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Abstract: The paper introduces a novel approach to ensemble modeling as a weighted model
average technique. The proposed idea is prudent, simple to understand, and easy to implement
compared to the Bayesian and frequentist approach. The paper provides both theoretical and
empirical contributions for assessing credit risk (probability of default) effectively in a new way by
creating an ensemble model as a weighted linear combination of machine learning models. The idea
can be generalized to any classification problems in other domains where ensemble-type modeling
is a subject of interest and is not limited to an unbalanced dataset or credit risk assessment. The
results suggest a better forecasting performance compared to the single best well-known machine
learning of parametric, non-parametric, and other ensemble models. The scope of our approach can
be extended to any further improvement in estimating weights differently that may be beneficial to
enhance the performance of the model average as a future research direction.

Keywords: model averaging; ensemble modeling; weighted-linear combination; classification model;
credit risk default

1. Introduction

The field of credit risk has grown significantly over the last few decades both in
terms of scholarly articles and the availability of tools to measure and manage credit risk
management (Altman and Saunders 1998).

The current trends in credit risk management advocate the use of classification tech-
niques Baesens et al. (2003), Brown and Mues (2012) for credit default prediction that are
parametric, non-parametric, and ensemble models, given their suitability to analyze large
sample size data and provide better ways to capture complex relationship from the data
(Figini et al. 2017; Lessmann et al. 2015; Butaru et al. 2016; Alaka et al. 2017).

However, the standard approach Fragoso et al. (2018) in making predictions does not
identify a single best model for addressing classification, a limitation in data for several
plausible combinations of predictors Breiman (1996), and the availability of different
modeling approaches makes it difficult to select only one best model (e.g., Hastie et al.
2009; Kuhn and Jhonson 2013; Chipman et al. 2010).

One way to address such a limitation is to use the model averaging technique Graefe
et al. (2014), Bates and Granger (1969), an approach that provides high discriminatory
power and a high precision compared to other traditional statistical methods Granger and
Ramanathan (1984), Hansen (2007), Nelder and Wedderburn (1972).

Although model averaging is an efficient approach to tackle the above different limita-
tions, the empirical implementation of model-averaging methods is difficult considering
model parametrization. This paper aims at addressing this issue by proposing an approach
to implement a model average technique that linearly combines a set of weighted models
based on a prediction of averaging correlative/co-variate models. Compared to existing
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approaches, the proposed model does not focus on parametrization to avoid possible
criticism as summarized in Banner and Higgs (2017).

To implement the technique, we rely on a novel methodology based on the solution of
a quadratic programming problem. The proposed approach exploits the idea that the best
average model is the one that minimizes the co-variance between the errors of the single
models (parametric models, non-parametric models, and ensemble model average).

The robustness of the proposed model is compared against a diverse set of key perfor-
mance measures such as hmeasure (H), area under the receiver operating characteristic
curve (AUC), area under the convex hull (AUCH), minimum error rate (MER), and min-
imum cost weighted error rate (MWL) (see, e.g., Hand 2009 for details on such metrics).
This helps to examine predictive capability, discriminatory power, and stability of the
results. The results obtained from the proposed model demonstrate better performance
compared to well-known models.

In principle, the results obtained from the proposed idea on the dataset of a finan-
cial institution can be generalized to other groups of entities for credit risk assessment
(probability of default) since almost all entities have similar nature of dataset with a class
imbalance of default risk even if there is a difference in the set of explanatory variables for
the different dataset.

The observation period of the sample used for the analysis in this paper is 24 months
for two consecutive years from 2016 to 2018, and the sample studied reflects the economic
and social behavior of those Italian customers who applied for loans.

It is very likely to have a similar level of performance on a dataset of other entities
for credit risk assessment, specifically default risk parameters, since the proposed idea is
not limited to a particular kind of dataset; in fact, the idea has high a possibility to solve
classification problems in other domains.

The remainder of this paper is organized as follows. Section 2 presents the literature
review relevant to the proposed research problem. Section 3 explains the proposal in detail
as a piece of background information followed by a theoretical proposal in Section 4 and
properties of the proposed model average in Section 4.2. Section 5 discusses the dataset
and data handling method. Section 6 presents the results achieved from empirical findings
followed by discussion in Section 7 and concluding remarks in Section 8. Appendix A
provides additional useful information.

2. Literature Review

Most of the classification algorithms that can be broadly categorized as machine
learning and artificial intelligence systems are often not used by the financial institution
due to stronger requirements set up by regulatory Committee that supports the use of
parametric models for a simple and clear interpretation of the results. Despite regulatory
choice in suggesting the statistical framework Ewanchuk and Frei (2019), various literature
supports the use of advanced models in assessing credit risk (Leo et al. 2019).

Alaka et al. (2017) addresses more sophisticated models for credit risk estimation and
presents a systematic review of tool selection for analyzing bankruptcy prediction models.

Chakraborty and Joseph (2017) advocate the use of the machine learning model to
detect financial distress using balance sheet information, and their study concludes a
performance increase of 10 percentage points compared to the logistic regression model as
a preferred classical approach of financial institutions.

Khandani et al. (2010) applied state-of-the-art of non-parametric machine learning
models to predict the default of consumer credit risk by merging transactions and credit
bureau data. Their work demonstrates that prediction of risk can be better improved using
machine learning techniques in comparison to classical statistical approaches, and any
subsequent loss of lenders therefore can significantly be improved.

Albanesi and Vamossy (2019) applied a deep learning approach as a combination of
neural network and gradient boosting for high-dimensional data to predict the default of
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consumer risk. Their work shows superior performance compared to logistic regression
models and is also able to adapt to the aggregate behavior of default risk easily.

Bacham and Zhao (2017) compared the performance of machine learning models with
industry-developed algorithms such as Moody’s proprietary algorithm and suggested
an improvement of 2–3 percentage points in the performance of the machine learning
model. Their approach is a bit difficult to relate with the underlying firm characteristics
in predicting default of credit risk, although credit-behavior-related variables increase the
discriminatory power of the considered models.

Fantazzini and Figini (2009) proposed a non-parametric approach based on random
survival forests in predicting credit risk default of small–medium enterprises. The perfor-
mance comparison of their proposed model with the traditional logistic regression model
reveals a weak relationship of the performance between training and testing samples,
thereby suggesting an over-fitting problem, which is mainly due to contrasting testing sam-
ple performance of logistic regression better than their proposed random survival models.

Several other studies, such as Kruppa et al. (2013), Yuan (2015), Barboza et al. (
2017), Ampountolas et al. (2021), and Addo et al. (2018), confirm superior performance for
prediction of credit risk using machine learning compared to any other statistical approach.

The literature on the non-statistical model often suggests the dependence on the bias
of contributing models as well as their weights for the difference between the expectation
of the averaged predictions and truth. However, the underlying assumption for statistical
model averaging literature does not have any bias, and their contribution is often less
interesting (e.g., Burnham and Anderson 2002).

Reducing bias is often cited as the primary motivation in many of the literary works
for model averaging, especially those related to process models (e.g., Solomon et al.
2007; Gibbons et al. 2008; and Dietze 2017). Due to the nature of predictions, weights are
quadratic in terms rather than linear, as understanding deeply the right way of estimating
weights Breiman (1997) brings a lot of benefits to the model averaging approach. To obtain
a good estimator for the optimal weight in the first place is a further open problem apart
from the error of the estimate, and there is no such closed solution available, including the
case of linear models (Liang et al. 2011).

Broadly speaking, the literature supports parametric, non-parametric, and ensemble
model-averaging approaches. The idea of model averaging appears of interest to reduce
prediction error as well as to better reflect model selection (Buckland et al. (1997); Madigan
and Raftery (1994)) uncertainty. Claeskens et al. (2016) assumed that estimated model
weights are useful in general, being bias-free with similar prediction variance, but they
do not necessarily imply that estimated equal weights are superior. To our knowledge,
this area of research could be enlarged by proposing several ideas to select weights, and
the methodological approach described in this paper is an effort towards this direction to
improve model predictive performance.

3. Background Proposal

In recent years, several multi-model methods have been proposed to account for
uncertainties arising from input parameters and the definition of model structure. In this
paper, we propose a novel methodology for a model average based on the solution of a
quadratic programming problem. Let us suppose f1, . . . , fk as k different models for the
dependent variable y.

For each model under consideration, the estimated error can be evaluated as εk = y − ŷk,
where ŷk is the estimated value of y for any model k. Based on εk , it is possible to estimate
the co-variance or correlation matrix to set up an optimization problem that seeks to
minimize the error between models.

The optimization problem can be solved for both co-variance and correlation matrix.
We need to understand if one of the two provides better results and preferring co-variance
matrix enhances proposed model performance slightly better with compare to correlation
matrix as evident in their empirical results in Section 6. In general, the optimization
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problem is indifferent if defined for a non-singular positive definite square matrix of the
models. One way to solve the optimization problem could be to find the vector of weights
that minimizes the co-variance between the alternative models.

An average of models can improve the performances of single models when the
errors of the single models are negatively correlated. Roughly speaking, an average model
improves performance compare to single models when an error of the single model is
counterbalanced by a good prediction of some other model. Following this idea, the
best average model is the one that minimizes the co-variance between the errors of the
single models.

4. Theoretical Proposal
4.1. Notation and Assumptions

∑ is the k × k co-variance matrix of the errors εi with i = 1, . . . . . . , k. ∑ is a positive,
definite, symmetric and, as a consequence, non-singular matrix. w is the k × 1 column
vector of the weights. The average model is defined as ŷw = w1 × ŷ1+. . . . . . +wk × ŷk
where wk is the kth entry of vector w, 1 is the k × 1 column vector of ones and superscript
T represents transpose of a matrix. In accordance with our considered model average
technique, we formulate the following optimization problem

min
w

wT ∑ w such that wT1 = 1, wT ŷ = y (1)

Solving analytically the optimization problem produces an optimal vector of weights

w∗ = Σ−1 × (1 f̂ )× A−1 ×
[

1
f

]
where

A = (1 f̂ )T × Σ−1 × (1 f̂ )

For the optimization problem stated above, the first-order conditions are necessary
and sufficient for the optimality of w∗, which is obvious due to the assumptions made on
co-variance matrix ∑.

The analytical solution assumes no bias and therefore ignores the problem that weights
are random variate since weights sum to one in constraint. Doing this does not necessarily
ensure weights to be positive, nor we want to use some rarely used method that adjusts
for correlation in predictions (e.g., assigning lower weights to highly correlated models,
dividing weights if any identical model prediction is added to the set, and henceforth
reducing weights due to additional inclusion of the model).

No single model guarantees achieving consistently lower error rates since many of
the model averaging techniques stated in the literature are not easy to implement, and
potentially one of the reasons for extensive use of ensemble techniques like bagging and
boosting (Breiman (2001b); Friedman (1999)).

Keeping this point in mind, our effort in proposing the idea of model averaging is
unique and simple in the sense that it is easy to implement and offers the possibility to
combine or average out models of different natures in the model space (be it parametric,
non-parametric and or models) rather intuitively.

A few of the main advantages of the proposed idea are (i) improvements in the
performances compared to single original models (already tested within the empirical
framework), (ii) the closed form for the solution of the optimization problem, and (iii) a
simple interpretation of the whole theoretical structure.

A few of the limitations of the proposed idea are as follows. (i) First is interpretation
of the negative weights. When the weight associated with a model is negative, intuitively
we are doing the opposite compared to what the model suggests doing. It is clear that
negative weights are useful to artificially create negative co-variances between models,
providing the possibility to achieve lower values of co-variance. (ii) Second is that if ŷi
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for i = 1, . . . . . . , k are bounded (for example in the case of the probability of default when
modeling credit risk), the proposed approach does not guarantee that ŷw respects the
bounds.

In order to overcome the potential shortcomings described above, we can frame new
optimization problem as follows,

min
w

wT ∑ w such that wT1 = 1, wi ≥ 0 f or i = 1, . . . . . . , k (2)

This helps to overcome both the shortcomings on the interpretation of the negative
weights and the bounded value for ŷw.

In this case, it is trivial to prove that ŷw is bounded between the minimum and
the maximum values of the single models because the average model is a convex linear
combination of the original models. Two of the possible limitations of the new optimization
problem with different constraints include the availability of no closed-form solution for
the problem and that a growing number of restrictions penalizes the performances of the
average model.

Moreover, an increase in additional constraints like the following,

min
w

wT ∑ w such that wT 1 = 1, wT
−
ŷ = y, wi ≥ 0 (3)

does not guarantee the estimation of positive weights, nor does it achieve minimum
prediction error. Many extensions are possible, of which one standard extension could
be to allow the weights to be negative, optimal, equal, random, or squared for diverse
options and compare the performance of weighted model based on each of these different
weighting strategies.

Assuming such a weighting strategy as a possible extension, we evaluated the perfor-
mance of the weighted model using different weighting strategies, and the results at hand
favor the proposed analytical weights based on Equation (1) as a better choice compared to
all other weighting strategies.

4.2. Properties: The Proposed Model Average

So far, our discussion was focused on co-variance and other methods that play a
crucial role in the estimation of weights and construction of model average. In this sub-
section, the focus of our discussion is how weighted models behave or vary when there is
correlation or no correlation between models.

Let us assume first the case of uncorrelated models in the model-averaging system
where we refer to the properties of variance and assume models are independent. One of
the possible ways to obtain optimal weight in the weighted model system if the models are
not correlated is to construct the model as a linear combination of the individual model.

Therefore, we consider a model average as a linear combination of its members as
f = ∑jαj f j and αj are normalized to 1 to generate the following relationship:

∑
j

α2
j v( f j) + v( fk) + b2 = ∑ α2

j α2
j + (∑ αjbj)

2 (4)

Using the above equation, we can find the optimal coefficient as weights to the model
by minimizing error and can be converted into an optimization problem, as evident in the
following equation:

min
w1,...wk

∑
j

w2
j σ2

j + (∑
j

wjbj)
2 ∑

j
wj = 1 (5)

This could lead to a lesser extent of underestimation of the statistical properties of the
model average if the optimal weight from the coefficient is not considered.

Therefore, we can ask ourselves if there is any way that ensures that the variance of
the weighted model is lower than an individual model’s variance. To understand more of
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this, take a case of two models with variance such that their combined variance is less than
a single model’s variance.

The combination process works best if the variance between models is not too large;
otherwise, it is not possible to achieve weighted model variance lower than individual
models. In this respect, we propose the following theorem and its proof.

Theorem: If the combined variance of two models is less than a single model’s
variance, then the combination process works best only when the variance between models
is minimized; otherwise, it is not possible to achieve average model variance lower than
individual models. This is true if the models among themselves are not correlated, as it is
possible to obtain the variance of average model lower than single models, as evident in
the following inequality, where v() simply denotes the variance of the model.

v( f j) ≤ v( f 1) ≤ v( f 2) . . . ≤ v( f k)

Proof. Let us say that (k2−1)v( f 2
m)

k2 ≤ (k2−1)v( f 2
1 )

k2 . Therefore, we can further say that

(1 − 1
k2 )v( f 2

1 ) ≥
k − 1

k2 v( f 2
k ) ≥

1
k2 (v( f 2

2 ) + . . . + v( f 2
k ) (6)

which in turn proves that v( f 2
1 ) ≥

v( f 2
1 )+...+v( f 2

k )

k2 = v( f k).

The idea mentioned in the above theorem can be generalized to models that are
correlated among each other and for which it is possible to obtain general bounds for
optimal variance using the following equation,

f1

k
≤ v( f ) ≤ fk

k
. (7)

The proof sketched in the theorem above for uncorrelated models can equally be
explored for correlated models by showing equivalent estimation for optimal variance
according to the following,

∑
j

1
covj

(∑
i

uij)
2 ≥ 1

covk
∑

j
(∑

i
uij)

2 =
k

covk
(8)

5. Data Description

The dataset used for this study come from one of the leading financial institutions
where the dependent variable “ClientStatus” is represented by binary values that take “0
(good customer)” and “1 (bad customer)”. A priori probability for the target variable shows
96.11% of class label 0 and 3.9% of class label 1. The observation period of the dataset is 24
months for two consecutive years from 2016 to 2018, and the sample studied reflects the
economic and social behavior of those Italian customers who applied for loans.

The data are composed of 40,000 observations and 30 explanatory variables. The
explanatory variable is mainly categorized as information about socio-demographic char-
acteristics, customer equipment, customer history, and other things related to customer
behavior. See Appendix A for more details on explanatory variables.

The prior distribution of the class in the dependent variable is imbalanced and needs
treatment before being put to the predictive modeling task Kuhn and Jhonson (2013). Re-
sampling the training set (under-sampling or over-sampling), using k-fold cross-validation
in the right way, ensembling different resampled datasets, resampling with different ratios,
clustering the majority class, or designing any different model, offers a few of the popular
alternatives to deal with the data imbalance problem Batista et al. (2004).

There are several ways to do feature selection or feature engineering, and in this
respect, we choose to sketch variable importance plots using built-in functions of boosted
classification trees. The features are ranked on an importance scale of 1 to 100. We restricted
them to include only the top 10 ranked features in the model for getting better performance
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after evaluating different possibilities of feature inclusion. The features ranked are reported
in Appendix A.

In this context, we chose to treat the imbalance problem of the class distribution using
one of the latest preferred techniques called SMOTE (synthetic minority over-sampling
technique). SMOTE (Chawla et al. 2002) creates synthetic observations based on existing
minority observations that work on the principle of k-nearest neighbors Henley and Hand
(1997). It generates new instances that are not just copies of the existing minority class;
in fact, the rule is to take samples of feature space for each target class and its nearest
neighbors. In this way, it increases the features available to each class and makes the
samples more general and balanced.

A few of the alternatives other than the over-sampling and under-sampling technique
for class imbalance problem is to use the Grabit model (gradient tree boosting to the Tobit
model), which creates an auxiliary sample to enhance predictive accuracy (see, for details,
Sigrist and Christoph 2019).

6. Results

The considered list of models were implemented using a k-fold approach (k = 10), and
comprise a diverse set of models like conditional inference trees (CTREE), recursive parti-
tioning and regression trees (RPART), generalized linear model (GLM), random forest (RF),
bootstrap aggregating (BAGG), boosting (BOOST), Bayesian moving average (BMA), gen-
eralized additive model (GAM), k-nearest neighbors (KNN), naive Baye’s (NB), Bayesian
additive regression trees (BART), and proposed weighted model based on co-variance
(WTM). Figures 1 and 2 report the performance comparison as an ROC curve that suggests
the proposed model WTM as a better model in enhancing predictive performance compare
to other well-known model and weighting techniques.

Figure 1. ROC curve of parametric, non-parametric, ensemble, and proposed weighted model.
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Figure 2. Proposed model using different weighting strategy.

Figure 1 shows the ROC (receiver operating characteristic) curve comparison of
different models (parametric, non-parametric, ensemble model, and average model), and it
is some performance difference and overlapping are obvious. The model choice becomes
an uncertain and daunting task in such a situation. To avoid such uncertainties to a greater
extent, our proposed model provides an alternative that is easy to implement and robust in
enhancing the performance of the combined model for predicting credit risk default.

Several performance metrics reflecting the accuracy and error of the model were
assessed on out of sample data as reported in Tables 1 and 2. Table 3 does a robustness
check of the analytical weights in the proposed model (WTM) with different possibilities of
weighting strategies. H (hmeasure), AUC (area under curve), AUCH (area under convex
hull), Sens.Spec95 (sensitivity at 95 percent specificity), and Spec.Sens95 (Specificity at
95 percent sensititvity) are related metrics. MER (minimum error rate) MWL (minimum
weighted loss) are error-related metrics.

Table 1 records the performance of the individual model and the proposed model
WTM. H (hmeasure), AUC (area under the curve), AUCH (area under convex hull),
Sens.Spec95 (sensitivity at 95 percent specificity), and Spec.Sens95 (Specificity at 95 percent
sensitivity) are accuracy-related metrics. The higher the value of the metrics is, the better
the performance of the model is, and such numbers are kept in bold text. From Table 1,
looking at the H measure, RandomForest (RF), and the proposed weighted model based on
the co-variance approach (WTM) shows better performance compared to other models. In
terms of AUC value, RandomForest (RF) has slightly better performance that is very close
to the values of Bagging (BAGG), Boosting (BOOST), and therefore is highly comparable.
The same is true with AUCH values.

Table 2 records prediction-error-related performance measures of the individual model
and the proposed one. MER (minimum error rate) and MWL (minimum weighted loss)
are error-related metrics of the model. The lower the value is, the better the performing
model is. From Table 2, one can see that the best-performing models are RandomForest
(RF), Bagging (BAGG), Boosting (BOOST), and the proposed weighted model (WTM).
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Table 1. Performance metrics reflecting the accuracy of the model.

Metrics CTREE RPART GLM RF BAGG BOOST BMA GAM KNN NB BART WTM

H 0.62 0.59 0.67 0.64 0.61 0.57 0.78 0.78 0.39 0.38 0.50 0.60
AUC 0.94 0.80 0.67 0.94 0.92 0.91 0.67 0.67 0.79 0.77 0.82 0.92

AUCH 0.94 0.80 0.67 0.94 0.92 0.91 0.67 0.67 0.79 0.77 0.82 0.92
Sens.Spec95 0.24 0.15 0.04 0.63 0.50 0.48 0.20 0.20 0.03 0.05 0.04 0.58
Spec.Sens95 0.10 0.07 0.05 0.78 0.77 0.73 0.06 0.06 0.03 0.06 0.04 0.73

Table 2. Performance metrics reflecting error in the model.

Metics CTREE RPART GLM RF BAGG BOOST BMA GAM KNN NB BART WTM

MER 0.16 0.16 0.26 0.13 0.14 0.15 0.15 0.25 0.16 0.26 0.16 0.14
MWL 0.18 0.19 0.29 0.12 0.14 0.15 0.16 0.26 0.19 0.28 0.19 0.14

Table 3 lists the proposed model (WTM) comparison against all other weighting
techniques that could have been useful for a robustness check like weighting approach
using correlation (WMCOR), optimal weight (OWM), squared weight (SWM), negative
weight (NWM), and equal weight (EWM). Their performance comparison is also reported
in Figure 2. The performance comparison in Figure 2 and Table 3 suggests the proposed
approach (WTM) as providing better-chosen weights for developing a better ensemble
model average compared to other weighting techniques.

Table 3. Proposed model comparison against all other weighting techniques.

Metrics WTM WMCOR OWM SWM NWM EWM

H 0.60 0.06 0.27 0.01 0.12 0.27
AUC 0.92 0.63 0.78 0.55 0.67 0.78

AUCH 0.92 0.63 0.78 0.55 0.67 0.78
Spec.Sens95 0.58 0.15 0.25 0.10 0.10 0.25
Sens.Spec95 0.73 0.11 0.33 0.05 0.05 0.33

Tables 4 and 5 illustrate an example of a confusion matrix to compare the proposed
model (WTM) with one of the well-known models, random forest (RF) Breiman (2001a).
The comparison is done with k-fold cross-validation in this context, which assigns a
random sample to different folds, and any difference in the class instances for observed
and predicted values for the model under comparison is due to sample size difference of
cross-validation. The benefits of cross-validation works differently than the usual splitting
of train and test set, since it helps to generalize the performance to an independent set by
overcoming any selection bias and overfitting problem.

Table 4. Confusion matrix of the proposed model (WTM).

Observed\Predicted Predicted Class 1 Predicted Class 0

observed class 1 4023 620
observed class 0 836 4641

Table 5. Confusion matrix of the random forest (RF).

Observed\Predicted Predicted Class 1 Predicted Class 0

observed class 1 3520 1127
observed class 0 1333 4141

The comparison in the table suggests that the proposed model (WTM) is better at
classifying class instances compared to well-known models such as the random forest. One
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could argue here as to why we are not averaging the confusion matrix for all folds. The
reason for not doing it is to simply avoid bias that arises due to the difference in a sample
size of all folds, and summing up the confusion matrix does not provide any additional
information regarding the robustness of the classifier.

A broader picture of decision making based on some classifier performance should be
done using several diverse metrics such as the one reported in Tables 1 and 2, as this helps
to see how different models’ performances overlap or diverge among each other, which is
needed for a robustness check of the proposed classifier.

In a situation where the performances of classifiers overlap or intersect with each other,
it is difficult to point out the best model, although to a smaller extent, RandomForest and
classification trees might give a smaller prediction error than the proposed model (WTM),
but their performance inconsistencies is often well-known. However, it is interesting to
point out that the proposed model (WTM), overall, in terms of reflecting different accuracy
and error performance metrics, outperforms all other well-known models.

To make the proposed approach (WTM) more competitive in comparison to well-
known models, a different approach is needed to estimate weights differently from the
proposed optimization problem that might bring additional enhancement in the perfor-
mance of the WTM model.

7. Discussion

The model averaging approach is primarily useful in reducing prediction errors but
may not necessarily do so in every context. The reason for this is that a few individual
models among the pool of models do not contribute to the decrease in co-variance and
average bias. This can be offset using a proper or diverse technique for estimating weights
that in turn helps in adjusting the additional variance from weaker models.

The literature is full of different information criteria that advocate the right way of
estimating weights. In our opinion, however, none of the information criteria are ideal to
apply to every single problem. Therefore, a continuous discussion on evolving the theories
and techniques of information criteria will be an important step in this direction.

The traditional approach suggests using the single best model and therefore ignores
model uncertainty that may arise due to model structure and assumptions. Therefore,
relying on the single best model with confidence is not a good idea as it may have adverse
consequences. The committee of diverse models offers enhanced performance if it is based
on model average techniques (see, for instance, Figini et al. 2016; Figini and Giudici (2017)).

Model averaging studies are dominated by two approaches, which are the Bayesian
and the frequentist approaches. Any different approach, such as the one proposed in this
paper, is an attempt to offer a technique that is effective to solve the diverse problems of
classification. Our proposed model-averaging technique can be considered as a cutting
tool that does not take parameter values for averaging.

In this sense, we make the approach flexible to work on many different problems.
There is contradicting opinion if the model averaging technique is any ensemble technique,
unlike boosting and bagging. Such a belief is mostly because model averaging is not
straightforward from the computational point of view and lacks generalization abilities
that can solve different problems.

However, our work in this paper strongly supports the argument that the model
averaging technique outperforms bagging and boosting in many situations, especially if
there is model uncertainty, model bias, and high variance and if the dataset is imbalanced.
To further emphasize our proposed idea, we can say that it is similar to the ensemble
technique and offers various possibilities to enhance the performance of any machine
learning model.

The main idea of any ensemble technique is to weigh individual classifiers and
combine them in a way to produce output that is better than individual classifiers at
predicting the task. Our proposed ensemble technique is characterized by diverse classifiers,
which makes any ensemble technique efficient to enhance predictive performance.
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The diversity of classifiers offers a serious advantage in developing an effective model
averaging or ensemble technique, but its inter-relationship with predictive output and
errors will be an important point of investigation from a future perspective.

Making an effort to keep understanding of the ensemble model simple to non-technical
people would be also a wise step in this direction. Moreover, until today, model averaging
studies have favored non-parametric methods for correctly estimating predictive errors,
and there is a lack of reliable analytical methods in this respect to compute frequentist
confidence intervals(p-values) on averaged model predictions.

Parametric methods based on AIC (Akaike information criterion) and BIC (Bayesian
information criterion) may give better performance. However, this is not always true as
non-parametric methods have an advantage under general considerations. Parametric
methods improve predictive error if any fixed or estimated weights are used.

A major part of applied machine learning is to understand the tips and tricks around
model selection. Given a large choice of models for selection, how one model statistically
differs from other models is a question of continuous investigation and testing.

The field of machine learning is evolving rapidly with its inter-connection to opti-
mization theories and multi-objective optimization. Optimization plays a crucial role in
minimizing or maximizing the different objective functions of interest that influence the
performance of the learning algorithm.

8. Concluding Remarks

In this study, we have compared parametric, non-parametric, and ensemble models
with our proposed idea, and the experiment on real data suggests that the proposed model
is able to enhance performance as compared to a few of the well-known models when
different modeling cultures are adopted (see, for example, Breiman 2001b).

A new weighted ensemble model approach introduced in this paper and the method-
ological development could be of interest for different practical implications in other
domains. For instance, the proposed idea advocates a new direction of model average to
improve predictive performance without necessarily taking any parameter estimation into
account and is a rather simple, prudent, and intuitive method of model combination for
any given set of diverse models one wishes to work with.

The proposed approach has an advantage over both well-known parametric and
non-parametric models. The only limitation of this idea could be explored in estimating
weights differently, which may further enhance the performance of the proposed model,
and any effort in this direction would bring an additional advantage.

Moreover, at present, non-parametric methods such as cross-validation remain reliable
for estimation of predictive errors, and there is a lack of reliable analytical methods to com-
pute frequentist confidence intervals (p-values) on averaged model predictions. Parametric
methods based on AIC and BIC may give better performance, but this is not always true,
as non-parametric methods have an advantage under general considerations to improve
predictive error if any fixed or estimated weights are used.

A single model may serve the purpose supported with a good underlying economic
theory but is prone to the model uncertainty problem, and to answer such uncertainties,
ensemble model average techniques such as the one proposed in this paper serve as effective
tools for various predictive tasks and are not limited only to credit risk assessment.

The model averaging technique may decrease prediction error to a greater extent, but
the primary benefits of doing so lie in decreasing co-variance and mean bias of contributing
models. Any further improvement in the estimation of weights does reduce the weight of
weaker models but could reduce the benefits of model averaging at the cost of additional
variance, which may be a point of interesting discussion as a future research direction.
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Appendix A

Table A1. Socio-economic variable description.

Variable Description Type

AGE Loan applicant age discrete
REGIONE Location details categorical
ANZ_BAN Age of the current account (expressed in years) discrete

RESIDENZA Type of Residence (owner or tenant) categorical

ANZ_RES Seniority of residence in the current residence
(expressed in years) discrete

STA_CIVILE Marital status (married, single, divorced . . . ) categorical
NUM_FIGLI Number of child discrete

SESSO Gender categorical
REDDITO_CLT Applicant income continuous
REDDITO_FAM Family income continuous
PROFESSIONE Profession categorical
NAZ_NASCITA Country of birth categorical

ANZ_PROF Working seniority (expressed in years) discrete

Table A2. Client equipment variable description.

Variable Description Type

CANALE_FIN Financing channel (agency, web, telephone . . . ) categorical
NUM_PRA_PP Current Personal Loans—number of practices discrete
esposizione_pp Current personal loans—residual amount on the balance continuous

durata_residua_pp Current personal loans—residual duration to balance continuous
NUM_PRA_CC Total finalized loans in progress—number of practices discrete
esposizione_CC Total finalized loans in progress—remaining balance continuous

durata_residua_CC Total finalized loans in progress—residual maturity at the
balance continuous

NUM_PRA_CP Card—Customer holding card discrete
esposizione_CP Card—Credit Card Display continuous

Table A3. Client history variable description.

Variable Description Type

NUM_SAL_PP Personal loans paid in the last 24 months—number of files discrete

NUM_SAL_CC Finalized loans paid in the last 24 months—number of
practices discrete

Table A4. Client behavior variable description.

Variable Description Type

num_men_rit number of late payments from origin (in months) discrete
score_cmp_qe internal behavioral score continuous
score_cmp_cb credit bureau behavioral score categorical
num_sal_rec number of recovery ascents in the last 12 months discrete

num_mes_rec number of months to recovery in the last 12 months discrete
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Figure A1. Feature importance graphical presentation.
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