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Abstract: Under the impact of both increasing credit pressure and low economic returns characteriz-
ing developed countries, investment levels have decreased over recent years. Moreover, the recent
turbulence caused by the COVID-19 crisis has accelerated the latter process. Within this scenario, we
consider the so-called Volatility Target (VolTarget) strategy. In particular, we focus our attention on
estimating volatility levels of a risky asset to perform a VolTarget simulation over two different time
horizons. We first consider a 20 year period, from January 2000 to January 2020, then we analyse
the last 12 months to emphasize the effects related to the COVID-19 virus’s diffusion. We propose
a hybrid algorithm based on the composition of a GARCH model with a Neural Network (NN)
approach. Let us underline that, as an alternative to standard allocation methods based on realized
and backward oriented volatilities, we exploited an innovative forward-looking estimation process
exploiting a Machine Learning (ML) solution. Our solution provides a more accurate volatility
estimation, allowing us to derive an effective investor risk-return profile during market crisis periods.
Moreover, we show that, via a forward-looking VolTarget strategy while using an ML-based predic-
tion as the input, the average outcome for an investment in a drawdown plan is more sustainable
while representing an efficient risk-control solution for long time period investments.

Keywords: volatility estimation; neural network; portfolio simulation; VolTarget strategy

1. Introduction

In order to deal with the extreme complexity of the stock market, a hybrid method
based on the GARCH model combined with a Long Short-Term Memory (LSTM) Neural
Network (NN) appears to be an accurate and effective tool to predict market behaviour,
in particular for volatility forecasting, Kim and Won (2018). LSTM NNs are developed
starting from Recurrent Neural Networks (RNNs), and they can be considered an ideal
candidate to predict financial time series. Indeed, they store past information avoiding
long-term dependence issues due to their unique storage unit structure, Qiu et al. (2020).
Furthermore, the combination with a GARCH-type method improves the precision of the
volatility estimates dealing with non-controllable data showing a clustering tendency.

Our contribution aims at investigating the effectiveness of a hybrid approach to
estimate volatility exploiting a mix of the GARCH model and the LSTM-NN method.
In particular, historical realized volatilities are used as input time series to implement
a forward-looking simulation. Let us underline that the idea of exploiting volatility
forecasts as an investment hedging strategy is a key point of several research papers;
see, e.g., Chang et al. (2013); Donaldson and Kamstra (2005); Duan and Zhang (2014);
McDonnel et al. (2012), and the references therein. Alternatively, we derive a volatility
forecast to the hybrid economic-ML algorithm to realize a risk-controlled portfolio strategy,
i.e., the VolTarget one (see, e.g., Albeverio et al. (2013); Berganza and Broto (2012)), dynami-
cally adjusting the asset allocation between a risk-less bond and a risky asset depending
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on the predicted market volatility. This allows significantly reducing risky asset expo-
sure (see Baker et al. (2020)) during periods characterized by an extraordinary increase
in volatility (see, e.g., Balduzzi et al. (1998); Neely et al. (1999)), as happened during the
2008 worldwide financial crisis or the current ups and downs caused by the COVID-19
pandemic. In particular, we focus our attention on long time period investments for which
a possible strategy consists of investing in equities, hence taking advantage of volatility
predictions. Indeed, volatility is used as an effective tool to predict the market behaviour:
higher volatility implies higher returns along with the possibility of significant drawdowns.
Therefore, the total risk of the portfolio connected to equity dangerously increases.

We emphasize that the novelty of our approach concerns the opportunity to estimate
realized volatility obtained from a hybrid GARCH-LSTM NN model, instead of using
historical volatilities, to then directly feed a VolTarget-based portfolio. The strategy is
performed by considering a single risky asset, whose volatility is computed, in first approx-
imation, by means of the univariate GARCH model. In a future work, we shall provide a
generalization of our solution to a basket of diversified risky assets, possibly depending on
underlyings such as oil or gold (see, e.g., Boţoc and Anton (2020)), exploiting a multivariate
GARCH model.

The paper is organized as follows. In Section 2, we develop the basics about both the
GARCH process and LSTM-NN tools, also discussing the motivations inspiring our hybrid
solution and providing the VolTarget strategy details, as well as the corresponding portfolio
dynamics; while, in Section 3, we present the numerical evidence obtained, starting with
ML-based volatility estimates to then considering a Monte Carlo simulation approach to
the VolTarget, considering the S&P 500 index as the risky asset reference. Section 4 presents
the discussion of the obtained results, focusing on the connection with other studies and
on the novelty introduced by the research.

2. Materials and Methods

In this section, we examine the theoretical background and the methods exploited to
estimate the historical realized volatility computed as the standard deviation or through
the hybrid algorithm, in order to run a VolTarget strategy.

2.1. Literature Review

Various studies have been conducted in order to predict volatility based on financial
time series models aiming at reducing investments’ exposure during turbulent volatility
periods. Classical forecast models mainly deal with statistical inference from a regression
point of view; see, e.g., Engle (1982). An example is given by considering the Generalized
Auto Regressive Conditional Heteroscedasticity (GARCH) process, Bollerslev (1986), hence
assuming a heteroscedastic condition of the time series. The latter implies variables’
variance not be assumed to be constant over time. Additionally, it is useful to predict the
phenomenon known as volatility clustering, namely the tendency of a rather steady low,
resp. high, state for volatility’s levels. It is worth mentioning that methods allowing taking
the trace of the aforementioned clusterization phenomena fail to capture long-term features.
That is why we combine the latter approach with a Machine Learning (ML) one. This
allows us to overcome the problem, taking care of cluster phenomena, as well as long-term
features at the same time, indeed providing accurate estimates also when sudden volatility
changes occur.

Let us note that similar approaches have been already adopted as, e.g., in Kim and
Won (2018) and Qiu et al. (2020), where the authors examined the advantages of combining
an ML model with econometric ones to improve the predictions’ accuracy w.r.t. stock price
volatility. Recent works such as, e.g., Murali et al. (2020), were more focused on numer-
ical procedures, again based on hybrid models. Further, Anton (2012); Guo et al. (2014);
Hajizadeh et al. (2012); Lu et al. (2016) proposed a hybrid algorithm between an artifi-
cial neural network and a GARCH model to predict the volatility of the S&P 500 index
return. The main novelty we introduce in the present paper consists of exploiting such
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approaches, together with fine tuned ML predictions, to perform a VolTarget strategy. Let
us also recall how several studies have already considered the volatility as a risk index
to control the exposure of allocation strategies; see, e.g., Krein and Fernandez (2012) or
Zakamulin (2013). In Albeverio et al. (2013), the authors introduced the foundations of the
theoretical framework for a VolTarget investment, developed also in Albeverio et al. (2018),
while Jawaid (2015) presented the results of numerical simulations for VolTarget strategies
based on different financial models. In the context of the recent global financial market
drawdown caused by the COVID-19 pandemic (see Baker et al. (2020)), we propose (see
also Albeverio et al. (2019); Bai and Wallbaum (2020)) an innovative combined algorithm
integrating the VolTarget portfolio strategy aiming at reducing the investment risk.

2.2. The GARCH(1,1) Process

One of the major challenges in the prediction of financial time series is the existence
of heteroscedastic effects, denoting that the volatility of the time series is generally not
constant, Williams (2011). Considering Pt as the value of a stock price evaluated at time t,
the log returns are defined by:

Xt = log Pt+1 − log Pt . (1)

The volatility σ can be defined as the square root of the conditional variance of the log
return process:

σ2
t = Var [ X2

t | Ft−1] , (2)

where Ft−1 is the σ-algebra generated by X0, . . . , Xt−1. Heteroscedasticity is not considered
in some classical financial models, like the Black–Scholes one, which widespread for
computing the price of European style options. The main limitations of this kind of models
are the hypothesis of considering a stationary process and a constant realized volatility,
which are unrealistic in general. In this context, ARCH models were introduced by
Engle (1982) to consider a more complex setting: the conditional variance process has an
autoregressive structure, and the returns are considered as white noise that multiplies
the volatility:

Xt = εtσt ,

σ2
t = ω + α1X2

t−1 + . . . + αpX2
t−p ,

(3)

where εt are independent and identically distributed (i.i.d.) random variables with expec-
tation 0 and variance 1, independent of σk for all k ≤ t. The lag length p ≥ 0 is itself a
parameter for the model, and the case p = 0 represents a trivial scenario representing a
white noise process.

Bollerslev (1986) improved the ARCH model allowing σ2
t to have an additional au-

toregressive structure within itself. The GARCH(p,q) (Generalized ARCH) model, where p
is the order of the GARCH terms σ2 and q is the order of the ARCH terms ε2, is given by:

Xt = εtσt ,

σ2
t = ω + α1X2

t−1 + ... + αpX2
t−p + β1σ2

t−1 + . . . + βqσ2
t−q .

(4)

For our purposes, we chose a GARCH(1,1) model to predict the volatility of the period
2000–2020 for the S&P 500 index given its relatively simple implementation. The solution
is given in terms of a system of stochastic difference equations in discrete time, and the
likelihood function is easier to handle than continuous-time models. The GARCH(1,1)
used for this computation can be expressed by:

σ2
t = α1σ2

t−1 + βε2
t−1 + α0 .
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Starting from the historical data, a weighted sum of the observed volatility is com-
puted. The prediction by the constant mean-GARCH Model, shown in Figure 1, helps
in the recognition of the well-known phenomenon called volatility clustering. The main
limitation is clearly the lack of forecasting accuracy.

Figure 1. Volatility output from the GARCH(1,1) process for the period from January 2000 to January
2020. The parameter α0 is equal to 0.418; α1 is equal to 1.000; and β is equal to 3.606× 10−11 (source:
authors’ calculations).

2.3. Long Short-Term Memory Neural Network

A Recurrent Neural Network (RNN) is an NN algorithm that learns sequential patterns
through internal loops by receiving input sequences. A back propagation algorithm is used
to reduce the error of the value calculated by the forward propagation in order to optimize
the objective function. As the values are propagated into the value function, the gradient
descent algorithm could encounter the issue of a vanishing (or exploding) gradient, since it
can become very small (or extremely large). To avoid this kind of problem, LSTM models
were developed by Hochreiter and Schmidhuber (1997) using memory cells (a unit of
computation that replaces traditional artificial neurons) and gates to store information for
long periods of time and to forget unessential information.

As developed in Qiu et al. (2020), each memory cell has three sigmoid layers and one
tanh layer, as shown in Figure 2. The cell includes a forget gate that determines which cell
state information is discarded from the model.

Figure 2. Structure of a cell of an LSTM NN (source: Qiu et al. (2020), p. 3).

The memory cell accepts the state Ct−1 of the previous cell and the corresponding
output ht−1. The external information xt of the current moment is also considered as the
input and combined in a long vector [ht−1, xt] through a transformation σ:

ft = σ(W f · [ht−1, xt] + b f ) , (5)

where W f and b f are, respectively, the weight matrix and bias of the forget gate and σ
is the sigmoid function. The forget gate controls how much of the cell state Ct−1 of the
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previous time should be forgotten for the cell state cell Ct of the current time. The gate
will output a value between 0 and 1 (1 indicates complete reservation, while 0 indicates
complete discardment). The input gate determines how much of the current time network
update xt is added to the state cell Ct:

it = σ(Wt · [ht−1, xt] + bt) . (6)

The cell state Ĉt is updated through the tanh layer to control how much new informa-
tion is added:

Ĉt = tanh(Wc · [ht−1, xt] + bc) . (7)

The output gate controls how much of the modified cell state should leave the cell and
become the next hidden state. Equation (8) is used to update the cell state of the memory
cell using both saved past information at time t− 1 and present information of time t:

Ĉt = ft · Ct−1 + it · Ĉt . (8)

The output information is first determined by a sigmoid layer, and the cell state is
processed by tanh and multiplied by the output of the sigmoid layer to obtain the final
output, defined as:

ht = σ(Wσ · [ht−1, xt] + bσ) · tanh(Ct) . (9)

Because of this special characterization in terms of selectivity, LSTM NNs are suitable
for random non-stationary sequences such as stock-price time series. Another fundamental
feature about LSTM NNs regards the property of avoiding long-term dependences, making
them suitable candidates to predict financial time series.

2.4. Estimation of the Historical Realized Volatility

Starting from the time series of the S&P500 for the period 2000–2020 with daily data
points, the realized historical volatility of the S&P500 returns were determined on a monthly
basis. Historical volatility was computed as the standard deviation of the difference of
the logarithmic returns considering a temporal window of 21 business days, according to
Equation (2). It is expressed in annualized terms (multiplied by the square root of 252),
which allows for comparisons between daily, weekly, and monthly volatility calculations.
Nevertheless, we often observe that daily volatilities are greater than weekly volatilities,
and weekly volatilities are greater than monthly volatilities. We chose to consider monthly
stock volatility in order to reduce the effect of day-by-day price fluctuations.

2.5. Proposed Hybrid Algorithm: LSTM Model Combined with the GARCH-Method

An integration of the LSTM model with the output coming from the GARCH helps
to improve the LSTM learning procedure and its volatility predictions. In particular, as
mentioned in Section 2.2, the LSTM network is suitable for capturing short-term changes
and for storing past information, while the GARCH model captures volatility clustering
and leptokurtosis information.

The output of the GARCH process is paired with the historical volatility data forming
the input of the LSTM NN, as illustrated in Figure 3. The training set for the LSTM model
is constructed in a specific way. More precisely and different from other NN applications,
the construction of the training dataset for time series forecast requires the choice of a lag
parameter, which directly affects the predictive performance. The key idea is to overlap
rolling windows with a fixed length (the so-called lag parameter) that in our simulation we
set equal to 100 days. Each of these input sequential data produces a volatility forecast for
the next day, as shown in Figure 4.
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Figure 3. Hybrid GARCH-LSTM algorithm (source: authors’ own elaboration).

Figure 4. The input data have a length of 100 days, producing an output for 1 day. The original figure
from Guo et al. (2015) was adjusted by the authors.

The values of volatility from day (d− 100) to day d are used as the input to predict
volatility for day d + 1. Numerical results of this method are presented in Section 3.1.

2.6. VolTarget Strategy

The VolTarget strategy deals with dynamically adjusting the portfolio positions, based
on a trend following and controlled-risk approach, according to the estimate of market
volatility. The key idea is that investors should reduce the equity position during high
volatility periods and, symmetrically, increase the equity position when volatility is low.
More precisely, the dynamic asset allocation aims to reach a stable level of volatility in all
market environments by taking advantage of the negative relationship between volatility
and returns, since a higher volatility implies a greater variation of the expected returns.
Additionally, we want to exploit the presence of a majority of time periods with small loss
and take into account a minority of periods when there is the possibility of big gains or,
on the other hand, big losses. The VolTarget mechanism is used to create and re-balance a
VolTarget investment portfolio, consisting of a risk-less asset (e.g., zero-coupon bond) and a
risky asset (e.g., an equity index such as the S&P 500 index, which we consider here). For the
sake of simplicity, we consider just 2 assets, but the strategy remains valid if one considers
more than 1 risky assets. According to Albeverio et al. (2013) and Di Persio et al. (2019),
the portfolio can be modelled as a stochastic process P(t) driven by the following equation:

P(t) = α0(t)S0(t) + α1(t)S(t) (10)

where α0 and α1 define a predictable stochastic process for t ∈ [0, T] representing, respec-
tively, the amount invested in the risk-less S0(t) and in the risky asset S(t).

The dynamics of the portfolio P(t) is described by the following equation:

dP(t) = α0(t)rS0(t) + α1(t)
(
µS(t)dt + σdW(t)

)
(11)
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In a VolTarget portfolio, the trading strategy is chosen in a specific way. Consider a
partition of rebalancing times 0 = t0 < t1 < . . . < tn = T over the interval [0, T]. Assume
that it is possible to estimate the volatility σ(ti) for i ∈ {1, . . . , N} and denote the estimated
volatility by σ̂(ti). A VolTarget portfolio is a process of the form of Equation (10) where the
weights α0 and α1 are defined by:

α1 = min
{ VT

σ̂(ti)
, LF

}
if ti ≤ t ≤ ti+1 for some i ∈ {0, . . . N − 1} (12)

α0 = 1− α1(t) (13)

where LF ∈ [0, 2] represents the leverage factor (which in the literature can be assumed
to be constant; see, e.g., Jawaid (2015)), while the parameter VT is assumed to be positive
and corresponds to the volatility target. A strategy of this kind allows having a risky
asset exposure of more than 100% and leveraging the investment when market volatilities
are relatively low. On the other hand, the VolTarget mechanisms can be used as capital
protection against turbulences in the market, which can be pivotal, especially in the years
during a financial crisis.

3. Results
3.1. Volatility Forecasting

In this section, we present the forecasting results for the volatility of the S&P 500 index
through the proposed hybrid model. In the LSTM framework, we set the lag parameter
equal to 100 days, and we calibrate optimal parameters for the model, e.g., the number
of layers, the number of hidden units, and the number of epochs for the training phase.
We use a LSTM network formed by 2 hidden layers with respectively 32 and 16 neurons,
which correspond to 7633 trainable parameters, giving the predictions for an interval of
5348 days. We show the forecast results in Figure 5, comparing them to the historical ones.

Figure 5. Observed volatility and predicted volatility by the hybrid algorithm for the S&P 500 index from January 2000 to
March 2020 (source: authors’ calculations).

We compare the predicted ν̂t and the actual volatility RVt, which corresponds to the
target value of the learning process. We present training and validation errors in Figure 6,
in terms of MSE, i.e., Mean Squared Error, obtaining an error of 0.000265 after 100 epochs.
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Figure 6. Training error and validation error after 100 epochs (source: authors’ calculations).

To evaluate the effectiveness of the forecast, we consider also different loss functions,
such as the MAE (Mean Absolute Error) corresponding to 0.0328 and the MAPE (Mean
Absolute Percentage Error) corresponding to 0.0013.

Finally, we consider the period from January 2020 to October 2020 as the test set
in order to provide an unbiased evaluation of the trained model: this dataset has never
been used in training, and it is used to verify the precision achieved. We show the results
in Figure 7.

Figure 7. Predicted volatility and historical volatility for the period January 2020–October 2020
(source: authors’ calculations).

The estimated volatility is used as the input for the historical performance of the
VolTarget approach. The coefficients α0 and α1 for a riskless and a risky asset are computed
with regard to Equation (10), and a Monte Carlo simulation is performed, considering two
different time horizons:

• January 2000–June 2020 comparing the performances of portfolios with the historical
volatility and the predicted one;

• January 2020–October 2020 comparing the performance of portfolios with the histori-
cal volatility and the predicted one, which corresponds to the diffusion of COVID-19.

The choice of selecting different periods and adopting a historical perspective to
perform the simulations is motivated by the fact that we want to highlight the consequences
and the impact of a market crash, since the second time span corresponds to the COVID-
19 pandemic.
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3.2. Monte Carlo Simulations

Risk measures are widely used to quantify the risk connected to the exposure of a
financial portfolio. This kind of analysis is the core of many daily operations of financial
institutions. It can be implemented by Monte Carlo simulations, which represent a flexible
approach to deal with portfolios containing multiple investments, highly susceptible to
randomness. We develop different Monte Carlo simulations in order to compare two
configurations of investments that readjust their composition with daily operations:

• the classic VolTarget with historical realized volatility computed as the standard deviation
w.r.t. 21 days;

• the new approach, i.e., the ML VolTarget, computed by the combined GARCH-NN
method.

We consider simulations that model a portfolio following a Black–Scholes equation
such as Equation (11), which describes a geometric Brownian motion. We compute the aver-
age return (considering a drawdown plan of 5% for each year) and develop 10,000 different
scenarios for each configuration, using a Jupyter Notebook for the numerical simulation.

To study the problem in a more realistic way, we insert some considerations about
transaction costs that are heavily dependent on market volatility. We introduce these simple
assumptions into the model:

• if equity markets have a volatility below 10%, then the transaction costs are pretty low,
e.g., 10 basis points (bps);

• if equity markets have an average volatility between 10% and 30%, the transaction
costs get higher, for example 20 bps;

• if markets are getting turbulent with more than 30% volatility, then transaction costs
of 50 bps might be realistic.

Another crucial aspect that we want to consider is avoiding daily rebalancing: in such
a way, transaction costs are minimized, and the simulation is closer to the real situation. To
reduce the amount of rebalancing, one can introduce a trading filter that works as follows:
as long as the (new) target allocation is not more than 3% away from the current allocation,
no allocation change will be done.

3.2.1. Simulation of the Portfolio Dynamics over the Period of January 2020 to October 2020

We present the results for different configurations studied in the framework of a
Monte Carlo simulation with 10,000 scenarios, and then, we show the results in terms of
the average return over nearly the last year (from January to October 2020), the period that
was characterized by the diffusion of Covid-19 and the subsequent market crash.

Fixing volatility, the weights α0 and α1 are easily computed. These values are con-
sidered the fixed parameters for the historical simulation to study the evolution of the
VolTarget portfolio.

In particular, we develop two different simulations with the volatility target set at
13%: in Figure 8 we report the portfolio that employs historical volatility computed as
the standard deviation over 21 days, and in Figure 9, we show the portfolio with the
ML predicted volatility computed by the hybrid approach. This general approach, of
simulating a random process many times in order to understand its characteristics, is the
particular perspective of the Monte Carlo method.

By repeating the simulation many times and taking the average, we can compute the
average value of the return, which we take as the fair return, illustrated in Figure 10.

By comparing the averaged results, we deduce that the pattern obtained by studying
the performance of an active volatility-targeting solution has a better trend, especially
during a financial crisis.
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Figure 8. Monte Carlo simulations for the VolTarget portfolio with historical volatility with VT set to
13% (source: authors’ calculations).

Figure 9. Monte Carlo simulations for the VolTarget portfolio with forecast volatility with VT set to
13% (source: authors’ calculations).

Figure 10. Averaged return from a VolTarget strategy in the year 2020: ML volatility versus realized
historical volatility with VT set to 13% (source: authors’ calculations).
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3.2.2. Simulation of the Portfolio Dynamics over the Period of January 2000 to May 2020

After computing the estimates for the time series volatility, the weights are adapted at
each step according to the value of the volatility.

We directly compute the weights α0 for the risk-free asset and α1 for the risky asset by
Equations (12) and (13), and we present their evolution in Figures 11 and 12.

Figure 11. Exposure of the risk-free asset described by the weights α0 (source: authors’ calculations).

Figure 12. Exposure of the risky asset described by the weights α1 (source: authors’ calculations).

We fix also the volatility target, which in the following example we set to 13%, and
we set the leverage factor to two. The choice of the leverage factor is crucial to determine
a well-balanced risk return profile for the portfolio. In Figures 13 and 14, we present the
Monte Carlo simulations for the portfolio using the historical volatility as the input for the
VolTarget strategy.
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Figure 13. Monte Carlo simulations over a time horizon of 20 years for the portfolio with ML volatility
(source: authors’ calculations).

Figure 14. Average of the returns over 10,000 scenarios for VolTarget portfolios with ML volatility
(source: authors’ calculations).

In Figures 15 and 16, we present the Monte Carlo simulation for the portfolio using
the ML volatility as the input for the VolTarget strategy.

Figure 15. The picture graphically represents the results we obtained via Monte Carlo simulations
over a 20 years horizon for the portfolio with historical volatility (source: authors’ calculations).
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Figure 16. Average of the returns over 10,000 scenarios with the VolTarget portfolio with historical
volatility (source: authors’ calculations).

Figure 17 reports a modified version of Figure 5, showing volatility inputs for the
three VolTarget strategies. We also added the VIXindex CBOE (2019), tge real-time market
index representing the market’s expectations for volatility of the S&P500 index over the
coming 30 days Cao et al. (2020), as a reference for comparison purposes. The VIX index is
clearly higher since it is calculated as the 30 day expectation of volatility. We recall that
realized volatility is, instead, computed as the standard deviation over 21 days.

Figure 17. Volatility estimates computed according to three different models: historical realized volatility, predicted ML
volatility and the VIXindex (source: authors’ calculations).

In Figure 18, we report the evolution for the averaged return of the corresponding
VolTarget portfolios starting January 2000 and with the same initial investment, i.e., 100 euros.
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Figure 18. Comparison of the averaged return from the VolTarget strategies for a 20 year time horizon using the VIX index,
LSTM-GARCH volatility, and realized volatility with the target set to 13% (source: authors’ calculations).

4. Discussion

The present paper is characterized by two main contributions. In particular, we show
that hybrid GARCH-LSTM-based models provide accurate volatility forecasts for the S&P
index log-return series. It is worth mentioning that the combination of ML and standard
economic-based models to predict financial time series has been already investigated
(see, e.g., Baffour et al. (2019); Berganza and Broto (2012); Carvalhal and Ribeiro (2007);
Elsworth and Güttel (2020); Hajizadeh et al. (2012); Kim and Won (2018), and the references
therein), but applying forecasting to the VolTarget-based portfolio for historical evaluations
is still missing. Moreover (see Figures 10 and 18), we compared averaged results, following
a historical perspective: since we considered only fixed variables, other than the volatility,
and we can deduce how the ML VolTarget portfolio outperforms the one constructed with
historical volatility, computed as the standard deviation.

Moreover, let us underline that our ongoing research on connecting volatility esti-
mates with portfolio dynamic simulations aims at improving the already obtained re-
sults; see, e.g., Hossain et al. (2009); Kristjanpoller and Minutolo (2016); Lahmiri (2017);
Pathberiya et al. (2018); Wu et al. (2014); Yao et al. (2017). Different from these previous
research works, we consider an accurate economic model in view of the VolTarget portfolio
simulation.

5. Conclusions

In this research, we develop an innovative model combining the effectiveness of a
classic econometric model, namely GARCH(1,1), and a ML method, i.e., a LSTM NN, to
forecast volatility-based economic quantities. Let us recall that many volatility features
can be captured by the GARCH model, as in the case of long-range dependency, volatility
shocks’ magnitude, volatility tendency, impact, the persistence of volatility clusters, etc.
Extending the GARCH tool via LSTM allows us to obtain a higher level of prediction
accuracy, as witnessed by our results. Moreover, the clustering of volatility and the negative
correlation between realized volatility and returns are two well-known features of equity
markets, the knowledge of which motivates the use of a hybrid model that can efficiently
learn more complicated and precise patterns compared to a simple NN-based method,
particularly when dealing with a VolTarget portfolio. Let us underline that the VolTarget
strategy constitutes an effective reaction to financially perturbed periods when investors
look for a simple allocation mechanism to boost portfolio returns, aiming to both mitigate
tail risks and protect investments from significant losses due to market crashes. We also
tested the impact of re-balancing frequencies on the target volatility portfolios: the best
performance of a VolTarget portfolio can be achieved by avoiding daily rebalancing to
minimize transaction costs.
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Regarding the financial framework, it is interesting to study the VolTarget problem
from the sequencing risk perspective. Indeed, we can consider the occurrence of high
losses at the beginning of a de-cumulation phase (see, e.g., Bai and Wallbaum (2020)) to
measure risk changes according to investment periods and retirement issues. In a future
work, we will extend our approach to consider structured portfolios, hence considering a
combination of an LSTM-architecture with a multivariate GARCH model, possibly taking
care of risky assets related to basic underlyings such as, e.g., gold or oil.
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