maximum coverage levels of insurance losses. On the other hand, the insurance loss data
explainability improvement can help stakeholders better understand the nature of data
patterns and the relationship between risk factors and the loss level metrics, such as loss
counts, loss amounts, and loss costs. Therefore, decision-makers can make better policies
or regulations that fit real-world situations, and communication between the insurance
companies and regulatory authorities will become smoother and more effective.

In this work, the modelling problems of how claim counts, claim amounts, and av-
erage loss per claim are related to major risk factors in auto insurance rate regulation
were considered. The major risk factors include accident year, reporting year, territory,
coverage, and Size-of-Loss. Artificial neural network models were applied within the
problem, and variable importance measures were introduced to improve the model ex-
plainability. The obtained results from different approaches of using weight values of ANN
to measure the variable importance were compared, and the most dominant risk factors
were identified. Through the study, we found that the variable importance measures by the
Garson algorithm or Olden function can help identify the critical variables that contribute
to explaining the variation of the response variable in ANN models. The obtained results
were not necessarily consistent, since the variable importance measures make use of the
different sources of information from the fitted model. However, our study shows that
both Size-of-Loss and coverage are two crucial factors for claim counts, claim amounts,
and average loss per claim. This finding is based on the selected low-complexity ANN
model, in which the Garson algorithm is applicable.

Due to the complexity and lack of model explainability, neural network models have
not yet been used in auto insurance rate regulation. This work illustrates the applicability of
using a small-scale network architecture for modelling the claim frequency or claim severity
by balancing the model complexity and its explainability. This work demonstrates the
usefulness of proposed insurance rate regulation methods, particularly from the rate-filing
perspectives. Although this study focuses on analyzing major risks only, the proposed
method can be applied to more general insurance pricing problems. Therefore, insurance
companies may use ANN models to predict future claim losses or future claim counts by
pricing groups or individuals. That is to say, this work can be extended to the case when we
have many observed zeroes in the response variable. However, in this case, the logarithm
transformation on the loss cost to improve model variance homogeneity is not applicable.
Another key aspect of using neural networks is the choice of network architecture. This
is similar to other predictive modelling approaches, which aim for the optimal model via
some cross-validation to evaluate the model error and select the suitable model based
on the minimum cross-validated model error. Improving model explainability was our
focus. Therefore, it is not recommended to apply a large-scale network architecture unless
the model is interpretable. Our approach searches ofr the optimal network architecture
within a designed search space, and this idea can be generalized to risk-factor study using
individual claim loss. From this study, we have seen that the Size-of-Loss is a significant risk
factor. In the future, further investigation of this factor may be needed to better understand
the uncertainty behind the data observation and the relationship between Size-of-Loss and
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other statistical measures of loss, such as loss frequency. Our future work will focus on
estimating Size-of-Loss probability distribution using multivariate statistical approaches
such as functional principal component analysis and finite mixture models.
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