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Abstract: The aim of this work was to test how returns are distributed across multiple asset classes,
markets and sampling frequency. We examine returns of swaps, equity and bond indices as well
as the rescaling by their volatilities over different horizons (since inception to Q2-2020). Contrarily
to some literature, we find that the realized distributions of logarithmic returns, scaled or not by
the standard deviations, are skewed and that they may be better fitted by t-skew distributions. Our
finding holds true across asset classes, maturity and developed and developing markets. This may
explain why models based on dynamic conditional score (DCS) have superior performance when the
underlying distribution belongs to the t-skew family. Finally, we show how sampling and distribution
of returns are strictly connected. This is of great importance as, for example, extrapolating yearly
scenarios from daily performances may prove not to be correct.

Keywords: return distributions; t-skew; market volatility; correlation; equity markets; bond markets; FX

JEL Classification: G10; C10; C20; C16

1. Introduction

The aim of this article was to investigate the interconnectedness between sampling
and asset returns’ distributions. To this end, we empirically perform a number of analyses
across asset classes, markets and for several sampling frequencies. The topic is quite
relevant as both vendors and financial institutions may rely on scenarios generated under
the assumption that financial series returns are normally distributed. There are some works
which claim that standardized daily returns “are approximately unconditionally normally
distributed” Andersen et al. (2001) or that “are IID Gaussian, with variance equal to 1”
Rogers (2018).

A more realistic work hypothesis is that time series follow a t-skew distribution. The
t-skew distribution can be seen as a mixture of skew-normal distributions Kim (2001) which
generalize the normal distribution thanks to an extra parameter regulating the skewness.
By construction, then, they can model heavy tails and skews that are common in financial
markets. Thus, their adoption in finance is gaining momentum for modeling distributions
Harvey (2013) and risk Gao and Zhou (2016). Further, t-skew has the power to link-up with
observation-driven models such as the dynamic conditional score (DCS) Creal et al. (2013)
or based on data partitioning Orlando et al. (2019, 2020). This paper tries to help in gaining
insights on returns’ distributions and on the most suitable way of fitting them.

In particular, according to the tests carried out on our dataset, the distributions of
log-returns do not seem to be normally distributed. The same applies on the returns
standardized by the standard deviation. In a different context, Tiwari and Gupta (2019)
found that the Jarque–Bera test strongly rejects the hypothesis of Gaussian distribution
for all considered time series concerning G7 stock markets. Therefore, through the paper,
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we report a number of tests to decide the better distribution between Gaussian, t-skew,
generalized hyperbolic, generalized Pareto and exponential Pareto. In terms of applications,
being able to correctly identify the distribution is important for risk management as the
tail conditional expectation provides information about the mean of the tail of the loss
distribution, “while the tail variance (TV) measures the deviation of the loss from this mean
along the tail of the distribution” Eini and Khaloozadeh (2020). Another application is in
option pricing. For instance, Yeap et al. (2018) propose a t-skew model with “a fat-tailed,
skewed distribution and infinite-activity (pure jump) stock dynamics, which is achieved
through modeling the length of time intervals as stochastic”.

Having described the framework of our investigation, now we are in position to
perform some tests on swaps, equities (for both developed and emerging markets) and
corporate bonds (for both developed and emerging markets) sampled on weekly, monthly
and yearly basis. Section 2 contains a literature review, Section 3 describes the dataset and
the methods we intend to adopt for our analysis, Section 4 reports the results we obtained
on the original data as well as on the time series of the rescaled returns, the last Section 5
draws the conclusions.

2. Literature Review

Distribution of returns is important because econometric models depend upon specific
distributional assumptions, and in the case of implied volatilities, on further assumptions
concerning the distributional and dynamic properties of stock market volatility. Wrong
assumptions call into question the robustness of findings based on those models. One may
always opt for an alternative approaches such as those based on squared returns over a
given horizon, that provides model-free unbiased estimates of the ex-post realized volatility.
Unfortunately, however, “squared returns are also a very noisy volatility indicator and
hence do not allow for reliable inference regarding the true underlying latent volatility”
Andersen et al. (2001). To overcome such limitations, Andersen et al. (2001) suggested a
model free volatility estimate by summing squares and cross-products of intraday high-
frequency returns. That approach, however, relies on a reliable high-frequency return
observation which, often is not guaranteed. Moreover, it is not necessarily true that the
characteristics of a time series are independent on the time horizon and the sampling
frequency so that, for example, one may extrapolate seeminglessly from daily data monthly
or yearly distributions. Furthermore, time horizon and sampling frequency not only may
influence the moments of a given distribution of returns but, also, the way in which data
are hierarchically and spatially organized Tumminello et al. (2007).

According to McNeil et al. (2015), a bivariate t-Student distribution can describe a pair
of daily stock returns. In fact, multivariate stock returns could be modeled by the means of
a t-Student copula Aas et al. (2009) and Nikoloulopoulos et al. (2012). However, t-Student
imposes symmetric dependence on the joint upper and lower tails which contrasts with
empirical studies, e.g., Ang and Chen (2002); Longin and Solnik (2001); Patton (2006).

Among alternatives, parametric approaches skew normal distributions, as introduced
by Azzalini (1985) and Henze (1986), have became quite popular because they suit well in
modeling skewed data defined as follows

f (z; θ) = 2ϕ(z)Φ(zθ) z ∈ R, (1)

where θ is the parameter controlling the skewness and ϕ and Φ denote the N(0, 1) are the
standard normal density and the normal cumulative distribution, respectively.

By further enhancing those distributions, Kim (2001) proposes a family of t-skew
distributions in terms of a scale mixture of skew-normal distributions.

The random variable X is said to be t-skew distributed with parameter θ and ν if its
probability density function is

f (x; θ, ν) = 2E[z1/2 ϕ(z1/2x)Φ(z1/2θx)|z] x ∈ R, (2)
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where z ∼ Γ(ν/2, 2/ν), ϕ and Φ are the standard normal density and the normal cumula-
tive distribution, respectively.

The salient features of the family of t-skew distributions are their mathematical
tractability, the inclusion of the normal law and the shape parameter regulating the skew-
ness, apart from the ability of fitting heavy-tailed and skewed data, scale mixtures of
skew-normal densities come from a family of t-skew distributions.

Such an extension allows for a continuous variation from normality to non-normality
and it has found a number of applications on fitting heavy-tailed and skewed data. Other
applications of such distributions are related to copula modeling. Yoshiba (2018) found
that the AC t-skew copula describes well the dependence structures of both “unfiltered
daily returns and GARCH or EGARCH filtered daily returns of the three stock indices:
the Nikkei225, S&P500 and DAX”. This is because financial time series are characterized
by asymmetry. For instance, Patton (2006) reported evidence that “the mark–dollar and
yen–dollar exchange rates are more correlated when they are depreciating against the
dollar than when they are appreciating”. A drawback of t-skew models is that it is more
difficult to handle compared to Gaussian distributions and that there is no closed form
analytic formula for computing the elements of the expected information matrix. However,
numerical methods are available, e.g., Martin et al. (2020).

Moreover, the multiple questions related to parametric models and model-free have
led to further development of observation-driven models such as the so-called dynamic
conditional score (DCS) Creal et al. (2013) where the updating of the score function is a
mechanism that acts as a kind of partitioning of the dataset Lavielle and Teyssiere (2006);
Orlando et al. (2020). DCS models, often based on t-skew distributions, have been conceived
for describing the distribution of returns Harvey (2013) and they find a number applications in
finance from forecasting Value at Risk (VaR) and expected shortfall (ES) Gao and Zhou (2016)
to FX Ayala and Blazsek (2019), from commercial and residential mortgage defaults Babii
et al. (2019) to hedging for crude oil future Gong et al. (2019). For a review, see Blazsek and
Licht (2020).

3. Data and Methods
3.1. Data

In order to have a representative dataset, we diversified the investigation across asset
classes (equity, bonds, swaps), maturity (from 1 month to 10 years), issuer (government,
corporate), market (developed, emerging). In Table 1, we report the data as retrieved from
Ice Data Indices and Bloomberg.
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Table 1. Dataset.

Index Code Description Asset Class Market Time Frame

a USBAAC USD Basis Swap 1Mv3M Swap Developed 12 February 2007–30 March 2020
b SPX S&P 500 Equity Developed 30 December 1927–29 May 2020
c IBOV Bovespa Equity Emerging 5 January 1927–29 May 2020
d BAMLCC0A2AATRIV AA US Corp.TR Bond Corporate Developed 23 December 1988–29 May 2020
e BAMLEM1BRRAAA2ACRPITRIV AAA-A Em. Mkt Corp TR Bond Corporate Emerging 8 January 1999–29 May 2020
f DGS3MO 3-M Treasury Const. Mty Bond Government Developed 11 January 1982–25 May 2020
g DGS10 10-Y Treasury Const. Mty Bond Government Developed 8 January 1962–25 May 2020

a: USD Basis Swap 1Mv3M (Bloomberg ticker USBAAC) returns which is a swapping 1 month (reference index US0001M) versus 3 months (reference index US0003M), taken from 12 February 2007 to 30 March 2020; b: S&P
500 index returns, taken from 30 December 1927 to 29 May 2020; c: Bovespa index returns, taken from 5 January 1990 to 29 May 2020; d: ICE BofA AA US Corporate Index Total Return Index Value [BAMLCC0A2AATRIV],
taken from 23 December 1988 to 29 May 2020; e: ICE BofA AAA-A Emerging Markets Corporate Plus Index Total Return Index Value [BAMLEM1BRRAAA2ACRPITRIV], taken from 8 January 1999 to 29 May 2020;
f: 3-Month Treasury Constant Maturity Rate [DGS3MO], taken from 11 January 1982 to 25 May 2020; g: 10-Year Treasury Constant Maturity Rate [DGS10], taken from 8 January 1962 to 25 May 2020.
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3.2. Volatility Rescaled Returns

Following Rogers (2018), we test if the rescaled log returns series of our dataset are or
not normally distributed. In order to rescale the (standardized) returns Xi, we let

X̃i+1 =
Xi+1

σ̂i+1
(3)

where
σ̂2

i+1 = β Y2 + (1− β)σ̂i

with
Y = max(−Kσ̂i, min(Kσ̂i, Xi)),

and

σ̂2
0 =

1
n

n

∑
i=1

X2
i .

Firstly, we set the parameters (K, β) equal to (4, 0.025), as suggested by the author. In a
second moment, we compute (K∗, β∗) by solving the following optimization problem

(K∗, β∗) = arg
(

min
(K,β)

∑
i

(
Fi − F̂i(K, β)

)2
)

, (4)

where F̂ is the empirical CDF of the series defined in (3) and F is the (standard) normal
CDF (evaluated at the same points of F̂).

3.3. Methods

In this section, we describe the statistical procedure that will be carried out in previous
Section 3.1 on different return time series. For each series, we analyze weekly, monthly and
yearly. As yearly data may display high levels of autocorrelation that can alter model’s
forecasts, we randomly shuffle those returns and we check their properties as well.

Among the analysis we perform, we mention the moments, the histograms and the so-
called quantile-quantile (Q-Q) plot Wilk and Gnanadesikan (1968) where we consider the
normal distribution versus the t-skew distribution, etc.

3.3.1. Analysis on the Normality of Returns
Kolmogorov–Smirnov Normality Test

To confirm evidence on the graphical analysis resulting from the (Q-Q) plot, we use
the Kolmogorov–Smirnov normality (K-S) test Kolmogorov (1933); Stephens (1992). It
is a nonparametric test of the equality of probability distributions that can be used to
compare a sample with one reference probability distribution (one-sample K–S test). The
Kolmogorov–Smirnov statistic is

D = sup
x∈R
|F̂(x)− F(x)|,

where F̂(x), F(x) are the empirical distribution function and the theoretical distribution
chosen as benchmark, respectively. For large n (being n the sample size), the null hypothesis
H0 (i.e., the sample is drawn from the reference distribution) is rejected at level α if

D >

√
− ln(α/2)

n
.

Notice that in our tests we use α = 0.01, as usual.
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Dvoretzky–Kiefer–Wolfowitz Bounds

A second comparison between the empirical and the normal CDF for a given time
series, is based on the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality Dvoretzky et al. (1956).
To assess how close the above-mentioned CDFs are, given ε > 0, one has to solve the
following one-sided estimate

P
(

sup
x∈R

(
F̂(x)− F(x)

)
> ε

)
≤ e−2nε2 ∀ε ≥

√
ln 2
2n

,

which also implies a two-sided estimate

P
(

sup
x∈R
|F̂(x)− F(x)| > ε

)
≤ 2e−2nε2 ∀ε > 0.

This strengthens the Glivenko–Cantelli Theorem Tucker (1959) by quantifying the rate
of convergence as n goes to infinity; it also estimates the tail probability of the Kol-
mogorov–Smirnov statistic D.

The interval that contains the true CDF F(x), with probability 1− α is often specified
as [F̂(x)− ε, F̂(x) + ε], where

ε =

√
ln(2/α)

2n
.

Finally we introduce the variable, named "DKW exceeds", which enumerates the percentage
of points of F that exceed the DKW upper and lower bounds.

3.3.2. Comparison with Other Distributions

In order to enforce our thesis, we compare the t-skew distribution with the follow-
ing distributions.

• Generalized hyperbolic (GH) distribution,

f (x; λ, α, β, δ, µ) =
γλ

√
2π δλ+1γKλ

· αλ+1/2
√

δ2 + (x− µ)2 Kλ−1/2

(δ2 + (x− µ)2)1/4−λ/2 (x ∈ R), (5)

where β ∈ R is the asymmetry parameter, δ ∈ R is the scale parameter, µ ∈ R is the
location, γ =

√
α2 − β2, α ∈ R, (α2 > β2) and Kλ (λ ∈ R) denotes the modified

Bessel function of the second kind.
• Generalized Pareto (GP) distribution,

(1 + ξ
( x−µ

σ

)
)−(1/ξ+1)

σ
(x > µ), (6)

where ξ ∈ R is the shape parameter, σ ∈ R+ is the scale parameter and µ ∈ R is the
location.

• Exponential distribution, obtained by the GP distribution (6) when ξ = µ = 0.

3.3.3. Analysis on the Autocorrelation
Ljung-Box Q-Test

Generally, one can assess the presence of autocorrelation at a given lag by the sam-
ple autocorrelation function (ACF) and by the partial autocorrelation function (PACF).
Among the more qualitative tests used to detect the autocorrelation, we adopt the Ljung-
Box Q-test Ljung and Box (1978) and the ARCH test Engle (1982). The null hypothesis of
the Ljung-Box Q-test is that the first m autocorrelations are jointly zero, i.e.,

H0 : ρ1 = ρ2 = ... = ρm = 0.
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Hassani and Silva (2015); Hassani and Yeganegi (2019) warn on the sensitivity of the
test to large values of m. In our case we avoid the problem by setting m = ln(n), where n
is the sample size. The Ljung-Box test statistics are given by

Q(m) = n(n + 2)
m

∑
h=1

ρ2
h

n− h
; (7)

it follows a χ2
m distribution.

ARCH Test

An uncorrelated time series can still be seriously dependent because of the dynamic
conditional variance process. A time series whose squared residuals exhibit conditional het-
eroscedasticity or autocorrelation is said to have autoregressive conditional heteroscedastic
(ARCH) effect. The ARCH test is a Lagrange multiplier test to assess the significance
of ARCH effects. Under the assumption that the squared residuals e2

t follow an AR(m)
process, i.e.,

e2
t = a0 +

n

∑
h=1

ahe2
t−h + εt,

being εt a white noise, the ARCH test null hypothesis becomes

H0 : a0 = a1 = ... = am = 0.

One way to choose m is to compare log-likelihood values for different choices of m, e.g., the
likelihood ratio test or AIC-BIC information criteria.

3.3.4. Analysis on the Stationarity
KPSS Test

In order to understand whether returns follow a t-skew distribution, we investigate
about the presence of unitary roots, i.e., about the absence of stationarity, and consequently
the persistence of fat tail, that is in contrast with the normal distribution. Among all, we
choose the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test, which assesses the null
hypothesis that a (univariate) time series xt is trend stationary against the alternative that
it is a nonstationary unit root process. This test uses the stochastic model{

xt = yt + θt + ε1,t

yt = yt−1 + ε2,t,

where θ is the trend coefficient, ε1,t is a stationary process and ε2,t is an independent and
identically distributed process with mean 0 and variance σ2.

The null hypothesis is σ2 = 0, meaning that yt is a constant random walk. The alterna-
tive hypothesis is σ2 > 0 that introduces the unit root in the random walk. The test statistic
is

∑n
t=1 S2

t
(τ n)2 ,

where St is the partial sum of the (absolute) errors coming from the regression on xt, n is
the sample size and τ2 is the Newey–West estimate of the long-run variance.

Hassani Test

The Hassani’s-1/2 Theorem in Hassani (2009); Hassani and Yeganegi (2019) states that
the sum of sample autocorrelation function for any stationary time series with arbitrary
length n ≥ 2 and lag h ≥ 1 is

SACF =
n−1

∑
h=1

ρh = −1
2

. (8)
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Note that ρ(h) for large h tends to one. In fact, if h = n− 1, there is only one sample.
Therefore, a rule of thumb is not to evaluate ρ(h) for h > n/3.

4. Empirical Results

In this section, we report the statistical properties of the considered times series and
then we perform some additional analysis ad detailed in Sec. on the original, averaged and
volatility rescaled returns on the USBAAC, respectively. Further analyses for the remaining
time series are reported in the Appendix A.

4.1. Statistical Properties and Analysis on Original Log Returns

With regard to statistical properties of the considered time series, Table 2 summarizes
the moments. As expected, log returns are not normally distributed and they are heavily
skewed. Moreover, Table 3 shows that in most cases there is statistical evidence to reject
the null hypothesis of trend stationarity. Finally, for all time series considered SACF = 0.5.

Table 2. Statistics on returns.

Statistical Characteristics of Weekly Returns

Mom.\Des. USD Swap 1Mv3M S&P 500 Bovespa AA US Corp.TR Em Mk 3m Tbill 10Y Tbond
St. Dev. 0.0480 0.0250 0.0616 0.0054 0.0051 0.0001 0.0262
Mean −7.0055 × 10−5 0.0011 0.0092 0.0012 0.0012 0.0001 −0.0006
Kurtosis 27.4840 9.6489 19.7571 19.4851 23.2641 2.7099 26.0274
Skew 0.3850 −0.6135 1.5259 −1.3492 −2.2882 0.5302 −1.3782

Statistical Characteristics of Monthly Returns

Mom.\Des. USD Swap 1Mv3M S&P 500 Bovespa AA US Corp.TR Em Mk 3m Tbill 10Y Tbond
St. Dev. 0.0737 0.0540 0.1302 0.0125 0.0144 3.4106 × 10−4 0.0591
Mean 3.3382 × 10−4 0.0042 0.0355 0.0049 0.0047 4.2310 × 10−4 −0.0023
Kurtosis 8.3043 12.4736 8.7592 5.7354 39.0341 2.6788 25.9171
Skew −0.6069 −0.4424 1.0511 −0.3696 −3.7233 0.52482 −2.1663

Statistical Characteristics of Yearly Returns

Mom.\Des. USD Swap 1Mv3M S&P 500 Bovespa AA US Corp.TR Em Mk 3m Tbill 10Y Tbond
St. Dev. 0.2386 0.1954 0.9815 0.0504 0.0505 0.0040 0.2029
Mean −0.0046 0.0526 0.4455 0.0602 0.0588 0.0052 −0.0170
Kurtosis 6.3841 6.9968 8.3539 2.5708 5.2510 2.0359 7.7485
Skew 0.8520 −1.1589 2.4618 −0.0347 0.1058 0.3025 −1.0258
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Table 3. KPSS test to assess if the time series are trend stationary against the alternative of a unit root. The response is a boolean where 0 indicates that there is no evidence to reject the null
hypothesis, and the value 1 is the opposite case.

USBAAC S&P 500 Bovespa US Corp. EmMkt Corp. DGS3M DGS10Y

resp. p-Value resp. p-Value resp. p-Value resp. p-Value resp. p-Value resp. p-Value resp. p-Value
Weekly 1 0.0048 1 0 1 0 1 0 1 0 1 0 1 0
Monthly 1 0.0046 1 0 1 0 1 0 0 0.0405 1 0 1 0
Yearly 0 0.6661 0 0.7321 0 0.0767 1 0 1 0 1 0 1 0
Yearly Shuffled 1 0 1 0 1 0 1 0 1 0 1 0 1 0
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USD Basis Swap 1Mv3M (USBAAC) Index: Original Data

In this section, we pick one of the first time series listed in Table 1 and we report the
results we obtained from it. For sake of readability, the analyses on the remaining time
series are available in Appendix A.

To understand the shape of the distribution of log returns, let us start with a visual
inspection. Figure 1 shows how sampling may influence dramatically the resulting distri-
bution.

Figure 1. USBAAC log-returns histograms. Weekly, monthly and yearly sampling generates different distributions. In terms
of distributions, there is no difference between shuffled and not shuffled yearly log returns.

As sampling is critical, for an investor with a month or a year horizon a consistent
time horizon would be suitable. The next question, then, is to check between the normal
distribution and t-skew which one fits better the data. Figures 2 and 3 show the Q-Q plots
on the monthly and yearly log-returns, respectively. In both cases, the t-skew performs
better than the Gaussian with the exception of some outliers.

The last check on the normality is performed by comparing the empirical CDF versus
standard normal CDF. Once more, Figure 4 shows that weekly, monthly and yearly log
returns do not seem to be normally distributed. The alternative t-skew, instead, is more
likely as shown in Table 4 across all considered distributions.

Table 4. K-S test to detect the original distribution. The response is a boolean where 0 indicates that there is no evidence to
reject the null hypothesis, and the value 1 is the opposite case.

Normal t-Skew Gen. Hyperbolic Gen. Pareto Exp. Pareto

resp. p-Value DKW Exceeds resp. p-Value resp. p-Value resp. p-Value resp. p-Value
Weekly 1 1.8548 × 10−25 75.19% 0 0.7614 0 0.7115 1 0 1 0
Monthly 1 6.0526 × 10−5 30.01% 0 0.8750 0 0.8683 1 0 1 0

Yearly 1 7.1011 × 10−11 45.09% 0 0.0376 1 0 1 0 1 0

Yearly Shuffled 1 7.1011 × 10−11 45.09% 0 0.0376 1 0 1 0 1 0
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Figure 2. USBAAC weekly and monthly log-returns Q-Q plots. This is the graphic representation of distribution quantiles
comparing the CDF of the observed time series, which is unknown, a priori, with that of a specified distribution, chosen as
benchmark. If the observed variable follows the theoretical distribution chosen, the Q-Q plot thickens across the line that
connects the first and third quantiles of the data.
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Figure 3. USBAAC yearly and yearly randomly shuffled log-returns Q-Q plots. In both cases, distributions do not
look Gaussian.
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We earlier discussed the interconnectedness between sampling and distributions. We
also mentioned that it would be worth to align the time horizon of an investment with
sampling as those returns (and their distributions) are those relevant. The problem with
yearly returns is that they may be affected by autocorrelation. To this end, one may resolve
to the randomly shuffled. Figure 5 shows that, by shuffling the returns, the autocorrelation
of yearly data looks similar to the one of weekly and monthly performance. Finally, Table 5
confirms the finding. As mentioned, in Section 3.3.3 the Ljung-Box test could be sensitive
to large values of m. This is depicted in Table 5 where the response changes for weekly,
monthly and yearly shuffled returns. Anyway, as we set m = ln(n), we do not have
this problem.
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Figure 5. USBAAC log-returns autocorrelations.
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Table 5. Ljung-Box Q-test and ARCH test to detect autocorrelation. The response is a boolean where
0 indicates that there is no evidence to reject the null hypothesis, and the value 1 is the opposite case.

Ljung-Box Q-Test ARCH Test

m = ln(n) m = (n − 1)

resp. p-Value resp. p-Value resp. p-Value
Weekly 1 1.3188 × 10−8 0 0.9282 1 1.5504 × 10−12

Monthly 1 0.0127 0 0.9693 1 5.0823 × 10−6

Yearly 1 0 1 0 1 0
Yearly Shuffled 1 0.0149 0 0.9900 0 0.6897

With regard to the selection of a specific distribution, Table 6 shows that the most
indicated are the t-skew and the generalized hyperbolic while the Gaussian, the generalized
Pareto and the exponential distributions do not seem to fit.

Table 6. K-S test to detect the original distribution. The response is a boolean where 0 indicates that there is no evidence to
reject the null hypothesis, and the value 1 is the opposite case.

Normal t-skew Gen. Hyperbolic Gen. Pareto Exp. Pareto

resp. p-Value DKW Exceeds resp. p-Value resp. p-Value resp. p-Value resp. p-Value
Weekly 1 1.6502 × 10−19 74.92% 0 0.0482 0 0.7256 1 0 1 0

Monthly 1 8.3615 × 10−9 58.32% 0 0.1985 0 0.9714 1 0 1 0
Yearly 1 2.7038 × 10−30 68.55% 1 8.6098 × 10−7 1 0 1 0 1 0
Yearly Shuffled 1 2.7038 × 10−30 68.55% 1 8.6099 × 10−7 1 0 1 0 1 0

4.2. Statistical Properties and Analysis on Averaged Log Returns

In this section, instead of considering the punctual values as with the previous section,
we carry out our analysis on monthly and yearly averages to see whether this changes the
findings. To this end, the monthly returns are obtained by averaging 4 non overlapping
weekly returns, and the yearly returns are obtained by averaging 12 non overlapping
monthly returns. This should reduce the ARCH effect, the autocorrelation and should
give better results in favour of normality tests. However, the results confirm a persistency
of autocorrelation, well, as a better fit through the t-skew distribution; while the gain is
limited only to the ARCH test.

USD Basis Swap 1Mv3M (USBAAC) Index: Averaged Log Returns

Table 7 tests the autocorrelation for the USBAAC averaged returns while Table 8 checks
the best fit across the considered distributions. As the results do not differ substantially
from those reported in Section 4.1, we do not repeat this analysis over the remaining
time series.

Table 7. Ljung-Box Q-test and ARCH test to detect autocorrelation for the average series. The re-
sponse is a boolean where 0 indicates that there is no evidence to reject the null hypothesis, and the
value 1 is the opposite case.

Ljung-Box Q-Test ARCH Test

m = ln(n) m = (n − 1)

resp. p-Value resp. p-Value resp. p-Value
Monthly 1 1.3188 × 10−8 0 0.9654 0 0.4820
Yearly 1 0.0071 0 0.7184 0 0.6229
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Table 8. K-S test to detect the original distribution for the average series. The response is a boolean where 0 indicates that
there is no evidence to reject the null hypothesis, and the value 1 is the opposite case.

Normal t-skew Gen. Hyperbolic Gen. Pareto Exp. Pareto

resp. p-Value DKW Exceeds resp. p-Value resp. p-Value resp. p-Value resp. p-Value
Av. Monthly 1 0.0003 75.19% 0 0.8706 0 0.0414 1 0 1 0
Av. Yearly 0 0.5382 24.43% 0 0.9961 0 0.0752 1 0 1 0

4.3. Statistical Properties and Analysis on Volatility Rescaled Log Returns

The last check we performed is on time series rescaled by their volatilities. As men-
tioned, there are studies which claim that log returns are normally distributed when
rescaled Andersen et al. (2001); Rogers (2018). In Tables 9 and 10, we report the K-S test on
the rescaled time series. As shown, there is little evidence supporting Gaussian distribution.

Table 9. K-S test to detect the normality of the rescaled returns when (K, β) = (4, 0.025) (see
Rogers (2018)).

Normal
Index Sampling resp. p-Value DKW Exceeds

USBAAC

Weekly 1 5.0443 × 10−15 67.16%
Monthly 1 5.3363 × 10−4 25.74%
Yearly 1 1.0622 × 10−7 28.05%
Yearly Shuffled 1 2.2856 × 10−11 54.27%

S&P 500

Weekly 1 2.8341 × 10−9 57.24%
Monthly 1 1.3090 × 10−5 46.72%
Yearly 1 3.3137 × 10−40 70.12%
Yearly Shuffled 1 5.0050 × 10−30 69.52%

Bovespa

Weekly 1 5.7367 × 10−4 16.51%
Monthly 0 0.0229 0%
Yearly 1 5.2297 × 10−7 33.15%
Yearly Shuffled 1 7.6801 × 10−104 80.69%

US Corp.

Weekly 0 0.0199 0%
Monthly 0 0.1236 0%
Yearly 1 8.4622 × 10−7 34.55%
Yearly Shuffled 0 0.1165 0%

EmMkt Corp.

Weekly 1 1.2991 × 10−5 42.61%
Monthly 1 8.7935 × 10−4 8.27%
Yearly 1 3.2051 × 10−7 32.73%
Yearly Shuffled 0 0.0888 0%

DGS3M

Weekly 1 5.5608 × 10−10 51.97%
Monthly 1 1.0300 × 10−119 86.22%
Yearly 1 1.1038 × 10−62 75.85%
Yearly Shuffled 1 8.6683 × 10−122 89.42%

DGS10Y

Weekly 0 0.0101 0%
Monthly 1 0.0038 1.19%
Yearly 1 1.0023 × 10−6 44.23%
Yearly Shuffled 1 2.0652 × 10−7 53.54%
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Table 10. K-S test to detect the normality of the rescaled returns with (K∗, β∗) (see Equation (4)).

Normal
Index Sampling resp. p-Value DKW Exceeds K∗ β∗

USBAAC

Weekly 1 1.5841 × 10−5 33.76% 2.0166 0.3653
Monthly 1 0.0028 6.62% 12.9821 0.3374
Yearly 1 0.0063 1.22% 6.7090 0.1032
Yearly Shuffled 1 2.1026 × 10−10 40.24% 7.6792 0.0053

S&P 500

Weekly 1 1.0061 × 10−7 44.27% 8.3221 0.1905
Monthly 1 2.0385 × 10−5 32.34% 9.5246 0.1070
Yearly 1 1.2624 × 10−24 57.09% 5.5153 0.0050
Yearly Shuffled 1 1.0678 × 10−27 73.56% 8.5980 0.0393

Bovespa

Weekly 1 0.0029 8.89% 6.7990 0.1540
Monthly 0 0.0260 0% 1.1396 0.1014
Yearly 0 0.5326 0% 5.2612 0.0116
Yearly Shuffled 1 1.3433 × 10−98 80.01% 3.9341 0.0293

US Corp.

Weekly 0 0.0626 0% 9.6300 0.1515
Monthly 0 0.2102 0% 7.8913 0.0015
Yearly 0 0.4253 0% 5.5781 0.0040
Yearly Shuffled 0 0.0886 0% 2.3842 0.0948

EmMkt Corp.

Weekly 1 0.0016 5.95% 11.7189 0.2936
Monthly 0 0.0109 0% 4.6068 0.3794
Yearly 1 1.3835 × 10−4 22.16% 5.9900 0.0044
Yearly Shuffled 0 0.0234 0% 4.5304 0.0279

DGS3M

Weekly 1 2.3686 × 10−10 49.58% 4.2862 0.0244
Monthly 1 1.1081 × 10−29 64.83% 5.0489 0.0161
Yearly 1 1.4193 × 10−67 70.98% 33.7053 0.0185
Yearly Shuffled 1 2.9770 × 10−48 73.56% 62.4370 0.1358

DGS10Y

Weekly 0 0.2669 0% 7.4724 0.1314
Monthly 1 0.0060 0.26% 7.6785 0.1516
Yearly 1 0.0024 2.54% 5.3205 0.0047
Yearly Shuffled 1 4.2387 × 10−7 40.33% 10.0382 0.0009

5. Conclusions

According to the tests carried out on our dataset, the distributions of log-returns do
not seem to be normally distributed. The same applies on the returns standardized by
the standard deviation. In a different context, Tiwari and Gupta (2019) found that the
Jarque–Bera test strongly rejects the hypothesis of Gaussian distribution for all considered
time series concerning G7 stock markets.

A more realistic work hypothesis is that time series follow a t-skew distribution. The t-
skew distribution can be seen as a mixture of skew-normal distributions Kim (2001) which
generalize the normal distribution thanks to an extra parameter regulating the skewness.
By construction, then, they can model heavy tails and skews that are common in financial
markets. Thus, their adoption in finance is gaining momentum for modeling distributions
Harvey (2013) and risk Gao and Zhou (2016). Further, t-skew has the power to link-up with
observation-driven models such as the dynamic conditional score (DCS) Creal et al. (2013)
or based on data partitioning Orlando et al. (2019, 2020). This paper tries to help in gaining
insights on returns’ distributions and on the most suitable way of fitting them. According to
the empirical results we reported, the distributions that fit better the data are the t-skew and
the hyperbolic Pareto. As the latter is more difficult to handle, this research suggests that
the t-skew represents a suitable alternative. That is relevant in terms of policy implications
because risk management or option pricing Mininni et al. (2020) should rely on models
able to describe fat tails, skewed distributions and jumps in assets’ dynamics Orlando
et al. (2018) rather than on Gaussian distributions that may underestimate the extremes
(and leave the investors exposed to unexpected losses). For those reasons, regulators and
financial institutions should pay particular attention to model risk (i.e., risk resulting from
using insufficiently accurate models) when they choose a particular distribution.
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Last but not least, t-skew models could be used as linkages between financial markets.
To this end, Yoshiba (2018) provides a solution for computing the MLE and keeping the
correlation matrix positive semi-definite during the optimization process.
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Appendix A

In the following, we report the analysis we have performed on the indices from
(b) through (g) of Table 1. Figures A1, A6, A11, A16, A21 and A26 display log-returns
histograms. Figures A2, A7, A12, A17, A22 and A27 show monthly and yearly log-returns
Q-Q plots. Figures A3, A8, A13, A18, A23 and A28 exhibit yearly windowed and yearly
windowed shuffled log-returns Q-Q plots. Figures A4, A9, A14, A19, A24 and A29 show
the empirical CDF versus the standard normal CDF. Figures A5, A10, A15, A20, A25 and
A30 display log-returns autocorrelations. Tables A1, A3, A5, A7, A9 and A11 report the K-S
test to detect the original distribution. Finally, Tables A2, A4, A6, A8, A10 and A12 exhibit
the Ljung-Box Q-test and ARCH test to detect autocorrelation.

Appendix A.1. Analysis on S&P 500 Index

Figure A1. S&P 500 log-returns histograms.
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Figure A2. S&P 500 monthly and yearly log-returns Q-Q plots.
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Figure A3. S&P 500 yearly windowed and yearly windowed shuffled log-returns Q-Q plots.
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Figure A4. Empirical CDF versus standard normal CDF for S&P 500 returns. The dotted black lines represent the DKW
upper and lower bounds.
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Figure A5. S&P 500 log-returns autocorrelations.
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Table A1. K-S test to detect the original distribution. The response is a boolean where 0 indicates that there is no evidence
to reject the null hypothesis, and the value 1 is the opposite case.

Normal t-skew Gen. Hyperbolic Gen. Pareto Exp. Pareto

resp. p-Value DKW Exceeds resp. p-Value resp. p-Value resp. p-Value resp. p-Value
Weekly 1 1.6502 × 10−19 74.92% 0 0.0482 0 0.7256 1 0 1 0

Monthly 1 8.3615 × 10−9 58.32% 0 0.1985 0 0.9714 1 0 1 0
Yearly 1 2.7038 × 10−30 68.55% 1 8.6098 × 10−7 1 0 1 0 1 0
Yearly Shuffled 1 2.7038 × 10−30 68.55% 1 8.6098 × 10−7 1 0 1 0 1 0

Table A2. Ljung-Box Q-test and ARCH test to detect autocorrelation. The response is a boolean where
0 indicates that there is no evidence to reject the null hypothesis, and the value 1 is the opposite case.

Ljung-Box Q-Test ARCH Test

m = ln(n) m = (n − 1)

resp. p-Value resp. p-Value resp. p-Value

Weekly 1 1.9720 × 10−5 1 0 1 0
Monthly 1 0.0031 1 0 1 0
Yearly 0 0.7234 1 0 0 0.2308
Yearly Shuffled 1 0 0 0.9306 1 0

Appendix A.2. Analysis on Bovespa Index

Figure A6. Bovespa log-returns histograms.
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Figure A7. Bovespa monthly and yearly log-returns Q-Q plots.
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Figure A8. Bovespa yearly windowed and yearly windowed shuffled log-returns Q-Q plots.
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Figure A9. Empirical CDF versus standard normal CDF for Bovespa returns. The dotted black lines represent the DKW
upper and lower bounds.
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Figure A10. Bovespa log-returns autocorrelations.
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Table A3. K-S test to detect the original distribution. The response is a boolean where 0 indicates that there is no evidence
to reject the null hypothesis, and the value 1 is the opposite case.

Normal t-skew Gen. Hyperbolic Gen. Pareto Exp. Pareto

resp. p-Value DKW Exceeds resp. p-Value resp. p-Value resp. p-Value resp. p-Value
Weekly 1 4.0876 × 10−19 69.62% 0 0.7870 0 0.9870 1 0 1 0

Monthly 1 8.4152 × 10−7 31.55% 0 0.6679 0 0.9977 1 0 1 0

Yearly 1 6.7479 × 10−103 81.43% 1 3.7439 × 10−12 1 0 1 0 1 0

Yearly Shuffled 1 6.7479 × 10−103 81.43% 1 3.7439 × 10−12 1 0 1 0 1 0

Table A4. Ljung-Box Q-test and ARCH test to detect autocorrelation. The response is a boolean where
0 indicates that there is no evidence to reject the null hypothesis, and the value 1 is the opposite case.

Ljung-Box Q-test ARCH test

m = ln(n) m = (n − 1)

resp. p-Value resp. p-Value resp. p-Value
Weekly 1 0 1 0 1 0
Monthly 1 0 1 0 1 1.3679 × 10−4

Yearly 1 0 1 0 1 0
Yearly Shuffled 0 0.8933 0 0.5147 0 0.7809

Appendix A.3. Analysis on US Corporate Index

Figure A11. US Corp. log-returns histograms.
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Figure A12. US Corp. monthly and yearly log-returns Q-Q plots.
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Figure A13. US Corp. yearly windowed and yearly windowed shuffled log-returns Q-Q plots.
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Figure A14. Empirical CDF versus standard normal CDF for US Corp. returns. The dotted black lines represent the DKW
upper and lower bounds.
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Figure A15. US Corp. log-returns autocorrelations.



Risks 2021, 9, 88 25 of 35

Table A5. K-S test to detect the original distribution. The response is a boolean where 0 indicates that there is no evidence
to reject the null hypothesis, and the value 1 is the opposite case.

Normal t-skew Gen. Hyperbolic Gen. Pareto Exp. Pareto

resp. p-Value DKW Exceeds resp. p-Value resp. p-Value resp. p-Value resp. p-Value
Weekly 1 0.0063 0.73% 0 0.3201 0 0.9748 1 0 1 0
Monthly 0 0.1877 0% 0 0.9965 0 0.9900 1 0 1 0
Yearly 0 0.0712 0% 0 0.0698 1 0 1 0 1 0
Yearly Shuffled 0 0.0712 0% 0 0.0698 1 0 1 0 1 0

Table A6. Ljung-Box Q-test and ARCH test to detect autocorrelation. The response is a boolean where
0 indicates that there is no evidence to reject the null hypothesis, and the value 1 is the opposite case.

Ljung-Box Q-Test ARCH Test

m = ln(n) m = (n − 1)

resp. p-Value resp. p-Value resp. p-Value
Weekly 1 2.4980 × 10−14 1 0 1 6.0678 × 10−4

Monthly 0 0.7075 0 0.2615 1 4.8873 × 10−5

Yearly 1 0 1 0 1 0
Yearly Shuffled 0 0.2325 0 0.5581 0 0.7833

Appendix A.4. Analysis on Emerging Markets Corporate Plus Index

Figure A16. EmMkt Corp. log-returns histograms.
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Figure A17. EmMkt Corp. monthly and yearly log-returns Q-Q plots.
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Figure A18. EmMkt Corp. yearly windowed and yearly windowed shuffled log-returns Q-Q plots.
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Figure A19. Empirical CDF versus standard normal CDF for EmMkt Corp. returns. The dotted black lines represent the
DKW upper and lower bounds.
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Figure A20. EmMkt Corp. log-returns autocorrelations.
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Table A7. K-S test to detect the original distribution. The response is a boolean where 0 indicates that there is no evidence
to reject the null hypothesis, and the value 1 is the opposite case.

Normal t-skew Gen. Hyperbolic Gen. Pareto Exp. Pareto

resp. p-Value DKW Exceeds resp. p-value resp. p-Value resp. p-Value resp. p-Value
Weekly 1 8.3270 × 10−8 55.68% 0 0.8814 0 0.997 1 0 1 0
Monthly 1 0.0012 11.68% 0 0.9927 0 0.9999 1 0 1 0
Yearly 1 5.8695 × 10−4 8.54% 0 0.2340 1 0 1 0 1 0
Yearly Shuffled 0 0.0138 0% 0 0.3056 1 0 1 0 1 0

Table A8. Ljung-Box Q-test and ARCH test to detect autocorrelation. The response is a boolean where
0 indicates that there is no evidence to reject the null hypothesis, and the value 1 is the opposite case.

Ljung-Box Q-Test ARCH Test

m = ln(n) m = (n − 1)

resp. p-Value resp. p-Value resp. p-Value
Weekly 1 0 1 0 1 0
Monthly 0 0.7652 0 0.9976 1 0.0018
Yearly 1 0 1 0 1 0
Yearly Shuffled 0 0.6017 1 0 0 0.9606

Appendix A.5. Analysis on 3-Month Treasury Constant Maturity Rate

Figure A21. DGS3M log-returns histograms.
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Figure A22. DGS3M monthly and yearly log-returns Q-Q plots.

Figure A23. DGS3M yearly windowed and yearly windowed shuffled log-returns Q-Q plots.
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Figure A24. Empirical CDF versus standard normal CDF for DGS3M returns. The dotted black lines represent the DKW
upper and lower bounds.
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Figure A25. DGS3M log-returns autocorrelations.
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Table A9. K-S test to detect the original distribution. The response is a boolean where 0 indicates that there is no evidence
to reject the null hypothesis, and the value 1 is the opposite case.

Normal t-skew Gen. Hyperbolic Gen. Pareto Exp. Pareto

resp. p-Value DKW Exceeds resp. p-Value resp. p-Value resp. p-Value resp. p-Value
Weekly 1 1.6567 × 10−20 47.48% 1 1.7558 × 10−20 1 1.46 × 10−20 1 0 1 0

Monthly 1 1.0664 × 10−71 75.69% 1 3.6783 × 10−7 1 0 1 0 1 0

Yearly 1 2.0644 × 10−286 79.83% 1 2.2533 × 10−26 1 0 1 0 1 0
Yearly Shuffled 1 3.0634 × 10−297 80.24% 1 1.3943 × 10−28 1 0 1 0 1 0

Table A10. Ljung-Box Q-test and ARCH test to detect autocorrelation. The response is a boolean
where 0 indicates that there is no evidence to reject the null hypothesis, and the value 1 is the
opposite case.

Ljung-Box Q-Test ARCH Test

m = ln(n) m = (n − 1)

resp. p-Value resp. p-Value resp. p-Value
Weekly 1 0 1 0 1 0
Monthly 1 2.4962 × 10−4 1 0 1 0.0283
Yearly 1 0 1 0 1 0
Yearly Shuffled 1 3.0097 × 10−5 0 0.6966 1 0

Appendix A.6. Analysis on 10-Year Treasury Constant Maturity Rate

Figure A26. DGS10Y log-returns histograms.
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Figure A27. DGS10Y monthly and yearly log-returns Q-Q plots.
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QQ Plot of Sample Data versus St. Normal - Yearly Shuffled Log Ret.
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Figure A28. DGS10Y yearly windowed and yearly windowed shuffled log-returns Q-Q plots.
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Figure A29. Empirical CDF versus standard normal CDF for DGS10Y returns. The dotted black lines represent the DKW
upper and lower bounds.
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Figure A30. DGS10Y log-returns autocorrelations.

Table A11. K-S test to detect the original distribution. The response is a boolean where 0 indicates that there is no evidence
to reject the null hypothesis, and the value 1 is the opposite case.

Normal t-skew Gen. Hyperbolic Gen. Pareto Exp. Pareto

resp. p-Value DKW Exceeds resp. p-Value resp. p-Value resp. p-Value resp. p-Value
Weekly 1 1.2613 × 10−19 74.57% 0 0.7075 0 0.9404 1 0 1 0

Monthly 1 2.3517 × 10−6 39.47% 0 0.93367 0 0.9775 1 0 1 0
Yearly 1 3.2079 × 10−7 41.77% 1 0.0020 1 0 1 0 1 0
Yearly Shuffled 1 3.2079 × 10−7 41.77% 1 0.0020 1 0 1 0 1 0
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Table A12. Ljung-Box Q-test and ARCH test to detect autocorrelation. The response is a boolean
where 0 indicates that there is no evidence to reject the null hypothesis, and the value 1 is the
opposite case.

Ljung-Box Q-Test ARCH Test

m = ln(n) m = (n − 1)

resp. p-Value resp. p-Value resp. p-Value
Weekly 1 0 0 0.9879 1 0
Monthly 1 0.0248 0 0.9987 0 0.0721
Yearly 1 0 1 0 1 0
Yearly Shuffled 0 0.2294 1 0 0 0.5526
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