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Abstract: We examine how sensitive the new performance indexes incorporating high moments
and disaster risk are to disaster risk. The new performance indexes incorporating high moments
and disaster risk are the Aumann-Serrano performance index and Foster-Hart performance index
proposed by Kadan and Liu. These performance indexes provide evaluations sensitive to the
underlying risk. We show, by numerical examples and empirical examples, how sensitive these
indexes are to disaster risk. Although these indexes are known to be either quite sensitive or
excessively sensitive to disaster risk or maximum loss in the literature, we show by the regression
analysis of the index and summary statistics these indexes are in fact not excessively sensitive to
maximum loss in representative stock data, which contain disastrous observations. The numerical
estimate of the Foster-Hart performance index is found to be effective in showing the performance
index. Our analysis suggests these indexes can handle various empirical data containing quite
disastrous observations.

Keywords: Aumann-Serrano performance index; Foster-Hart performance index; Sharpe ratio;
maximum loss

JEL Classification: G11; C22; C46

1. Introduction

Recently, new performance measures incorporating high moments and disaster risk
are proposed by Kadan and Liu (2014). The new performance measures are reciprocals
of the risk indexes proposed by Aumann and Serrano (hereafter AS) (2008) and Foster
and Hart (hereafter FH) (2009) based on axiomatic approaches. Kadan and Liu (2014)
demonstrated the use of the new performance indexes is useful to provide risk-averse
assessments of various assets compared to the de facto industry standard performance
measure, i.e., the Sharpe ratio. These conservative assessments shed new light to provide
very different evaluations compared to the Sharpe ratio, which incorporates only the first
two moments. There are many performance measures proposed in the literature. However,
most of those performance measures proposed before were put forward in a rather ad hoc
way and not based on economic principles. See, e.g., articles such as Cogneau and Hubner
(2009a, 2009b), Eling and Schuhmacher (2007), and Farinelli et al. (2008) for various perfor-
mance measures proposed in the literature. On the other hand, the AS and FH performance
measures are based on axiomatic approaches and different from those ad hoc performance
measures. However, there are no further studies of the properties of the new performance
measures since Kadan and Liu (2014) except Hodoshima (2019), who only studies the
property of the AS performance measure1. The AS performance measure is known to

1 Hodoshima (2019) studied an index called the inner rate of risk aversion (IRRA) proposed by Miyahara (2010, 2014) obtained from utility indifference
pricing when the underlying utility function is an exponential one. However, the IRRA turns out to be equivalent to the AS performance index (cf.,
Hodoshima and Miyahara 2020).
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be quite sensitive to the underlying risk of targets in question (cf., Kadan and Liu 2014;
Miyahara 2014; Ban et al. 2016; Hodoshima 2019). The FH performance measure is also
known to be extremely sensitive to rare disasters or maximal loss (cf., Foster and Hart 2009;
Kadan and Liu 2014; Anand et al. 2016, 2017; Riedel and Hellmann 2015). We address the
issue of sensitivity of the AS and FH performance measures to disaster risk in this study.
It is not clear in the existing literature how sensitive these new performance measures are
to disaster risk. The AS and FH performance measures correspond to the AS and FH risk
measures, one-to-one. Although we focus on the AS and FH performance measures in this
study, therefore, our findings in this study can be equally applied to the AS and FH risk
measures in the opposite sense that good (bad) performance is equivalent to being less
(more) risky.

We use numerical examples and empirical examples to see how sensitive the new
performance measures are to disaster risk or maximal loss. We present numerical examples
of several performance measures to show characteristics of the new performance measures.
The performance measures we study in the numerical examples are the AS and FH per-
formance measures, Sharpe ratio, Sortino ratio, and Calmar ratio. By comparing these
performance measures numerically, we can see more clearly the merits and demerits of
the AS and FH performance measures as compared to the more traditional performance
measures proposed before. We also study empirical examples to see how the new perfor-
mance measures are sensitive to disaster risk or maximal loss. As empirical examples we
use the DOW 30 stocks, which make up the world-leading Dow Jones Industrial Average
Index (DOW). We consider the DOW 30 stocks are representative stocks. When we show
daily and monthly data of the DOW 30 stocks as empirical examples in this study, we
can see they contain quite disastrous days or months, which looks more disastrous than
our numerical examples where the FH performance measure attains a lower limit of zero.
However, we show both the AS and FH performance measures can handle these data
to produce sensible scores in our empirical examples. We show the new performance
measures, particularly the FH performance measure, are, unlike the previous predominant
view in the literature, able to produce robust scores to real data containing quite disastrous
observations. The numerical estimate of the FH performance measure by grid search is
found to be effective in showing a good estimate of the FH performance measure. We also
show by the regression analysis of the new performance measure and summary statistics
including percentiles how the new performance measures are sensitive to disaster risk or
maximal loss in typical stock data.

In the following, we review the existing literature with respect to sensitivity of the AS
and FH performance measures to disaster risk. In their seminal paper, Aumann and Serrano
(2008) showed the AS risk index satisfies first- and second-order stochastic dominance
when the underlying gamble is restricted to take finite values and noted the AS risk
index is sensitive to losses. Miyahara (2010, 2014) showed the IRRA, equivalent to the AS
performance index, is sensitive to losses by numerical examples. Kadan and Liu (2014)
described the reciprocal of the AS risk index can be used as a performance index and
demonstrated through several empirical examples it can be quite useful to provide risk-
sensitive evaluation compared to the Sharpe ratio. Ban et al. (2016) showed the sensitivity
of the IRRA to disaster risk by numerical examples. Hodoshima (2019) examined the
properties of the IRRA using examples of normal mixture distributions.

On the other hand, Foster and Hart (2009) proved the FH risk index also satisfies first-
and second-order stochastic dominance when the underlying gamble is restricted to take
finite values and remarked it is quite sensitive to the maximal loss as an implication of their
proposition, i.e., Proposition 3 of Foster and Hart (2009). Foster and Hart (2009) showed
there exists a unique positive solution R(g) of the implicit equation

E
[

ln
(

1 +
g

R(g)

)]
= 0
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for a gamble g when a gamble g takes finite values with E[g] > 0 and P(g < 0) > 0
where R(g) denotes the FH risk measure. Kadan and Liu (2014) also remarked the FH
performance measure is extremely sensitive to the maximal loss by considering a composite
gamble with a small probability of a large loss, i.e., Proposition 8 of Kadan and Liu (2014).
Anand et al. (2016) and Anand et al. (2017) use as the FH risk measure the extended FH risk
given by Riedel and Hellmann (2015) for gambles with continuous distribution. In other
words, Riedel and Hellmann (2015) extended the FH risk measure for a gamble with
continuous distribution by the maximum loss L, i.e.,

R(g) =

{
r ∗ such that E

[
ln
(
1 + g

r∗
)]

= 0 if E
[
ln
(
1 + g

L
)]

< 0
L if E

[
ln
(
1 + g

L
)]
≥ 0.

Riedel and Hellmann (2015) remarked the FH risk measure does not exist for many common
distributions and that the sign of the expectation E

[
ln
(
1 + g

L
)]

determines whether the FH
risk measure exists or not. In other words, the FH risk measure defined by Foster and Hart
(2009) does (not) exist when the sign of E

[
ln
(
1 + g

L
)]

is negative (nonnegative), and the
maximal loss L is used as the extended FH risk measure when the FH risk measure does
not exist. Since Riedel and Hellmann (2015), the FH risk measure have been identified
in some cases as the maximum loss. However, to the best of our knowledge no study
exists to examine if the maximum loss or the reciprocal of the maximum loss of a gamble is
appropriate in real data. In this study, we verify this thesis empirically using the numerical
estimate of the FH performance measure proposed by Kadan and Liu (2014) and the
reciprocal of the maximum loss with the help of the sign of the expectation E

[
ln
(
1 + g

L
)]

.
As a result, we show the numerical estimate of the FH performance measure by grid
search is effective in finding the FH performance measure or the extended FH performance
measure defined by the reciprocal of the maximal loss.

The rest of the article is organized as follows. In Section 2, we describe methods, i.e.,
the AS and FH performance measures as well as the extended FH performance measure.
In Section 3, we provide results, i.e., numerical examples of a set of performance measures,
including the AS and FH performance measures, and empirical examples. In Section 4, we
provide discussion of results. In Section 5, we present concluding comments.

2. Methods (the AS and FH Performance MEASURE and FH Extended
Performance Measure)

In this section, we describe the AS and FH performance measures and FH extended
performance measure. We follow Kadan and Liu (2014) to describe the AS and FH perfor-
mance measures, i.e., Proposition 1 and 2 of Kadan and Liu (2014).

First we describe the AS performance measure. We begin to give the following
two definitions.

Definition 1. A gamble g is wealth-uniformly rejected by an investor with utility function u, if u
rejects g at all initial wealth levels.

Definition 2. A gamble g wealth-uniformly dominates gamble g′ if whenever g is wealth-uniformly
rejected by a utility function u, g′ is also wealth-uniformly rejected by u.

Based on the above definitions, the following result can be obtained.

Proposition 1 (Aumann and Serrano 2008; Hart 2011). Wealth-uniform dominance induces a
complete order on the set G of gambles that extends second-order stochastic dominance. This order
can be represented by a performance index PAS(g) assigned to any gamble g ∈ G, which is given
by the unique positive solution to the implicit equation

E[exp(−PAS(g)g)] = 1.
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That is, for any two gambles g and g′, g wealth-uniformly dominates g′ if and only if PAS(g) ≥
PAS(g′). The set G denotes the set of gambles.

Next, we describe the FH performance measure. We assume the class of utility
functions U∗ satisfy the three conditions; (i)decreasing absolute risk aversion, (ii)increasing
relative risk aversion, (iii) limw↓0 u(w) = −∞.

Definition 3. A gamble g is utility-uniformly rejected at an initial wealth level w0 if all utility
functions u ∈ U∗ reject g at w0.

Definition 4. A gamble g utility-uniformly dominates gamble g′ if whenever g is utility-uniformly
rejected at an initial wealth level w0, g′ is also utility-uniformly rejected at w0.

Then we have the following result.

Proposition 2 (Foster and Hart 2009; Hart 2011). Utility-uniform dominance induces a complete
order on G that extends second-order stochastic dominance. This order can be represented by a
performance index PFH(g) assigned to any gamble g ∈ G, which is given by the unique positive
solution to the implicit equation

E[ln(1 + PFH(g)g)] = 0.

That is, for any two gambles g and g′, g utility-uniformly dominates g′ if and only if
PFH(g) ≥ PFH(g′).

Therefore, the AS performance index of a gamble g is defined to be a positive solution
α of the implicit equation given by

E[exp(−αg)] = 1.

On the other hand, the FH performance index of a gamble g is defined to be a positive
solution γ of the implicit equation

E[ln(1 + γg)] = 0.

The AS and FH risk indexes are the reciprocals of the AS and FH performance indexes, i.e.,
the AS risk index proposed by Aumann and Serrano (2008) is given by 1/α and the FH risk
index proposed by Foster and Hart (2009) is given by 1/γ. Hodoshima and Miyahara (2020)
extended the AS performance index to include the negative solution of the implicit equation
of the AS performance index and provided a sufficient condition for the existence of the
unique negative solution of the implicit equation.

Riedel and Hellmann (2015) gave an interesting theorem regarding a gamble with con-
tinuous distribution by introducing finite gambles that approximate the continuous gamble.

Proposition 3 (Riedel and Hellmann 2015). Let g be a gamble with maximal loss L > 0. Let gn
be a sequence of finite-valued gambles with gn ↑ g a.s., where each gn has the same maximal loss L.
Denote by ρn ≡ ρ(gn) > L their FH risk measure. Then the following statements hold true:

1. The sequence ρn is decreasing. Put ρ∞ = lim ρn ≥ L for its limit.
2. If E[ln(1 + g/L)] < 0, then ρ∞ is the unique positive solution of the FH implicit equation

E[ln(1 + g/γ)] = 0.
3. If E[ln(1 + g/L)] ≥ 0, then the Foster-Hart equation has no solution and ρ∞ = L(g).

In other words, Riedel and Hellmann (2015) defined the maximal loss L as the extended
FH risk measure when E[ln(1 + g/L)] is nonnegative, i.e., when the FH risk measure does
not exist.
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3. Results

In this section, we present numerical examples of a set of performance measures
including the AS and FH performance measures and empirical examples of the DOW
30 stocks.

3.1. Numerical Examples of the Performance Measures

We first present numerical examples of a set of performance measures using random
variables of cash flows. Although Kadan and Liu (2014) presented empirical examples of the
AS and FH performance measures in various financial assets, the characteristics of the two
performance measures were not fully explained there. We intend to show the characteristics
of the two performance measures in comparison to the traditional performance measures
of the Sharpe ratio, Sortino ratio, and Calmer ratio. The Sortino ratio and Calmar ratio
are derived from the Sharpe ratio by replacing the standard deviation in the Sharpe ratio
by other risk measures. The Sortino ratio replaces standard deviation in the Sharpe ratio
by the downside deviation in order to take into account only downside risk instead of
both downside and upside risk in standard deviation. The Calmar ratio replaces standard
deviation in the Sharpe ratio by another risk measure of the maximum drawdown where a
drawdown is a peak-to-trough decline. Comparing the two performance measures with
these traditional performance measures, we can see how the new performance measures
function relative to the old performance measures.

We consider the following two sets of random variables in Example 1 and 2 given in
Tables 1 and 2. We consider four cases of random variables in Example 1 where values
each random variable takes are given with corresponding probabilities where pr stands
for probability. Mean, s.d., third, and fourth, skew, kurt, downrisk, and maxdrawd are
respectively mean, standard deviation, the third central moment, the fourth central moment,
skewness, kurtosis, downside deviation, and maximum drawdown for each random
variable. Similar numerical examples were examined in Hodoshima (2020a) where the
traditional performance measures were compared with the AS performance measure.

Sharpe, Sortino, Calmar, AS, and FH denote respectively the Sharpe ratio, Sortino
ratio, Calmar ratio, AS performance measure, and FH performance measure.

We estimate the two performance measures by the generalized method of moments
(GMM) estimator, as described in Kadan and Liu (2014). In particular, we find the two
performance measures via grid search for the solutions of the sample analogs of the
implicit equations for the two performance measures. The GMM estimator is consistent
and asymptotically normally distributed. The implicit equations of the two performance
measures are given as follows. The AS performance measure of a gamble g is given by α,
which is a unique solution α of the implicit equation

E[exp(−αg)] = 1. (1)

On the other hand, the FH performance index of a gamble g is defined by γ, which is the
unique solution of the implicit equation

E[ln(1 + γg)] = 0. (2)

In Example 1, the case with a higher number dominates the case with a lower number
since the former is larger than the latter with probability one. Hence, appropriate perfor-
mance measures ought to take higher values in the case with a higher number than the
case with a lower number, which is the property called monotonicity. The de facto industry
standard performance measure, the Sharpe ratio, fails to provide a larger value in the case
with a higher number than the case with a lower number. Therefore, the Sharpe ratio does
not satisfy monotonicity, one of the most fundamental criteria for performance measures.
On the other hand, the Sortino ratio and Calmar ratio both satisfy this criterion. However,
the Calmar ratio increases very much in the case with a higher number where a large value
replaces a small value in the case with a lower number with a small probability 0.009.
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Therefore, the Calmar ratio is too sensitive to the increase of a value in the random variable
with a small probability 0.009 in the case with a higher number. The Sortino ratio increases
gradually in the case with a higher number so that it satisfies monotonicity in Example 1.
The AS performance measure does satisfy to provide a larger number in the case with
a higher number than the case with a lower number2. We remark the AS performance
measures in case 2–4 are the same up to the third decimal point in Example 1 but that the
AS performance measure in the case with a higher number is in fact larger in four decimal
places or less than the case with a lower number in case 2–4 in Example 1. The increase
of the AS performance measure in the case with a higher number is very small and hence
not sensitive to gains of the underlying random variable. The FH performance measure
increases more clearly than the AS performance measure in the case with a higher number
than the case with a lower number. This implies the FH performance measure is more
sensitive to gains than the AS performance measure, which has never been mentioned in
the literature. The magnitude of the FH performance measure is similar to that of the AS
performance measure and Sortino ratio.

Table 1. Example 1 of Four Cases of Cash Flows.

Case 1 Case 2 Case 3 Case 4

value pr value pr value pr value pr

−1 0.4 −1 0.4 −1 0.4 −1 0.4
2 0.6 2 0.591 2 0.591 2 0.591

5 0.009 10 0.009 20 0.009

mean 0.8 0.827 0.872 0.962

s.d. 1.470 1.518 1.704 2.332

third −1.296 −0.831 5.069 59.742

fourth 5.443 8.305 68.350 1188.914

skew −0.408 −0.238 1.025 4.710

kurt 1.167 1.563 8.107 40.196

downrisk 1.138 1.155 1.184 1.241

maxdrawd 1.5 1.2 1.1 1.05

Sharpe 0.544 0.545 0.512 0.413

Soltino 0.703 0.716 0.737 0.775

Calmar 0.533 0.689 0.793 0.916

AS 0.782 0.785 0.785 0.785

FH 0.746 0.751 0.755 0.760
Example 1 provides four cases of random variables of uncertain cash flows where values each random variable
takes are given with corresponding probabilities where pr stands for probability. Mean, s.d., third, and fourth,
skew, kurt, downrisk, and maxdrawd are respectively mean, standard deviation, the third central moment,
the fourth central moment, skewness, kurtosis, downside risk, and maximum drawdown for each random
variable. Sharpe, Sortino, Calmar, AS, and FH denote respectively the Sharpe ratio, Sortino ratio, Calmar ratio,
AS performance measure, and FH performance.

In Example 2, a random variable in each case has a disaster −15 with a small probabil-
ity 0.001 and other cashflows with remaining probabilities proportional to probabilities
in each case in Example 1. The disaster risk −15 with a small probability 0.001 does not
affect much the Sharpe ratio and Sortino ratio but does affect significantly the Calmar ratio.
However, the Calmar ratio is again seen to be too sensitive to the increase of a value in the
random variable with a small probability 0.009× 0.999 in the case with a higher number.
Hence it is not a reliable performance measure. The AS performance measure becomes less
than half in Example 2 than in Example 1. We can say the disaster risk has a large effect on

2 In fact, the AS performance measure was proved to satisfy monotonicity (cf., Aumann and Serrano 2008; Hodoshima and Miyahara 2020).
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the AS performance measure. Thus, the AS performance measure is sensitive to losses or
the maximal loss of the underlying random variable. The FH performance measure has an
even more significant negative effect by the disaster risk. In Table 2, 0+ denotes limit on
the right, i.e., the limit of sequences of positive numbers converging to zero. It becomes
virtually zero, which is a lower bound of the FH performance measure, in every case
in Example 2. Adding larger positive values in the case with a higher number does not
affect the FH performance measure in Example 2. Therefore, the FH performance measure
is virtually determined by disaster risk or maximal loss. Hence, it is the most sensitive
measure to disaster risk, which conforms to the previous studies of the FH performance
measure (cf., Foster and Hart 2009; Kadan and Liu 2014; Anand et al. 2016, 2017; Riedel and
Hellmann 2015). Hence, the newly introduced performance measures of the AS and FH
performance measures are both quite sensitive to losses of the underlying random variable.

Table 2. Example 2 of Four Cases of Cash Flows.

Case 1 Case 2 Case 3 Case 4

value pr value pr value pr value pr

−15 0.001 −15 0.001 −15 0.001 −15 0.001
−1 a −1 a −1 a −1 a
2 b 2 c 2 c 2 c

5 d 10 d 20 d

mean 0.784 0.811 0.856 0.946

s.d. 1.552 1.598 1.775 2.385

third −5.125 −4.674 1.216 55.888

fourth 67.430 70.744 131.818 1256.200

skew −1.372 −1.146 0.217 4.120

kurt 11.636 10.854 13.265 38.832

downrisk 1.233 1.249 1.276 1.330

maxdrawd 8.5 4 2.5 1.75

Sharpe 0.505 0.508 0.482 0.397

Sortino 0.636 0.649 0.671 0.712

Calmar 0.092 0.203 0.342 0.541

AS 0.327 0.328 0.329 0.329

FH 0+ 0+ 0+ 0+

Example 2 provides four cases of random variables of uncertain cash flows where values each random variable
takes are given with corresponding probabilities where pr stands for probability. Mean, s.d., third, and fourth,
skew, kurt, downrisk, and maxdrawd are respectively mean, standard deviation, the third central moment, the
fourth central moment, skewness, kurtosis, downside risk, and maximum drawdown for each random variable.
In the table, a, b, c, and d denote respectively the probability given by 0.4× 0.999, 0.6× 0.999, 0.591× 0.999, and
0.009× 0.999. Sharpe, Sortino, Calmar, AS, and FH denote respectively the Sharpe ratio, Sortino ratio, Calmar
ratio, AS performance measure, and FH performance measure. In the table, 0+ denotes limit on the right, i.e., the
limit of sequences of positive numbers converging to zero.

We introduce another example, Example 3 given in Table 3, to show the problematic
nature of the traditional performance measures of the Sharpe ratio, Sortino ratio, and
Calmar ratio. Example 3 has a loss of −5, which is not huge but sizable compared to the
disaster risk −15 in Example 2, with a small probability 0.001. It has four cases where a
case with a higher number is larger than a case with a smaller number with probability 1.
The loss −5 produces larger skewness and kurtosis in absolute value in Example 3 than in
Example 2. We can see absurd values of the Sharpe ratio in Example 3, failing to satisfy
monotonicity again. In Example 3, the Sortino ratio also fails to satisfy monotonicity.
Therefore, we cannot always trust the Sortino ratio because it does give irrational values,
depending on the underlying random variable. We can also observe the Calmar ratio is



Risks 2021, 9, 40 8 of 22

again too sensitive to the increase of a value in the random variable with small probability
0.009. Hence, we cannot trust the Calmar ratio as an appropriate performance measure.
In Example 3, the FH performance index is again 0+, the limit of sequences of positive
numbers converging to zero, in every case of Example 3. Adding larger positive values
does not change the FH performance measure in Example 3. Hence, the FH performance
measure is again virtually determined by the disaster risk of −5 in Example 3. One may
say this indicates that the FH performance measure is excessively sensitive to disaster
risk. On the other hand, the AS performance measure provides larger scores in Example 3
than in Examples 1 and 2. This also conforms to the performance of mean in the three
examples, i.e., mean in Example 3 is larger than in Example 1 and 2. Therefore, the AS
performance measure is sensitive to losses of the underlying random variable but not
excessively sensitive to disaster risk as in the FH performance measure. We can see the
AS performance measure is again insensitive to gains in Example 3. One may consider the
AS performance measure, sensitive to losses but not excessively sensitive to disaster risk,
is more appropriate than the FH performance measure since it can provide assessments
more often.

Table 3. Example 3 of Four Cases of Cash Flows.

Case 1 Case 2 Case 3 Case 4

value pr value pr value pr value pr

−5 0.001 −5 0.001 −5 0.001 −5 0.001
1 0.999 1 0.99 1 0.99 1 0.99

5 0.009 10 0.009 20 0.009

mean 0.994 1.03 1.075 1.165

s.d. 0.190 0.423 0.871 1.805

third −0.215 0.344 6.174 59.898

fourth 1.291 3.558 58.467 1134.119

skew −31.575 4.537 9.330 10.187

kurt 998.001 110.914 101.391 106.860

downrisk 0.190 0.193 0.206 0.255

maxdrawd 6 2 1.5 1.25

Sharpe 5.241 2.434 1.234 0.645

Sortino 5.244 5.337 5.216 4.571

Calmar 0.166 0.515 0.717 0.932

AS 1.319 1.320 1.320 1.320

FH 0+ 0+ 0+ 0+

Example 3 provides four cases of random variables of uncertain cash flows where values each random variable
takes are given with corresponding probabilities where pr stands for probability. Mean, s.d., third, and fourth,
skew, kurt, downrisk, and maxdrawd are respectively mean, standard deviation, the third central moment,
the fourth central moment, skewness, kurtosis, downside risk, and maximum drawdown for each random
variable. Sharpe, Sortino, Calmar, AS, and FH denote respectively the Sharpe ratio, Sortino ratio, Calmar ratio,
AS performance measure, and FH performance measure. In the table, 0+ denotes limit on the right, i.e., the limit
of sequences of positive numbers converging to zero.

Although our numerical examples are limited, we can summarize our numerical
comparisons as follows. Overall, the traditional performance measures of the Sharpe
ratio, Sortino ratio, and Calmar ratio are not reliable since they do not either satisfy
monotonicity or sometimes give irrational evaluations depending on the underlying target
in question. On the other hand, the AS and FH performance measures are reliable, i.e.,
satisfy monotonicity, when they are well defined. However, the FH performance measure
is excessively sensitive to the maximal loss, which makes the FH performance measure
incapable of providing appropriate assessments. On the other hand, the AS performance
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measure can provide assessments more often than the FH performance measure. The
AS performance measure is quite sensitive to losses but not excessively sensitive to the
maximal loss as in the FH performance measure. The AS performance measure is less
sensitive to gains than the FH performance measure when the two performance measures
both can provide assessments.

In the next subsection, we provide empirical examples to show how the AS and FH
performance measures function when we can compute the two performance measures.
In particular, we show by empirical examples how the FH performance measure performs
when we can obtain its assessment, which we could observe only once in Example 1 in
three numerical examples in this section.

3.2. Empirical Results

In this subsection, we present empirical results of evaluations by the two new per-
formance measures and the Sharpe ratio for the DOW 30 components3 as of 2 April 2019.
The DOW 30 components are listed in Table 4. Our sample period for daily (monthly)
return data is from 4 January 2005 (February 2005) till 30 December 2019 (December
2019)4. As stock returns, we use log-returns in this paper. The same data were studied by
Hodoshima and Yamawake (2020) where only winners and losers of the DOW 30 compo-
nents were described without percentiles including the maximal loss. On the other hand,
the current study focuses on the issue of sensitivity of the new performance measures to
disaster risk. We cursorily describe performance of the DOW 30 stocks in this study. The
list of the DOW 30 components is given in Table 4.

Table 4. List of DOW 30 Components (as of 2 April 2019).

3M (MMM) American Express (AXP) Apple (AAPL)
Boeing (BA) Caterpillar (CAT) Chevron (CVX)
Cisco (CSCO) Coca-Cola (KO) Disney (DIS)
Dow Chemical (DOW) Exxon Mobil (XOM) Goldman Sachs (GS)
Home Depot (HD) IBM (IBM) Intel (INTC)
Johnson & Johnson (JNJ) JP Morgan (JPM) McDonald’s (MCD)
Merck (MRK) Microsoft (MSFT) Nike (NKE)
Pfizer (PFE) Procter & Gamble (PG) Travelers (TRV)
United Technologies (UTX) UnitedHealth (UNH) Verizon (VZ)
Wal-Mart (WMT) Walgreens (WBA) Visa (V)

We present summary statistics of daily return data in Table 5 and percentiles, including
the maximum and minimum, in Table 6. In the tables, s.d., max, min, 80%, 60%, 40%,
and 20% denote respectively standard deviation, maximum, minimum, 80% percentile,
60% percentile, 40% percentile, and 20% percentile. Mean in the last row in Tables 5 and 6
denotes mean of summary statistics and percentiles over 29 stocks. Mean ranges from
0.017 in Walgreens to 0.114 in Apple. Standard deviation ranges from 1.017 in Johnson &
Johnson to 2.350 in JP Morgan. Skewness shows 11 stocks are negatively skewed and that
18 stocks are positively skewed. Kurtosis shows all the data have heavy tails compared
to the normal distribution. The maximum ranges from 8.975 in McDonald’s to 29.829 in
UnitedHealth. The minimum ranges from −8.226 in Procter & Gamble to −23.228 in JP
Morgan. These minimum values are for daily returns and hence considered to be quite
disastrous losses. Four other percentiles are given in Table 6. They are listed from larger
values (80% percentile) to smaller values (20% percentile).

3 We drop Dow Chemical (DOW) in our analysis because Dow Chemical was born as a new company, separated from DowDuPont in April 2019. We
include Visa even though its sample period begins from March 19, 2008 since it was listed from 19 March 2008.

4 The only exception is Visa, where the sample period for daily (monthly) return data is from 20 March 2008 (April 2008) till December 30 2019
(December 2019).



Risks 2021, 9, 40 10 of 22

Table 7 presents the three performance measures, the AS and FH performance mea-
sures and the Sharpe ratio, for daily return data. We do not provide the Sortino ratio and
Calmar ratio in this section since our focus is on the two performance measures and the
Sharpe ratio is the de facto industry standard performance measure to compare. Mean
in the last row in Table 7 denotes mean of performance measures over 29 stocks. We can
obtain the AS performance measure in every stock of the DOW 30 stocks. In other words,
we can obtain the AS performance measure without much difficulty in representative real
stock data. Therefore, obtaining the AS performance measure is not a problem in our daily
stock data. The AS performance measure ranges from 0.010 in Goldman Sachs to 0.086 in
McDonald’s. Therefore, the AS performance measure scores are much smaller than those
in the numerical examples in the previous subsection although the maximum loss is in
some stocks larger than the numerical examples in the previous section. The difference
between the AS performance measure and Sharpe ratio is large in outperforming stocks
but small in underperforming stocks.

Table 5. Summary Statistics of Daily Return Data of DOW 30 Stocks.

Name Mean s.d. Skew Kurt

MMM 0.030 1.362 −0.650 11.578
AXP 0.031 2.149 0.016 17.282

AAPL 0.114 2.037 −0.297 9.008
BA 0.059 1.742 0.009 7.651

CAT 0.041 1.972 −0.222 8.652
CVX 0.037 1.608 0.056 15.706

CSCO 0.031 1.777 −0.352 14.852
KO 0.044 1.082 0.262 16.402
DIS 0.049 1.587 0.231 12.239

XOM 0.020 1.475 0.009 16.475
GS 0.026 2.224 0.262 20.094
HD 0.053 1.574 0.324 8.621
IBM 0.018 1.348 −0.268 9.470

INTC 0.036 1.785 −0.225 8.496
JNJ 0.034 1.017 −0.117 15.889
JPM 0.044 2.350 0.331 21.752

MCD 0.060 1.184 0.154 8.245
MRK 0.043 1.547 −0.311 15.233
MSFT 0.056 1.630 0.062 13.307
NKE 0.078 1.667 0.314 11.062
PFE 0.026 1.365 −0.162 10.394
PG 0.033 1.070 −0.089 10.619

TRV 0.044 1.651 0.243 29.981
UTX 0.037 1.422 0.093 10.108
UNH 0.055 1.941 0.429 29.617

VZ 0.033 1.277 0.234 11.338
V 0.090 1.838 0.012 11.664

WMT 0.030 1.207 0.069 14.269
WBA 0.017 1.663 −0.436 14.073

mean 0.044 1.605 −0.001 13.934
In the table, s.d., skew, and kurt denote respectively standard deviation, skewness, and kurtosis.
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Table 6. Percentiles of Daily Return Data of DOW 30 Stocks.

Name Max Min 80% 60% 40% 20%

MMM 9.420 −13.863 0.884 0.285 −0.147 −0.726
AXP 18.771 −19.352 1.083 0.341 −0.209 −0.943

AAPL 13.019 −19.747 1.438 0.498 −0.230 −1.122
BA 14.378 −9.353 1.219 0.423 −0.255 −1.047

CAT 13.735 −15.686 1.329 0.411 −0.269 −1.160
CVX 18.942 −13.341 1.094 0.380 −0.227 −0.956

CSCO 14.799 −17.687 1.122 0.344 −0.212 −0.971
KO 12.997 −9.068 0.710 0.253 −0.129 −0.604
DIS 14.818 −10.231 1.029 0.322 −0.202 −0.909

XOM 15.863 −15.027 0.969 0.297 −0.222 −0.865
GS 23.482 −21.022 1.307 0.386 −0.281 −1.176
HD 13.161 −8.579 1.038 0.325 −0.200 −0.921
IBM 10.899 −8.662 0.903 0.278 −0.203 −0.780

INTC 11.199 −13.221 1.215 0.406 −0.257 −1.098
JNJ 11.537 −10.578 0.689 0.215 −0.132 −0.571
JPM 22.392 −23.228 1.144 0.328 −0.249 −1.049

MCD 8.975 −8.316 0.822 0.301 −0.133 −0.713
MRK 12.251 −15.944 0.990 0.316 −0.213 −0.831
MSFT 17.063 −12.458 1.042 0.319 −0.205 −0.887
NKE 11.876 −12.596 1.081 0.372 −0.217 −0.946
PFE 9.687 −11.232 0.909 0.270 −0.231 −0.806
PG 9.726 −8.226 0.708 0.224 −0.154 −0.612

TRV 22.758 −20.067 0.898 0.303 −0.162 −0.806
UTX 12.793 −9.170 0.965 0.308 −0.184 −0.832
UNH 29.829 −20.624 1.151 0.392 −0.227 −1.031

VZ 13.656 −8.413 0.861 0.300 −0.176 −0.792
V 13.974 −14.669 1.175 0.411 −0.184 −1.014

WMT 10.502 −10.740 0.785 0.261 −0.164 −0.723
WBA 15.388 −16.237 1.095 0.306 −0.261 −1.002

mean 14.755 −13.701 1.0226 0.330 −0.205 −0.893
In the table, max, min, 80%, 60%, 40%, and 20% denote respectively maximum, minimum, 80% percentile,
60% percentile, 40% percentile , and 20% percentile.

The FH performance measure is generally similar to the AS performance measure.
Example 1 in the previous subsection shows the FH performance measure is similar to
the AS performance measure when there is not disaster risk, which can be the reason
why the FH performance measure is similar to the AS performance measure, although the
minimum values in Table 6 show the existence of severe negative returns in many stocks.
The existence of these severe negative returns seems to have downward effects on the
FH performance measure as well as the AS performance measure in daily data. The two
performance measures are substantially small compared to those in Example 1 and the AS
performance measure in Example 2 and 3 at the previous subsection.
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Table 7. Three Performance Measures of Daily Return Data of DOW 30 Stocks.

Name AS FH Sharpe

MMM 0.032 0.032 0.019
AXP 0.013 0.013 0.012

AAPL 0.054 0.049 0.054
BA 0.039 0.038 0.031

CAT 0.021 0.021 0.018
CVX 0.028 0.028 0.020

CSCO 0.019 0.019 0.014
KO 0.075 0.072 0.036
DIS 0.039 0.039 0.028

XOM 0.018 0.018 0.010
GS 0.010 0.010 0.009
HD 0.043 0.042 0.030
IBM 0.020 0.020 0.010

INTC 0.023 0.023 0.018
JNJ 0.065 0.063 0.028
JPM 0.016 0.016 0.017

MCD 0.086 0.083 0.046
MRK 0.036 0.035 0.025
MSFT 0.042 0.041 0.031
NKE 0.056 0.055 0.044
PFE 0.028 0.028 0.015
PG 0.057 0.057 0.026

TRV 0.032 0.031 0.024
UTX 0.037 0.037 0.023
UNH 0.029 0.029 0.026

VZ 0.040 0.040 0.022
V 0.053 0.051 0.048

WMT 0.041 0.041 0.021
WBA 0.013 0.012 0.007

mean 0.037 0.036 0.025

Table 8 presents summary statistics of monthly return data for the DOW 30 stocks.
Mean in the last row in Table 8 denotes mean of summary statistics over 29 stocks. Mean of
summary statistics ranges from 0.335 in Walgreens to 2.297 in Apple. Mean ranges from the
minimum in Walgreens to the maximum in Apple in monthly data, which is the same as in
daily data. In the table, mean* denotes the mean derived from the formula where mean in
monthly data should be close to 30÷ 7× 5 times mean in daily data if daily returns follow
identical distributions and s.d.* denotes the standard deviation derived from the formula
where standard deviation in monthly data should be close to

√
30÷ 7× 5 times standard

deviation in daily data if daily returns follow independent and identical distributions.
Standard deviation ranges from 3.982 in Johnson & Johnson to 9.314 in Apple. Standard
deviation in Johnson & Johnson is also the minimum in daily data.

Skewness is all negative in monthly data except American Express. The negative
skewness of the distribution shows that we may expect frequent small gains and a few
large losses. There are only four companies, 3M, American Express, Cisco Systems, and
Walgreens, where skewness is larger in monthly data than daily data. Skewness is more
negative in the rest of the four companies in monthly data than daily data. Kurtosis shows
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DOW components have tails closer to the normal distribution except American Express in
monthly data than daily data.

Table 9 presents percentiles of monthly return data for DOW 30 stocks. Mean in the
last row in Table 9 denotes mean of percentiles over 29 stocks. The maximum ranges from
10.364 in Johnson & Johnson to 62.866 in American Express. The minimum ranges from
−43.479 in Caterpillar to −10.881 in McDonald’s. The range of returns widens in monthly
data than in daily data. Consequently, most of summary statistics become larger in absolute
value in monthly data than in daily data except kurtosis and 40% percentile. This applies
to the maximum and minimum. Hence, the minimum shows more severe disastrous
observations in monthly data than daily data. Since the AS and FH performance measures
are sensitive to losses but insensitive to gains as we saw in the numerical examples in the
previous section, negative values of the observation have disproportionally larger adverse
effects on the two performance measures than positive values when the former and latter
are equal in absolute value.

Table 8. Summary Statistics of Monthly Return Data of DOW 30 Stocks.

Name Mean s.d. Skew Kurt Mean* s.d.*

MMM 0.627 5.646 −0.580 3.720 0.651 6.306
AXP 0.675 8.670 1.261 18.552 0.661 9.945

AAPL 2.297 9.314 −1.052 6.023 2.445 9.427
BA 1.242 7.607 −0.612 4.237 1.258 8.062

CAT 0.901 9.272 −0.826 6.977 0.884 9.129
CVX 0.738 5.693 −0.275 3.080 0.788 7.445

CSCO 0.681 7.349 −0.322 3.748 0.653 8.226
KO 0.920 4.246 −0.512 4.818 0.935 5.010
DIS 1.018 6.163 −0.216 4.410 1.051 7.347

XOM 0.402 5.185 −0.072 4.112 0.425 6.828
GS 0.524 8.598 −0.389 3.874 0.549 10.293
HD 1.132 6.077 −0.403 3.499 1.126 7.286
IBM 0.412 5.954 −0.939 6.227 0.393 6.239

INTC 0.782 6.963 −0.459 3.592 0.779 8.261
JNJ 0.693 3.982 −0.489 4.147 0.720 4.706
JPM 0.952 7.855 −0.589 4.475 0.945 10.877

MCD 1.254 4.270 −0.229 3.192 1.285 5.481
MRK 0.974 5.970 −0.576 4.592 0.928 7.162
MSFT 1.180 6.498 −0.202 3.746 1.190 7.543
NKE 1.660 6.319 −0.373 3.524 1.662 7.715
PFE 0.600 5.325 −0.402 3.595 0.558 6.318
PG 0.713 4.245 −0.362 3.290 0.707 4.951

TRV 0.926 5.087 −0.114 4.049 0.945 7.643
UTX 0.801 5.480 −0.497 3.255 0.801 6.584
UNH 1.144 7.452 −1.449 8.249 1.178 8.985

VZ 0.760 4.926 −0.128 2.809 0.705 5.912
V 1.825 6.214 −0.148 6.859 1.931 8.507

WMT 0.646 4.794 −0.382 4.440 0.647 5.586
WBA 0.335 7.499 −0.093 3.571 0.371 7.700

mean 0.925 6.298 −0.394 4.850 0.937 7.430
In the table, s.d., skew, and kurt denote respectively standard deviation, skewness, and kurtosis. Mean* denotes
the mean derived from the formula where mean in monthly data should be close to 30÷ 7× 5 times mean in
daily data if daily returns follow identical distributions and s.d.* denotes the standard deviation derived from the
formula where standard deviation in monthly data should be close to

√
30÷ 7× 5 times standard deviation in

daily data if daily returns follow independent and identical distributions.



Risks 2021, 9, 40 14 of 22

Table 9. Percentiles of Monthly Return Data of DOW 30 Stocks.

Name Max Min 80% 60% 40% 20%

MMM 15.989 −16.231 4.913 2.408 0.253 −3.516
AXP 62.866 −32.731 5.340 2.159 −0.457 −3.182

AAPL 21.326 −39.982 9.476 5.449 0.285 −4.360
BA 20.383 −28.691 7.151 3.344 0.021 −4.793

CAT 30.032 −43.479 7.737 3.206 −0.447 −5.404
CVX 14.161 −15.897 5.210 2.604 −0.608 −3.659

CSCO 20.691 −23.867 6.193 2.395 −0.732 −4.668
KO 13.272 −18.247 4.355 2.016 0.025 −2.538
DIS 20.996 −20.958 5.587 2.324 −0.135 −3.396

XOM 20.941 −15.346 4.644 1.531 −0.618 −3.781
GS 21.036 −32.178 7.259 2.606 −0.824 −6.771
HD 14.889 −18.053 6.214 2.577 −0.136 −3.801
IBM 16.767 −27.001 5.240 1.707 −0.526 −3.697

INTC 17.780 −23.389 5.883 3.353 −0.287 −4.953
JNJ 10.364 −13.480 3.470 1.670 −0.380 −2.436
JPM 21.813 −26.460 6.760 3.223 −0.520 −4.914

MCD 13.037 −10.881 4.664 2.494 0.541 −1.588
MRK 15.761 −23.153 5.515 2.504 −0.031 −3.064
MSFT 22.274 −17.836 6.109 2.872 0.492 −4.047
NKE 17.430 −20.896 6.782 3.369 0.062 −3.287
PFE 13.964 −19.448 5.115 1.955 −0.851 −3.574
PG 10.981 −12.346 4.382 1.830 −0.192 −2.511

TRV 18.017 −15.681 4.722 2.086 0.232 −3.572
UTX 12.782 −15.311 5.042 2.617 −0.154 −2.988
UNH 23.591 −36.584 6.589 3.323 0.946 −4.102

VZ 13.114 −12.451 5.172 1.754 −0.712 −3.098
V 29.132 −21.784 5.892 3.609 0.989 −2.489

WMT 13.782 −17.373 4.211 1.470 −0.469 −2.955
WBA 22.016 −21.441 6.138 2.234 −1.612 −5.372

mean 19.627 −22.110 5.716 2.576 −0.202 −3.742
In the table, max, min, 80%, 60%, 40%, and 20% denote respectively maximum, minimum, 80% percentile, 60%
percentile, 40% percentile , and 20% percentile.

Table 10 presents the three performance measures of monthly return data for the DOW
30 stocks. The Sharpe ratio is high in monthly data in some stocks such as Visa, McDonald’s,
Nike, and Apple. The Sharpe ratio in monthly data is much higher than that in daily data.
This is natural since the monthly Sharpe ratio is close to

√
30÷ 7× 5 times as much as

the daily Sharpe ratio if daily returns are independently and identically distributed (cf.
Lo 2002), where 30 denotes an average number of days in a month, 7 denotes the number
of days in a week, and 5 denotes the number of weekdays in a week. On the other hand,
the AS and FH performance measures in monthly data are much closer to those in daily
data. They are nearly closed under temporal aggregation in some stocks, i.e., they have
time-invariant values regardless of data frequency (cf. Hodoshima 2020b).

The AS performance measure ranges from 0.012 in Walgreens to 0.132 in McDonald’s.
McDonald’s is the maximum in the AS performance measure in monthly data, which is the
same as in daily data. McDonald’s is by far the best by the AS performance measure but
rated only as the second-best next to Visa by the Sharpe ratio. The difference between the
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AS performance measure and Sharpe ratio is large in outperforming stocks but small in
underperforming stocks.

Table 10. Three Performance Measures of Monthly Return Data of DOW 30 Stocks.

Name AS FH Sharpe Sharpe* dailyAS dailyFH

MMM 0.038 0.035 0.093 0.086 0.032 0.032
AXP 0.019 0.018 0.066 0.056 0.013 0.013

AAPL 0.044 0.025 0.235 0.248 0.054 0.049
BA 0.040 0.032 0.149 0.143 0.039 0.038

CAT 0.020 0.017 0.086 0.085 0.021 0.021
CVX 0.045 0.042 0.111 0.091 0.028 0.028

CSCO 0.025 0.024 0.078 0.066 0.019 0.019
KO 0.094 0.055 0.192 0.165 0.075 0.072
DIS 0.052 0.043 0.148 0.128 0.039 0.039

XOM 0.030 0.029 0.057 0.047 0.018 0.018
GS 0.014 0.014 0.049 0.043 0.010 0.010
HD 0.059 0.048 0.169 0.140 0.043 0.042
IBM 0.022 0.021 0.052 0.046 0.020 0.020

INTC 0.031 0.029 0.097 0.081 0.023 0.023
JNJ 0.083 0.066 0.148 0.130 0.065 0.063
JPM 0.030 0.026 0.108 0.077 0.016 0.0160

MCD 0.132 0.092 0.269 0.215 0.086 0.083
MRK 0.051 0.040 0.145 0.115 0.036 0.035
MSFT 0.055 0.047 0.165 0.143 0.042 0.041
NKE 0.078 0.048 0.246 0.201 0.056 0.055
PFE 0.041 0.038 0.093 0.071 0.028 0.028
PG 0.076 0.066 0.143 0.121 0.057 0.057

TRV 0.070 0.058 0.161 0.110 0.032 0.031
UTX 0.051 0.046 0.127 0.105 0.037 0.037
UNH 0.036 0.026 0.139 0.119 0.029 0.029

VZ 0.062 0.057 0.133 0.101 0.040 0.040
V 0.086 0.046 0.287 0.222 0.053 0.051

WMT 0.054 0.047 0.113 0.096 0.041 0.041
WBA 0.012 0.012 0.031 0.034 0.013 0.012

mean 0.050 0.039 0.134 0.113 0.037 0.036
In the table, Sharpe* denotes the Sharpe ratio under the formula where the Sharpe ratio in monthly data should
be close to

√
30÷ 7× 5 times the Sharpe ratio in daily data if daily returns follow independent and identical

distributions. Also in the table, dailyAS and daily FH denote the AS performance measure and FH performance
measure in daily data respectively to compare.

The FH performance measure is small compared to the AS performance measure.
Some companies with high AS performance measure scores in monthly data referred above
all have the FH performance measure considerably smaller than the corresponding AS
performance measure. This is in contrast to the result in daily data. As we saw in the
previous subsection, the FH performance measure is much more sensitive to losses of
the underlying stock performance, we consider this indicates the lower FH performance
measure score in monthly data is due to larger losses in the stock return in monthly
data. Therefore, our result indicates the FH performance measure is more sensitive to
losses, i.e., negative skewness or left tail of the underlying distribution, than the AS
performance measure.
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4. Discussion

In this section, in order to see how the AS and FH performance measures are related to
summary statistics of the underlying return data, we run regressions with each of the two
performance measures as the dependent variable and summary statistics as explanatory
variables in both daily and monthly data. We add percentiles of the maximum, minimum,
80%, 60%, 40%, and 20% to summary statistics in regressions to see how these percentiles
are related to the two performance measures. This is to examine how the two performance
measures are sensitive to losses or maximal loss of the underlying return data. In particular,
in this section we focus on the FH performance measure more than the AS performance
measure since the former is known to be extremely sensitive to disaster risk or maximal
loss as compared to the latter.

We begin to compare the estimate of the FH performance measure and the reciprocal
of the maximal loss since the maximal loss is identified as the extended FH risk measure
when there exists no FH risk measure (cf. Riedel and Hellmann 2015).

Table 11 shows, in daily data, the FH performance measure estimate, the reciprocal
of the maximal loss L, and the sample estimate of the expectation E

[
ln
(
1 + g

L
)]

, which
becomes a discriminant if the reciprocal of the maximal loss should be used as the extended
FH performance measure or not. Proposition 3 in Section 2 implies the FH risk (perfor-
mance) exists when E

[
ln
(
1 + g

L
)]

becomes negative but does not exist when E
[
ln
(
1 + g

L
)]

becomes nonnegative. If the discriminant E
[
ln
(
1 + g

L
)]

becomes nonnegative, then (the
reciprocal of) the maximal loss should be used as the extended FH risk (performance)
measure. The estimate of the discriminant becomes positive only once in Apple and is
negative otherwise. Therefore, the GMM estimate of the FH performance measure should
be used as the FH performance measure except for Apple. In every stock in Table 11, the
GMM estimate of the FH performance measure is uniformly smaller than the estimate
of the extended FH performance measure, i.e., the reciprocal of the maximal loss. The
difference between the two estimates is in general quite large so that one should use the
GMM estimate as the FH performance measure. Even in Apple’s case where one should
use the reciprocal of the maximal loss, the difference between the two estimates is very
small so that the use of the GMM estimate as the FH performance measure estimate in this
case is not problematic.

Table 12 shows, in monthly data, the FH performance measure estimate, the reciprocal
of the maximal loss, and the sample estimate of the expectation E

[
ln
(
1 + g

L
)]

. The discrim-
inant estimate takes positive values in 12 stocks where one should use the reciprocal of the
maximal loss as the extended FH performance measure. However, the difference between
the GMM estimate of the FH performance measure and the reciprocal of the maximal loss
is generally small in these cases but large when the discriminant estimate takes negative
values. Therefore, the erroneous use of the reciprocal of the maximal loss as the extended
FH performance measure results in bad inference of the FH performance measure when the
discriminant estimate takes negative values while the incorrect use of the GMM estimate
of the FH performance measure does not cause much troubles when the discriminant
estimate takes positive values. This view is new in the existing literature. We emphasize
the importance of finding the GMM estimate by grid search when we estimate the FH
performance (risk) measure in order to obtain a good estimate.

We now turn to regression analysis in order to find how sensitive the new performance
measures are to disaster risk or maximal loss. Table 13 shows the regression result of the
AS performance measure and summary statistics in daily return data. We test whether each
regression coefficient is zero or not by a t-test in regression analysis. We name explanatory
variables of percentiles as risks such as risk0, risk1, etc. in the tables of regression results
given below. The goodness of fit statistics, shown by R2 being 0.907 and R̄2 being 0.855,
indicate this regression fits data fairly well. Mean is one percent significant and has the
largest estimate of 0.503. Significance and insignificance in the regression results for the
regression of the two performance measures and summary statistics in this section are
based on p-values under the classical assumptions of the standard regression model of
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homoskedastic variance of the error term and independently and identically normally
distributed error term so that t-values are assumed to follow t distribution with 18 degrees
of freedom. This is so because we are concerned about the finite-sample inference of the
regression with only 29 observations and 10 explanatory variables, where there are not
many observations given the number of explanatory variables in the regression model.
Standard deviation is five percent significant with the second-largest estimate of −0.043
in absolute value. Skewness has a ten percent significant positive estimate of 0.023 but
kurtosis is not significant. Other explanatory variables are not significant. Six percentiles
have all small t-values in absolute values, and hence they are not significant. Therefore,
only mean, standard deviation, and skewness are significant.

Table 11. The FH Performance Measure Estimate, Reciprocal of the Maximal Loss, and Estimate of
E
[
ln
(
1 + g

L
)]

for Daily Return Data of the DOW 30 Stocks.

Name FH Reciprocal of Maximal Loss Estimate of the Discriminant

MMM 0.032 0.072 −0.0026
AXP 0.013 0.052 −0.0048

AAPL 0.049 0.051 0.0007
BA 0.038 0.107 −0.0131

CAT 0.021 0.064 −0.0055
CVX 0.028 0.075 −0.0057

CSCO 0.019 0.057 −0.0034
KO 0.072 0.110 −0.0027
DIS 0.039 0.098 −0.0091

XOM 0.018 0.067 −0.0034
GS 0.010 0.048 −0.0044
HD 0.042 0.117 −0.0119
IBM 0.020 0.115 −0.0128

INTC 0.023 0.076 −0.007
JNJ 0.063 0.095 −0.0012
JPM 0.016 0.043 −0.0032

MCD 0.083 0.120 −0.003
MRK 0.035 0.063 −0.0019
MSFT 0.041 0.080 −0.0052
NKE 0.055 0.079 −0.0027
PFE 0.028 0.089 −0.0057
PG 0.057 0.122 −0.0048

TRV 0.031 0.050 −0.0009
UTX 0.037 0.109 −0.0088
UNH 0.029 0.048 −0.0016

VZ 0.040 0.119 −0.0088
V 0.051 0.068 −0.0019

WMT 0.041 0.093 −0.004
WBA 0.012 0.062 −0.0046

Table 11 shows the FH performance measure estimate, the reciprocal of the maximal loss, and the estimate of
the discriminant E

[
ln
(
1 + g

L
)]

for daily return data of the DOW 30 stocks. The estimate of the discriminant
E
[
ln
(
1 + g

L
)]

is obtained from the sample data where the observation where the maximal loss occurs is excluded
from the sample not to make the estimate take −∞.
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Table 12. The FH Performance Measure Estimate, Reciprocal of the Maximal Loss, and Estimate of
E
[
ln
(
1 + g

L
)]

for Monthly Return Data of the DOW 30 Stocks.

Name FH Reciprocal of Maximal Loss Estimate of the Discriminant

MMM 0.035 0.062 −0.0464
AXP 0.018 0.031 −0.0081

AAPL 0.025 0.025 0.0292
BA 0.032 0.035 0.0118

CAT 0.017 0.023 0.0029
CVX 0.042 0.063 −0.0224

CSCO 0.024 0.042 −0.0202
KO 0.055 0.055 0.0314
DIS 0.043 0.048 0.0087

XOM 0.029 0.065 −0.0338
GS 0.014 0.031 −0.0151
HD 0.048 0.055 −0.0022
IBM 0.021 0.037 −0.0058

INTC 0.029 0.043 −0.0104
JNJ 0.066 0.074 0.0007
JPM 0.026 0.038 −0.0222

MCD 0.092 0.092 0.0341
MRK 0.040 0.043 0.0135
MSFT 0.047 0.056 −0.0212
NKE 0.048 0.048 0.0388
PFE 0.038 0.051 −0.0019
PG 0.066 0.081 −0.0119

TRV 0.058 0.064 0.0086
UTX 0.046 0.065 −0.0250
UNH 0.026 0.027 0.0138

VZ 0.057 0.080 −0.0254
V 0.046 0.046 0.0405

WMT 0.047 0.058 −0.0052
WBA 0.012 0.047 −0.0546

Table 12 shows the FH performance measure estimate, the reciprocal of the maximal loss, and the estimate of
the discriminant E

[
ln
(
1 + g

L
)]

for monthly return data of the DOW 30 stocks. The estimate of the discriminant
E
[
ln
(
1 + g

L
)]

is obtained from the sample data where the observation where the maximal loss occurs is excluded
from the sample not to make the estimate take −∞.

Table 13. Regression Result of the AS Performance Measure and Summary Statistics for Daily Return Data of the DOW
30 Stocks.

Intcept Mean s.d. Skew Kurt Risk0 Risk5 Risk1

estimate 0.112 0.503 −0.043 0.023 −0.002 0.001 −0.002 −0.019
t-value 5.858 ∗∗∗ 3.034 ∗∗∗ −2.208 ∗∗ 1.847 ∗ −1.248 0.450 −1.359 −0.224

Risk2 Risk3 Risk4 R2 R̄2

estimate 0.026 0.091 0.012 0.907 0.855
t-value 0.254 0.887 0.166

Table 13 shows the regression result of the AS performance measure as the dependent variable and summary statistics as explanatory
variables for daily return data of the DOW 30 stocks. In the table, s.d., skew, kurt, risk0, and risk5 denote respectively standard deviation,
skewness, kurtosis, maximum, and minimum. Also risk1, risk2, risk3, and risk4 denote respectively 80% percentile, 60% percentile, 40%
percentile , and 20% percentile. We name percentiles of the return distribution as classes of risk markers such as risk5 etc. In the table,
R2 and R̄2 are goodness of fit statistics, i.e., R-square and adjusted R-square respectively. In the table, *** denotes significant at 1% level,
** denotes significant at 5% level, and * denotes significant at 10% level. Significance and insignificance in the regression results for the
regression of the two performance measures and summary statistics are based on p-values under the classical assumptions of the standard
regression model of homoskedastic variance of the error term and independently and identically normally distributed error term so that
t-values are assumed to follow t distribution with 18 degrees of freedom.
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Table 14 shows the regression result of the FH performance measure and summary
statistics in daily data. The goodness of fit in the regression, given by R2 and R̄2, is fairly
good, similar to the result for the AS performance measure. The estimation result in Table 14
is similar to that in Table 13. Mean is highly significant with the largest estimate of 0.470.
Standard deviation is ten percent significant with the second-largest t-value in absolute
value. Skewness is also ten percent significant and has a positive estimate, while kurtosis is
not significant. None of six percentiles are significant in Table 14, which is the same as in
Table 13. Therefore, mean, standard deviation, and skewness are the most important factors
influencing the FH performance measure in daily data. However, percentiles, including
the maximum and minimum, are not significant in daily data despite the previous view
the FH performance measure is extremely sensitive to rare disasters and our numerical
investigation in Section 3. Overall, the regression result of the FH performance measure in
Table 14 is similar to that in the AS performance measure in Table 13 for daily data.

Table 14. Regression Result of the FH Performance Measure and Summary Statistics for Daily Return Data of the DOW
30 Stocks.

Intcept Mean s.d. Skew Kurt Risk0 Risk5 Risk1

estimate 0.109 0.470 −0.040 0.022 −0.002 0.001 −0.002 −0.028
t-value 5.882 ∗∗∗ 2.907 ∗∗∗ −2.074 ∗ 1.798 ∗ −1.208 0.449 −1.212 −0.328

Risk2 Risk3 Risk4 R2 R̄2

estimate 0.025 0.089 0.003 0.904 0.850
t-value 0.251 0.895 0.038

Table 14 shows the regression result of the FH performance measure as the dependent variable and summary statistics as explanatory
variables for daily return data of the DOW 30 stocks. In the table, s.d., skew, kurt, risk0, and risk5 denote respectively standard deviation,
skewness, kurtosis, maximum, and minimum. Also risk1, risk2, risk3, and risk4 denote respectively 80% percentile, 60% percentile, 40%
percentile , and 20% percentile. We name percentiles of the return distribution as classes of risk markers such as risk5 etc. In the table, R2

and R̄2 are goodness of fit statistics, i.e., R-square and adjusted R-square respectively. In the table, *** denotes significant at 1% level, and *
denotes significant at 10% level. Significance and insignificance in the regression results for the regression of the two performance measures
and summary statistics are based on p-values under the classical assumptions of the standard regression model of homoskedastic variance
of the error term and independently and identically normally distributed error term so that t-values are assumed to follow t distribution
with 18 degrees of freedom.

Table 15 shows the regression result of the AS performance measure and summary
statistics in monthly data. The goodness of fit statistics are a little smaller in monthly
data than in daily data. Mean and standard deviation, the most influential factors in daily
data, are no longer significant in monthly data. The only significant factor, significant
at ten percent, is skewness with p-value 0.055 in monthly data. The positive estimate of
skewness implies skewness has a negative effect on the AS performance measure since
the majority of the 29 companies have negative skewness in monthly data, as we saw
above. The estimate 0.045 of skewness is the largest estimate in Table 15. We consider
the negative effect of skewness in Table 15 indicates the AS performance measure is
sensitive to losses or the underlying risk of stock returns (cf., e.g., Kadan and Liu 2014;
Miyahara 2014; Ban et al. 2016; Hodoshima 2019). As the reason why mean and standard
deviation are no longer significant in monthly data, we consider daily data contain daily
microstructure noise and can be summarized by traditional summary statistics such as
mean and standard deviation but that monthly data, daily microstructure noise being
washed out, have distributions where only skewness is significant when explanatory
variables of percentiles, including the maximum and minimum, are present.

Table 16 shows the regression result of the FH performance measure and summary
statistics in monthly data. The goodness of fit statistics are also a little smaller in monthly
data than in daily data. Mean and standard deviation, the two most influential factors
in daily data, are no longer significant in monthly data as in the regression of the AS
performance measure in Table 15. Monthly return data have distributions where tra-
ditional summary statistics of mean and standard deviation lose explanatory power in
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the regression when other percentile summary statistics are present. Instead, skewness
and 40% percentile are five percent significant with p-value 0.023 and 0.030 respectively.
The maximum is ten percent significant. However, the maximum has a small estimate
−0.002 so that it is not an important factor. Skewness has the largest estimate of 0.036,
and hence it is the most influential factor. Since the majority of the 29 companies have
negative skewness in monthly data, the positive estimate of skewness implies skewness
has a negative effect on the FH performance measure. The 40% percentile being five per-
cent significant seems to indicate the FH performance measure is more sensitive to losses
of stock returns compared to the AS performance measure in monthly data. However,
the minimum has a small estimate and a low t-value. This implies the FH performance
measure is not sensitive to the maximal loss or the rare disaster, which has been used as the
value of the FH extended riskiness or performance measure in some previous studies (cf.,
Kadan and Liu 2014; Anand et al. 2016, 2017; Riedel and Hellmann 2015). This is evidence
that the FH performance is more sensitive to losses of the underlying financial target
compared to the AS performance measure but not excessively determined by the maximal
loss. Unlike the previous studies in the literature and our own numerical investigation
in Section 3, our empirical results show the FH performance measure is not excessively
determined by the maximal loss.

Table 15. Regression Result of the AS Performance Measure and Summary Statistics for Monthly Return Data of the DOW
30 Stocks.

Intcept Mean s.d. Skew Kurt Risk0 Risk5 Risk1

estimate 0.147 0.028 −0.006 0.045 −0.003 −0.002 −0.003 −0.006
t−vale 6.357 ∗∗∗ 1.005 −0.432 2.050 ∗ −0.744 −1.023 −1.716 −0.469

Risk2 Risk3 Risk4 R2 R̄2

−0.002 0.016 0.009 0.882 0.816
−0.209 1.523 1.104

Table 15 shows the regression result of the AS performance measure as the dependent variable and summary statistics as explanatory
variables for monthly return data of the DOW 30 stocks. In the table, s.d., skew, kurt, risk0, and risk5 denote respectively standard deviation,
skewness, kurtosis, maximum, and minimum. Also risk1, risk2, risk3, and risk4 denote respectively 80% percentile, 60% percentile, 40%
percentile , and 20% percentile. We name percentiles of the return distribution as classes of risk markers such as risk5 etc. In the table, R2

and R̄2 are goodness of fit statistics, i.e., R-square and adjusted R-square respectively. In the table, *** denotes significant at 1% level, and *
denotes significant at 10% level. Significance and insignificance in the regression results for the regression of the two performance measures
and summary statistics are based on p-values under the classical assumptions of the standard regression model of homoskedastic variance
of the error term and independently and identically normally distributed error term so that t-values are assumed to follow t distribution
with 18 degrees of freedom.

Table 16. Regression Result of the FH Performance Measure and Summary Statistics for Monthly Return Data of the DOW
30 Stocks.

Intcept Mean s.d. Skew Kurt Risk0 Risk5 Risk1

estimate 0.109 0.005 0.004 0.036 −0.000 −0.002 −0.001 −0.002
t−value 7.054 ∗∗∗ 0.285 0.439 2.475 ∗∗∗ −0.127 −2.049 ∗ −0.973 −0.221

Risk2 Risk3 Risk4 R2 R̄2

−0.005 0.016 0.009 0.883 0.818
−0.707 2.364 ∗∗∗ 1.639

Table 16 shows the regression result of the FH performance measure as the dependent variable and summary statistics as explanatory
variables for monthly return data of the DOW 30 stocks. In the table, s.d., skew, kurt, risk0, and risk5 denote respectively standard deviation,
skewness, kurtosis, maximum, and minimum. Also risk1, risk2, risk3, and risk4 denote respectively 80% percentile, 60% percentile, 40%
percentile , and 20% percentile. We name percentiles of the return distribution as classes of risk markers such as risk5 etc. In the table, R2

and R̄2 are goodness of fit statistics, i.e., R-square and adjusted R-square respectively. In the table, *** denotes significant at 1% level, and *
denotes significant at 10% level. Significance and insignificance in the regression results for the regression of the two performance measures
and summary statistics are based on p-values under the classical assumptions of the standard regression model of homoskedastic variance
of the error term and independently and identically normally distributed error term so that t-values are assumed to follow t distribution
with 18 degrees of freedom.
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5. Concluding Comments

We examined how sensitive the new performance measures of the AS and FH per-
formance measures are to disaster risk or maximal loss. We presented numerical examples
and empirical examples. Although numerical examples are limited, we showed that the
AS performance measure is sensitive to disaster risk but insensitive to gains. On the other
hand, we showed that the FH performance measure is even more sensitive to disaster risk
than the AS performance measure and more sensitive to gains than the AS performance
measure. The FH performance measure is sometimes not possible to obtain by the large
maximal loss. On the other hand, our empirical examples show we can always obtain
the two performance measures despite the large maximal loss. Therefore, the infeasibility
of the FH performance measure due to the large maximal loss does not happen in our
representative stock return data.

We closely studied how the GMM estimate of the FH performance measure is related
to the maximal loss, the reciprocal of which is the extended FH performance measure
defined by Riedel and Hellmann (2015) when the FH risk (performance) measure does not
exist. We found that the GMM estimate is valid in every DOW 30 stocks except Apple in
daily DOW 30 stock data. The difference between the GMM estimate and the reciprocal
of the maximal loss (the extended FH performance measure) in daily data is very small
in Apple but large in other stocks. Therefore, we should be careful to use the extended
FH risk (performance) measure not to make erroneous estimation. On the other hand, the
GMM estimate of the FH performance measure is more often invalid in monthly DOW
30 stock data. However, the difference between the GMM estimate and the reciprocal of
the maximal loss in monthly data is small when the FH risk (performance) measure does
not exist but large when the FH risk (performance) measure exists and hence (the GMM
estimate of) the FH performance measure is valid. Therefore, one should check the sign of
the discriminant E

[
ln
(
1 + g

L
)]

whether one should use the FH performance measure or
the extended FH performance measure, i.e., the reciprocal of the maximal loss. However,
(the GMM estimate of) the FH performance measure does not function so badly when it
is not valid, i.e., when the FH risk (performance) measure does not exist, and does much
better than the extended FH performance measure when it is valid. Therefore, we do not
make a big mistake by (the GMM estimate of) the FH performance measure.

We also examined whether the two performance measures are related to summary
statistics including percentiles by running regressions with the two performance measures
as dependent variables and summary statistics as explanatory variables. In daily data,
only mean and standard deviation are respectively one and five percent significant for
the AS performance measure and only mean is one percent significant for the FH per-
formance measure. In monthly data, only skewness is ten percent significant for the AS
performance measure and skewness and 40% percentile are five percent significant for
the FH performance measure. Therefore, the maximal loss or disaster risk is not, unlike
the previous view in the literature, related to the two performance measures. However,
skewness and 40% percentile being five percent significant in the FH performance measure
as compared to skewness being only 10 percent significant in the AS performance measure
indicates the FH performance measure is more sensitive to losses in return observations
compared to the AS performance measure. Therefore, the two performance measures can
provide evaluations in representative stock data, even though they contain quite disastrous
observations, despite the previous view in the literature and our numerical examples.
Hence, the two performance measures could be used in empirical studies to shed new light
to show risk-averse assessments as compared to other traditional performance measures.

In this study, we identified risk as losses. However, risk is sometimes associated
with regional economic concepts such as regional risks for doing business. For exam-
ple, the World Economic Forum has been publishing The Global Risks Report (cf., e.g.,
The Global Risks Report (2020)) since 2006, highlighting each year vulnerability of our
world to volatility and disruption. Studies such as ours where risk is associated with losses
may be limited when we consider risk more broadly.



Risks 2021, 9, 40 22 of 22

Author Contributions: Conceptualization, J.H. and T.Y.; Methodology, J.H. and T.Y.; Software, J.H.
and T.Y.; Validation, J.H. and T.Y.; Formal Analysis, J.H.; Investigation, J.H. and T.Y.; Resources, J.H.
and T.Y.; Data Curation, T.Y.; Writing—Original Draft Preparation, J.H.; Writing—Review & Editing,
J.H. and T.Y.; Visualization, J.H. and T.Y.; Supervision, J.H.; Project Administration, J.H.; Funding
Acquisition, J.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by JSPS KAKENHI Grant Number JP17K03667.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
Anand, Abhinav, Tiantian Li, Tetsuo Kurosaki, and Young-Shin Kim. 2016. Foster-Hart Optimal Portfolios. Journal of Banking and

Finance 68: 117–30. [CrossRef]
Anand, Abhinav, Tiantian Li, Tetsuo Kurosaki, and Young-Shin Kim. 2017. The equity risk by the too-big-to-fail banks: A Foster-Hart

estimation. Annals of Operations Research 253: 21–41. [CrossRef]
Aumann, Robert J., and Roberto Serrano. 2008. An economic index of riskiness. Journal of Political Economy 116: 810–36. [CrossRef]
Ban, Lan, Tetsuya Misawa, and Yoshio Miyahara. 2016. Valuation of Hong Kong REIT based on risk sensitive value measure method.

International Journal of Real Options and Strategy 4: 1–33. [CrossRef]
Cogneau, Philippe, and Georges Hubner. 2009a. The (more than) 100 ways to measure portfolio performance. Part 1: Standardized

risk-adjusted measure. Journal of Performance Measurement 13: 56–71.
Cogneau, Philippe, and Georges Hubner. 2009b. The (more than) 100 ways to measure portfolio performance. Part 2: Special measures

and comparison. Journal of Performance Measurement 14: 56–69.
Eling, Martin, and Frank Schuhmacher. 2007. Does the choice of performance measure influence the evaluation of hedge funds? Journal

of Banking and Finance 31: 2632–47. [CrossRef]
Farinelli, Simone, Manuel Ferreira, Damiano Rossello, Markus Thoeny, and Luisa Tibiletti. 2008. Beyond Sharpe ratio: Optimal asset

allocation using different performance ratios. Journal of Banking and Finance 32: 2057–63. [CrossRef]
Foster, Dean P., and Sergiu Hart. 2009. An operational measure of riskiness. Journal of Political Economy 117: 785–814. [CrossRef]
Hart, Sergiu. 2011. Comparing Risks by Acceptance and Rejection. Journal of Political Economy 119: 617–38 [CrossRef]
Hodoshima, Jiro. 2019. Stock performance by utility indifference pricing and the Sharpe ratio. Quantitative Finance 19: 327–38.

[CrossRef]
Hodoshima, Jiro. 2020a. Evaluation of performance of stock and real estate investment trust markets in Japan. Empirical Economics.

[CrossRef]
Hodoshima, Jiro. 2020b. Temporal aggregation of the Aumann-Serrano and Foster-Hart performance indexes. Nagoya University of

Commerce and Business Discussion Paper. Available online: https://www.nucba.ac.jp/university/library/discussion-paper/
NUCB-DP-20001.html (accessed on 10 November 2020).

Hodoshima, Jiro, and Yoshio Miyahara. 2020. Utility indifference pricing and the Aumann-Serrano performance index. Journal of
Mathematical Economics 86: 83–89. [CrossRef]

Hodoshima, Jiro, and Toshiyuki Yamawake. 2020. Winners and losers in DOW 30 stocks by the performance indexes incorporating
high moments and disaster risk. Applied Economics. under review.

Kadan, Ohad, and Fang Liu. 2014. Performance evaluation with high moments and disaster risk. Journal of Financial Economics 113:
131–55. [CrossRef]

Lo, Andrew W. 2002. The statistics of Sharpe ratios. Financial Analysts Journal 58: 36–52. [CrossRef]
Miyahara, Yoshio. 2010. Risk-sensitive value measure method for projects evaluation. Journal of Real Options and Strategy 3: 185–204.

[CrossRef]
Miyahara, Yoshio. 2014. Evaluation of the scale risk. RIMS Kokyuroku 1886: 181–88.
Riedel, Frank, and Tobias Hellmann. 2015. The Foster-Hart measure of riskiness for general gambles. Theoretical Economics 10: 1–9.

[CrossRef]
The Global Risks Report. 2020. Available online: https://www.weforum.org/reports/the-global-risks-report-2020 (accessed on 1

February 2021).

http://doi.org/10.1016/j.jbankfin.2016.03.011
http://dx.doi.org/10.1007/s10479-016-2309-y
http://dx.doi.org/10.1086/591947
http://dx.doi.org/10.12949/ijros.4.1
http://dx.doi.org/10.1016/j.jbankfin.2006.09.015
http://dx.doi.org/10.1016/j.jbankfin.2007.12.026
http://dx.doi.org/10.1086/644840
http://dx.doi.org/10.1086/662222
http://dx.doi.org/10.1080/14697688.2018.1478121
http://dx.doi.org/10.1007/s00181-020-01869-5
https://www.nucba.ac.jp/university/library/discussion-paper/NUCB-DP-20001.html
https://www.nucba.ac.jp/university/library/discussion-paper/NUCB-DP-20001.html
http://dx.doi.org/10.1016/j.jmateco.2019.12.002
http://dx.doi.org/10.1016/j.jfineco.2014.03.006
http://dx.doi.org/10.2469/faj.v58.n4.2453
http://dx.doi.org/10.12949/realopn.3.185
http://dx.doi.org/10.3982/TE1499
https://www.weforum.org/reports/the-global-risks-report-2020

	Introduction
	Methods (the AS and FH Performance MEASURE and FH Extended Performance Measure)
	Results
	Numerical Examples of the Performance Measures
	Empirical Results

	Discussion
	Concluding Comments
	References

