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Abstract: Index-based hedging solutions are used to transfer the longevity risk to the capital markets.
However, mismatches between the liability of the hedger and the hedging instrument cause longevity
basis risk. Therefore, an appropriate two-population model to measure and assess longevity basis
risk is required. In this paper, we aim to construct a two-population mortality model to provide an
effective hedge against the basis risk. The reference population is modelled by using the Lee–Carter
model with the renewal process and exponential jumps, and the dynamics of the book population
are specified. The analysis based on the U.K. mortality data indicate that the proposed model for
the reference population and the common age effect model for the book population provide a better
fit compared to the other models considered in the paper. Different two-population models are
used to investigate the impact of sampling risk on the index-based hedge, as well as to analyse the
risk reduction regarding hedge effectiveness. The results show that the proposed model provides a
significant risk reduction when mortality jumps and sampling risk are taken into account.

Keywords: longevity basis risk; mortality jumps; sampling risk; two-population mortality model

1. Introduction

Longevity risk can be defined as the risk that members of some reference population
might live on average longer than anticipated. It is a crucial financial concern for both
pension plans and life insurers since the institutions might have to make higher payments
than expected due to the longevity risk. Life expectancy continues to rise in association
with improvements in nutrition, hygiene, medical knowledge, lifestyle, and health care.
Uncertainty about future mortality improvements might have significant economic impli-
cations for annuity providers, pension providers, and social insurance programs. Although
the individuals have different lifespans, longevity risk might affect all pension plans and
life insurers, and hence, it is not possible to diversify it with an increase in portfolio size.
Therefore, hedging of the longevity risk is of critical importance for both pension plan
providers and life insurance companies.

Various solutions have been presented to manage and mitigate the longevity risk.
Index-based hedging solutions, which include longevity-linked securities and derivatives,
provide more advantages over other hedging solutions, such as faster execution, greater
transparency, liquidity potential, and lower costs (Li et al. 2018). Due to offering significant
capital savings and providing effective risk management, index-based longevity instruments
attract increased interest from within and outside of the worlds of insurance and pensions.

The first step of the longevity risk assessment and thus the valuation of index-based
financial products is the mortality modelling. The choice of the appropriate model is
crucial to quantify the risk and provide a foundation for pricing and reserving. Due to
the inadequacy of the quality and the size of the portfolio, a reference population index
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is commonly used by hedgers in index-based hedging solutions. The payments of the
financial products are associated with this reference population index, but not the (book)
population that underlies the portfolio that is being hedged. Therefore, longevity risk
trading usually entails two different populations: the first is affiliated with the portfolio
of the hedger, while the other is linked to the hedging instrument (Zhou et al. 2013). A
potential mismatch would arise between the portfolio and the hedging instrument due to
certain demographic differences, such as socioeconomic status, sex, and age profile. This
might give rise to longevity basis risk, a topic that the recent actuarial literature has been
investigating (Li et al. 2018). Hence, a multi-population mortality model is required to
provide an accurate mortality model for measuring the basis risk.

Several multi-population mortality models have recently been presented, while only
Zhou et al. (2013) considered the transitory mortality jump effects in the modelling process.
It is important to incorporate the mortality jumps to estimate the uncertainty surrounding
a central mortality projection. Incorporating the jumps into the modelling process enables
us to estimate the probability of mortality deterioration, which is required for pricing the
instruments to hedge catastrophic mortality risk (Zhou et al. 2013). In this paper, a different
approach proposed by Özen and Şahin (2020) is used for modelling jump effects. This ap-
proach includes the history of catastrophic events in the jump frequency modelling process
by using the renewal process, as well as a specification of the Lee–Carter (LC) model for
mortality. The mortality models with jump effects generally assume that mortality jumps
occur once a year, or they use a Poisson process for their jump frequencies. The timing and
the frequency of future catastrophic events and hence mortality jumps are unpredictable
due to their high impact and low probability nature (Chen and Cox 2009). However, one
can use the history of events, which might provide information about their future occur-
rences. In the Poisson process, inter-arrival times between events are independent and
exponentially distributed. The memoryless property of the exponential distribution causes
some limitations to the use of the Poisson process. One way to incorporate the history of
the events is to consider the renewal process since it has time-varying hazard functions,
which reflect the waiting times between events. Therefore, we use the renewal process to
incorporate the history of the catastrophic events.

The aim of this paper is to build an appropriate two-population mortality model
incorporating mortality jumps to assess longevity basis risk for pricing longevity-linked
financial products. Such a model provides a basis for effective risk management strategies.
To illustrate the impact of our proposed mortality model in hedge effectiveness, we consider
a hedge for a hypothetical pension plan. Moreover, we take sampling risk into account
since the available historical data are usually small for a pension plan. Therefore, the size
of a pension plan is examined in regard to hedge effectiveness. We also compare the hedge
effectiveness of our model with the other three mortality models in the literature. The
results show that our proposed model provides a better risk reduction.

This paper is organised as follows. Section 2 introduces some helpful notations. In
Section 3, an overview of the existing multi-population mortality models is provided. In
Section 4, the steps for building a two-population mortality model are described. Section 5
applies the proposed model to a hypothetical pension plan and examines the effectiveness
of the hedge. Finally, Section 6 concludes the paper.

2. Notations

We begin by introducing some helpful notations adopted from Villegas et al. (2017).
Let us denote the reference population by R, which is backing the hedging instrument, and
B is used for the book population whose longevity risk is going to be hedged. Time will be
measured in units of years, and year t will refer to time interval [t, t + 1]. For the reference
population, DR

x,t and ER
x,t show the death counts and exposure to risk at age x at the last

birthday in year t. Central mortality rates for any individual of the reference population
of age x in year t will be denoted by mR

xt and computed as mR
x,t = DR

x,t/ER
x,t. Likewise, the

same values for the book population are given here as DB
x,t, EB

x,t, and mB
x,t = DB

x,t/EB
x,t.
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A further assumption being made here is that the data for the reference and book
populations can be different regarding specified sets of ages and specified amounts of years.
For instance, we have DR

x,t and ER
x,t for consecutive ages x = x1, ..., xnR and consecutive

calender years t = t1, ..., tnR in the reference population, while DB
x,t, EB

x,t are available for
ages x1, ..., xnB and calender years t = u1, ..., tnB in the book population.

The data of the reference population might be provided for a longer time frame than
that of the book population, which is nR ≥ nB. Moreover, the calendar years of data in
a book might be provided as a subset of the comparable calendar years for the reference
population, tnB 6= tnR . Additionally, the ages provided by the book might constitute a
smaller portion of those that are provided for the reference population.

3. An Overview of Mortality Models for Measuring Basis Risk

We need to specify an appropriate two-population model for mR
x,t and mB

x,t that has
the ability to capture the trends present within both the book and reference populations. It
is crucial to incorporate these trends since the mortality trends of the reference population
support the hedging instrument, while the trends in the book population are significant
for longevity basis risk to be hedged. Future mortality will be forecasted by the specified
model in a consistent way.

Several models have been developed to display the mortality evolution of two re-
lated populations. These models are usually derived by expanding the previous single-
population models by incorporating the correlations and interactions existing between
populations.

3.1. Extensions of the Lee–Carter Model

Although the majority of research on modelling multi-population has been conducted
relatively recently, the seeds can be traced back to the influential paper published by
Carter and Lee (1992). This paper introduced feasible approaches for the extension of
the authors’ single-population model for differences in U.S. mortality between men and
women. The model suggests applying independent Lee–Carter models to individual
populations as the first approach for multi-population modelling. Afterwards, the joint-k
model, based on the assumption that populations’ mortality dynamics are driven by one
commonly shared time-varying factor, was developed. The third approach was based on
an extension of the Lee–Carter model, applying co-integration techniques and estimating
the populations jointly. Brief descriptions of the new models established on the basis of the
Lee–Carter model are given below.

3.1.1. Independent Modelling

In this approach, mortality is modelled with the utilisation of two independent Lee–
Carter models. Let mi

x,t be the central death rate for population i in year t at age x. The
model can then be expressed as follows:

ln(mi
x,t) = ai

x + bi
xki

t + ei
x,t, i = R, B. (1)

All of those parameters hold the same meanings that they possess in the original
Lee–Carter model. It is possible to estimate the model parameters with the application
of singular value decomposition, the Markov chain Monte Carlo approach, or maximum
likelihood estimation. A mortality index can be modelled using two independent autore-
gressive integrated moving average (ARIMA) processes for forecasting purposes. Although
the model is easily applicable, it ignores the dependency between the mortality rates of the
populations. Hence, it might lead to an overestimation of the basis risks.
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3.1.2. The Joint-k Model

In this model, it is assumed that the mortality rates of both populations are driven by
one single mortality index. This model may be expressed in the following way:

ln(mi
x,t) = ai

x + bi
xkt + ei

x,t, i = R, B. (2)

In the joint-k model, the mortality index is the driving force of the changes in mortality
rates for both populations. Model parameters are estimated as in the previous approach,
while the mortality index kt is modelled based on an appropriate ARIMA process. However,
the model assumes that the mortality improvements of the populations are perfectly
correlated, and the existence of the common factor suggests identical advancements in
mortality for both populations for all periods. Hence, the assumption is not realistic.
Li and Lee (2005) introduced a population-specific factor for this model, which is referred
to as the “augmented common factor model”.

3.1.3. Augmented Common Factor Model

In the first approach, that of the two independent Lee–Carter models, life expectancy
divergence increases in the long run. The joint-k model cannot completely resolve this issue,
since a discrepancy between two populations in terms of parameter bi

x could generate
divergences in the mortality predictions.

Li and Lee (2005) presented criteria for the divergence problem, as given below:

- bR
x = bB

x for all x.

- kR
t and kB

t have identical drift terms of the ARIMA process.

Given these conditions, Li and Lee (2005) introduced a specific factor for the Lee–
Carter model:

ln(mi
x,t) = ai

x + bxkt + bi
xki

t + ei
x,t, i = R, B. (3)

The bi
xki

t term serves to capture variations in the changing rate of mortality of popula-
tion i from the long-term mortality change tendencies suggested by the common factor,
bxkt. The ki

t factors are modelled using the AR(1) process to ensure the avoidance of any
divergence from the mortality projections (Li and Hardy 2011).

3.2. Extensions of the Cairns–Blake–Dowd Model

Another modelling approach for two-population mortality is the extension of the
Cairns–Blake–Dowd (CBD) mortality model for a single population (Cairns et al. 2006). A
version of the CBD model for two populations and its variants were introduced by Li et al.
(2015). For example, the two-population variant of the CBD model with the incorporation
of quadratic effects, known as the M7 model, can be described as follows:

logit qi
x,t = κi,1

t + (x− x̄)κi,2
t +

(
(x− x̄)2 − σ2

x
)
κi,3

t + γi
t−x, i = R, B, (4)

where x̄ denotes average age and σ2
x is the average value of (x− x̄)2. κi,1

t and κi,2
t are two

stochastic processes, which represent the two time indices of the model. Time index κi,1
t

reflects the level of mortality measured at time t, while κi,2
t shows the slope and affects every

age differently. The γi
t−x parameter represents the cohort effect. Li et al. (2015) considered

three different approaches, which were presented in the work of Zhou et al. (2014) to forecast
future mortality rates.

The use of an age-period-cohort (APC) model with two populations was presented by
Cairns et al. (2011) and Dowd et al. (2011). The model is expressed in the following way:

log mi
x,t = ai

x + ki
t + γi

t−x, i = R, B. (5)

ai
x, ki

t, and γi
t−x are the age, period, and cohort effects of the populations.
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Spreads that exist between the state variables can be modelled as a mean-reverting
process for each population so that the short-term trends in the mortality rates can vary,
whereas there are parallel long-term improvements. In Cairns et al. (2011), a Bayesian
framework, which allows estimating non-observable state variables and the underlying
parameters of the stochastic process in one stage, was used. Moreover, Dowd et al. (2011)
developed a gravity approach in which the mortality rates of two populations experience
attraction to one another determined by a dynamic gravitational force. The force depends
on the comparative sizes of the populations in question (Villegas et al. 2017).

Jarner and Kryger (2011) and Cairns et al. (2011) recognised the comparative value of
the reference population supporting the index and the population whose longevity risk is
being hedged. Their approach centres on the reference population at the beginning, after
which the dynamics of book mortality must be given for the incorporation of character-
istics from the reference population. This relative method has important aspects such as
permitting the mismatching of data between the book and reference population, and it is
applicable in the typical case in which a book population is significantly smaller than a
reference population (Haberman et al. 2014). Table 1 presents the mortality models used in
the relative method and was adopted from Villegas et al. (2017).

Table 1. Mortality models for the relative method. LC, Lee–Carter; APC, age-period-cohort.

Original Model Model Name Reference Population Book-Reference Difference Formula

Common Factor CF+Cohorts LC+Cohorts aB
x

Common Age Effect CAE+Cohorts LC+Cohorts aB
x + βR

x kB
t

Relative LC with Cohorts RelLC+Cohorts LC+Cohorts aB
x + βB

x kB
t

Gravity Gravity (APC) APC aB
x + kB

t + γB
t−x

Two-population M5 M7-M5 M7 κ
(1,B)
t + (x− x̄)κ(2,B)

t

Two-population M6 M7-M6 M7 κ
(1,B)
t + (x− x̄)κ(2,B)

t + γB
t−x

Two-population M7 M7-M7 M7 κ
(1,B)
t + (x− x̄)κ(2,B)

t + ((x− x̄)2 − σ̂2
x)κ

(3,B)
t + γB

t−x

Saint Model M7-Saint M7 κ
(1,B)
t + (x− x̄)κ(2,B)

t + ((x− x̄)2 − σ̂2
x)κ

(3,B)
t

Plat Relative Model M7-Plat M7 100−x
100−x̄ κ

(1,B)
t

3.3. Other Multi-population Models

There are other multi-population applications of commonly used single-population
models. For example, Biatat and Currie (2010) expanded the P-spline approach to en-
compass scenarios with two populations; previously, it had been utilised with success for
cases of single populations. Hatzopoulos and Haberman (2013) and Ahmadi and Li (2014)
applied a multivariate generalised linear model (GLM) for obtaining coherent mortality
forecasts in the cases of multiple populations (Villegas et al. 2017).

However, to our knowledge, only Zhou et al. (2013) incorporated mortality jumps
into two-population mortality models. Their model can be considered as a two-population
generalisation of the model proposed by Chen and Cox (2009). They assumed that the
mortality of a population is either jump-free or subject to one transitory mortality jump,
which is normally distributed.

Although many multi-population mortality models exist, only a few investigate how
to measure longevity basis risks. Some of the earlier research designed for quantifying
basis risk, such as Cairns et al. (2014); Ngai and Sherris (2011), and Li and Hardy (2011),
applied the original framework constructed by Coughlan et al. (2011).

4. Building a Two-Population Mortality Model

The first step in pricing the longevity-linked products is to establish a two-population
mortality model in order to measure longevity basis risk. A relative approach is applied in
this paper, as in Haberman et al. (2014), since it has many advantages over joint modelling.
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However, the modelling framework is slightly different from the original formulations
used for the reference model.

4.1. Mortality Data

All of the examples provided in the paper utilise historical U.K. mortality data, which
were collected from the Continuous Mortality Investigation (CMI) and the Human Mortal-
ity Database (HMD). The first dataset represents the mortality experience of CMI assured
male lives that are being hedged. The subsequent dataset is for the reference population,
which provides the mortality experience of male lives in England and Wales (EW). For the
reference population, a sample period from 1961 to 2016 is considered, while for the book
population, the sample period comprises the years of 1961–2005. The sample age range
being considered is 65 to 89.

4.2. Modelling the Reference Population

The model considered in the paper is a Lee–Carter model with exponential transitory
jumps and the renewal process. By using the renewal process, we attempted to include
the history of catastrophic events in the mortality modelling process. In Özen and Şahin
(2020), the proposed model was compared to other mortality models with jump effects.
The analysis showed that the arrivals between two catastrophic events are important, and
the proposed model provides a better fit to the historical data (see Özen and Şahin (2020)
for more details). Moreover, as indicated before, mortality jumps have important impacts
on mortality dynamics, and it is essential that they are incorporated into the modelling
process. Hence, we use the Lee–Carter model with exponential transitory jumps and the
renewal process as our reference population mortality model.

Here, we assume that transitory jumps are only valid for the reference population
because of the quality and size of the available data for the national population. The
proposed model is given by the following:

log(mR
x,t) = aR

x + bR
x kR

t , (6)

kR
t = kR

0 + (µ− 1
2

σ2)t + σW(t) +
N(t)

∑
i=1

Yi. (7)

Here, mR
x,t denotes the central death rate in year t for age x, aR

x represents the age pat-
tern of the death rates, kR

t reflects variations that exist across time in the log mortality rates,
bR

x represents the mortality rates’ sensitivity to changes in time-varying mortality index
kR

t , W(t) signifies the standard Brownian motion, N(t) denotes the renewal process, and
finally, Y(i) denotes a sequence of independent and identically distributed (iid) exponential
random variables representing the size of the jumps.

There are two identifiability constraints, which means that unique solutions exist for
all of the model’s parameters. These identifiability constraints are given as follows:

∑
x

bR
x = 1, ∑

t
kR

t = 0.

We will estimate the model’s parameters using the MLE method. First, reference popula-
tion parameters aR

x , bR
x , and kR

t are estimated. Afterwards, Equation (7) is used to calibrate
the time-varying mortality index. We need to find the density function of the independent
one-period increments, ∆kR

i = ri = kR
i − kR

i−1, to estimate the parameters of the calibrated
model.
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Let D = {k0, k1, ..., kT} represent the mortality time series at times of t = 1, 2, ..., T,
which have equal spacing. The one-period increments are iid. The unconditional density
for the one-period increment f (r) may be given as follows:

f (ri) = P(0) f (ri|0) +
N(t)

∑
n=1

P(n) f (ri|n), (8)

where P(0) = 1− F(t) and P(n) =
∫ t

0 Pn−1(t− s) f (s)ds are the probability of no jump and
n jumps occurring in the renewal process, where F(t) and f (t) are the distribution and
density functions of the inter-arrival times between two jumps. The distribution of the
inter-arrival times between jumps follows a log-normal distribution with parameters α
and β. The log-normal distribution is chosen over the Weibull and gamma distributions
based on the statistical tests (see Özen and Şahin (2020) for details). f (ri|0), f (ri|n) are
conditional densities for a one-period increment; more specifically, they are conditional on
the given number of jumps and expressed as:

f (ri|0) =
1√
2πσ

e−
(r−µ+0.5σ2)2

2σ2

f (ri|n) =
∫ ∞

0

ηn

(n− 1)!
xn−1e−ηx 1√

2πσ
e−

(r−x−µ+0.5σ2)2

2σ2 dx

=
ηn

(n− 1)!
√

2πσ

∫ ∞

0
xn−1e−ηx− 1

2σ2 (r−x−µ+0.5σ2)2
dx

Then, we can write the log-likelihood of the model as follows:

L(D; µ, σ, η, α, β) =
T

∑
i=1

ln( f (ri)).

The estimated aR
x , bR

x , µ, σ, η, α, β parameter values are shown in Table 2, while time-
varying index kR

t is illustrated in Figure 1.

Table 2. Estimated parameters for the U.K.

Age ax bx Age ax bx

60 −4.2486 0.0388 75 −2.7879 0.0356
61 −4.1505 0.0391 76 −2.6909 0.0349
62 −4.0451 0.0399 77 −2.6061 0.0335
63 −3.9482 0.0402 78 −2.5122 0.0325
64 −3.8408 0.0408 79 −2.4167 0.0314
65 −3.7472 0.0409 80 −2.3246 0.0298
66 −3.6598 0.0401 81 −2.2401 0.0278
67 −3.5517 0.0410 82 −2.1366 0.0272
68 −3.4593 0.0404 83 −2.0461 0.0257
6 −3.3607 0.0401 84 −1.9495 0.0250
70 −3.2684 0.0392 85 −1.8587 0.0233
71 −3.1758 0.0378 86 −1.7637 0.0227
72 −3.0687 0.0381 87 −1.6793 0.0213
73 −2.9749 0.0379 88 −1.5959 0.0195
74 −2.8755 0.0369 89 −1. 5088 0.0179

Jump Diffusion Parameters

µ = −0.2640 σ = 0.2764 η = 1.4792 α = 0.0015 β = 0.6173
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Figure 1. Estimated values of kR
t .

Given the estimated parameters, the closed-form expression for the expected future
central death rates can be derived as follows:

E[m̂R
xt] = exp(aR

x + bR
x (k

R
0 + (µ− 1

2
σ2)t + σW(t) +

N(t)

∑
i=1

Yi)). (9)

4.3. Modelling the Book Population

With the reference population in hand, it is now time to investigate the book popu-
lation’s mortality dynamics. Estimating the reference population first allows us to make
knowledgeable decisions regarding the model’s book part, and we can also incorporate
features from the reference population (Villegas et al. 2017).

The dynamics of the book population’s mortality are specified through the log mor-
tality differences of the book population and the reference population. In this paper, we
compare the most commonly used models, which are the Lee–Carter model, the age-period-
cohort (APC) model, the Cairns–Blake–Dowd (CBD) model, and the common age effect
models to model the book population.

Note that for all the models being compared, we assume that DB
x,t ∼ Poisson(EB

x,t, qB
x,t).

4.3.1. The Lee–Carter Model

The dynamics of the book population are given as follows:

log(mB
x,t)− log(mR

x,t) = aB
x + bB

x kB
t . (10)

The term aB
x denotes the difference in the book population’s level of mortality com-

pared to that of the reference population for age x. Thus, we can conclude that the mortality
level in the book equals aR

x + aB
x . Time index kB

t contributes to establishing the difference
that exists in the mortality trends. The bB

x term shows us how differences in mortality for
age x will respond if any change occurs in time index kB

t (Haberman et al. 2014).

4.3.2. The Common Age Effect Model

This model may be seen as an extension of the Lee–Carter model that possesses a
common age effect. It can be given by the following equation:

log(mB
x,t)− log(mR

x,t) = aB
x + bR

x kB
t . (11)

The aB
x and kB

t parameters here are the same as in the LC model for the book population.
Different from the LC model, there is a common age effect parameter, bR

x , which is the same
as for the reference model.
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4.3.3. The APC Model

The APC model was introduced by Currie (2006), and it is widely used in the literature.
It can be regarded as a generalisation of the LC model, and a two-population version of
this model may be written in the following way:

log(mB
x,t)− log(mR

x,t) = aB
x + kB

t + γB
t−x. (12)

aB
x , kB

t , and γB
t−x respectively represent the age, period, and cohort effects of the book

population Currie (2006). The γB
t−x term is utilized here in order to account for differences

that exist in the cohort effect in the two populations of interest. These parameters reflect
the mortality differences between the two populations.

4.3.4. The CBD Model

Cairns et al. (2006) introduced the following model with the aim of fitting the mortality
rates:

logit(qB
x,t)− logit(qR

x,t) = κ1,B
t + (x− x̄)κ2,B

t . (13)

κ1,B
t and κ2,B

t are two stochastic processes and represent the time indices of the book
population. These parameters reflect the mortality differences between the two populations
as in the APC model.

The analysis of the models considered in this section becomes something of a challenge
due to the CBD model directly modelling one-year death rate qx,t, while the others that
are being considered in the paper model central death rates mx,t. In order to compare the
models in a consistent way, we must introduce an additional step for the modelling of
qx,t. We transform the one-year death probabilities in the central death rates using the
identity mx,t = − log(1− qx,t). For all mentioned models, the parameters are estimated by
two main steps. As indicated before, the parameters of the book population are estimated
conditional on the parameters of the reference population. Under the Poisson assumption,
the log-likelihood function of the book population is as follows:

lB = ∑
x,t

(
DB

x,t ln EB
x,t + DB

x,t ln mB
x,t − EB

x,tm
B
x,t − ln(DB

x,t!)
)
.

We estimate the parameters by applying the maximum likelihood method. The parameters
obtained for the book population are given in Figure 2 for different mortality models.

According to Figure 2, the aB
x parameter shows that the younger ages reveal lower

rates of mortality while the older ages reveal higher mortality. The positive values of bB
x

demonstrate that mortality decreases for all ages. These results are valid for all aB
x and bB

x
parameters for all mortality models of the book population. The mortality index, kB

t , reflects
the changes in mortality rates over the years for the LC, common age, and APC models. The
γB

t−x parameter represents the cohort related effects in the book population. The negative
values of the κ1,B

t parameter in the CBD model indicate the lower mortality rates, while the
positive values reflect the higher mortality rates. The κ2,B

t parameter controls these lower
and higher mortality rates in the CBD model for the book population.

The BIC values obtained from the fitted models for book population mortality are
given in Table 3. The common age effect model has the lowest BIC value according to
Table 3. Therefore, we model the book population’s mortality using the common age effect
model.
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Figure 2. Estimated parameters of the book population models.

Table 3. BIC Values for the Book Population Models.

LC Model Common Age Effect Model APC Model CBD Model

12,684.89 12,531.63 12,809.69 13,759.64

Finally, we complete the modelling framework by specifying the period’s dynamics
and the cohort terms, which will be used to forecast and simulate the future rates of
mortality. A detailed analysis regarding the selection of the time series to be used in the
dynamics can be found in the work of Li et al. (2015). This part of the study confines itself
to focusing on the models that are commonly applied in the literature. We assume that
the two populations will experience similar improvements in the long run, and thus, we
assume that the spread in both time indices and cohort effects should be modelled as a
stationary process.

In this paper, the time-varying mortality indices of the book population kB
t are modelled

as an autoregressive process of order one; we are thus able to write kB
t = ψ0 + ψ1kB

t−1 + ξt
for the LC, the common age effect, and the APC models. In the long term, the mean of



Risks 2021, 9, 44 11 of 19

kB
t equals ψ0/(1− ψ0) if |ψ1| < 1. The autocorrelation depends on the size of ψ1. More

technical aspects of time-series modelling can be found in the work of Tsay (2002).

4.4. Future Simulations

In evaluating the uncertainty of future outcomes and finding the optimal model to
assess longevity basis risk, it is necessary to address all of the parameter errors, process
errors, and model errors from a modelling or a regulatory perspective such as that of
Solvency II (Li et al. 2018). Parameter error refers to the uncertainty in estimating model
parameters, while process error arises from variations that exist within the time series.
Finally, model error reflects the uncertainty that is present in the model selection.

In the literature, a number of studies have been proposed to allow for both process error
and parameter error in index-based hedging. For instance, Brouhns et al. (2002) used a para-
metric Monte Carlo simulation method for the generation of examples of model parameters
following a multivariate normal distribution. Later, in a subsequent work, Brouhns et al. (2005)
also explored a semi-parametric bootstrapping procedure designed for the simulation of death
rates from the Poisson distribution with the obtained mean equalling the observed number
of deaths. On the other hand, Renshaw and Haberman (2008) utilized the fitted number of
deaths by using the Poisson process. In another study, Koissi et al. (2006) used a bootstrap
method for the residuals of a fitted Lee–Carter model.

Different from the existing methods, Czado et al. (2005) and Kogure et al. (2009)
suggested the application of Bayesian adaptations of the LC model. Li (2014) quantitatively
compared possible methods for simulations; according to the conclusions of that study,
sampling results will all be relatively close to each other regardless of whether the method
applied is parametric, semi-parametric, Bayesian, or residual bootstrapping. All of these
various simulation methods possess individual advantages and disadvantages. In this
study, the bootstrapping method of Brouhns et al. (2005) was selected due to its ability to
helpfully include both parameter errors and process errors in simulating future mortality
rates. The procedure of bootstrapping is given below:

1. The parameters of the LC model are estimated by using original data. Once they are
obtained, those estimated parameters are then applied for estimating the number of
deaths for both the reference and the book population by m̂R

x,tE
R
x,t, m̂B

x,tE
B
x,t.

2. The new data on the number of deaths are simulated from a binomial distribution
for the book population to include sampling risk, and the Poisson distribution is
used for the reference population. The newly simulated data will then be used for the
estimation of the reference and book populations’ mortality parameters. Incorporating
this step means that the model can allow for parameter error.

3. Next, we must fit time-series processes to the new data sample’s temporal model
parameters, kR

t and kB
t , since we want to be able to simulate their future values.

Furthermore, the inclusion of this step means that the model can allow for process
error. kR

t is modelled by using the proposed model, and kB
t is modelled by using

AR(1).
4. We generate future mortality rate samples for all x and future t with the incorporation

of the parameters obtained in Step (2) and the simulated values that we gained in Step
(3) into log(mR

x,t) and log(mB
x,t). As a result, our set of future mortality rates will form

one random future scenario.
5. We repeat Steps (1) to (4) until we have produced a total of 10,000 random future

scenarios.

Different from Haberman et al. (2014), in this paper, the parameter errors of the
reference population are considered by applying bootstrapping to both the reference and
book population models’ estimations.

A sample from the simulated mortality paths are shown in Figure 3. The mortality
paths enable us to obtain projected mortality rates, hence future liabilities of the pension
plan and hedging instrument.
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Figure 3. Sample paths of mx,t. CMI, Continuous Mortality Investigation.

Sampling Risk

Sampling risk arises from the finite sizes of the reference and book populations and
random outcomes of the individual lives. If the size of the populations are infinite, the
future outcomes will converge the true expected values according to the law of large
numbers. Nevertheless, the size of the populations is limited in reality. Although the bigger
countries have very large population sizes, the annuity or pension portfolio’s size is usually
small. Hence, the book and reference populations’ outcomes will deviate randomly from
their true expected values, as well as from each other. To reflect the effect of the portfolio
size, the number of lives is simulated as:

lB
x+1,t+1 ∼ Binomial(lB

x,t, 1− qB
x,t) (14)

lB
x,t is the future number of lives aged x at time t of the book population. qB

x,t is
the future mortality rate at age x at time t, and it is simulated from the semi-parametric
bootstrapping method. Simulating the number of lives of the book population by using the
binomial distribution provides protection from sampling risk (Li et al. 2018).

4.5. Comparison with the Other Mortality Models

After constructing a two-population mortality model, we need to compare the pro-
posed model with other mortality models and show its effectiveness. Therefore, we
consider three additional two-population mortality models. The first model is the LC
model with normal jumps and the renewal process; the second one is the LC model with
jumps; and the last one is the LC with common age effect model called CAE + Cohorts.
The LC model with normal jumps and the renewal process has the same properties as the
proposed mortality model. The only difference is the distribution of the mortality jumps.
The model is expressed as:

log(mR
x,t) = aR

x + bR
x kR

t , (15)

kR
t = kR

0 + (µ− 1
2

σ2)t + σW(t) +
N(t)

∑
i=1

Yi,
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where Yi ∼ N(m, s2).
log(mB

x,t)− log(mR
x,t) = aB

x + bR
x kB

t (16)

The LC with jumps model is very similar to Zhou et al. (2013); however, we use the
relative approach to estimate the parameters of the models. Thus, our mortality data could
be based on different sizes of periods for the reference and book population. As mentioned
in Section 4.3, in the relative approach, the parameters of the reference population’s mor-
tality model are estimated first. Then, the dynamics of the book population’s mortality are
specified through the log mortality differences of the book population and the reference
population. We use the same notation as Zhou et al. (2013) for the LC model with jumps,
and the model is as follows:

log(mi
x,t) = ai

x + bi
xki

t + ei
x,t, i = 1, 2. (17)

where ai
x and bi

x are the same as in the original LC model. The time index is expressed as
the sum of two components, ki

t + Ni
tY

i
t . The first component, ki

t, is the time-t value of an
unobserved period effect index that is free of jumps, while the second term, Ni

tY
i
t , indicates

the jump effect at time t. The model allows the two populations to have different jump
times, jump frequencies, and jump severities. They allow a maximum of one jump in
a given year, and the jump severity Yi

t follows a normal distribution with mean µY and
variance VY (see Zhou et al. (2013) for more model details).

The last mortality model that we consider here is the CAE + Cohorts model that is
given in Section 3. The parameters of the models are estimated by using the maximum
likelihood method.

The estimated parameters for these three models are given in Appendix A.

5. Assessing Basis Risk: An Example

In this section, we consider a hedging strategy to assess longevity basis risk and to
measure the effectiveness of the hedge while taking mortality jumps and sampling risk
into account. The hedge effectiveness can be described as how much longevity risk is
transferred away. The following formula can be used to define the level of longevity risk
reduction for the hedge as in Coughlan et al. (2011):

longevity risk reduction =

(
1− risk (hedged)

risk (unhedged)

)
× 100% (18)

where the terms risk (unhedged) and risk (hedged) represent the appropriate dispersion-
based risk measures for the aggregate longevity of the portfolio before and after the
hedging. A perfect hedge would have a longevity risk reduction equal to one, and a good
hedge would have a risk reduction degree close to one; a risk reduction degree close to
zero indicates an ineffective hedge (Dowd et al. 2019). In this paper, the variance risk
measure is used to minimise the variations in the expected future cash flows of the hedging
instrument.

A simple case study based on a hypothetical pension plan is considered to illustrate
the effect of the proposed mortality models and different volumes of book population
data on hedge effectiveness. The pension plan members are assumed to have underlying
mortality rates that are the same as the CMI male assured lives dataset. Suppose that all
members of the pension plan are aged 65 and pay £1 per year on survival from ages 66 to
90. Our objective is to minimise the longevity risk exposure of the pension plan, and hence,
we construct a hedge by using a 10 year index-based longevity swap. We assume that the
EW male population constitutes the floating leg’s reference population, while the payments
of the fixed leg of the swap calculated by using Equation (20) are based on the CMI assured
male lives. We assume that the interest rate is 3% per annum during the whole period. The
current date is taken as the start of the calendar year 2016.
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We use the same notation as in the work of Li et al. (2018) for the hedged and the
unhedged positions. The present value of the pension plan’s future liability (unhedged
position), L(t), is given as below:

L(t) =
10

∑
t=1

lB
65+t,t(1 + r)−t (19)

As a floating-leg receiver, the present value of the longevity swap’s future cash inflows,
S(t), can be written as:

S(t) =
10

∑
t=1

(
t pR

65 −t pR; f orward
65

)
(1 + r)−t (20)

For this equation, we calculate random future survivor index t pR
65 and forward sur-

vivor index t pR; f orward
65 by applying the survival probability formula, as follows: t pR

65 =
(1− qR

65,0)(1− qR
66,1)...(1− qR

65+t−1,t−1). Furthermore, the present value of the aggregate
pension plan position after longevity hedging (hedged position) may be expressed with
the following statement:

10

∑
t=1

lB
65+t,t(1 + r)−t − w

10

∑
t=1

(
t pR

65 −t pR; f orward
65

)
(1 + r)−t (21)

where weight w denotes the notional amount of longevity swap necessary for successful
hedging to be performed. It is estimated by minimising the risk or uncertainty of the
random present value of the aggregate position (Li et al. 2018).

Moreover, in order to take sampling risk into account, we use the binomial death
process for the book population as given in Equation (14). To emphasise the role of the
size of the population on hedge effectiveness, we produce three simulated distributions as
l(65) = 5000, l(65) = 10,000, and l(65) = 100,000. We obtain cash flows for hedged and
unhedged positions for four mortality models, namely the proposed Lee–Carter model with
the renewal process and exponential jumps, the Lee–Carter model with the renewal process
and normal jumps, and the LC model with jumps and CAE + Cohorts, by considering
sampling risk. Then, the hedge effectiveness of these models is calculated.

In Table 4, we present the longevity risk reduction levels when sampling risk is taken
into account for the three mortality models. The results indicate that our proposed mortality
jump model with the renewal process provides a better risk reduction compared to the other
two models. The risk reduction level increases as the sample size increases for all models,
which indicates that sampling risk might be important. However, even for the smaller
populations, our proposed model provides a 45.07% risk reduction, while the Lee–Carter
model with the renewal process and normal jumps, the LC model with jumps, and the
CAE + Cohorts model provide 33.97%, 23.17%, and 13.35%, respectively. Moreover, the
mortality models with the renewal process show more risk reduction compared to the other
mortality models. Therefore, the analysis shows that, by using the proposed mortality
model, a significant portion of the risk would be eliminated for the pension plan that is
exposed to mortality jump risk.

Table 4. Risk reduction for different mortality models.

l(65)
LC with Renewal P. and

Exponential Jumps LC with Renewal P. and Normal Jumps LC with Jumps CAE + Cohorts

5000 0.4507 0.3397 0.2317 0.1335
10,000 0.7602 0.6127 0.5713 0.2605
100,000 0.8569 0.7766 0.7392 0.6328
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6. Conclusions

Index-based hedging solutions have many advantages. In such capital market solu-
tions, it is possible to transfer the longevity risk to capital markets at lower costs. However,
the potential differences between hedging instruments and the pension or annuity portfolio
cause longevity basis risk. In this paper, we construct a two-population mortality model to
measure and manage longevity basis risk.

An appropriate two-population model was built for EW male lives and CMI assured
male lives to measure longevity basis risk, and the relative approach to model the popula-
tions was adopted. The modelling process of the reference population was followed by the
modelling of the dynamics of the book population’s mortality. The reference population
was modelled by using the LC model with renewal process and exponential jumps pro-
posed by Özen and Şahin (2020), and the common age effect model outperformed among
the others to model the book population.

The bootstrap approach of Brouhns et al. (2005) was applied in order to include
both parameter error and process error in the simulation of future mortality rates. The
Poisson distribution was used for the simulation of the reference population’s lives, and
the binomial distribution was used for the simulation of the book population’s lives to
consider sampling risk.

Furthermore, the impact of the proposed mortality model and sampling risk to hedge
effectiveness was examined. For this purpose, a hypothetical pension plan and hedging
strategy which consisted of a 10 year longevity swap were considered based on the three
different two-population mortality models, namely the proposed LC model with the
renewal process and exponential jumps, the LC model with the renewal process and
normal jumps, the LC with jumps model, and the LC with common age effect model. Then,
the hedge effectiveness was calculated by using these four mortality models to compare
the risk reduction caused by the models. The analysis suggests that the proposed mortality
model provides a more effective risk reduction for mortality jump risk and sampling risk
than the other three models.

In this paper, the index-based longevity swaps were used as a hedging instrument
to assess the longevity risk reduction. However, as a future study, a different hedging
instrument such as q-forwards might also be included in the analyses to provide a more
robust assessment of the basis risk. Another possible future study can be to construct an
optimal hedging framework with collateralisation to obtain reasonable risk reduction rates
by using the proposed two-population model.
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Appendix A

In this section, the parameters of the LC model with the renewal process and normal
jumps, the LC model with jumps, and CAE + Cohorts are presented.

The aR
x and bR

x parameters are the same for all models.
The jump-diffusion parameters for the LC model with the renewal process and normal

jumps are presented in Table A1.

https://www.mortality.org/
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Table A1. Estimated jump-diffusion parameters.

Jump Diffusion Parameters

µ = −0.2389 σ = 0.1788 m = −0.0355 s = 0.3640 α = 0.0029 β = 0.6009

The estimated kR
t values are the same as the proposed model. The estimated aB

x and
kB

t parameters are given in Table A2 and Figure A1.

Table A2. Estimated book population parameters for the LC with the renewal process and normal
jumps.

Age ax Age ax

60 −1.1472 75 −0.8633
61 −1.1124 76 −0.8462
62 −1.1094 77 −0.7794
63 −1.1052 78 −0.7739
64 −1.1142 79 −0.7382
65 −1.1226 80 −0.6980
66 −1.1048 81 −0.6433
67 −1.1324 82 −0.6805
68 −1.0858 83 −0.6239
69 −1.0674 84 −0.6235
70 −1.0107 85 −0.6215
71 −0.9566 86 −0.6155
72 −0.9685 87 −0.5836
73 −0.9341 88 −0.5391
74 −0.9186 89 −0.5532

Figure A1. Estimated kt values of the book population.

In Zhou et al. (2013), k̂1
t followed a random walk with drift, and ∆̂k(t) = k̂1

t − k̂2
t

followed a stationary first order autoregressive process. The period effect indices are
modelled using by the following set of equations:

k̂1
t+1 = k̂1

t + µk + Zk(t + 1),

k1
t+1 = k̂1

t+1 + N1
t+1Y1

t+1,
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∆̂k(t) = k̂1
t − k̂2

t ,

∆̂k(t + 1) = µ∆k + φ∆k ∆̂k(t) + Z∆k (t + 1),

k2
t+1 = k̂2

t+1 + N1
t+1Y1

t+1

where µk and µ∆k are constants and φ∆k is a constant whose absolute value is less than one.
The error terms Zk(t) and Z∆k (t) follow a zero-mean bivariate normal distribution with a
variance-covarinace matrix VZ.

The estimated aB
x and bB

x parameters are given in Table A3.

Table A3. Estimated parameters for the LC with jumps model.

Age ax bx Age ax bx

60 −0.8348 0.0234 75 −0.6154 0.0188
61 −0.8006 0.0230 76 −0.6021 0.0166
62 −0.7823 0.0217 77 −0.5548 0.0167
63 −0.7775 0.0222 78 −0.5528 0.0159
64 −0.7879 0.0225 79 −0.5282 0.0146
65 −0.8082 0.0234 80 −0.4969 0.0153
66 −0.7920 0.0205 81 −0.4566 0.0136
67 −0.8199 0.0199 82 −0.4905 0.0126
68 −0.7798 0.0199 83 −0.4426 0.0131
69 −0.7650 0.0194 84 −0.4414 0.0124
70 −0.7193 0.0189 85 −0.4493 0.0124
71 −0.6876 0.0177 86 −0.4449 0.0140
72 −0.6941 0.0191 87 −0.4244 0.0131
73 −0.6655 0.0175 88 −0.3931 0.0106
74 −0.6572 0.0168 89 −0.4136 0.0113

The parameters of the jump component of the model are presented in Table A4.

Table A4. Estimated parameters for the LC with jumps model.

µk = −0.4973 µ1
Y = 4.2915 µ2

Y = 4.5614 µ∆k = −0.3108
φ∆k = 0.0496 V1

Y = 0.5608 V2
Y = 0.6849 VZ = 0.3915

The probabilities of jump frequencies are Pr(N1
t = 0, N2

t = 0) = 0.7763, Pr(N1
t =

0, N2
t = 1) = 0.0967, and Pr(N1

t = 1, N2
t = 1) = 0.1269.

The parameters of the CAE + Cohorts model book population are presented in
Table A5 and Figure A2.
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Table A5. Estimated parameters for the book population of the CAE + Cohorts model.

Age ax Age ax

60 −0.5431 75 −0.3930
61 −0.5123 76 −0.3886
62 −0.4981 77 −0.3545
63 −0.4897 78 −0.3569
64 −0.4995 79 −0.3419
65 −0.5207 80 −0.3171
66 −0.5223 81 −0.2893
67 −0.5495 82 −0.3201
68 −0.5135 83 −0.2828
69 −0.5032 84 −0.2801
70 −0.4664 85 −0.2988
71 −0.4513 86 −0.2904
72 −0.4500 87 −0.2846
73 −0.4293 88 −0.2639
74 −0.4287 89 −0.2944

Figure A2. Estimated kt values of the book population.
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