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Abstract: The appropriate choice of a threshold level, which separates the tails of the probability
distribution of a random variable from its middle part, is considered to be a very complex and chal-
lenging task. This paper provides an empirical study on various methods of the optimal tail selection
in risk measurement. The results indicate which method may be useful in practice for investors and
financial and regulatory institutions. Some methods that perform well in simulation studies, based
on theoretical distributions, may not perform well when real data are in use. We analyze twelve
methods with different parameters for forty-eight world indices using returns from the period of
2000–Q1 2020 and four sub-periods. The research objective is to compare the methods and to identify
those which can be recognized as useful in risk measurement. The results suggest that only four
tail selection methods, i.e., the Path Stability algorithm, the minimization of the Asymptotic Mean
Squared Error approach, the automated Eyeball method with carefully selected tuning parameters
and the Hall single bootstrap procedure may be useful in practical applications.

Keywords: optimal tail selection; threshold; extreme value theory; Value at Risk; Expected Shortfall

1. Introduction

Extreme value theory (EVT) is a branch of statistics dealing with extreme values.
It focuses on the asymptotic behavior of extreme values of random variables instead
of the whole distribution. Such an approach enables us to model extreme values more
accurately. Nowadays, EVT is widely used in many disciplines such as hydrology, environ-
mental sciences, engineering, insurance and finance (Akhundjanov and Chamberlain 2019;
Embrechts et al. 1997; Embrechts and Schmidli 1994; Gilli and Këllezi 2006; Longin 2000;
Loretan and Phillips 1994; Mcneil 1999; McNeil and Frey 2000; Roth et al. 2016; Smith 2003;
Vilasuso and Katz 2000; Wang et al. 2010). One of the key problems in EVT is related to the
search for the optimal tail fraction. The appropriate choice of the threshold (the beginning
of a tail of distribution) is ambiguous but fundamental in the estimation of the tail index
or parameters of a Generalized Pareto Distribution (GPD) and then in the calculation of
tail-related risk measures, e.g., Value at Risk (VaR) or Expected Shortfall (ES).

While there are many concepts and approaches presented in the literature, none of
them has been indicated to be suitable, and there is no single answer where the distribution
tail begins. Searching for the tail of distribution is always a trade-off between bias and
variance. If a threshold is specified too low, the method estimates indicate a high bias. The
more the threshold is away from the tail, the more the empirical distribution of extrema
deviates from the theoretical model. On the other hand, a too high threshold results in high
variance of the model estimates, since not many data exceed the threshold (Coles 2001).
Numerous authors apply a fixed percentile of the total sample size as the threshold, usually
10%, 7.5%, 5% or 1% of the upper statistics (Karmakar and Shukla 2014; Jones 2003; Bee
et al. 2016; Fernandez 2005; Totić and Božović 2016; Gençay et al. 2003; Gençay and Selçuk
2004; Echaust and Just 2020a; Daníelsson and Morimoto 2000; Echaust 2021; Longin 2000;
McNeil and Frey 2000). More sophisticated approaches to threshold selection are based
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on graphical techniques. A frequently used procedure relies on the analysis of a mean
excess plot, which represents the mean of the excesses of the threshold u. This method was
applied in Aboura (2014), Cifter (2011), Gilli and Këllezi (2006), Łuczak and Just (2020) and
Omari et al. (2017). The change in the pattern for a very high threshold is observed in this
plot; therefore, the choice of a threshold is ambiguous. The second graphical procedure
for threshold selection is to estimate parameters of the Generalized Pareto Distribution at
a range of thresholds. Above a threshold u, at which the model is valid, the estimate of
the shape parameter should be approximately constant, whereas the estimate of the scale
parameter should be linear. Another very popular threshold selection technique involves a
graphical representation of Hill (Beirlant et al. 2011; Hill 1975), Pickands (Pickands 1975) or
Dekkers–Einmahl–de Haan estimators (Dekkers et al. 1989). However, the graphical-based
threshold choice procedures require identification of stable regions in the graphs; therefore,
they are highly subjective and difficult to apply in empirical studies. Finally, there are
studies that use the choice of threshold based on optimization procedures (Caeiro and
Gomes 2016; Danielsson et al. 2016; Echaust and Just 2020b; Scarrott and MacDonald 2012).
An extensive overview of such methods is provided in Section 2.

This paper provides an empirical study on various methods of optimal tail selection
in risk measurement. The results are to indicate which of them may be used in practice
by investors and financial and regulatory institutions. According to the Amendment
to Basel I (1996), market risk should be calculated as the Value at Risk using the 99th
percentile confidence level. A number of weaknesses have been identified by using VaR
for determining capital requirement during the global financial crisis (GFC) of 2007–2009.
Therefore, in the Basel III document (2013) the Committee proposed to replace VaR with
ES at the 97.5% confidence level. This confidence level is to provide a similar level of
risk as the 99th percentile VaR while ensuring a number of benefits, including generally
more stable risk estimates and often lesser sensitivity to extreme outlier observations.
Moreover, in contrast to VaR, ES is a subadditive risk measure and thus does not hinder the
appropriate risk measurement of investment portfolios. In our empirical study, we analyze
twelve automatic methods of threshold selection. Unfortunately, some of these methods
estimate a threshold at a very high level to estimate these risk measures at the recommended
confidence levels. The research objective of this paper is to compare these methods and
to identify these methods that can be recognized as useful in risk measurement. Some
models that perform well in simulation studies, based on theoretical distributions, may not
perform well when real data are in use (Danielsson et al. 2016). This paper sheds new light
on the linkage between tail selection and financial applications.

This study contributes to the literature in two ways. Firstly, we provide a review of tail
selection methods most popular in the literature. Secondly, we compare the results of the
tail choice computed with a variety of methods. All threshold estimates are calculated in
the tea R package (Ossberger 2020). We are able to specify which of them tend to produce
systematically too high threshold levels to calculate risk measures at commonly accepted
confidence levels. Therefore, our results may be helpful for all investors, risk managers
and academics who apply tail models in practice.

The remainder of the paper is organized as follows. Section 2 provides an overview
of optimal tail selection methods. Section 3 describes the data used in the empirical
study. Section 4 presents empirical results and their discussion, while Section 5 concludes
the study.

2. Optimization Approaches for Threshold Selection

In the empirical study we use twelve methods to choose the optimal number of data
in the tail:

• The Mean Absolute Deviation Distance metric (MAD-Distance metric) method,
• The Kolmogorov–Smirnov Distance metric (KS-Distance metric) method,
• The Reiss and Thomas (RT) procedures,
• The Path Stability (PS) method,
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• The automated Eyeball (Eyeball) method,
• The Guillou and Hall (GH) procedure,
• The minimization of the Asymptotic Mean Squared Error (dAMSE) method,
• The Hall and Welsh (HW) procedure,
• The single bootstrap (Hall) procedure proposed by Hall,
• The single bootstrap (Himp) procedure proposed by Caeiro and Gomes,
• The double bootstrap (Gomes) procedure proposed by Gomes, Figueiredo and Neves,
• The double bootstrap (Danielsson) procedure proposed by Danielsson, de Haan, Peng

and de Vries.

2.1. Mean Absolute Deviation Distance Metric (MAD-Distance Metric) and Kolmogorov–Smirnov
Distance Metric (KS-Distance Metric) Methods

The MAD-Distance metric (MAD Dis) and KS-Distance metric (KS Dis) methods
presented by Danielsson et al. (2016) are based on minimizing the distance between the
largest upper order statistics of the dataset, i.e., the distance between the empirical tail and
the theoretical tail of a Pareto distribution. The tail index α of this distribution is estimated
using the Hill estimator (Hill 1975):

ξ̂H
k,n =

1
α̂
=

1
k

k−1

∑
i=0

(log(xn−i,n)− log(xn−k,n)),

where k is the number of upper order statistics used to estimate parameter α. The distance,
which is measured in the quantile dimension, is minimized with respect to k. The optimal
number of the upper order statistics k is called k0. Determining k0 is equivalent to specifying
the number of extreme values (sample size in the tail). The MAD-Distance metric method
uses the mean absolute deviation penalty functions:

QMAD
n =

1
T

T

∑
j=1

∣∣xn−j,n − q(j, k)
∣∣

and the KS-Distance metric takes the maximum absolute deviation penalty functions:

QKS
n = infk

[
supj

∣∣xn−j,n − q(j, k)
∣∣], (j = 1, . . . , T),

where T > k is the region over which the distance metric is measured, xn−j,n is the empirical

quantile, and q(j, k) is the quantile estimated by xn−k+1,n(k/j)1/α̂k with the Hill estimator
α̂k. In these approaches, the size of the upper tail is denoted by ts. The motivation for
the selection of these methods is that the tail-related risk measures (e.g., VaR and ES) are
concepts related to quantiles at a given probability level.

2.2. The Reiss and Thomas (RT) Procedures

Reiss and Thomas (2007) proposed alternative procedures to select the optimal number
of data in the tail, k0. These approaches select the lowest upper order statistic by minimizing
the expression (RT1):

1
k

k

∑
i=1

iβ
∣∣∣ξ̂H

i −median
(

ξ̂H
i , . . . , ξ̂H

k

)∣∣∣
or expression (RT2):

1
k

k

∑
i=1

iβ
(

ξ̂H
i − ξ̂H

k

)2
,

where ξ̂H
i is the Hill estimator, and the tuning parameter satisfies 0 ≤ β ≤ 0.5.

In practice, automated implementation of these procedures is unreliable for small k;
thus, a minimum value of k, kmin, is usually used (Scarrott and MacDonald 2012.)
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2.3. The Path Stability (PS) Method

The Path Stability method is a heuristic algorithm proposed by Caeiro and Gomes
(2016). The algorithm looks for a stable region of the path stability, i.e., the plot of a tail
index with respect to k. The optimal number of data in the tail, k0, is identified by the
algorithm that consists of six steps:

First step. Given an observed data (x1, . . . , xn), compute T(k) = ξ̂H
k,n (k = 1, . . . , n− 1)

using the Hill estimator.
Second step. Take j0 as a minimum value of j, a non-negative integer, such that the

rounded values, to j decimal places, of the estimates in the first step are distinct. Define
a(T)k (j) = round(T(k), j)(k = 1, . . . , n− 1), the rounded values of T(k) to j decimal places.

Third step. Consider the set of k values associated to equal consecutive values of
a(T)k (j0) obtained in the second step. Set k(T)max and k(T)min the maximum and minimum values,

respectively, of the set with the largest range. The largest run size is lT = k(T)max − k(T)min.

Fourth step. Consider all those estimates, T(k)
(

k(T)min ≤ k ≤ k(T)max

)
, now with two

additional decimal places, i.e., compute T(k) = a(T)k (j0 + 2). Obtain the mode of T(k) and
denote KT the set of k-values associated with this mode.

Fifth step. Obtain k̂T , the maximum value of KT .
Sixth step. Finally calculate ξ̂H|PS = ξ̂H

k̂T ,n
.

2.4. The Automated Eyeball (Eyeball) Method

Another heuristic algorithm is the automated Eyeball method proposed by Resnick
and Stărică (1997) and explored in (Danielsson et al. 2016). The method finds a stable
region in the Hill plot by defining a moving window. This method is based on a heuristic
algorithm, which looks for a substantial drop in variance of the Hill plot as k is increased.
The following estimator is used to select the optimal number of data in the tail:

keye
0 = min

{
k ∈

{
2, . . . , n+ − w

}∣∣∣∣∣h <
1
w

w

∑
i=1

I{α̂(k)− ε < α̂(k + i) < α̂(k) + ε}
}

,

where w is the size of the moving window (usually 1% of the full sample); n+ is the number
of positive data; ε is the size of the range in which estimates may vary (e.g., 0.3); and h
is the percentage of data inside the moving window, which should occur in the tolerable
range (usually around 90%).

2.5. The Guillou and Hall (GH) Procedure

The procedure for choosing the optimal threshold when fitting the Hill estimator of a
tail exponent to extreme value data proposed by Guillou and Hall (2001) is based on bias
reduction. The optimal number of data in the tail, k0, in this method is identified by the
procedure, which consists of three steps (e.g., see, Caeiro and Gomes 2016):

First step. Given an observed data (x1, . . . , xn), compute:

Qn(k) =

 1
2bk/2c+ 1

k+bk/2c

∑
j=k−bk/2c

T2
n(j)


1/2

(1 ≤ k and k + bk/2c < n),

where

Tn(k) =

√
3
k3

∑k
i=1(k− 2i + 1)Ui

1
k ∑k

i=1 Ui
, Ui = i

k

∑
i=1

(log xn−i+1:n − log xn−i:n)(1 ≤ i ≤ k < n).

Second step. Given ccrit = 1.25, consider the choice

kGH
0 = inf{k : |Qn(j)| ≥ ccrit, ∀j ≥ k}.
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Third step. Next, obtain ξ̂GH = ξ̂GH
k̂GH

0 ,n
.

Guillou and Hall (2001) investigated a wider range of ccrit, but they suggest values
between 1.25 and 1.5.

2.6. Minimization of the Asymptotic Mean Squared Error (dAMSE) Method

The minimization of the Asymptotic Mean Squared Error (dAMSE) method was
presented by Caeiro and Gomes (2016). The optimal number of data in the tail, k0, in this
method is identified by minimizing the Asymptotic Mean Squared Error (AMSE) of the
Hill estimator with respect to k. This algorithm consists of five steps:

First step. Given an observed data (x1, . . . , xn), calculate for the tuning parameters
τ = 0 and τ = 1, the values of ρ̂τ(k), that have the form:

ρ̂τ(k) = −
∣∣∣3(W(τ)

k,n − 1)/(W(τ)
k,n − 3)

∣∣∣
dependent on the statistics:

W(τ)
k,n =



(
M(1)

k,n

)τ
−
(

M(2)
k,n /2

)τ/2

(
M(2)

k,n /2
)τ/2
−
(

M(3)
k,n /6

)τ/3 , if τ 6= 0,

log
(

M(1)
k,n

)
−log

(
M(2)

k,n /2
)

/2

log
(

M(2)
k,n /2

)
/2−log

(
M(3)

k,n /6
)

/3
, if τ = 0,

where

M(j)
k,n =

1
k

k

∑
i=1

(log xn−i+1:n − log xn−k:n)
j(j = 1, 2, 3).

Second step. Consider K =
(⌊

n0.995⌋, ⌊n0.999⌋). Calculate the median of {ρ̂τ(k)}k∈K,
denoted χτ , and compute Iτ = ∑

k∈K
(ρ̂τ(k)− χτ)

2 (τ = 0, 1) .

Then, select the tuning parameter, τ∗ = 0, if I0 ≤ I1, otherwise select τ∗ = 1.
Third step. Work with ρ̂ ≡ ρ̂τ∗(k) = ρ̂τ∗(k01) and β̂ ≡ β̂τ∗(k) = β̂ρ̂τ∗ (k01), with

k01 =
⌊
n0.999⌋ and

β̂ρ̂(k) =
(

k
n

)ρ̂ dk(ρ̂)Dk(0)− Dk(ρ̂)

dk(ρ̂)Dk(ρ̂)− Dk(2ρ̂)
,

dependent on the estimator ρ̂ = ρ̂τ∗(k01), and where for any α ≤ 0,

dk(α) =
1
k

k

∑
i=1

(i/k)−α, Dk(α) =
1
k

k

∑
i=1

(i/k)−αUi,

where

Ui = i
k

∑
i=1

(log xn−i+1:n − log xn−k:n)(1 ≤ i ≤ k < n),

the scaled log-spacings.
Fourth step. On the basis of estimators β̂ and ρ̂, calculate

k̂H
0 =

( (1− ρ̂)2n−2ρ̂

−2ρ̂β̂2

)1/(1−2ρ̂)
.

Fifth step. Finally, compute ξ̂H = ξ̂H
k̂H

0 ,n
.

2.7. The Hall and Welsh (HW) Procedure

Hall and Welsh (1985) proposed a procedure to identify the optimal number of upper
order statistics for the Hill estimator by minimizing the AMSE criterion. This method is
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based on a similar algorithm as that in the dAMSE method but with a different estimation
of second-order parameters dependent upon three tuning parameters, σ < τ1 < τ2 (Caeiro
and Gomes 2016). The Hall and Welsh procedure is quite sensitive to changes in the tuning
parameters, but the parameter values proposed by Hall and Welsh (σ = 0.5, τ1 = 0.9,
τ2 = 0.95) seem to work well (Gomes and Oliveira 2001). This method may be presented in
five steps (e.g., see Gomes and Oliveira 2001; Hall and Welsh 1985):

First step. For σ = 0.5, τ1 = 0.9, τ2 = 0.95, obtain s = [nσ], t1 = [nτ1 ], t2 = [nτ2 ].
Second step. Obtain

ρ̂n = −

∣∣∣∣∣∣log

∣∣∣∣∣∣
(

1/M(1)
t1,n

)
−
(

1/M(1)
s,n

)
(

1/M(1)
t2,n

)
−
(

1/M(1)
s,n

)
∣∣∣∣∣∣/ log

t1

t2

∣∣∣∣∣∣,
where M(1)

k,n = 1
k ∑k

i=1(log xn−i+1:n − log xn−k:n) (k = t1, t2, s).
Third step. Put

λ̂n =

∣∣∣∣∣∣√−2ρ̂n

(
n
t1

)−ρ̂n M(1)
s,n −M(1)

t1,n

M(1)
t1,n

∣∣∣∣∣∣
−2/(1−2ρ̂n)

.

Fourth step. Compute
k̂HW

0 =
[
λ̂n
−2ρ̂n/(1−2ρ̂n)

]
.

If k̂HW
0 /∈ [1, n), select another method, otherwise continue.

Fifth step. Finally, compute ξ̂HW = ξ̂HW
k̂HW

0 ,n
.

The consistency of this procedure holds only for ρ ∈ (−σ/2(1− τ1), −σ/2(1− σ)).

2.8. The Hall Single Bootstrap (Hall) Procedure

In 1990, Hall introduced a bootstrap-based methodology for the estimation of the
optimal tail fraction (see, e.g., Hall 1990; Gomes and Oliveira 2001). This method is
applied to the Hall class of Pareto-type tails (Danielsson et al. 2016). Given a simple
Xn = (X1, . . . , Xn) from an unknown model F, and the functional ξ̂H

k,n = φk(Xn), 1 ≤ k <

n, consider the bootstrap sample X∗n1
=
(
X∗1 , . . . , X∗n1

)
, where n1 ≤ n, from the model

F∗n (x) = 1
n ∑n

i=1 I{Xi≤x}, the empirical d.f. associated with the original sample Xn. Given
an initial value k, i.e., kaux, such that ξ̂H

kaux ,n is a consistent estimator of ξ, Hall proposes the
minimization of the bootstrap estimate of the Mean Squared Error (MSE) of ξ̂H

k,n1
:

MSE∗(n1, k) = E
[{

ξ̂H∗
k,n1
− ξ̂H

kaux ,n

}2
|Xn

]
.

Next, the value k∗0(n1) is selected so that it minimizes MSE∗(n1, k), and the tail
fraction is determined from the formula:

k̂∗0(n) = k∗0(n1)(n/n1)
2/3.

In the algorithm, the number of bootstrap repetitions is denoted by B.
Most often, kaux and n1 = nε are taken as 2

√
n and n0.955, respectively (Caeiro and

Gomes 2016). Gomes and Oliveira (2001) noted that there is a disturbing sensitivity of the
method to the initial value of kaux; in turn, there is almost independence on n1. These facts
contributed to the search for an alternative bootstrap methodology.

2.9. The Single Bootstrap (Himp) Procedure Proposed by Caeiro and Gomes

An improved version of Hall bootstrap methodology was introduced in Caeiro and
Gomes (2014). They proposed a single bootstrap procedure consisting of five steps:
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First step. Given an observed sample (x1, . . . , xn), compute the estimates ρ̂ and β̂ of
the second order parameters ρ and β as described in the dAMSE algorithm.

Second step. Consider a sub-sample size n1 = o(n). For l from 1 until B, generate in-
dependently B bootstrap samples

(
x∗1 , . . . , x∗n1

)
, of sizes n1, from the empirical distribution

F∗n (x) = 1
n ∑n

i=1 I{Xi≤x} associated with the observed data (x1, . . . , xn).

Third step. Denoting T(1)∗
k,n1

the bootstrap counterpart of T(1)
k,n1

= ξ̂H
k/2,n1

− ξ̂H
k,n1

, obtain

t∗k,n1,l(1 ≤ l ≤ B), the observed values of T(1)
k,n1

. For k = 2, . . . , n1 − 1, compute

MSE∗(n1, k) =
1
B

B

∑
l=1

(
t∗k,n1,l

)2

and obtain
k̂∗0|T(n1 ) = argmin1<k<n1

MSE∗(n1, k).

Fourth step. Compute the threshold estimate

k̂∗0(n) =
⌊(

1− 2ρ̂
)2/(1−2ρ̂)

k̂∗0|T(n1)/(n/n1)
−2ρ̂/(1−2ρ̂)

⌋
+ 1.

If k̂∗0(n) /∈ [1, n) go back to the second step generating different bootstrap samples.
Fifth step. Finally, obtain ξ̂∗ = ξ̂H

k̂∗0(n), n
.

2.10. The Double Bootstrap (Gomes) Procedure Proposed by Gomes, Figueiredo and Neves

The double bootstrap procedure described by Gomes et al. (2012) leads to an increased
precision of the result with the same number B of bootstrap samples generated (Caeiro and
Gomes 2016). This algorithm consists of five steps:

Let ξ̂H
k,n denote the Hill estimator.

First step. Given an observed sample (x1, . . . , xn), compute the estimates ρ̂ and β̂ of
the second order parameters ρ and β as described in the dAMSE algorithm.

Second step. Consider a sub-sample size n1 = o(n) and n2 = n2
1/n+ 1. For l from 1 un-

til B, generate independently B bootstrap samples
(
x∗1 , . . . , x∗n2

)
and

(
x∗1 , . . . , x∗n2

, x∗n2+1
, . . . , x∗n1

)
of sizes n2 and n1, respectively, from the empirical distribution F∗n (x) = 1

n ∑n
i=1 I{Xi≤x}

associated with the observed data (x1, . . . , xn).
Third step. Denoting T∗k,ni

the bootstrap counterpart of Tk,ni
= ξ̂H

bk/2c,ni
− ξ̂H

k,ni
, obtain

t∗k,ni ,l
(1 ≤ l ≤ B, i = 1, 2), the observed values of Tk,n. For k = 2, . . . , ni − 1, and i = 1.2

compute

MSE∗(ni, k) =
1
B

B

∑
l=1

(
t∗k,ni ,l

)2

and obtain
k̂∗0|T(ni ) = argmin1<k<ni

MSE∗(ni, k).

Fourth step. Compute the threshold estimate

k̂∗0(n) =
⌊(

1− 2ρ̂
)2/(1−2ρ̂)(

k̂∗0|T(n1)
)2

/k̂∗0|T(n2)

⌋
+ 1.

If k̂∗0(n) /∈ [1, n), go back to the second step generating different bootstrap samples.
Fifth step. Finally obtain ξ̂∗ = ξ̂H

k̂∗0(n),n
.

2.11. The Double Bootstrap (Danielsson) Procedure Proposed by Danielsson, de Haan, Peng and
de Vries

The procedure proposed in Danielsson et al. (2001) for selecting the optimal sample
fraction in tail index estimation simulates the AMSE criterion of the Hill estimator using
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an auxiliary statistic. For the AMSE, ξ is unknown. To solve this problem, the theoretical
ξ in the AMSE formula is replaced with a control variate. Since a simple bootstrap is
inconsistent in the tail area, a sub-sample bootstrap is used. Moreover, to be able to scale
the sub-sample MSE back to the sample size, a second, even smaller sub-sample bootstrap
is needed. The AMSE of the control variate is

Tk1,n1 =

([
M∗(2)k1, n1

− 2
(

ξ∗H
k1,n1

)2
]2
)

,

where

M∗(2)k1,n1
=

1
k1

k1

∑
i=1

(
log
(

xn1−i+1:n1

)
− log

(
xn1−k1:n1

))2 .

In this procedure, n1 = nε is the sub-sample for the bootstrap (the number of bootstrap
repetitions is denoted by B). In the first step, the T function is minimized over two
dimensions: n1 and k1. In the next step, given the optimal n1 and k1, a second bootstrap
with a sub-sample size n2 = n2

1/n is made to find k2. Finally, the optimal number of order
statistics is determined as follows:

k̂∗0(n) =

 k2
1

k2

[
(log(k1))

2

(2 log(n1)− log(k1))
2

](log (n1)−log (k1))/ log (n1)
+ 1.

3. Data

We employed several approaches and compared the results of the optimal tail selection
for forty-eight world indices computed using twelve methods with different parameters
(56 different variants of tail estimation for each asset). The source of the price data is the
Polish financial service stooq.pl. The country sample encompasses both developed and
emerging markets and comes from different continents. We conducted the analysis for
the period 2000–Q1 2020 and selected four sub-periods to demonstrate the robustness of
our analysis with reference to the time period under consideration. The first sub-period
covers 750 initial index quotes, the second sub-period covers the next 750 quotes, the third
sub-period covers 750 index quotes starting in 2008 in the subprime crisis, and the fourth
sub-period covers another 750 index quotes ending at the beginning of the COVID-19
crisis. This means that for each sub-period there are 749 log returns. In turn, the entire
period ranges from 4520 to 5176 log-returns depending on the number of trading days in
the market taken into account. The basic characteristics for the entire research period are
given in Table 1. The average return ranges from −0.05% for Greece to 0.08% for Argentina.
Higher volatility is found for the emerging markets, especially for Ukraine, Russia, Turkey
and Argentina. Since our research period covers two crises, i.e., the global financial crisis in
2007–2009, the European debt crisis (EDC) in 2010–2012 and the beginning of the COVID-19
outbreak, almost all time-series of returns demonstrate left skewness. The Iceland index is
characterized by distinctive kurtosis. Certainly, it is an effect of Iceland’s systemic banking
collapse in 2008.
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Table 1. Summary statistics for the sample of countries.

Index Min Mean Max Sd. Dev. Skewness Ex. Kurtosis

ATX (Austria) −0.1467 0.0001 0.1202 0.0143 −0.59 10.01
AEX (Netherlands) −0.1138 −0.0001 0.1003 0.0140 −0.22 7.49

ATH (Greece) −0.1771 −0.0005 0.1343 0.0189 −0.55 7.84
BEL20 (Belgium) −0.1533 0.0000 0.0933 0.0126 −0.44 10.36
BET (Romania) −0.1190 0.0006 0.1458 0.0150 −0.34 11.67
BUX (Hungary) −0.1265 0.0003 0.1318 0.0149 −0.24 7.08
CAC (France) −0.1310 −0.0001 0.1059 0.0144 −0.22 6.52

DAX (Germany) −0.1305 0.0001 0.1080 0.0148 −0.17 5.99
FMIB (Italy) −0.1854 −0.0002 0.1087 0.0154 −0.59 9.34

HEX (Finland) −0.1740 −0.0001 0.1456 0.0173 −0.40 7.86
IBEX (Spain) −0.1515 −0.0001 0.1348 0.0147 −0.32 8.13

ICEX (Iceland) −1.0622 0.0000 0.0506 0.0186 −39.03 2164.64
MOEX (Russia) −0.2066 0.0005 0.2523 0.0200 −0.25 15.99
OMXR (Latvia) −0.1633 0.0004 0.1209 0.0140 −0.56 20.56

OMXS (Sweden) −0.1117 0.0000 0.0987 0.0148 −0.08 4.37
OMXT (Estonia) −0.1060 0.0004 0.1209 0.0105 −0.25 12.85

OMXV (Lithuania) −0.1194 0.0004 0.1100 0.0099 −0.77 24.07
OSEAX (Norway) −0.0983 0.0003 0.0919 0.0137 −0.69 6.76
PSI20 (Portugal) −0.1038 −0.0002 0.1020 0.0119 −0.42 7.49

PX (Czechia) −0.1619 0.0001 0.1236 0.0134 −0.54 13.73
RTS (Russia) −0.2120 0.0003 0.2020 0.0215 −0.54 9.27

SAX (Slovakia) −0.1481 0.0003 0.1188 0.0118 −0.69 14.81
SMI (Switzerland) −0.1013 0.0000 0.1079 0.0117 −0.29 7.95
SOFIX (Bulgaria) −0.1136 0.0003 0.0839 0.0123 −0.64 11.56

UKX (UK) −0.1151 0.0000 0.0938 0.0119 −0.34 8.34
UX (Ukraine) −0.3437 0.0005 0.3908 0.0260 0.85 53.49

WIG20 (Poland) −0.1425 0.0000 0.0815 0.0150 −0.33 4.22
XU100 (Turkey) −0.1998 0.0003 0.1777 0.0207 −0.10 7.91
AOR (Australia) −0.1001 0.0001 0.0635 0.0098 −0.91 9.63

HSI (Hong Kong) −0.1358 0.0001 0.1341 0.0146 −0.11 7.90
JCI (Indonesia) −0.1095 0.0004 0.0970 0.0134 −0.63 7.18

KLCI (Malaysia) −0.0998 0.0001 0.0663 0.0081 −0.79 11.20
KOSPI (South Korea) −0.1280 0.0001 0.1128 0.0150 −0.57 7.16

NKX (Japan) −0.1211 0.0000 0.1323 0.0150 −0.38 6.42
NZ50 (New Zealand) −0.0789 0.0004 0.0694 0.0072 −0.72 10.19

PSEI (Philippines) −0.1432 0.0002 0.1618 0.0131 −0.15 16.91
SET (Thailand) −0.1606 0.0002 0.1058 0.0132 −0.93 11.77
SHBS (China) −0.1029 0.0004 0.1840 0.0198 −0.02 7.12
SNX (India) −0.1410 0.0003 0.1599 0.0147 −0.41 9.37

STI (Singapore) −0.0909 0.0000 0.0753 0.0112 −0.40 6.79
TWSE (Taiwan) −0.0994 0.0000 0.0652 0.0134 −0.29 3.89

BVP (Brazil) −0.1599 0.0003 0.1368 0.0182 −0.38 6.64
DJI (US) −0.1384 0.0001 0.1076 0.0119 −0.40 13.63

IPC (Mexico) −0.0827 0.0003 0.1044 0.0128 −0.05 5.47
IPSA (Chile) −0.1522 0.0002 0.1180 0.0104 −0.84 22.35

MRV (Argentina) −0.4769 0.0008 0.1612 0.0232 −2.02 39.79
SPX (US) −0.1277 0.0001 0.1096 0.0125 −0.40 11.37

TSX (Canada) −0.1318 0.0001 0.1129 0.0114 −0.96 17.30

Note: Sd. Dev. means standard deviation; Ex. Kurtosis—excess kurtosis; BET—the beginning of trading 31 October 2000; SOFIX—the
beginning of trading 26 November 2001; NZ50—the beginning of trading 3 January 2001. Symbols for indices are consistent with the
symbols on the financial website, www.stooq.pl (Accessed on: 16 April 2020).

4. Results of the Empirical Study

Table 2 presents the results of an optimal threshold selection for the left and right tails.
More precisely, it shows the percentile ranks for the entire period. Tables 3 and 4 show
the results for the first and third sub-periods. For the sake of brevity, we do not report the
results for the second and fourth sub-periods. Note that the results for these periods do not
differ substantially from those presented in Tables 3 and 4.

www.stooq.pl
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Table 2. Estimates of the threshold under different methods in the entire research period.

Method
Lower Tail Upper Tail

Min Mean Median Max Sd. Dev. Min Mean Median Max Sd. Dev.

MAD Dis ts = 0.25 0.8970 0.9192 0.9078 0.9996 0.0312 0.8832 0.9132 0.9021 0.9992 0.0342
MAD Dis ts = 0.20 0.9092 0.9337 0.9213 0.9986 0.0288 0.9021 0.9319 0.9163 0.9998 0.0336
MAD Dis ts = 0.15 0.9148 0.9499 0.9400 0.9986 0.0243 0.8998 0.9505 0.9361 0.9998 0.0290
MAD Dis ts = 0.10 0.9412 0.9649 0.9575 0.9992 0.0163 0.9389 0.9634 0.9539 0.9961 0.0188
MAD Dis ts = 0.05 0.9517 0.9792 0.9789 0.9968 0.0100 0.9561 0.9808 0.9834 0.9968 0.0113

KS Dis ts = 0.25 0.9605 0.9961 0.9982 0.9996 0.0074 0.9620 0.9933 0.9963 0.9996 0.0078
KS Dis ts = 0.20 0.9605 0.9959 0.9982 0.9996 0.0074 0.9620 0.9934 0.9968 0.9996 0.0078
KS Dis ts = 0.15 0.9605 0.9956 0.9980 0.9996 0.0075 0.9620 0.9933 0.9965 0.9996 0.0079
KS Dis ts = 0.10 0.9605 0.9958 0.9980 0.9996 0.0073 0.9620 0.9935 0.9965 0.9994 0.0077
KS Dis ts = 0.05 0.9605 0.9958 0.9980 0.9996 0.0073 0.9620 0.9936 0.9966 0.9994 0.0078

RT1 β = 0, kmin = 2 0.9084 0.9762 0.9800 0.9998 0.0238 0.9311 0.9830 0.9920 0.9998 0.0205
RT1 β = 0.1, kmin = 2 0.9185 0.9821 0.9917 0.9998 0.0214 0.9339 0.9863 0.9946 0.9998 0.0178
RT1 β = 0.2, kmin = 2 0.9259 0.9861 0.9970 0.9998 0.0193 0.9344 0.9897 0.9978 0.9998 0.0166
RT1 β = 0.3, kmin = 2 0.9478 0.9941 0.9990 0.9998 0.0108 0.9421 0.9931 0.9992 0.9998 0.0132
RT1 β = 0, kmin = 3 0.9086 0.9738 0.9773 0.9998 0.0241 0.9313 0.9790 0.9881 0.9998 0.0212
RT1 β = 0, kmin = 4 0.9088 0.9726 0.9772 0.9998 0.0244 0.9013 0.9749 0.9793 0.9998 0.0236
RT1 β = 0, kmin = 5 0.8979 0.9672 0.9705 0.9998 0.0262 0.9015 0.9744 0.9795 0.9998 0.0230
RT1 β = 0, kmin = 10 0.8989 0.9662 0.9694 0.9998 0.0249 0.9025 0.9732 0.9765 0.9998 0.0221

RT1 β = 0, kmin = 0.003n 0.8997 0.9662 0.9687 0.9998 0.0241 0.9033 0.9741 0.9774 0.9998 0.0220
RT1 β = 0, kmin = 0.005n 0.9017 0.9664 0.9702 0.9998 0.0230 0.9053 0.9710 0.9720 0.9998 0.0226

RT2 β = 0, kmin = 2 0.9064 0.9816 0.9884 0.9998 0.0219 0.9352 0.9839 0.9923 0.9998 0.0196
RT2 β = 0.1, kmin = 2 0.9118 0.9835 0.9917 0.9998 0.0206 0.9352 0.9848 0.9933 0.9998 0.0189
RT2 β = 0.2, kmin = 2 0.9399 0.9855 0.9945 0.9998 0.0178 0.9414 0.9886 0.9972 0.9998 0.0160
RT2 β = 0.3, kmin = 2 0.9441 0.9876 0.9967 0.9998 0.0169 0.9414 0.9895 0.9984 0.9998 0.0155
RT2 β = 0, kmin = 3 0.9066 0.9805 0.9853 0.9998 0.0214 0.9354 0.9807 0.9898 0.9998 0.0201
RT2 β = 0, kmin = 4 0.9068 0.9806 0.9855 0.9998 0.0214 0.9019 0.9761 0.9817 0.9998 0.0228
RT2 β = 0, kmin = 5 0.9070 0.9767 0.9842 0.9998 0.0231 0.9021 0.9748 0.9793 0.9998 0.0220
RT2 β = 0, kmin = 10 0.9080 0.9723 0.9759 0.9998 0.0219 0.9031 0.9745 0.9783 0.9994 0.0213

RT2 β = 0, kmin = 0.003n 0.9090 0.9724 0.9759 0.9996 0.0212 0.9039 0.9753 0.9793 0.9998 0.0212
RT2 β = 0, kmin = 0.005n 0.9110 0.9731 0.9765 0.9996 0.0206 0.9059 0.9733 0.9735 0.9986 0.0203

PS j = 1 0.7651 0.8791 0.8873 0.9511 0.0485 0.7513 0.8813 0.8869 0.9571 0.0472
PS j = 0 0.7324 0.8272 0.8262 0.9013 0.0420 0.6409 0.7994 0.8051 0.8961 0.0476

Eyeball w = 0.01, ε = 0.3, h = 0.9 0.9910 0.9939 0.9940 0.9956 0.0008 0.9912 0.9933 0.9933 0.9952 0.0008
Eyeball w = 0.02, ε = 0.3, h = 0.9 0.9860 0.9895 0.9896 0.9915 0.0009 0.9858 0.9886 0.9887 0.9909 0.0009

Eyeball w = 0.025, ε = 0.3, h = 0.9 0.9838 0.9874 0.9874 0.9899 0.0009 0.9836 0.9862 0.9862 0.9887 0.0009

GH 0.9473 0.9871 0.9967 0.9994 0.0153 0.9488 0.9880 0.9932 0.9994 0.0143

dAMSE 0.9721 0.9738 0.9738 0.9770 0.0007 0.9704 0.9723 0.9724 0.9747 0.0007

HW 0.6482 0.8965 0.9086 0.9459 0.0500 0.7145 0.8788 0.8901 0.9327 0.0409

Hall B = 10,000, ε = 0.955, kaux = 2
√

n+ 0.9187 0.9714 0.9751 0.9836 0.0129 0.9245 0.9731 0.9765 0.9848 0.0109
Hall B = 10,000, ε = 0.995, kaux = 2

√
n+ 0.9085 0.9687 0.9723 0.9817 0.0143 0.9187 0.9711 0.9754 0.9828 0.0117

Hall B = 10,000, ε = 0.9, kaux = 2
√

n+ 0.9289 0.9748 0.9782 0.9860 0.0112 0.9315 0.9757 0.9786 0.9863 0.0098
Hall B = 10,000, ε = 0.955 kaux =

√
n+ 0.9385 0.9773 0.9819 0.9930 0.0151 0.8947 0.9771 0.9807 0.9941 0.0168

Hall B = 10,000, ε = 0.955, kaux = 3
√

n+ 0.9464 0.9681 0.9713 0.9763 0.0078 0.9436 0.9661 0.9677 0.9746 0.0076
Hall B = 1000, ε = 0.955, kaux = 2

√
n+ 0.9183 0.9714 0.9751 0.9837 0.0128 0.9269 0.9733 0.9770 0.9838 0.0106

Hall(r) B = 10,000, ε = 0.955, kaux = 2
√

n+ 0.9187 0.9714 0.9748 0.9836 0.0127 0.9255 0.9731 0.9762 0.9842 0.0108

Himp B = 10,000, ε = 0.955 0.9640 0.9848 0.9863 0.9998 0.0072 0.9618 0.9826 0.9831 0.9988 0.0088
Himp B = 10,000, ε = 0.995 0.9604 0.9839 0.9856 0.9994 0.0078 0.9564 0.9812 0.9831 0.9986 0.0099
Himp B = 10,000, ε = 0.9 0.9692 0.9862 0.9861 0.9998 0.0062 0.9662 0.9840 0.9850 0.9992 0.0077
Himp B = 1000, ε = 0.955 0.9640 0.9852 0.9863 0.9998 0.0069 0.9620 0.9827 0.9841 0.9988 0.0088

Himp (r) B = 10,000, ε = 0.955 0.9640 0.9845 0.9860 0.9998 0.0072 0.9620 0.9826 0.9833 0.9988 0.0088

Gomes B = 10,000, ε = 0.995 0.9598 0.9840 0.9851 0.9980 0.0081 0.9550 0.9808 0.9826 0.9986 0.0102
Gomes B = 10,000, ε = 0.955 0.9586 0.9827 0.9846 0.9998 0.0085 0.9548 0.9806 0.9818 0.9988 0.0105
Gomes B = 10,000, ε = 0.9 0.9596 0.9838 0.9819 0.9998 0.0098 0.9540 0.9810 0.9812 0.9998 0.0120
Gomes B = 1000, ε = 0.995 0.9580 0.9838 0.9851 0.9975 0.0081 0.9554 0.9819 0.9833 0.9986 0.0098

Gomes (r) B = 10,000, ε = 0.995 0.9600 0.9840 0.9853 0.9976 0.0080 0.9560 0.9809 0.9828 0.9986 0.0100

Danielsson B = 500, ε = 0.9 0.9390 0.9859 0.9899 0.9998 0.0147 0.9398 0.9886 0.9934 0.9998 0.0130

Note: (r) means repeating the calculation; Sd. Dev.—standard deviation.
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Table 3. Estimates of the threshold under different methods in the first sub-period.

Method
Lower Tail Upper Tail

Min Mean Median Max Sd. Dev. Min Mean Median Max Sd. Dev.

MAD Dis ts = 0.25 0.8611 0.9070 0.8905 0.9973 0.0414 0.8438 0.8946 0.8805 0.9973 0.0395
MAD Dis ts = 0.20 0.8692 0.9173 0.9039 0.9973 0.0374 0.8665 0.9056 0.8992 0.9893 0.0248
MAD Dis ts = 0.15 0.8732 0.9359 0.9266 0.9987 0.0302 0.8772 0.9305 0.9232 0.9973 0.0265
MAD Dis ts = 0.10 0.9105 0.9521 0.9486 0.9920 0.0227 0.9079 0.9530 0.9466 0.9987 0.0227
MAD Dis ts = 0.05 0.9573 0.9739 0.9713 0.9987 0.0100 0.9519 0.9710 0.9693 0.9920 0.0101

KS Dis ts = 0.25 0.9399 0.9830 0.9880 0.9987 0.0140 0.9519 0.9791 0.9793 0.9973 0.0118
KS Dis ts = 0.20 0.9279 0.9828 0.9840 0.9987 0.0140 0.9439 0.9790 0.9806 0.9973 0.0129
KS Dis ts = 0.15 0.9479 0.9841 0.9866 0.9987 0.0117 0.9466 0.9812 0.9813 0.9973 0.0108
KS Dis ts = 0.10 0.9479 0.9843 0.9880 0.9987 0.0118 0.9359 0.9801 0.9806 0.9973 0.0126
KS Dis ts = 0.05 0.9680 0.9877 0.9893 0.9987 0.0078 0.9519 0.9844 0.9860 0.9987 0.0091

RT1 β = 0, kmin = 2 0.8024 0.9661 0.9907 0.9987 0.0440 0.8745 0.9801 0.9933 0.9987 0.0279
RT1 β = 0.1, kmin = 2 0.8772 0.9728 0.9920 0.9987 0.0340 0.8852 0.9810 0.9947 0.9987 0.0267
RT1 β = 0.2, kmin = 2 0.9092 0.9769 0.9947 0.9987 0.0307 0.9065 0.9854 0.9960 0.9987 0.0217
RT1 β = 0.3, kmin = 2 0.9092 0.9824 0.9947 0.9987 0.0259 0.9159 0.9865 0.9960 0.9987 0.0203
RT1 β = 0, kmin = 3 0.8037 0.9613 0.9766 0.9987 0.0432 0.8758 0.9782 0.9887 0.9987 0.0273
RT1 β = 0, kmin = 4 0.8051 0.9620 0.9780 0.9987 0.0428 0.8772 0.9752 0.9866 0.9987 0.0287
RT1 β = 0, kmin = 5 0.8064 0.9581 0.9713 0.9987 0.0438 0.8785 0.9742 0.9873 0.9987 0.0277
RT1 β = 0, kmin = 10 0.8064 0.9491 0.9646 0.9987 0.0492 0.8117 0.9704 0.9813 0.9987 0.0365

RT1 β = 0, kmin = 0.003n 0.8024 0.9661 0.9907 0.9987 0.0440 0.8745 0.9801 0.9933 0.9987 0.0279
RT1 β = 0, kmin = 0.005n 0.8037 0.9613 0.9766 0.9987 0.0432 0.8758 0.9782 0.9887 0.9987 0.0273

RT2 β = 0, kmin = 2 0.8825 0.9701 0.9907 0.9987 0.0353 0.8892 0.9802 0.9920 0.9987 0.0281
RT2 β = 0.1, kmin = 2 0.8825 0.9721 0.9933 0.9987 0.0334 0.8892 0.9811 0.9940 0.9987 0.0270
RT2 β = 0.2, kmin = 2 0.8825 0.9731 0.9933 0.9987 0.0334 0.8999 0.9826 0.9960 0.9987 0.0251
RT2 β = 0.3, kmin = 2 0.9105 0.9777 0.9940 0.9987 0.0285 0.8999 0.9835 0.9960 0.9987 0.0244
RT2 β = 0, kmin = 3 0.8838 0.9630 0.9760 0.9987 0.0359 0.8905 0.9794 0.9920 0.9987 0.0273
RT2 β = 0, kmin = 4 0.8852 0.9641 0.9773 0.9987 0.0357 0.8919 0.9768 0.9893 0.9987 0.0275
RT2 β = 0, kmin = 5 0.8865 0.9620 0.9780 0.9987 0.0356 0.8932 0.9772 0.9893 0.9987 0.0268
RT2 β = 0, kmin = 10 0.8131 0.9554 0.9660 0.9987 0.0425 0.8425 0.9724 0.9866 0.9987 0.0326

RT2 β = 0, kmin = 0.003n 0.8825 0.9701 0.9907 0.9987 0.0353 0.8892 0.9802 0.9920 0.9987 0.0281
RT2 β = 0, kmin = 0.005n 0.8838 0.9630 0.9760 0.9987 0.0359 0.8905 0.9794 0.9920 0.9987 0.0273

PS j = 1 0.7370 0.8457 0.8531 0.9506 0.0542 0.7130 0.8642 0.8665 0.9840 0.0646
PS j = 0 0.6088 0.7510 0.7557 0.8852 0.0632 0.6649 0.7623 0.7644 0.8798 0.0477

Eyeball w = 0.01, ε = 0.3, h = 0.9 0.9813 0.9866 0.9866 0.9933 0.0033 0.9733 0.9846 0.9853 0.9933 0.0044
Eyeball w = 0.02, ε = 0.3, h = 0.9 0.9693 0.9801 0.9800 0.9880 0.0036 0.9680 0.9780 0.9780 0.9893 0.0043

GH 0.8745 0.9638 0.9766 0.9960 0.0306 0.9079 0.9702 0.9780 0.9960 0.0238

dAMSE 0.8451 0.9400 0.9413 0.9479 0.0142 0.8198 0.9385 0.9439 0.9479 0.0234

HW x x x x x x x x x x

Hall B = 10,000, ε = 0.955, kaux = 2
√

n+ 0.8331 0.9372 0.9473 0.9586 0.0271 0.8331 0.9462 0.9499 0.9653 0.0199
Hall B = 10,000, ε = 0.995, kaux = 2

√
n+ 0.8198 0.9324 0.9439 0.9653 0.0294 0.8211 0.9420 0.9466 0.9546 0.0216

Hall B = 10,000, ε = 0.9, kaux = 2
√

n+ 0.8505 0.9435 0.9506 0.9626 0.0239 0.8505 0.9518 0.9546 0.9693 0.0175
Hall B = 10,000, ε = 0.955 kaux =

√
n+ 0.8892 0.9582 0.9713 0.9853 0.0233 0.7570 0.9631 0.9713 0.9813 0.0332

Hall B = 10,000, ε = 0.955, kaux = 3
√

n+ 0.8438 0.9193 0.9246 0.9453 0.0219 0.8772 0.9252 0.9252 0.9413 0.0122
Hall B = 1000, ε = 0.955, kaux = 2

√
n+ 0.8251 0.9377 0.9479 0.9613 0.0276 0.8278 0.9468 0.9493 0.9626 0.0200

Hall (r) B = 10,000, ε = 0.955, kaux = 2
√

n+ 0.8344 0.9373 0.9459 0.9586 0.0269 0.8331 0.9461 0.9506 0.9653 0.0198

Himp B = 10,000, ε = 0.955 0.9226 0.9695 0.9706 0.9973 0.0177 0.9199 0.9785 0.9806 0.9987 0.0165
Himp B = 10,000, ε = 0.995 0.9146 0.9685 0.9693 0.9987 0.0205 0.9199 0.9774 0.9806 0.9987 0.0177
Himp B = 10,000, ε = 0.9 0.9332 0.9696 0.9706 0.9987 0.0156 0.9292 0.9801 0.9820 0.9987 0.0149
Himp B = 1000, ε = 0.955 0.9226 0.9696 0.9713 0.9973 0.0180 0.9212 0.9789 0.9820 0.9987 0.0167

Himp (r) B = 10,000, ε = 0.955 0.9239 0.9693 0.9700 0.9973 0.0178 0.9212 0.9785 0.9806 0.9987 0.0166

Gomes B = 10,000, ε = 0.995 0.9146 0.9684 0.9686 0.9987 0.0205 0.9226 0.9778 0.9806 0.9987 0.0177
Gomes B = 10,000, ε = 0.955 0.9132 0.9683 0.9693 0.9987 0.0209 0.9226 0.9769 0.9793 0.9987 0.0177
Gomes B = 10,000, ε = 0.9 0.9092 0.9655 0.9666 0.9987 0.0224 0.9212 0.9773 0.9786 0.9987 0.0183
Gomes B = 1000, ε = 0.995 0.9146 0.9684 0.9700 0.9987 0.0202 0.9065 0.9774 0.9800 0.9987 0.0186

Gomes (r) B = 10,000, ε = 0.995 0.9159 0.9682 0.9686 0.9987 0.0205 0.9105 0.9773 0.9806 0.9987 0.0186

Danielsson B = 500, ε = 0.9 0.9172 0.9842 0.9933 0.9987 0.0204 0.8665 0.9896 0.9980 0.9987 0.0218
Danielsson B = 500, ε = 0.955 0.9239 0.9815 0.9933 0.9987 0.0226 0.9332 0.9931 0.9987 0.9987 0.0117

Note: (r) means repeating the calculation; Sd. Dev.—standard deviation; x—cannot calculate, the method is not appropriate for the data.
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Table 4. Estimates of the threshold under different methods in the third sub-period.

Method
Lower Tail Upper Tail

Min Mean Median Max Sd. Dev. Min Mean Median Max Sd. Dev.

MAD Dis ts = 0.25 0.8678 0.9095 0.8945 0.9920 0.0355 0.8411 0.9279 0.9152 0.9987 0.0480
MAD Dis ts = 0.20 0.8732 0.9249 0.9159 0.9933 0.0365 0.8505 0.9363 0.9399 0.9960 0.0412
MAD Dis ts = 0.15 0.8959 0.9458 0.9426 0.9933 0.0297 0.8665 0.9460 0.9533 0.9933 0.0336
MAD Dis ts = 0.10 0.9212 0.9579 0.9559 0.9933 0.0194 0.9052 0.9519 0.9519 0.9933 0.0278
MAD Dis ts = 0.05 0.9533 0.9690 0.9686 0.9960 0.0109 0.9519 0.9723 0.9693 0.9973 0.0136

KS Dis ts = 0.25 0.9332 0.9811 0.9826 0.9987 0.0135 0.8985 0.9753 0.9826 0.9973 0.0217
KS Dis ts = 0.20 0.9386 0.9820 0.9853 0.9987 0.0138 0.8985 0.9744 0.9833 0.9973 0.0226
KS Dis ts = 0.15 0.9386 0.9831 0.9873 0.9987 0.0138 0.8985 0.9733 0.9793 0.9973 0.0221
KS Dis ts = 0.10 0.9386 0.9826 0.9853 0.9987 0.0140 0.9079 0.9723 0.9786 0.9973 0.0213
KS Dis ts = 0.05 0.9519 0.9869 0.9893 0.9987 0.0092 0.9533 0.9787 0.9826 0.9973 0.0137

RT1 β = 0, kmin = 2 0.7904 0.9759 0.9973 0.9987 0.0395 0.8238 0.9603 0.9826 0.9987 0.0475
RT1 β = 0.1, kmin = 2 0.7997 0.9816 0.9973 0.9987 0.0362 0.8251 0.9685 0.9947 0.9987 0.0431
RT1 β = 0.2, kmin = 2 0.8131 0.9855 0.9973 0.9987 0.0318 0.8825 0.9837 0.9960 0.9987 0.0254
RT1 β = 0.3, kmin = 2 0.9212 0.9910 0.9973 0.9987 0.0170 0.8825 0.9843 0.9960 0.9987 0.0253
RT1 β = 0, kmin = 3 0.7917 0.9702 0.9880 0.9987 0.0390 0.8251 0.9547 0.9733 0.9987 0.0477
RT1 β = 0, kmin = 4 0.7931 0.9620 0.9766 0.9987 0.0428 0.8264 0.9498 0.9539 0.9987 0.0475
RT1 β = 0, kmin = 5 0.7944 0.9630 0.9780 0.9987 0.0425 0.8278 0.9438 0.9426 0.9987 0.0483
RT1 β = 0, kmin = 10 0.8011 0.9628 0.9713 0.9987 0.0404 0.8344 0.9305 0.9319 0.9987 0.0479

RT1 β = 0, kmin = 0.003n 0.7904 0.9759 0.9973 0.9987 0.0395 0.8238 0.9603 0.9826 0.9987 0.0475
RT1 β = 0, kmin = 0.005n 0.7917 0.9702 0.9880 0.9987 0.0390 0.8251 0.9547 0.9733 0.9987 0.0477

RT2 β = 0, kmin = 2 0.7664 0.9819 0.9973 0.9987 0.0394 0.8425 0.9696 0.9947 0.9987 0.0408
RT2 β = 0.1, kmin = 2 0.7690 0.9829 0.9973 0.9987 0.0381 0.8425 0.9696 0.9947 0.9987 0.0408
RT2 β = 0.2, kmin = 2 0.7690 0.9829 0.9973 0.9987 0.0381 0.8838 0.9799 0.9953 0.9987 0.0275
RT2 β = 0.3, kmin = 2 0.8024 0.9841 0.9973 0.9987 0.0332 0.8838 0.9818 0.9960 0.9987 0.0265
RT2 β = 0, kmin = 3 0.7677 0.9756 0.9933 0.9987 0.0392 0.8438 0.9640 0.9820 0.9987 0.0422
RT2 β = 0, kmin = 4 0.7690 0.9689 0.9880 0.9987 0.0424 0.8451 0.9595 0.9800 0.9987 0.0427
RT2 β = 0, kmin = 5 0.7704 0.9687 0.9880 0.9987 0.0420 0.8465 0.9516 0.9633 0.9987 0.0451
RT2 β = 0, kmin = 10 0.7770 0.9649 0.9700 0.9987 0.0390 0.8531 0.9428 0.9453 0.9973 0.0420

RT2 β = 0, kmin = 0.003n 0.7664 0.9819 0.9973 0.9987 0.0394 0.8425 0.9696 0.9947 0.9987 0.0408
RT2 β = 0, kmin = 0.005n 0.7677 0.9756 0.9933 0.9987 0.0392 0.8438 0.9640 0.9820 0.9987 0.0422

PS j = 1 0.7370 0.8600 0.8611 0.9479 0.0552 0.7343 0.8629 0.8645 0.9666 0.0537
PS j = 0 0.6435 0.7971 0.8071 0.8985 0.0565 0.6128 0.7728 0.7697 0.8959 0.0489

Eyeball w = 0.01, ε = 0.3, h = 0.9 0.9773 0.9868 0.9873 0.9947 0.0034 0.9826 0.9878 0.9880 0.9933 0.0027
Eyeball w = 0.02, ε = 0.3, h = 0.9 0.9706 0.9802 0.9800 0.9893 0.0040 0.9760 0.9813 0.9813 0.9866 0.0027

GH 0.8932 0.9682 0.9820 0.9960 0.0270 0.8798 0.9527 0.9706 0.9973 0.0402

dAMSE 0.8264 0.9386 0.9426 0.9573 0.0216 0.8158 0.9386 0.9413 0.9546 0.0184

HW x x x x x x x x x x

Hall B = 10,000, ε = 0.955, kaux = 2
√

n+ 0.8505 0.9443 0.9493 0.9640 0.0189 0.8665 0.9289 0.9332 0.9626 0.0248
Hall B = 10,000, ε = 0.995, kaux = 2

√
n+ 0.8425 0.9406 0.9466 0.9626 0.0202 0.8585 0.9240 0.9312 0.9586 0.0263

Hall B = 10,000, ε = 0.9, kaux = 2
√

n+ 0.8678 0.9497 0.9539 0.9693 0.0170 0.8838 0.9350 0.9393 0.9653 0.0220
Hall B = 10,000, ε = 0.955 kaux =

√
n+ 0.7837 0.9556 0.9633 0.9826 0.0336 0.8558 0.9384 0.9453 0.9826 0.0362

Hall B = 10,000, ε = 0.955, kaux = 3
√

n+ 0.8665 0.9227 0.9239 0.9559 0.0163 0.8665 0.9173 0.9212 0.9519 0.0204
Hall B = 1000, ε = 0.955, kaux = 2

√
n+ 0.8505 0.9439 0.9479 0.9653 0.0190 0.8665 0.9283 0.9332 0.9626 0.0249

Hall (r) B = 10,000, ε = 0.955, kaux = 2
√

n+ 0.8491 0.9436 0.9486 0.9653 0.0192 0.8678 0.9289 0.9332 0.9613 0.0248

Himp B = 10,000, ε = 0.955 0.9186 0.9682 0.9720 0.9987 0.0187 0.9292 0.9640 0.9633 0.9987 0.0162
Himp B = 10,000, ε = 0.995 0.9306 0.9691 0.9706 0.9987 0.0187 0.9226 0.9611 0.9613 0.9973 0.0178
Himp B = 10,000, ε = 0.9 0.9266 0.9697 0.9733 0.9987 0.0163 0.9372 0.9640 0.9640 0.9987 0.0131
Himp B = 1000, ε = 0.955 0.9172 0.9694 0.9713 0.9987 0.0189 0.9266 0.9631 0.9633 0.9987 0.0172

Himp(r) B = 10,000, ε = 0.955 0.9186 0.9678 0.9706 0.9987 0.0188 0.9292 0.9632 0.9633 0.9987 0.0158

Gomes B = 10,000, ε = 0.995 0.9279 0.9687 0.9706 0.9987 0.0190 0.9212 0.9606 0.9599 0.9960 0.0178
Gomes B = 10,000, ε = 0.955 0.9105 0.9651 0.9693 0.9987 0.0209 0.9199 0.9614 0.9619 0.9987 0.0192
Gomes B = 10,000, ε = 0.9 0.9052 0.9645 0.9680 0.9987 0.0219 0.9079 0.9585 0.9593 0.9987 0.0186
Gomes B = 1000, ε = 0.995 0.9252 0.9690 0.9720 0.9987 0.0192 0.9226 0.9616 0.9613 0.9987 0.0183

Gomes (r) B = 10,000, ε = 0.995 0.9279 0.9687 0.9713 0.9987 0.0191 0.9226 0.9607 0.9613 0.9987 0.0180

Danielsson B = 500, ε = 0.9 0.8465 0.9839 0.9953 0.9987 0.0261 0.8892 0.9720 0.9773 0.9987 0.0275
Danielsson B = 500, ε = 0.955 0.8344 0.9849 0.9987 0.9987 0.0274 0.9012 0.9727 0.9780 0.9987 0.0266

Note: (r) means repeating the calculation; Sd. Dev.—standard deviation; x—cannot calculate, the method is not appropriate for the data.

Not all methods perform well in finite samples. Some that perform well in simulation
studies based on theoretical distributions may not be suitable in financial applications.
We can distinguish several methods that produce very high threshold estimates and pick a
small number of data in the tails. They include the MAD Dis, KS Dis, RT1, RT2, Eyeball,
GH, Himp, Gomes and Danielsson approaches. These methods tend to produce thresholds
above the 99th percentile (max. above 0.99); thus, they prevent an estimation of VaR or ES
at commonly accepted confidence levels. In particular, the KS Dis, RT1 and RT2 for kmin = 2,
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Eyeball with the tuning parameter w = 0.01, GH and Danielsson methods systematically
produce high threshold estimates, since the median exceeds the 98th percentile. The find-
ings support the results of Danielsson et al. (2016), who argued that the Eyeball and KS
Dis methods tend to pick the threshold close to the maximum of distribution. For shorter
time-series (in sub-periods), the RT1, RT2 for kmin = 2 and Danielsson methods are the most
restrictive and systematically set the threshold at too high levels to be used in financial
applications. This finding is in line with the observation by Scarrott and MacDonald (2012),
who pointed out that the RT1 approach is unreliable for a small k despite the weighting
by iβ. In turn, Reiss and Thomas (2007) suggested using alternative distance metrics or
weighting schemes when we deal with limited data. Methods based on minimizing the
asymptotic MSE, especially the bootstrap-based methods, do not perform well in empirical
studies (Danielsson et al. 2016). Similarly, Ferreira et al. (2003) noted that these methods do
not give satisfactory results for samples of size under approximately 2000.

The other methods estimate the threshold in a more conservative way, lower than the
99th quantile. Such a choice of threshold guarantees enough data in the tail to calculate
Value at Risk at the 99th confidence level. These are the HW, dAMSE, Hall (excluding
parameters satisfying B = 10,000, ε = 0.955, kaux =

√
n+), Eyeball (w = 0.025, h = 0.9,

ε = 0.3) and PS approaches. However, only two of them, i.e., the PS and HW algorithms,
satisfy the Basel III requirements with reference to the Expected Shortfall, since their
maxima are below the 97.5th percentile. Although HW performs well for long time-series,
it fails in shorter series. In sub-periods, the optimizing procedure does not converge for
several assets either for the upper or lower tails. Two algorithms, i.e., PS and HW, exhibit
a very high range and standard deviation. It means that the threshold is highly volatile
and cannot be substituted by a fixed percentile of the dataset as a threshold in practical
applications. On the other hand, the Eyeball and dAMSE approaches produce less volatile
estimations. The dAMSE method establishes the threshold close to the 95th percentile,
while the Eyeball method is even more stable, but it indicates a much higher threshold,
i.e., at the 98th percentile. Thus, we cannot decide which method is the optimal choice for
financial applications. However, we can indicate those approaches which may be useful in
practice. A majority of the analyzed methods, i.e., MAD Dis, KS Dis, PS, GH, HW, Eyeball,
dAMSE, Gomes and Himp, indicate a higher left threshold than the right one. High returns
might be perceived as extreme returns when they are positive, but they do not have to be
recognized as extreme when they are negative. This result suggests asymmetry between
the left and right tails. This result seems to be general since it holds in the entire period as
well as the sub-periods.

Having specified the distribution of tails, the next step in our study comprises a
comparison of the methods recognized as applicable in a risk measurement. Two different
distances between threshold estimates are compared. The results for the entire research
period are presented in Tables 5 and 6. Average absolute differences are shown in Table 5
and root mean squared differences in Table 6. As can be seen, the methods may be divided
into two groups. The Eyeball, dAMSE and Hall methods show a relatively large deviation
from the two other methods. Note that all the three above-mentioned methodologies
utilize a low fraction (median above the 97th and below the 99th percentiles) of the total
sample. The other group consists of the PS and HW methods. The distance between the
threshold estimates is relatively close, and they both pick the threshold far away from
the maximum (median below the 90th percentile). Danielsson et al. (2016) documented
the similarity in choosing optimal sample fractions between the KS Distance and Eyeball
methods and between the approach proposed by Drees and Kaufmann (1998) and the
Danielsson method. However, they cast doubt on the applicability of the latter methods
for real-world empirical estimations. The results for the right tails and the left tails do not
indicate any significant differences, but approximately the same relative differences are
preserved between the methodologies.
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Table 5. The mean absolute differences (MAE) of the threshold estimates in the left tail (below
diagonal) and right tail (above diagonal) for five methods.

Method PS Eyeball dAMSE HW Hall 10,000 Hall 1000

PS 0 0.1148 0.1023 0.0478 0.1043 0.1044
Eyeball 0.1184 0 0.0139 0.1147 0.0171 0.0168
dAMSE 0.1060 0.0136 0 0.1020 0.0107 0.0105

HW 0.0718 0.1032 0.0918 0 0.1044 0.1046
Hall 10,000 0.1069 0.0206 0.0130 0.0930 0 0.0018
Hall 1000 0.1070 0.0206 0.0129 0.0930 0.0013 0

Note: PS—j = 1; Eyeball—w = 0.025, h = 0.9, ε = 0.3; Hall 1000—B = 1000, ε = 0.955, kaux = 2
√

n+; Hall
10,000—B = 10, 000, ε = 0.955, kaux = 2

√
n+.

Table 6. The root mean squared differences (RMSE) of the threshold estimates in the left tail (below
diagonal) and right tail (above diagonal) for five methods.

Method PS Eyeball dAMSE HW Hall 10,000 Hall 1000

PS 0 0.1148 0.1023 0.0478 0.1043 0.1044
Eyeball 0.1184 0 0.0139 0.1147 0.0171 0.0168
dAMSE 0.1060 0.0136 0 0.1020 0.0107 0.0105

HW 0.0718 0.1032 0.0918 0 0.1044 0.1046
Hall 10,000 0.1069 0.0206 0.0130 0.0930 0 0.0018
Hall 1000 0.1070 0.0206 0.0129 0.0930 0.0013 0

Note: PS—j = 1; Eyeball—w = 0.025, h = 0.9, ε = 0.3; Hall 1000—B = 1000, ε = 0.955, kaux = 2
√

n+; Hall
10,000—B = 10, 000, ε = 0.955, kaux = 2

√
n+.

5. Conclusions

The selection of the threshold which separates the tail from the middle part of a
return distribution is crucial in the estimation of tail-related risk measures. Unfortunately,
the right threshold is unknown in empirical applications. This paper presents evidence
for twelve different optimal tail selection methods in risk measurement. We selected
the optimal tail fraction for daily return time-series for forty-eight world indices. We
found that many methods tend to set the optimal tail above the 99th percentile; therefore,
their applicability in risk management is very limited. The methods that perform well in
long and relatively short time-series include the minimization of the Asymptotic Mean
Squared Error (dAMSE), the single bootstrap procedure (Hall), Eyeball with carefully
selected tuning parameters and Path Stability (PS). The methods can be divided into two
categories. The first three methods produce threshold estimates around the 98th percentile
for the entire research period and their estimates are close to one another. This level
of the threshold allows the estimation of the Value at Risk at the 99th confidence level,
but not the Expected Shortfall at the 97.5th confidence level recommended by the Basel
Committee. In the sub-periods, the estimated thresholds are lower, and for the dAMSE
and Hall (excluding parametrization: B = 10,000, ε = 0.955, kaux =

√
n+) methods, their

maximum is below the 97.5th percentile. The PS method sets the optimal threshold much
lower than the other methodologies (below the 95th percentile for the entire research period
and sub-periods). The estimates of PS are relatively volatile, suggesting a difference from
the fixed percentage of the total sample size, commonly presented in the literature. The PS
method is based on a rather simple algorithm; thus, it can be easily implemented in a risk
management process.
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