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Abstract: Although a large number of mortality projection models have been proposed in the
literature, relatively little attention has been paid to a formal assessment of the effect of model
uncertainty. In this paper, we construct a Bayesian framework for embedding more than one
mortality projection model and utilise the finite mixture model concept to allow for the blending
of model structures. Under this framework, the varying features of different model structures can
be exploited jointly and coherently to have a more detailed description of the underlying mortality
patterns. We show that the proposed Bayesian approach performs well in fitting and forecasting
Japanese mortality.

Keywords: finite mixture model; Bayesian modelling; Lee–Carter model; Cairns-Blade-Dowd model;
age-cohort model

1. Introduction

In the demographic, actuarial, and insurance literature, the two main branches of
mortality projection models are the Lee and Carter (1992) model family and the Cairns et al.
(2006) (CBD) model family. There have been a large number of their variations, extensions,
and applications to date (e.g., Lee 2000; Cairns et al. 2009; Haberman and Renshaw 2011).
In most of these works, the selection of mortality projection models is mainly based on
certain standard statistical criteria, such as the Akaike information criterion (AIC), Bayesian
information criterion (BIC), mean square error (MSE), and mean absolute percentage error
(MAPE). Once the “best model” is determined, the common practice is to simply apply the
selected model singly to the problem under consideration (e.g., demographic projection,
longevity risk pricing and hedging, capital assessment). While this approach is reasonably
sound in its own right, it ignores the fact that there is still much uncertainty in actually how
close the chosen model is to the true underlying mechanism and that the other suboptimal
models may still capture useful aspects that are omitted by the selected model. It would
be a serious waste if the other model candidates are simply discarded after putting in all
the effort on fitting them to the data and only ranking them by a pre-specified, sometimes
subjective, criterion.

There has been relatively little attention on a more proper assessment of the effect of
model uncertainty. In this paper, we develop a fully Bayesian framework for incorporating
multiple mortality projection models, including the Lee–Carter model, CBD model (with
curvature), and age-cohort model. These models would depict different aspects of the
data, and it would be useful to integrate them into a coherent framework. In particular,
we employ the finite mixture model concept (e.g., Marin et al. 2005; Frühwirth-Schnatter
et al. 2018) to estimate the probability of a model candidate and also blend the model
structures in a formal manner. More specifically, the overall density function is expressed
as a weighted average of the density functions of the individual components. Another
perspective of using a finite mixture model is to take it as a semi-parametric approach that
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provides a more flexible way for handling complex data patterns, in contrast to simply ap-
plying a single model with limited features. Under such a framework, the distinct features
of different model candidates can lead to a more thorough portrayal of the underlying
mortality patterns. In effect, all of the inherent volatility, parameter uncertainty, and model
uncertainty are allowed for simultaneously. Comparatively, previous studies in mortality
projection generally took care of the first one or two uncertainties (via Monte Carlo simula-
tion or bootstrapping) only. Moreover, the Bayesian approach allows joint estimation of the
mortality structure and the time series structure, which avoids the potential estimation bias
under the usual two-step procedure in fitting mortality projection models. Using Japanese
mortality data, we show that the proposed Bayesian approach can give a better account of
the uncertainty in model selection.

The other advantages of Bayesian modelling, in general, include the ability to cope
with missing values and the room to embed relevant information into prior distributions.
Earlier Bayesian mortality modelling work can be found in Czado et al. (2005), Pedroza
(2006), Kogure et al. (2009), Cairns et al. (2011), Li (2014a, 2014b), and Van Berkum et al.
(2017). Some applications in pricing or hedging longevity risk have been demonstrated by
(Kogure and Kurachi 2010; Kogure et al. 2014), Cairns (2013), and Li et al. (2019).

The remainder of the paper is as follows. Section 2 introduces our Bayesian framework,
which integrates the Lee–Carter model, the CBD model, and their time series processes,
and presents the numerical results based on Japanese male mortality data. Section 3 sets
out another Bayesian framework incorporating the Lee–Carter model and the age-cohort
model and discusses the application results. Section 4 gives the concluding remarks.

2. Bayesian Lee–Carter with CBD

Let X be the variables to be observed, X f be the future values of the variables, Θ be
the unknown parameters, and W be the unknown weights of the model candidates. From
a Bayesian perspective, the main objective is to deduce the joint posterior distribution
p(X f , Θ, W|X), based on which different inferences can be drawn. The parameter estimates
can be taken as the mean (or median) of the posterior distribution p(Θ|X). The model
candidate with the largest mean of p(W|X) can be regarded as the most probable or
optimal model. The predictive distribution of the future values is then derived as p(X f |X).
Within the Bayesian framework, the finite mixture model structure can be specified as
f (x|Θ, W) = ∑ wi fi(x|θi), where f denotes a density function, and the subscript i refers to
the ith model component. This mixture becomes particularly useful when the underlying
data patterns are complicated and cannot be described sufficiently by one single model.
In such a mixture, each model component would not just “compete” in making its own
contributions to the overall description of the data features but also supplement the other
model components by filling in their gaps.

Suppose m(x, t) is the central death rate at age x in year t. The first part is the Lee–
Carter structure:

η1(x, t) = α(x) + β(x)κ(t)

in which α(x) is the age effect, and κ(t) is the period effect with age-specific sensitivity
β(x). The two identifiability constraints are ∑x β(x) = 1 and ∑t κ(t) = 0. The period effect
is then modelled as a random walk with drift κ(t) = κ(t− 1) + d + e(t), where d is the
drift term and e(t) ∼ Normal(0, σ2

e ) is the error term. The second part is the CBD structure
with curvature:

η2(x, t) = κ(1)(t) + κ(2)(t)(x− x) + κ(3)(t)((x− x)2 − σ2)

where for year t, κ(1)(t) is the level of the mortality curve, κ(2)(t) refers to the slope, κ(3)(t)
is related to the curvature, x is the average age, and σ2 is the average value of (x− x)2. The
three time-varying parameters are then modelled as a three-dimensional random walk with
drift K(t) = K(t− 1) +Θ+Ψ(t), in which Θ is the drift vector, and Ψ(t) is the multivariate
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normal error vector with mean 0 and covariance matrix Ω. The overall model’s density is
then specified as below:

f (y|Θ, W) =
w1

σ1
φ

(
y− η1

σ1

)
+

w2

σ2
φ

(
y− η2

σ2

)
in which y = ln m(x, t), w1 and w2 = 1 − w1 are the weights of the two components,
σ1 and σ2 are the standard deviations of the two components, and φ is the standard
normal density. It can be deduced that E(Y|Θ, W) = w1 η1 + w2 η2 and E(Y2|Θ, W) =
w1(σ

2
1 + η2

1) + w2(σ
2
2 + η2

2).
The prior distributions of all the parameters above are assumed as follows:

w1 ∼ Uniform(0, 1) , σ−2
1 ∼ Gamma(a1, b1) , σ−2

2 ∼ Gamma(a2, b2),
α(x) ∼ Normal(0, σ2

α) , β(x) ∼ Normal( 1
no. of ages , σ2

β),
d ∼ Normal(d0, σ2

d ) , σ−2
e ∼ Gamma(ae, be),

Θ ∼ Multivariate Normal(Θ0, Ξ) , Ω−1 ∼Wishart(R, n).

The hyperparameters are chosen in such a way that the priors are as uninformative
as possible. The uniform distribution of w1 means that there is no preference over any of
the two model structures at the start, assuming that there is no relevant prior information
on the choice between them. The terms a1 and a2 are set to be 2.1, and b1 and b2 are
set as 1.1 times the corresponding residual variances. The prior variances σ2

α and σ2
β are

set as 10 times the sample variances of α̂(x)’s and β̂(x)’s (estimated via singular value
decomposition) over age. The drift term mean d0 and variance σ2

d are computed from the
estimated decrements κ̂(t)− κ̂(t− 1). The term ae is assumed to be 2.1 and be is taken as
1.1 times the sample variance of κ̂(t)− κ̂(t− 1) over time. The drift mean vector Θ0 and
covariance matrix Ξ are estimated from the trivariate decrements K̂(t)− K̂(t− 1). The
term R is taken as n times the sample covariance matrix of K̂(t)− K̂(t− 1), and n is set
equal to 4. More details can be found in Kogure et al. (2009) and Li (2014b).

Since it is mathematically intractable to derive a closed-form solution for the joint
posterior distribution, we use Markov chain Monte Carlo (MCMC) simulation to pro-
vide a random sample from the posterior, in which simulated samples are generated
from a Markov chain having its stationary distribution equal to the posterior distribution
(Spiegelhalter et al. 2003). We apply the software JAGS (Plummer 2017) to implement the
MCMC simulations. It involves the Gibbs sampling method, which simulates from the fully
conditional posterior distribution of each variable in sequence. The JAGS programming
language operates on the R platform as a package. Note that while one may assume priors
that are even more diffuse than those listed above, the computation time would then
lengthen substantially, and the program may even crash.

For each run of the MCMC simulation, the initial 5000 iterations are discarded to
remove the effect of the initial values, and afterwards, 1000 iterations are obtained. The
collected 1000 scenarios are then used for estimating the parameters and probability
intervals. As illustrated in the two examples in Figure 1, the resulting autocorrelations
(bottom right) in the successive samples of each variable are negligible, which is a strong
sign of proper convergence to the stationary distribution. Moreover, the Monte Carlo errors
are largely around 5% or smaller of the sample standard deviations, providing further
evidence on the convergence of the MCMC samples to the stationary distribution.
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Figure 1. History plot (top left), posterior distribution function (top right), posterior density function
(histogram; bottom left), and autocorrelation plot (bottom right) of α(60) (left panel) and κ(3)(1970)
(right panel), with two chains of simulations (pink and blue).

We have collected Japanese male mortality data of ages 60 to 89 and years 1970 to
2017 from the Human Mortality Database (Human Mortality Database HMD) and fit the
Lee–Carter model (only), the CBD model (only), and the mixture model to the data under
the Bayesian framework as described above. During the data period, the mortality trends
and patterns tend to be more complex for males than for females, so it would be interesting
to apply the mixture model to the male data. Figure 2 compares the posterior means of α(x),
β(x), κ(t), κ(1)(t), κ(2)(t), and κ(3)(t) from the Lee–Carter model alone or the CBD model
alone against those from the mixture model. It can be seen that the parameter estimates of
each structure have their basic shapes rather preserved under the mixture model.
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Figure 2. Posterior means of α(x), β(x), κ(t), κ(1)(t), κ(2)(t), and κ(3)(t) from Bayesian Lee–Carter model (alone), CBD
model (alone), and mixture model.

The posterior mean of w1 in the Bayesian mixture model is 0.4398 with a standard
deviation of 0.0224. This value suggests that the CBD structure is preferred over the Lee–
Carter structure, as it is significantly different from 0.5 (with p-value of 0.01). However,
it is still significantly larger than 0, which means that both structures, when used jointly,
can potentially complement each other in describing the data. The deviance information
criterion (DIC) is defined as the posterior mean of the deviance plus the effective number
of parameters. The DIC values of applying the Lee–Carter, CBD, and mixture models are
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calculated as 20,552, 20,254, and 19,513, respectively. These statistics are in line with the
two implications above—while the CBD model (alone) can be selected over the Lee–Carter
model (alone), the mixture model actually gives the lowest DIC and is the optimal one
amongst the three cases. The blending of the Lee–Carter and CBD structures clearly leads
to an improvement in the fitting performance. It is also reflected in the residual graphs in
Figure 3. There are distinctive patterns in the standardised residuals by cohort under the
Lee–Carter model (alone) and by both age and cohort (to a lesser extent) under the CBD
model (alone). These patterns are largely removed with the blending of the two structures
(except for the more recent cohorts, as both structures have the same issue for that aspect
of the data).
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Figure 3. Standardised residuals by age, calendar year, and cohort year from Bayesian Lee–Carter model (alone), CBD
model (alone), and mixture model.

Figure 4 plots the log death rates at ages 60, 70, and 80 and their projected values
(predictive means) to the year 2050 with 95% prediction intervals. It is interesting to
observe that the mixture model generates the widest prediction intervals compared to the
two single models. It can be regarded as a direct consequence of incorporating model
uncertainty into the Bayesian modelling and simulations. Note that a proper allowance for
all kinds of uncertainties is of critical importance in capital assessment and pricing and
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hedging of longevity risk (e.g., Haberman et al. 2014 and Li et al. 2017). In particular, the
real impact of model uncertainty is often omitted in previous studies on longevity risk.
Failure to take model uncertainty into full account could lead to a serious underestimation
when valuing pensions and annuities and evaluating their risk allowances.
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3. Bayesian Lee–Carter with Age-Cohort

Starting arguably from Renshaw and Haberman (2006), the cohort effect has become
an important consideration in building a mortality projection model. It refers to unique
mortality patterns that are found amongst only those individuals who were born in a
given year. However, some authors (Cairns et al. 2009; Beutner et al. 2017) discussed the
problems of slow convergence and lack of robustness and the identifiability issues when
incorporating the cohort effect together with the period effect. Some possible solutions
so far include using an alternative model structure (Haberman and Renshaw 2011) and
different identifiability constraints (Hunt and Villegas 2015).



Risks 2021, 9, 76 7 of 12

In this section, we explore a different treatment of the cohort effect in order to avoid the
identifiability issues. In particular, the second part of the Bayesian framework in Section 2
is now replaced with the following age-cohort structure (Renshaw and Haberman 2006):

η∗2 (x, t) = α∗(x) + β∗(x)γ∗(t− x),

where α∗(x) is the age effect, and γ∗(t− x) is the cohort effect with age-specific sensitivity
β∗(x). The two constraints required are ∑x β∗(x) = 1 and ∑c γ∗(c) = 0. The cohort effect
is then modelled as a random walk with drift γ∗(t) = γ∗(t− 1) + d∗ + e∗(t), in which d∗

is the drift term, and e∗(t) ∼ Normal(0, σ∗2e ) is the error term. The corresponding prior
distributions are given below:

α∗(x) ∼ Normal(0, σ∗2α ) , β∗(x) ∼ Normal( 1
no. of ages , σ∗2β ),

d∗ ∼ Normal(d∗0 , σ∗2d ) , σ∗−2
e ∼ Gamma(a∗e , b∗e ).

The hyperparameters are selected in the same way as in the previous section. Note
that the Lee–Carter structure η1 would fail to capture all the cohort effect, while this age-
cohort structure η∗2 would fail to capture all the period effect. They can then serve as a
complement to each other, and their combination would take both the period and cohort
effects into full account.

Figure 5 plots the posterior means of the parameters from the Lee–Carter model
(alone), the age-cohort model (alone), and the mixture model. Again, the parameter
estimates are quite similar between the single models and the mixture model. The posterior
mean of w1 in the mixture model is 0.4705 with a standard deviation of 0.0205. This time,
the value of w1 is not significantly different from 0.5 (with p-value of 0.15), which means
that it is rather hard to select between the Lee–Carter and age-cohort structures. The DIC
values of fitting the Lee–Carter, age-cohort, and mixture models are computed as 20,552,
20,644, and 19,709. The mixture model here (Lee–Carter with age-cohort) still delivers
the lowest DIC amongst the three cases and so provides a better fitting performance than
either of the two single models on its own, though it is slightly not as good as the one
(Lee–Carter with CBD) in Section 2. Figure 6 compares the standardised residuals between
the three cases. There are ripple patterns by cohort under the Lee–Carter model and by
calendar year under the age-cohort model, which are understandable considering how the
two single models allow for the period and cohort effects, respectively. Under the mixing
of the two structures, by contrast, the residuals look much more randomly scattered, which
means that the mixture model provides a better fit to the data.

Risks 2021, 9, x FOR PEER REVIEW 8 of 13 
 

 

2( ) ~ Νormal(0, )x αα σ∗ ∗ ,  21
no. of ages( ) ~ Νormal( , )x ββ σ∗ ∗ , 

2
0~ Νormal( , )dd d σ∗ ∗ ∗ , 2 ~ Gamma( , )e e ea bσ ∗− ∗ ∗ . 

The hyperparameters are selected in the same way as in the previous section. Note 
that the Lee–Carter structure 1η  would fail to capture all the cohort effect, while this age-

cohort structure 2η∗  would fail to capture all the period effect. They can then serve as a 
complement to each other, and their combination would take both the period and cohort 
effects into full account. 

Figure 5 plots the posterior means of the parameters from the Lee–Carter model 
(alone), the age-cohort model (alone), and the mixture model. Again, the parameter esti-
mates are quite similar between the single models and the mixture model. The posterior 
mean of 1w  in the mixture model is 0.4705 with a standard deviation of 0.0205. This time, 

the value of 1w  is not significantly different from 0.5 (with p-value of 0.15), which means 
that it is rather hard to select between the Lee–Carter and age-cohort structures. The DIC 
values of fitting the Lee–Carter, age-cohort, and mixture models are computed as 20,552, 
20,644, and 19,709. The mixture model here (Lee–Carter with age-cohort) still delivers the 
lowest DIC amongst the three cases and so provides a better fitting performance than ei-
ther of the two single models on its own, though it is slightly not as good as the one (Lee–
Carter with CBD) in Section 2. Figure 6 compares the standardised residuals between the 
three cases. There are ripple patterns by cohort under the Lee–Carter model and by calen-
dar year under the age-cohort model, which are understandable considering how the two 
single models allow for the period and cohort effects, respectively. Under the mixing of 
the two structures, by contrast, the residuals look much more randomly scattered, which 
means that the mixture model provides a better fit to the data.  

 
Figure 5. Posterior means of ( )xα , ( )xβ , ( )tκ , ( )xα ∗ , ( )xβ ∗ , and ( )cγ ∗  from Bayesian Lee–Carter model 
(alone), age-cohort model (alone), and mixture model. 

Figure 5. Posterior means of α(x), β(x), κ(t), α∗(x), β∗(x), and γ∗(c) from Bayesian Lee–Carter model (alone), age-cohort
model (alone), and mixture model.



Risks 2021, 9, 76 8 of 12

Risks 2021, 9, x FOR PEER REVIEW 9 of 13 
 

 

 

 

 

Figure 6. Standardised residuals by age, calendar year, and cohort year from Bayesian Lee–Carter model (alone), age-
cohort model (alone), and mixture model. 

Figure 7 shows the corresponding log death rates at different ages with their pro-
jected values and prediction intervals. The mixture model here clearly produces much 
wider prediction intervals than those from the single age-cohort model. Again, these dif-
ferences highlight the importance of allowing for model uncertainty adequately, or else 
there would be a nontrivial possibility of significantly underestimating the extent of lon-
gevity risk, leading to serious future financial losses for an annuity provider or a pension 
plan sponsor. 

Figure 6. Standardised residuals by age, calendar year, and cohort year from Bayesian Lee–Carter model (alone), age-cohort
model (alone), and mixture model.

Figure 7 shows the corresponding log death rates at different ages with their projected
values and prediction intervals. The mixture model here clearly produces much wider
prediction intervals than those from the single age-cohort model. Again, these differences
highlight the importance of allowing for model uncertainty adequately, or else there would
be a nontrivial possibility of significantly underestimating the extent of longevity risk,
leading to serious future financial losses for an annuity provider or a pension plan sponsor.



Risks 2021, 9, 76 9 of 12Risks 2021, 9, x FOR PEER REVIEW 10 of 13 
 

 

 

 

Figure 7. Log death rates at ages 60, 70, and 80 from 1970 to 2050 (solid—observed values; dashed—projected values; 
dotted—95% prediction intervals) under Bayesian age-cohort model (alone) and mixture model. 

We then conduct an out-of-sample analysis and divide the data into two periods: 
1970–1999 for fitting the models and 2000–2017 for assessing the forecast accuracy. For the 
Bayesian Lee–Carter, CBD, and age-cohort (single) models, and the two Bayesian mixture 
models, the mean absolute errors (MAE) of the projected log death rates over 2000–2017 
are calculated as 0.0382, 0.0462, 0.1284, 0.0439, and 0.0363, respectively, as displayed in 
Table 1. It means that the Lee–Carter with age-cohort mixture model gives the best fore-
cast accuracy while the single age-cohort model gives the worst performance. The corre-
sponding mean square errors (MSE) are also in line with the MAE results. Figure 8 demon-
strates the observed and simulated log death rates at different ages under these two mod-
els. As shown, the single age-cohort model fails to predict the mortality trends when com-
pared with the Lee–Carter with age-cohort mixture model. For the former, not just the 
projected trends deviate much from the observed trends, but also the prediction intervals 
fail to capture the observed trends mostly. For the latter, by contrast, the observed trends 
lie well within the wider prediction intervals generally.  

Table 1. Mean absolute errors (MAE) and mean square errors (MSE) of projected log death rates 
over 2000–2017 under different Bayesian models. 

Model MAE MSE 
Lee–Carter 0.0382 0.0022 

CBD 0.0462 0.0032 
age-cohort 0.1284 0.0221 

Lee–Carter + CBD 0.0439 0.0030 
Lee–Carter + age-cohort 0.0363 0.0020 

Figure 7. Log death rates at ages 60, 70, and 80 from 1970 to 2050 (solid—observed values; dashed—projected values;
dotted—95% prediction intervals) under Bayesian age-cohort model (alone) and mixture model.

We then conduct an out-of-sample analysis and divide the data into two periods:
1970–1999 for fitting the models and 2000–2017 for assessing the forecast accuracy. For the
Bayesian Lee–Carter, CBD, and age-cohort (single) models, and the two Bayesian mixture
models, the mean absolute errors (MAE) of the projected log death rates over 2000–2017 are
calculated as 0.0382, 0.0462, 0.1284, 0.0439, and 0.0363, respectively, as displayed in Table 1.
It means that the Lee–Carter with age-cohort mixture model gives the best forecast accuracy
while the single age-cohort model gives the worst performance. The corresponding mean
square errors (MSE) are also in line with the MAE results. Figure 8 demonstrates the
observed and simulated log death rates at different ages under these two models. As
shown, the single age-cohort model fails to predict the mortality trends when compared
with the Lee–Carter with age-cohort mixture model. For the former, not just the projected
trends deviate much from the observed trends, but also the prediction intervals fail to
capture the observed trends mostly. For the latter, by contrast, the observed trends lie well
within the wider prediction intervals generally.

Table 1. Mean absolute errors (MAE) and mean square errors (MSE) of projected log death rates over
2000–2017 under different Bayesian models.

Model MAE MSE

Lee–Carter 0.0382 0.0022
CBD 0.0462 0.0032

age-cohort 0.1284 0.0221
Lee–Carter + CBD 0.0439 0.0030

Lee–Carter + age-cohort 0.0363 0.0020
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4. Concluding Remarks

In this paper, we devise a Bayesian framework for integrating multiple mortality
projection model structures via the setting of a finite mixture model. In this framework,
the different characteristics of the model components involved can be exploited in a joint
and coherent manner in order to enhance the capacity in modelling complex mortality pat-
terns. We demonstrate that the proposed Bayesian mixture modelling approach generates
superior fitting and forecasting performances on Japanese mortality data when compared
to the mere use of a single model. The new approach would lead to a more sufficient risk
allowance in pension and annuity valuation. As the precise impact of model uncertainty
is often overlooked in previous mortality projection studies, it is intended that this work
would fill in some of the gaps in the current literature.

There are a few areas that would worth further research. First, three or more model
structures can be combined altogether as a finite mixture model. It would be interesting to
blend the Lee–Carter, CBD, age-cohort, and potentially many other models and test such a
comprehensive mixture on various countries’ data; however, the computation time would
then increase substantially as more structures are included. Second, the proposed approach
can be extended to multi-population cases, such as both sexes, different socioeconomic
classes or states in a country, and neighbouring countries. If one wants to ensure mortality
coherence between the subpopulations, each of the model components in the mixture must
possess the mortality coherence property itself.

Author Contributions: Methodology, J.L., A.K.; investigation, J.L., A.K.; writing—original draft
preparation, J.L.; writing—review and editing, J.L., A.K.; funding acquisition, A.K. All authors have
read and agreed to the published version of the manuscript.
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