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Abstract: We consider a non-homogeneous continuous time Markov chain model for Long-Term Care
with five states: the autonomous state, three dependent states of light, moderate and severe dependence
levels and the death state. For a general approach, we allow for non null intensities for all the returns
from higher dependence levels to all lesser dependencies in the multi-state model. Using data
from the 2015 Portuguese National Network of Continuous Care database, as the main research
contribution of this paper, we propose a method to calibrate transition intensities with the one step
transition probabilities estimated from data. This allows us to use non-homogeneous continuous
time Markov chains for modeling Long-Term Care. We solve numerically the Kolmogorov forward
differential equations in order to obtain continuous time transition probabilities. We assess the quality
of the calibration using the Portuguese life expectancies. Based on reasonable monthly costs for each
dependence state we compute, by Monte Carlo simulation, trajectories of the Markov chain process
and derive relevant information for model validation and premium calculation.

Keywords: multi-state models; long-term care insurance; transition intensities; life expectancy;
monte carlo simulation

1. Introduction

Population ageing is a phenomenon which, undoubtedly, is inevitable in the future,
in all regions of the world, see (OECD 2019). Forecasts point to a severe ageing of the
world population and Portugal is not an exception as pointed out, e.g., in (OECD 2013).
This social/economic problem of increasing proportions carries many difficulties to solve,
namely the dependence of elderly and convenient provision of Long-Term Care (LTC)—
that is, the health and well-being support needed in the later stages of life—so it becomes
imperative to give special attention to this worldwide problem. This is an issue that actually
is on the agenda of many countries, especially the developed ones, where the ageing
phenomenon, and consequently the elderly dependence, is more evident. Many countries
have already implemented various measures of social protection to elderly dependence,
including the USA, Germany, Spain, among others. Some studies have already been
published, using real data, such as (Guillen 2008; Fuino and Wagner 2018). In some of
these countries the insurance market is already providing LTC products. A substantial
work is yet to be done in Portugal. With this paper, besides contributing with a general
calibration methodology for transition rates, we aim to provide information on Portuguese
data that allows insurers and national care providers to address this problem.

One of the classic approaches to model Long-Term Care Insurance takes advantage of
multi-state models as, for instance, the works of (Waters 1984; Haberman and Pitacco 1998;
Cordeiro 2002b; Christiansen 2012; Dickson et al. 2013; Fong et al. 2015). Several authors
have contributed with important research on this subject. For instance, in (Cordeiro 2002b),
approximations to the transition intensities defined for a multi-state model for Permanent
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Health Insurance are obtained by estimating a generalized linear model for the number of
claim inceptions. In (Cordeiro 2002a), using the approximations to the transition intensities
and numerical algorithms, which allows for an efficient evaluation of basic probabilities,
the average duration of a claim and the claim inception rates by cause of disability are
calculated. In (Fleischmann 2015), a method to extract state-change intensities from pub-
lished empirical observations of prevalence rates is presented. The authors in (Xie et al.
2005) focus on a continuous time Markov model for the length of stay of elderly people
moving within and between residential home care and nursing home care. A procedure to
determine the structure of the model and to estimate parameters by maximum likelihood is
also presented. A Markovian multi-state model in order to calculate premiums for a given
LTC Insurance plan is the research object of (Helms et al. 2005), where the approach is a
direct estimation of the transition probabilities. In (Kessler 2008), the author presents an
analysis of the LTC line of business for insurance companies, an important overview for
commercial purposes. An analysis of LTC needs and consequent costs, together with
some proposals for the insurer’s intervention, is presented in (de Castries 2009). Al-
though dated from a decade ago, in (Mitchell et al. 2008) there is a fairly complete
report on the development of LTC in Japan. The subject has also been recently object
of significant work, as in (Fong et al. 2015), where generalized linear models are used.
In (Rolski et al. 1999, p. 349) we find a construction of the non-homogeneous continuous
time Markov chain from an initial distribution and an intensity matrix, allowing for sim-
ulation. Further on, in (Rolski et al. 1999, p. 354), there is a description of the pension
insurance model with emphasis placed on the obtention of the net prospective premium
reserve. In (Haberman and Pitacco 1998, p. 47–61) there is a very important presentation
of actuarial values of benefits which can be used to determine the premiums to be paid.
A most valuable source on financing issues of Long Term Care Insurance is presented in
(Costa and Courbage 2012).

The Portuguese National Network for Continuous Care (RNCCI, in Portuguese), was
created in 2006 from a partnership between the Ministry of Health and the Ministry of
Labour and Social Solidarity. In this public system, all inhabitants are eligible for LTC care
and it provides different forms of care for individuals who need some type of LTC support.
For more details on the Portuguese National LTC system, see (Lopes et al. 2018a) and
(Lopes et al. 2018b).

At this moment in Portugal there is no private insurance market providing LTC
contracts for the general population, mostly due to high risk and lack of data. The data
and modelling framework presented in this paper could be used as a starting point for the
development of LTC policies in Portugal, since the theoretical framework on these types of
insurance is widely studied in the literature.

The primary goal of this paper, therefore, is to develop a multiple state model using
official Portuguese data. In (Oliveira et al. 2017), a discrete time transition matrix was
estimated from this dataset. In this paper, we aim to relax the assumption of discrete model,
allowing to develop a continuous-time Markov model framework, in order to further
develop well known pricing and reserving techniques for LTC insurance products, as well
as to provide information to the Portuguese National Network for Long-Term Care that
allows for cost estimation with this public service.

In this paper, we consider a five state non-homogeneous continuous time Markov
model with one autonomous state, three dependent states and one exit state, namely states
1≡autonomous, 2≡light dependence, 3≡moderate dependence, 4≡severe dependence and 5≡death.
The choice of the five state model is loosely justified by the widespread use of a reduced
Barthel index, see (Mahoney and Barthel 1965), allowing for a general classification of
elders in roughly three states of dependence, according to the performance achieved on
their daily tasks. In order to obtain a general model, we allow for the transitions between all
dependence states, as illustrated in Figure 1. Naturally, our methodology may be applied to
other classification schemes and/or a multi-state model with a different set of transitions.
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Figure 1. Illustration of the LTC model.

As for the mathematical approach, we follow the Transition Intensities Approach (TIA)
which is vehemently advocated in (Waters 1984) and followed by several of the above cited
authors. The transition intensities are key parameters in multi-states models as they reflect
the dynamics of the underlying processes that shape an individual trajectory through
dependence states during elderly ages. All the other corresponding characteristics of the
Markov process and the evolution through the LTC model can, generally, be determined if
the transition intensities are known, see for instance, (Haberman and Pitacco 1998) and
(Waters 1984).

The first goal of this paper is to propose a method of obtaining transition intensities
between dependence states by calibration with discrete time transition probabilities es-
timated from available data. This first goal intends to provide a method for obtaining
transition intensities when only discrete time transition probabilities are available, as is the
case in this paper. We illustrate the proposed methodology, obtaining transition intensities
for the Portuguese population, using data from 2015, of the Portuguese National Network
of Continuous Care Database. We believe this will bring valuable information for insurers,
practitioners and institutions. For that, we adopt intensities of the form of the hazard
function for the Gompertz-Makeham law, as in (Haberman and Pitacco 1998), and we
propose a loss function that allows us to calibrate transition intensities from transition
probabilities previously estimated from data.

Following TIA, the transition probabilities of the multi-state model are determined
from the intensities by numerical integration of the Kolmogorov forward differential equa-
tions. The numerical integration is mandatory as, for the model presented in
Figure 1, there is no evident closed form solution to the Kolmogorov equations (see
Remark 2 ahead). We note that the numerical integration is not a severe limitation to our
purposes and methods.

As a second goal we intend to simulate the cost of LTC in Portugal and for that, we
use the continuous time transition probabilities derived from the Kolmogorov equations
and we use Monte Carlo simulation in order to obtain, for a representative sample of
trajectories of the Markov chain, the sojourn times in each state and the associated costs
of LTC. These costs, in turn, will allow for the determination of insurance premiums and
sojourn times in the system. These sojourn times may give us a a posteriori validation of the
methodology by comparing them with the life expectancy of the official mortality table
of the Portuguese Institute of Statistics, see (INE 2015), and the healthy life expectancy in
Portugal, see (Pordata 2016b). Other authors, see (van den Hout et al. 2014) for instance,
have already used multi-state models to predict healthy life expectancy.

The general methodology proposed in this paper will allow for future calibration of
intensities if the population’s characteristics change or to obtain transition intensities for
smaller populations, such as LTC insurance portfolios or even for different schemes of LTC
products.
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2. Context and Notations

Let {S(t) , t ≥ 0} denote the continuous time Markov process describing, in each
realization, the path of an individual through the different states i of his health condition,
with i ∈ S = {1, 2, . . . , r}. For each t ≥ 0, the random variable S(t) takes one of the values
in S and the event {S(t) = i} indicates that the individual is in state i at time t.

For states i and j of the continuous time Markov chain and for x, t ≥ 0, we have:

1. The transition probabilities , for an individual aged x, defined by:

t pij
x := Pij(x, x + t) := P[S(x + t) = j | S(x) = i] ,

i.e., t pij
x is the probability that an individual aged x in state i will be in state j at age

x + t. So we have

∀t ≥ 0 ,
r

∑
j=1

t pij
x = 1 ,

that is, the matrix
[

t pij
x

]
i,j=1,...,r

is stochastic.

2. The sojourn probabilities , for an individual aged x, given by

t pii
x := Pii(x, x + t) := P[S(x + u) = i for all u ∈ [0, t] | S(x) = i]

i.e., t pii
x is the probability that an individual aged x in state i stays in state i throughout

the whole period from age x to age x + t.

As a consequence of the Markov property, the transition probabilities satisfy the
Chapman- Kolmogorov equations

Pij(x, x + t) = ∑
k∈S

Pik(x, x + s) Pkj(x + s, x + t) , 0 ≤ s ≤ t , (1)

and, also, the sojourn probabilities satisfy

Pii(x, x + t) = Pii(x, x + s) Pii(x + s, x + t) , 0 ≤ s ≤ t . (2)

In the so called Transition Intensity Approach (TIA) we want to determine the transi-
tion probabilities from the transition intensities µ

ij
x , for i 6= j, with

µ
ij
x := µij(x) := lim

h→0+

Pij(x, x + h)
h

, i 6= j.

Remark 1. Let us stress that if, for i 6= j, we have Pij(x, x + h) ≡ 0 then obviously µ
ij
x ≡ 0; but,

more important for our purposes ahead, we may have µ
ij
x ≡ 0 and Pij(x, x + h) 6= 0 for some h > 0;

in this case, we only have that the slope at zero of Pij(x, x + h), as a function of h, is null.

We may define the (total) intensity of decrement from state i , i ∈ S , as reflecting the
conditional probability of leaving state i over an infinitesimal interval [x, x + dx] given that
the process is in state i at time (age) x, by:

µi
x := µi(x) := ∑

j:j 6=i
µij(x).
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The Kolmogorov forward ordinary differential equations (with corresponding bound-
ary conditions), for all states i, j ∈ S and 0 ≤ x ≤ t, given by

d
dt Pij(x, t) = ∑k:k 6=j Pik(x, t)µkj(t)− Pij(x, t)µj(t)

Pij(x, x) = δ
j
i

(3)

are a consequence of the Chapman-Kolmogorov equations (1). For the sojourn probabilities
there is also an equation that can be easily derived by

d
dt Pii(x, t) = −Pii(x, t)µi(u)

Pii(t, t) = 1
⇔
{ d

dt ln Pii(x, t) = −µi(t)
Pii(t, t) = 1

from where we can obtain:

Pii(x, t) = exp
(
−
∫ t

x
µi(u) du

)
.

In matrix notation, see (Ross 1996), the system of equations (3) may be written as:

d
dt

P(x, t) = P(x, t)Q(t) (4)

by considering the intensity matrix

Q(t) =


−µ1(t) µ12(t) . . . µ1r(t)
µ21(t) −µ2(t) . . . µ2r(t)

...
...

. . .
...

µr1(t) µr2(t) . . . −µr(t)

.

For that, just observe that the term with indexes ij , i, j = 1, . . . , r , i 6= j, corresponding
to the matrix product P(x, t)Q(t) is given by:

∑
k∈S

Pik(x, t)µkj(t) = ∑
k∈S : k 6=j

Pik(x, t)µkj(t)− Pij(x, t)µj(t) ,

that is, exactly, the Kolmogorov forward Equations (3).

Remark 2. In the case of constant intensities, the solution of equations (4) are obtained by a
direct integration amounting to the computation of a matrix exponential. In the general case,
for every x, the Kolmogorov equations (4) are a system of linear equations with an r × r ma-
trix, Q(t), with regular coefficients. For intensities in which we do not have, for every x, y ∈ I,
Q(x) · Q(y) = Q(y) · Q(x), we cannot guarantee the existence of a solution obtained by di-
rect integration (see Ver Eecke 1985, p. 146), and that is the case of the model treated in this
work. Nevertheless, general results ensure the existence of a unique solution with good properties,
see (Teschl 2011) or (Ver Eecke 1985, p. 141), and by numerical integration, as performed in this
work, these solutions can be determined in a form suitable for many other computational purposes.

3. Modeling Transition Rates

In the absence of a developed market of LTC insurance products, as is the case in
Portugal, it may be hard to find quality data allowing the statistical estimation of the
parameters of the model, namely in the TIA approach, the intensities parameters. Ne-
vertheless, in the case of having some information on the state transitions allowing for
the estimation of a discrete time homogeneous Markov chain model, we will now show
that it is possible to calibrate the non-homogeneous continuous-time model to the discrete
time one.
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Our methodology of modeling transition rates relies on the following idea: (i) Using
real data and a multi-state model, estimate discrete time probabilities, which will be used to
calibrate continuous-time transition rates; (ii) Adopting a hazard type transition intensities
and choosing a given starting age x, derive a numerical solution for the Kolmogorov differ-
ential equations, in order to obtain the transition probabilities given by the continuous time
multi-state model; (iii) Using an optimization criteria, calibrate the transition intensities
parameters in order to meet the n-step discrete time transition probabilities estimated
from data; (iv) Finally, using sojourn times of the multi-state model, assess the quality
of the calibration with the obtained life expectancy for age x, by comparison with the
official life expectancy and by the sojourn time of the autonomous state by comparison with
official healthy life expectancy at age x. In our case, these indicators are both available for
Portuguese population, see (INE 2015) and (Pordata 2016a).

In our formulation, following (Haberman and Pitacco 1998, p. 25), we consider
variable intensity rates of Gompertz-Makeham type, of the form:

µ
ij
x+t = γij + 10αij(x+t)+βij , i, j ∈ S , γij ∈ Γ , αij ∈ A , βij ∈ B (5)

for some sets Γ, A and B. For each pair of states (i, j) , i 6= j, we define the set of parameters
to calibrate by θij = (γij, αij, βij) , i, j ∈ S .

Although specific data from this regard is lacking, such hypothesis seems reasonable.
We note that, in the proposed methodology, other types of transition intensities may be
efficiently adopted, such as in (Olivieri and Pitacco 2000), for instance.

We note that assumption (5) is equivalent to consider variable intensity matrices
Q(t, θ) in Equation (4), with (non diagonal) entries of the form

µ(t, θij) := µij(t) = γij + 10αijt+βij , γij ∈ Γ , αij ∈ A , βij ∈ B , θij = (γij, αij, βij) ,

for some sets Γ, A and B. For Γ, A and B closed bounded intervals we have that the
parameter set defined by:

Θ :=
{

θ = (γij, αij, βij)i,j=1,...,r | γij ∈ Γ , αij ∈ A , βij ∈ B
}

,

being a product of compact real intervals is compact. We will identify the set of all sets
of admissible intensities of interest, say I , with Θ. Therefore, to any such element θ of
such a set of admissible intensities Θ, there corresponds univocally an intensity matrix
Q = Q(t, θ).

Since we only have access to estimated transition probabilities, we consider (5) a
reasonable and general assumption. We note, however, that the proposed methodology
applies to other types of intensity rates.

3.1. Model Calibration via an Optimization Problem

In this section, we will show the existence and uniqueness result of the calibration of
transition intensities with data.

Theorem 1. Let, for n ≥ 1 and a fixed initial age xn, Pxn =
[

p(n)i,j

]
i,j=1,...,r

be a sequence of

transition matrices for homogeneous Markov LTC models and for any set of intensities µ(t, θ), the
correspondent matrix of transition probabilities P(x, t, θ) for the same reference age x. Consider the
loss function

O(θ) := ∑
i,j=1,...,r

N

∑
n=1

(
Pij(x, n, θ)− p(n)ij

)2
. (6)

Then, for the optimization problem infθ∈ΘO(θ) there exists θ0 ∈ Θ such that,

O(θ0) = min
θ∈Θ
O(θ) ,
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the unique minimum being attained at possibly several points θ0 ∈ Θ.

Proof. As we suppose that Θ is compact, we just have to show that, for every fixed t,
P(x, t, θ) is a continuous function of θ ∈ Θ. Recall that considering the dependence of the
matrix Q on its entries and, of those on the parameters, Equation (3) may be written as

P′t(x, t, θ) = P(x, t, θ)Q(t, θ)

P(x, x) = I
(7)

an equation that can be read in integral form as:

P(x, u, θ) = I +
∫
[x,t]

P(x, s, θ)Q(s, θ)ds . (8)

We will now follow the general idea of the proof of the Picard–Lindelöf theorem for
proving existence and unicity of solutions of ordinary differential equations as exposed
for the backward Kolmogorov equations in (Rolski et al. 1999, pp. 348–49). By replacing
P(x, s, θ) in the righthand member of Equation (8) by this righthand member we obtain,

P(x, t, θ) = I +
∫
[x,t]

Q(s, θ)ds +
∫
[x,t]

∫
[x,t1]

P(x, t2, θ)Q(t1, θ)Q(t2, θ)dt2dt1

and, by mathematical induction, we have

P(x, t, θ) = I +
∫
[x,t]

Q(s, θ)ds +

+
k

∑
n=2

∫
[x,t]

∫
[t1,t]
· · ·

∫
[tn−1,t]

Q(t1, θ)Q(t2, θ) · · ·Q(tn, θ)dtn · · · dt1 +

+
∫
[x,t]

∫
[t1,t]
· · ·

∫
[tk−1,t]

P(x, tk, θ)Q(t1, θ)Q(t2, θ) · · ·Q(tk, θ)dtk · · · dt1 .

Now, let M(t) = supθij∈Θ |µ(t, θij)| = maxθij∈Θ |µ(t, θij)| < +∞. As M(t) being
continuous is integrable over any compact set, by Lemma 8.4.1 in (Rolski et al. 1999,
p. 348), we have that∣∣∣∣∣

[∫
[x,t]

∫
[t1,t]
· · ·

∫
[tk−1,t]

P(x, tk, θ)Q(t1, θ)Q(t2, θ) · · ·Q(tk, θ)dtk · · · dt1

]
ij

∣∣∣∣∣ ≤
≤ rk

∫
[x,t]

∫
[t1,t]
· · ·

∫
[tk−1,t]

M(t1)M(t2) · · ·M(tk)dtk · · · dt1 =

=

(
r
∫
[x,t] M(s)ds

)k

k!
.

Finally, since

lim
k→+∞

(
r
∫
[x,t] M(s)ds

)k

k!
= 0,

we have that the series which sum represents P(x, t, θ), that is

P(x, t, θ) = I +
+∞

∑
n=1

∫
[x,t]

∫
[t1,t]
· · ·

∫
[tn−1,t]

Q(t1, θ)Q(t2, θ) · · ·Q(tn, θ)dtn · · · dt1

is a series of continuous functions of the parameter θ ∈ Θ converging uniformly and so the
sum is a continuous function of the parameter θ.
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As expected, having Θ as a compact set, the previous theorem ensures the existence
of an optimal calibration under the objective function in Formula (6).

We note that the proposed methodology corresponds to a minimum square error
criteria, a common approach in this kind of problems. We will choose the set of intensities
that minimizes the loss function (6), thus ensuring a calibration of the intensities to real data.

Remark 3. Despite the fact that the optimization problem defined by Formula (6) has a unique
solution, the effective computation of this solution most probably is a hard problem for two different
reasons. The first reason is that, in our model, there are three parameters for each intensity and a
total of 16 intensities, which amounts to an optimization problem in a space of 48 variables. Such
high dimensionality has an implicit a priori challenge (see, for instance (Grosan and Abraham
2009)). The second reason, coupled with the first reason just mentioned, is that the function to be
optimized depends on the parameters by the computation of the transition probability functions,
using numerical integration. Being so, it seems justified to employ a simple calibration approach to
the determination of the parameters, such as the one presented below.

Setting an initial age xn, a time horizon N and considering transition intensities ruled
by Equation (3), and considering the model framework represented in Figure 1, we calibrate
the transition intensities for each pair of states (i, j) , i 6= j , i = 1, . . . , 4 , , j = 1, . . . , 5, in
order to fit the one step transition probabilities estimated from data.

In a first step, consider baseline parameters for intensities µ12
x+t and µ15

x+t, representing
the transition intensities from autonomous to light dependence and from autonomous to death,
respectively. We propose, as a starting point, the ones assumed in (Haberman and Pitacco
1998, p. 100), namely:

(γ
p
12, α

p
12, β

p
12) = (0.0004, 0.06,−5.46) , (γp

15, α
p
15, β

p
15) = (0.0005, 0.038,−4.12). (9)

In a second step, considering pij , i = 1, . . . , 4, j = 1, . . . , 5, the one step probability
of an individual aged x moving from state i to state j (estimated from data) and γ, α, β
the fine tuning parameters chosen to reduce the loss function in Formula (6), we perturb
the parameters illustrated in (9) in order to reflect the structure of the one step transition
estimated matrix, by the transformations presented in the following:

• Parameters γij , i = 1, . . . , 4, j = 1, . . . , 5:

γij = γ
p
12 +

p12 − pij

p12 − p15
· γ , j 6= 5 , γi5 = γ

p
15 +

p12 − pi5
p12 − p15

· γ (10)

• Parameters αij , i = 1, . . . , 4, j = 1, . . . , 5:

αij = α
p
12 +

p12 − pij

p12 − p15
· α , j 6= 5 , αi5 = α

p
15 +

p12 − pi5
p12 − p15

· α (11)

• Parameters βij , i = 1, . . . , 4, j = 1, . . . , 5:

βij = β
p
12 +

p12 − pij

p12 − p15
· β , j 6= 5 , βi5 = β

p
15 +

p12 − pi5
p12 − p15

· β (12)

The reasoning behind the perturbation method in Formulas (10)–(12) is to slightly alter
the classical intensities in order to coherently reflect the structure of each of the discrete
transition matrices obtained from Portuguese data, thus reflecting the structure of the
transitions in the population under study.

In a third step, we obtain the (r− 1)× r = 4× 5 = 20 different transition probability
functions, Pij(x, x + t) , i = 1, . . . , 4 , j = 1, . . . , 5, as a result of numerically solving the
Kolmogorov forward differential Equations (4) and we calibrate the transition intensities
by finding (γ, α, β) that minimizes the loss function (6).
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We note that, from a practical point of view, and for the model framework presented
in Figure 1, it means that we consider N × r × (r − 1) = 40 × 5 × 4 = 800 transition
probabilities in order to obtain a small value for the loss function O(θ), defined in (6).

The proposed transformations are general and applicable to any population data
and reduces the minimization problem of loss function (6) from a set of 48 parameters,
(γij, αij, βij) , i, j = 1, . . . , 5, i 6= j, to only 3, namely (γ, α, β).

The goal at this stage is to have the intensities parameters to reflect the structure of
the data inferred matrices. By reducing the complexity of the optimization problem, it
becomes more robust and easier to manage.

4. Outcomes from Portuguese Data

Using data from the Portuguese National Network of Continuous Care, we illustrate
the obtained results for the methodology presented in this paper. The database for 2015
contains 23,894 users and a total of 93,134 records of observations. For some more details
on the Portuguese LTC database, see again (Lopes et al. 2018a) and (Lopes et al. 2018b).

4.1. The Transition Probability Matrix

In this section, we present the discrete time one step probability matrix, obtained from
the RNCCI database, by a clustering analysis, as described in (Oliveira et al. 2017), for a
set of states and transitions defined in Figure 1. This one step transition matrix will be used
in the calibration process for obtaining intensity rates.

P =


0.7250 0.1308 0.0353 0.0092 0.0997
0.1345 0.6380 0.0744 0.0368 0.1163
0.0352 0.1472 0.4076 0.1441 0.2659
0.0060 0.0376 0.0748 0.5015 0.3800

0 0 0 0 1

. (13)

Observing the estimated homogeneous matrix (13), for ages over 60 years old, we
highlight that: (i) for each dependence state, the higher probabilities correspond to main-
taining the same dependence level in one step (one year); (ii) the rates of mortality increase
with the dependence level; (iii) we observe non-null transition probabilities between all
dependence levels.

For illustration purposes, in Table 1, we present the transition matrices obtained for
different sets of ages, estimated from the same database in (Oliveira et al. 2017), and matrix
P, already presented in (13), obtained by a convex combination of the other ones, according
to the proportion of individuals in RNCCI for each age group.

The above comments over the structure of the one step transition matrix for the
whole database remain valid when we focus only on a shorter set of ages. Moreover,
analysing the set of transition matrices of Table 1, we can conclude that non-homogeneous
transition intensities are more adequate to model the LTC phenomena, since there are
significant differences between the magnitude of transition probabilities over different
levels of dependence, as age increases.

Figure 2 illustrates the mortality rates for each age x , x ≥ 60 for the Portuguese popu-
lation in 2015, see INE (2016), in comparison with the mortality rates for the population
under study on this section. These mortality rates were estimated from matrices on Table 1
and from distribution of RNCCI patients through dependence levels, presented in Table 2.
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Figure 2. Mortality rates - general population and RNCCI estimates.

Table 1. Homogeneous probability transition matrices

P1 ≡ P[60≤x≤71] P2 ≡ P[72≤x≤77]


83.47% 11.05% 1.44% 0.66% 3.38%
18.49% 68.66% 4.61% 2.97% 5.28%
6.72% 20.48% 45.85% 17.50% 9.45%
1.21% 6.44% 10.04% 67.86% 14.45%
0.00% 0.00% 0.00% 0.00% 100.00%




81.63% 11.88% 1.71% 0.57% 4.20%
16.57% 67.68% 6.26% 3.30% 6.20%
3.53% 18.41% 50.12% 15.16% 12.78%
0.91% 5.43% 10.01% 63.65% 20.00%
0.00% 0.00% 0.00% 0.00% 100.00%


P3 ≡ P[78≤x≤81] P4 ≡ P[82≤x≤86]


76.60% 13.80% 2.70% 0.84% 6.06%
13.82% 66.47% 7.87% 3.95% 7.89%
3.29% 15.63% 45.72% 17.48% 17.88%
0.52% 3.74% 8.90% 58.60% 28.24%
0.00% 0.00% 0.00% 0.00% 100.00%




68.41% 15.69% 4.89% 1.02% 9.99%
11.43% 64.26% 8.87% 3.97% 11.47%

2.97% 13.13% 40.26% 14.06% 29.57%
0.34% 2.64% 6.70% 45.39% 44.93%
0.00% 0.00% 0.00% 0.00% 100.00%


P5 ≡ P[x≥87] P

54.15% 12.63% 6.48% 1.48% 25.26%
7.53% 52.54% 9.33% 4.17% 26.43%
1.22% 6.57% 23.08% 8.45% 60.69%
0.09% 0.85% 2.23% 18.06% 78.77%
0.00% 0.00% 0.00% 0.00% 100.00%




72.50% 13.08% 3.53% 0.92% 9.97%
13.45% 63.80% 7.44% 3.68% 11.63%
3.52% 14.72% 40.76% 14.41% 26.59%
0.60% 3.76% 7.48% 50.15% 38.00%
0.00% 0.00% 0.00% 0.00% 100.00%



With

P = 0.1969 P1 + 0.19558 P2 + 0.17481 P3 + 0.22991 P4 + 0.2028 P5.

Table 2 illustrates the initial distribution of individuals, for the whole population and
at age 65, through the dependence states, in the RNCCI database of 2015.

Table 2. Initial distribution of individuals in RNCCI database.

Age Dependence Level

Autonomous Light Moderate Severe

All Ages 15.96% 36.36% 16.03% 31.65%
Age 65 13.43% 55.22% 8.71% 22.64%

4.2. Calibrated Intensity Rates

Setting an initial age x = 65, a time horizon N = 40 and considering transition
intensities ruled by equation (3), we calibrated the transition intensities for each pair of
states (i, j) , i 6= j , i = 1, . . . , 4 , , j = 1, . . . , 5, in order to fit the Portuguese transition
probabilities illustrated in transition matrix (13).

Considering the baseline parameters defined in (9) and the one step transition proba-
bilities represented in (13), we performed the transformations (10), (11) and (12).
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In Table 3 we present the values of the mean error for each probability corresponding
to some choices of the fine tuning parameters (γ, α, β).

Table 3. Mean error for each of the 800 probabilities in Formula (6), for several fine tuning parameters.

γ α β
√

O(θ)
800

0.0004 −0.00004 −0.0002 17.87%
0.00001 −0.01 −0.001 14.88%

0.0000001 −0.004 −0.0001 10.64%
0.00001 −0.002 −0.000001 9.68%

Taking the set (γ, α, β) = (0.00001,−0.002,−0.000001), as our best choice of param-
eters, we present, in Table 4, the calibrated parameters for the intensities used in the
simulation, which reflects a mean error of 9.68% in the approximation of the transition
probability functions by the estimated discrete transition probabilities.

Table 4. Calibrated intensities parameters for RNCCI data.

Dependence
Level i j γij αij βij

1 2 0.00040 0.060 −5.46
Autonomous 1 3 0.00043 0.054 −5.46

1 4 0.00044 0.052 −5.46
1 5 0.00050 0.038 −4.12

2 1 0.00040 0.060 −5.46
Light 2 3 0.00042 0.056 −5.46

Dependence 2 4 0.00043 0.054 −5.46
2 5 0.00050 0.037 −4.12

3 1 0.00043 0.054 −5.46
Moderate 3 2 0.00039 0.061 −5.46

Dependence 3 4 0.00040 0.061 −5.46
3 5 0.00046 0.047 −4.12

4 1 0.00044 0.052 −5.46
Severe 4 2 0.00043 0.054 −5.46

Dependence 4 3 0.00042 0.056 −5.46
4 5 0.00042 0.054 −4.12

Figure 3 illustrates the transition probability functions for a 65 year old individual,
obtained by numerical integration of the Kolmogorov forward differential equations.

Figure 3. Transition probabilities given as numerical solutions of the Kolmogorov forward equations.
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Remark 4. A natural question related to the proposed calibration method is to determine if the
relation between the transition matrix used for calibration and the continuous time probability
transition matrix obtained by integrating the Kolmogorov equations with the calibrated intensities
corresponds–in some sense–to the solution of the imbedding problem for finite Markov chains (see,
for instance, (Kingman 1962), (Johansen 1973) and (Johansen 1974)). In the imbedding problem
we seek to determine the existence of a continuous time Markov chain transition probability matrix
corresponding to a discrete time probability transition matrix that represents the observation of the
continuous time Markov chain at unit intervals of time. We observe that in the case where P(x, t, θ)
is a solution to the imbedding problem of P =

[
pi,j
]

i,j=1,...,r a one step Markov chain probability

transition matrix, then with P(n) =
[

p(n)i,j

]
i,j=1,...,r

the n-step probability transition matrix we

should have in Formula (6), O(θ) = 0.

5. Simulation Procedure and Results

After calibrating the transition intensities and integrating the Kolmogorov forward
differential equations, we simulate 10,000 trajectories of the continuous time Markov chain
in order to obtain significant information over the LTC population in Portugal.

The simulation algorithm used, which is tantamount to a simulation of a continuous
time Markov chain, is presented in Algorithm 1.

Algorithm 1: Algorithm of the Simulation.
1: INPUT Kolmogorov equations solutions P(x, t, θ); U = { };
2: State := RANDOM INITIAL STATE;

3: LifeTime := 0

4: Age := 65

5: Max Age := 105;

6: WHILE (Age < Max Age) ∧ (State < 5)

7: Time in State = RANDOM TIME IN STATE

8: U := APPEND[Time in State, State]

9: LifeTime := LifeTime + Time in State

10: Age := Age + LifeTime

11: State := IF(Age < Max Age),

12: RANDOM STATE CHOICE(State, Time in State, 5)

13: REPEAT

14: PRINT U

With the simulation process, we obtained information on the sojourn times distribu-
tion, illustrated in the left side of Figure 4; the life expectancy at age x = 65, see the right
side of Figure 4 and obtained statistical measures for the whole life cost of Long Term Care,
by considering a set of reasonable monthly costs for each dependence level, see Figure 5.

5.1. Sojourn Times and Life Expectancy

The simulation procedure requires the probability distribution functions of the sojourn
in each transient state i , i = 1, . . . , 4, which are obtained by the calibrated intensity rates, by
numerical integration of the Kolmogorov forward differential equations. The cumulative
distribution functions are displayed in the left side of Figure 4.

Table 5 illustrates the average sojourn times for each dependency level, for a 65 year
old individual. The “life expectancy” in Table 5 corresponds to the average sum of all
sojourn times, ∑5

i=1 Tii
x , before the individual deceases.
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Table 5. Sojourn Times and Life Expectancy for x = 65, 10,000 Simulations.

Dependence
Level Autonomous Light Moderate Severe Life

Expectancy

Average
Sojourn Time 7.04 7.04 6.94 6.86 15.21

We note that the life expectancy given by the official 2015 mortality tables of the
National Institute of Statistics in Portugal, see (INE 2015), for a 65 year old PortugPor-
tugueseuese, is 19.19, which reflects that our estimate has a relative difference of −20.74%
compared to the official data. According to the recent results on (Bravo et al. 2020), the
95% confidence interval for the life expectancy of Portuguese individuals that, in 2015,
were 65 year old is [19.49; 22.66]. In our opinion, the magnitude of this relative difference is
explained by the the observation of Figure 2. We note that the population in RNCCI system
is mostly a population with comorbidities, which induces higher mortality and, as a conse-
quence, reduces the life expectancy. We remark that we are considering a sub-population of
Portuguese individuals that, during 2015, used the National Network of Continuing Care.
In fact, as presented in Table 2, 55.22% of the individuals aged 65 were registered as light
dependent level and 22.64% as severe dependent. We believe that in the general Portuguese
population these percentages are not so high, and this justifies that we observe a lower life
expectancy. As a second benchmark, we note that the official Healthy Life years at age 65,
in Portugal, in 2015, was 7 years, see (Pordata 2016a). In that sense, we consider our results
a reasonable approximation and it gives us a validation for the calibration procedure and
results. We also remark that during the simulation procedure, different scenarios have
been tested (different ages structure in the population, different initial distributions for
the 65 year old individuals) and all of them producing results consistent with the defined
scenarios. Our option, in the paper, relied on presenting only the results obtained from the
RNCCI database.

We present, in the right side of Figure 4, the empirical distribution for the life ex-
pectancy for a 65 year old Portuguese, obtained in the simulation process.

Figure 4. Sojourn CDF’s for autonoumous (1) and dependence states (2–4) (on the left) Life Span
after age 65 (on the right).

We remark that it is possible to obtain similar results for other initial ages, rather than
x = 65, given that transition rates µ

ij
x+t , i = 1, . . . , 4, j = 1, . . . , 5 are calibrated for other

ages x as well as for other age structure populations, obtaining a new one step transition
matrix from an appropriate convex combination of the matrices presented in Table 1.

We note that, for the population under study, if we had chosen to calibrate the in-
tensities and present the results for the mean age of RNCCI database (80 years old), the
differences would be smaller. However, for instance, the Healthy Life years at age 80 is not
available for comparison with our results. In that sense, our choice relied on calibrating the
intensities for age 65.
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5.2. Simulating the Costs of LTC

The protection of individuals in later stages of life can be financed by social protection,
by insurance policies or a combination of both.

At this point, we intend to obtain, by simulation procedures, the distribution of costs
of LTC for a population with the characteristics of RNCCI users, as well as some basic
illustrative statistics.

The presented results were achieved by admitting that the monthly cost for users in
each of the dependent states is, respectively, 500, 1 500 and 3 000 euros. These values are of
the same magnitude of the expenditures per level of care reported in (Zuchandke et al. 2012,
p. 221), for LTC in Germany in 2010. Figure 5 illustrates the distribution of LTC costs, under
the monthly costs assumed, for a 65 year old individual.

, , , , , ,

Figure 5. Simulated Global User Costs after age 65.

The simulated average whole life cost of Long Term Care may be seen as the Risk
Premium of an LTC insurance, if the same rates are used for increasing costs and discount-
ing, or as an average amount per patient in social assistance institutions. Regarding the
skewness of the distribution, we note that, for insurance purposes, the risk measurement
and the premium calculation should reflect this fact.

Table 6 highlights the Life Expectancy, the Risk Premium and the correspondent
monthly equivalent investment, for a period of 30 years–i.e. starting to invest at the
age of 35 years old, with a technical interest rate of 3%–necessary to face the global cost
amount. We remark that, naturally, the methodology proposed in this paper allows for
the simulation for other populations with different characteristics, namely for the general
Portuguese population or for some insurance portfolios.

Table 6. Simulation results (10,000 repetitions, x = 65): Life expectancy, Average Whole Life LTC
Costs (Risk Premium), Monthly Equivalent Investment over the last 30 years (3% interest rate) for a
population with similar characteristics of RNCCI.

Life Expectancy Risk Premium Monthly Investment

15.21 155,657.00 euro 209.10 euro

Just for illustration purposes, we show, in Table 7, the advantages of an early subscrip-
tion over some kind of investment allowing for covering the amount of the Risk Premium
of an expensive LTC contract. We illustrate, in line, different subscription ages x and, in
column, different initial ages for entering in a LTC system. For each of these pairs (x, x + n)
we calculated the monthly investments needed to face the global whole life LTC cost,
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according to the obtained simulations. The last line illustrates the “life expectancy” after
age x + n and the previous one shows the global average cost of LTC after that age.

Table 7. Monthly Equivalent Investment (euro) for different initial ages.

x + n

65 70 75 80

x

30 209.10 121.86 65.31 36.14
35 265.99 152.13 80.41 44.02
40 347.35 193.52 100.39 54.20
45 471.51 252.72 127.70 67.66
50 681.09 343.05 166.77 86.07
55 1 103.24 495.53 226.37 112.40
60 2 365.31 802.67 326.99 152.58

Global Cost 155 657.00 113 249.00 74 731.00 50 369.10

Life Expectancy 15.21 11.14 7.80 5.27

We remark that, as previously referred, the values presented in Table 7 are not perfectly
accurate for ages different than 65, since we used, for all ages x + n, the calibrated transition
intensities for a generic 65 year old individual. Despite less accurate, the results are still
interesting and highlight the need for early investment on LTC coverages.

To conclude this section, we discuss the effect of the number of repetitions in the
simulation process. We can appreciate in both Tables 8 and 9 that there is no appreciable
difference of the results both on the Risk Premiums computations and on the sojourn times
among samples of 10,000 and 10,000 repetitions. As so, our choice of a sample of 10,000
trajectories for the discussion of the simulation results seems justified.

Table 8. Total Sojourn Times (“Life Expectancy”).

Sample Size 100 1 000 10,000 10,000

Minimum 1.47 0.33 0.06 0.07
First Quartile 10.46 8.92 9.29 9.37

Median 14.68 14.64 14.34 14.55
Mean 15.74 15.29 15.21 15.32

Third Quartile 21.78 21.09 20.65 20.79
Maximum 28.03 39.25 41.67 46.62
Standard
Deviation 6.77 7.67 7.62 7.61

Table 9. Statistics of whole life costs (euro), at age 65 years, for different sample sizes.

Sample Size 100 1000 10,000 10,000

Minimum 0.00 0.00 0.00 0.00
First Quartile 56,517.52 60,992.10 57,645.40 59,272.20

Median 104,248.00 110,722.00 106,454.00 108,156.00
Mean 177,888.00 168,390.00 155,657.00 158,250.00

Third Quartile 256,474.00 248,925.00 214,925.00 217,857.00
Maximum 716,023.00 863,529.00 995,460.00 1,230,000.00
Standard
Deviation 178,435.00 155,921.00 144,814.00 147,626.00

6. Conclusions

The calibration-simulation method introduced, allows for a study of insurance prod-
ucts and risk management of Long Term Care via a continuous time Markov chain model.
The expected life span after age 65 (total life span and healthy life expectancy)–which is an
output of the continuous time Markov chain simulation–is a good a posteriori validation tool
for the proposed methods when comparing it to data from the official Portuguese mortality
tables. We observe that, in our work, we obtained results of the same order of magnitude as
those observed in the German LTC system, for similar input values of monthly costs. The
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calibration procedure proposed is efficient although it does not necessarily ensure a global
optimum of the natural loss function. We point out some limitations of our study that
opens opportunities for future work. Namely, taking advantage of having data matrices
for five age classes would allow for using, in the simulation process, different probability
distributions according to the age at a certain point in time of the trajectory being simulated.
A second determinant line of work would be to achieve a performant algorithm to the
calibration global optimization problem referred in Remark 3.

Some new developments may also arise by considering semi-Markov process model-
ing, provided the available data to perform such modelling.
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