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Abstract: Consider an insurance company whose surplus is modelled by an arithmetic Brownian
motion of not necessarily positive drift. Additionally, the insurer has the possibility to invest in a
stock modelled by a geometric Brownian motion independent of the surplus. Our key variable is the
(absolute) drawdown ∆ of the surplus X, defined as the distance to its running maximum X. Large,
long-lasting drawdowns are unfavourable for the insurance company. We consider the stochastic
optimisation problem of minimising the expected time that the drawdown is larger than a positive
critical value (weighted by a discounting factor) under investment. A fixed-point argument is used
to show that the value function is the unique solution to the Hamilton–Jacobi–Bellman equation
related to the problem. It turns out that the optimal investment strategy is given by a piecewise
monotone and continuously differentiable function of the current drawdown. Several numerical
examples illustrate our findings.

Keywords: drawdown; optimal investment; stochastic control

1. Introduction

We model the surplus of an insurance portfolio with a diffusion approximation
X = (Xt)t≥0. We assume that the insurer has the possibility of investing in an independent
asset given by a Black–Scholes model S = (St)t≥0. That is, at time t ≥ 0, the surplus from
insurance business Xt and the price of the risky asset St are given by

Xt = −x + µ1t + σ1B1
t , St = e

(
µ2−

σ2
2
2

)
t+σ2B2

t ,

for µ1, µ2 ∈ R, σ1, σ2 > 0, and independent Brownian motions B1 = (B1
t )t≥0, B2 = (B2

t )t≥0.
−x ≤ 0 is a constant representing the initial capital. The insurer may decide on the invested
amount At at every point in time t ≥ 0. The surplus process XA = (XA

t )t≥0 under the
investment strategy A = (At)t≥0 takes the form

XA
t = −x +

∫ t

0
(µ1 + Asµ2) ds +

∫ t

0
σ1 dB1

s +
∫ t

0
σ2 As dB2

s , (1)

which we can compare with (Schmidli 2008, Section 2.2.2). By X̄A = (X̄A
t )t≥0, we denote

the running maximum process with X̄A
t = max{0, sups≤t XA

s }. The process ∆A = (∆A
t )t≥0

with ∆A
t = X̄A

t − XA
t is the (absolute) drawdown of XA. It should be noted that these

definitions allow for a positive initial offset ∆A
0 = x of the surplus with respect to the

historical maximum. The target of our analysis is to find an optimal investment strategy
that minimises the expected discounted time spent with a large drawdown y

v(x) = inf
A∈A

Ex
(∫ ∞

0
e−δt1I{∆A

t >d} dt
)

. (2)

Here, δ > 0 and d > 0 are preference parameters and A denotes the set of admissible
investment strategies A, which is specified in the next section. The notation Ex is used for
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the expected value under the condition ∆A
0 = x, as usual. The preference parameter δ has

the economic interpretation of weighing immediate drawdowns more than drawdowns
in the far future. Since drawdowns imply a reduction of the surplus, this is in line with
the concept of the time value of money. If a large δ is chosen, drawdowns occurring very
soon have a much stronger impact on the value function than prospective drawdowns.
This reflects a short-term-orientated decision-making by the insurer. On the other hand,
a small discounting parameter indicates that future and current drawdowns are almost
equally damaging from the insurer’s point of view. The parameter d is the critical size of
drawdowns that are perceived as large and, thus, unfavourable by the insurer. That is,
drawdowns exceeding d are assessed to have an adverse effect on the insurance company.
The choice of this parameter would, in reality, depend on many internal and external
factors, such as capital requirement, total capital, or corporate strategy. For example, if
d is small in comparison to the total surplus, the value function essentially measures the
time within “peaks” of the surplus process. One could think of this as the surplus being
forced to grow most of the time. If d is large, the state ∆A

t > d can likely be associated with
low values of the surplus XA, so the unfavourable state of being under-capitalised for a
long time is penalised. The function given in (2) is strongly related to the optimal control
problem of minimising the Laplace transform of the process’ first passage through d:

V(x) = inf
A∈A

Ex(e−δτA
)

, τA := inf{t ≥ 0 : ∆A
t > d} . (3)

Since δ is positive, one could think of this as maximising the time in which the
drawdown is smaller than d and the surplus has not exited the uncritical area close to the
historical maximum. The difference between the two problems is that the first one will
result in a strategy for an infinite time horizon, while the latter stops at the first time the
drawdown is critically large. As mentioned above, our analysis shows that the problems
are closely related. However, especially for long-term liabilities or if a drawdown will
likely occur soon (for example, if µ1 � 0), problem (2) contains more information than (3).

Drawdowns and related path functionals have attracted a lot of attention in the last
20 years. They are particularly popular in financial mathematics and economics, where they
are used as a one-sided, path-dependent, and dynamic risk indicator. For instance, the “con-
ditional drawdown at risk” is considered by Chekhlov et al. (2005) in the context of portfo-
lio optimisation. Another more recent example is found in (Maier-Paape and Zhu 2018),
where a risk measure depending on the proportional drawdown (which measures the
percentage loss) is constructed. In addition to measuring risks, drawdowns and maxi-
mum drawdowns have also been linked to market crashes (compare (Sornette 2003) and
(Zhang and Hadjiliadis 2012)) and have been used to quantify performance (Hamelink and
Hoesli 2004).

Much research has been conducted on drawdowns of actuarial and financial models
as probabilistic objects as well. Distributional properties of the drawdowns of standard
and arithmetic Brownian motions were investigated by Douady et al. (2000), Graversen
and Shiryaev (2000), and Salminen and Vallois (2007). Other articles deal with first passage
times, such as τA defined in (3). An example covering a broad scope is due to Mijatović
and Pistorius (2012), who studied the joint distribution of the first passage time and related
quantities for spectrally negative Lévy processes. Another example containing results
specifically for one-dimensional diffusions is (Zhang 2015). In (Landriault et al. 2015),
the frequency of drawdowns larger than a critical level is examined for an arithmetic
Brownian motion. In (Landriault et al. 2017), the magnitude of the drawdown and the
so-called “time to recover” are considered. The term “time to recover” refers to the duration
until the historical running maximum is re-reached, which is related to our problem for
small values of d. Wang et al. (2020) analysed a Gerber–Shiu-type expected penalty function
for the drawdown, extending the classical results of Gerber and Shiu (1998).

A popular approach in the field of stochastic optimisation aims to minimise ruin
probabilities, severity of ruin, or functionals thereof (see, for example, (Browne 1995)).
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However, ruin is a rare and extreme event, which is why ruin-related quantities merely
serve as a conceptual measure of risk. In reality, it is more likely that an economic unit will
aim to enhance its capital or to prevent diminishment. This motivates the consideration
of optimisation problems related to drawdowns. In the context of portfolio selection,
Grossman and Zhou (1993) introduced a utility maximisation problem under “drawdown
constraints”. This means that one admits only those portfolios that prevent large draw-
downs of the wealth process. Their results were extended by Cvitanic and Karatzas (1995),
Elie and Touzi (2008), and Cherny and Obloj (2013). Another possibility is to put draw-
downs into the focus of the optimisation and introduce drawdown-based value functions.
A prominent example is the minimisation of the probability that a large (proportional)
drawdown occurs. Chen et al. (2015) consider this problem for an investment model. An-
goshtari, Bayraktar, and Young published a series of papers dealing with the optimisation
of drawdown probabilities under investment and consumption (compare Angoshtari et al.
(2015, 2016a, 2016b)). Han et al. (2018, 2019) examined problems connected to the minimi-
sation of the probability of a drawdown under proportional reinsurance.

However, the above literature does not take into account the length of a drawdown.
Intuitively, it is clear that a drawdown has, in general, a negative connotation. Even if the
business is profitable, frequent drawdowns can affect the value of a company negatively
through an indirect psychological impact on managers, policyholders, shareholders, and
potential partners. The following simple example illustrates the situation. Imagine that
the surplus of the company under consideration increases from 100 to 130 EUR and then
drops by 28 EUR. Despite the positive profit, one cannot help feeling a disappointment
about the relative loss. Similar psychological effects have been observed in the context
of decreasing dividend payments (compare (Albrecher et al. 2018)). An additional factor
playing an influential role is the duration of a drawdown. If the surplus recovers shortly
after the drawdown, inattentive policyholders might not notice the changes. However, a
long-lasting drawdown can be interpreted as a consequence of flawed business decisions
or general managerial inefficiency. The present manuscript contributes to the existing
research by analysing the optimal control problems (2) and (3), which reflect both aspects,
the severity and the duration of a drawdown. Differently from (Brinker and Schmidli 2020),
we allow the possibility of investment. With this in mind, the following results can be seen
as a first step towards understanding optimal investment decisions based on multiple
drawdown key indicators.

The rest of this paper is organised as follows. In the next section, we specify the
model we are working with. With Section 3, the main part of this paper is devoted to
solving the optimal control problem (3). We use a fixed-point argument to show that
the Hamilton–Jacobi–Bellman equation (HJB equation) associated with the problem has
a unique solution. We identify this solution as the value function (3) and conclude that
the optimal strategy is a monotone function of the current drawdown. Neither the value
function nor the optimal investment strategy can explicitly be calculated, but fixed-point
iteration allows us to calculate both in numerical examples. In the last section, we use these
results to solve the original problem given in (2). Our ansatz is the natural extension to
the strategy maximising the time until a large drawdown occurs: Under the assumption
that the initial drawdown exceeds d, we find the strategy minimising the time with large
drawdown. In principle, one could repeat the steps of Section 3 with slight modifications
to prove existence of a solution to the connected HJB equation. However, in this case, we
explicitly obtain the solution using a different approach. The key argument is that the
drawdown process behaves like a diffusion without reflection above the critical level d.
The optimal strategy turns out to be constant such that well-known results on passage
times of arithmetic Brownian motions apply. We connect the return functions of the two
subproblems and verify that their composition is the solution to our original problem (2).
We draw conclusions from our results and give numerical examples for the expected
discounted time spent in drawdown.
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2. The Model and Its Parameters

Throughout the paper, we work on a complete probability space (Ω,F ,P) equipped
with the natural filtration (Ft)t≥0 generated by the two-dimensional Brownian motion
(B1, B2). We assume that the investment strategies are càdlàg and adapted with values
in the bounded interval [a, a](3 0). It will turn out that this restriction of the maximally
invested amount is necessary for the problem to be well defined. The inclusion of zero in
this interval means that it is possible not to invest. Moreover, we assume that either µ1 ≥ 0,
or if µ1 < 0, then there exists a ∈ [a, a] with µ1 + µ2a ≥ 0. This means that either the
insurance portfolio is expected to be profitable or that it is possible to invest in such a way
that is expected to generate profits. The reason we include the case µ1 < 0 is that insurance
premiums are calculated in advance, and if adjustments are contractually permitted, they
are usually tied to certain key dates or other conditions. That means that, particularly
for long-term liabilities, it is possible that unexpectedly severe or frequent claims occur
in contract portfolios or divisions. Even though insurers evaluate risks regarding their
profitability before issuing contracts, there are prominent examples, such as life insurance
policies with high guaranteed fixed interest rates or the insurance of flood risk, which have
turned out to be non-profitable. In this case, drawdown-minimising strategies might be
used to prevent or shorten “negative tours” from the previous level.

In order to define the set of admissible strategiesA, we first observe that the controlled
drawdown process and running maximum together form a solution to the Skorohod
problem for −XA (compare, for example, (Pilipenko 2014)). That is, the pair (Y, L) =
(∆A, X̄A) solves

1. Yt ≥ 0 for all t ≥ 0,
2. L is non-decreasing with L0 = 0,
3.

∫ t
0 1I{Ys>0} dLs = 0 for all t ≥ 0,

4. Almost surely for all t ≥ 0:

Yt = x + Lt −
∫ t

0
µ1 + Asµ2 ds−

∫ t

0
σ1 dB1

s −
∫ t

0
σ2 As dB2

s . (4)

One important implication of the third condition is that whenever L increases, Y must
be equal to zero. If a solution (Y, L) to the reflected equation (4) is known, the surplus
process XA is given by XA = L−Y. In case the strategy A is of feedback form At = a(∆A

t )
depending on the current drawdown through a function a : [0, ∞)→ R, (4) is a reflected
stochastic differential equation. Hence, we define A as the set of strategies A, which are
càdlàg and adapted processes with values in the interval [a, a], such that a solution to (4)
exists and is unique. It is clear that the process under the strategy At = 0, t ≥ 0, exists and
we will use this strategy of “doing nothing” as a reference in our numerical examples.
Concerning the “well-posedness” of the problem (2) for all parameter sets, it is important
that the discounting factor δ is strictly positive. Otherwise, the integral might not exist if
the drawdown process spends infinite time above the level d. For example, if µ1 < 0, ∆t
tends to infinity as t→ ∞ almost surely and the indicator function will ultimately be equal
to one. So, in this case, the value of the strategy of never investing is not finite. On the
other hand, as the indicator function is at most equal to one, the return of all strategies is
bounded from above by δ−1. This implies that (2) is well posed for every δ > 0. The value
function V of the optimal control problem (3) is bounded from above by 1.

3. Maximising the Time to Drawdown

Assume that initially, the surplus process is uncritically close to the running maximum,
meaning that ∆A

0 = x ∈ [0, d]. Intuitively, and since immediate drawdowns have a larger
weight than future drawdowns, the optimal strategy is to maximise the time τA := inf{t ≥
0 : ∆A

t > d} in the uncritical area. In fact, one can reason this intuition with a dynamic
programming principle, as was done in (Brinker and Schmidli 2020) for the optimisation
of reinsurance. Hence, we consider the following auxiliary problem. We let the function
V(x) be defined as in (3) for x ∈ [0, d]. This is the Laplace transform of the first time
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the drawdown process hits d, and it clearly becomes minimal when τA is maximised.
The boundary condition V(d) = 1 has to be fulfilled. By the theory of stochastic control,
this problem is connected to the HJB equation:

−δV(x)− µ1V′(x) +
σ2

1
2

V′′(x) + inf
a∈[a,a]

−µ2aV′(x) +
σ2

2 a2

2
V′′(x) = 0. (5)

We start with some heuristics on the function V. If the initial drawdown is x > y
with x, y ∈ [0, d], there are two possible scenarios. If the drawdown process arrives at y
before exiting the interval [0, d], it will then spend the same time in the favourable area as a
process of initial drawdown y. However, it is also possible that the drawdown overshoots
the critical level d before reaching y. In this case, the process leaves the favourable area
earlier. Now, intuitively, this means that the time the process spends in [0, d] should be
smaller when the initial drawdown is larger. Comparing small values x and y, we expect
that y is reached quickly and that it is almost impossible for the drawdown to exceed d
before. On the other hand, if x and y are close to the boundary d, it is easier for the paths to
“slip” out of the interval, so in this case, the effect should be stronger. In other words, we
presume that V is an increasing and convex function. At this point, this is just an educated
guess, since our heuristics neither took the preference factor δ into account, nor the time
passing until y is visited for the first time. We prove at end of this section that, in fact, V
has those properties. In order to see which other characteristics we are looking for, we start
with a verification theorem.

Theorem 1. Let f : [0, d]→ [0, 1] be a twice continuously differentiable, non-decreasing function
with f ′(0) = 0. Moreover, assume that f solves (5) with pointwise optimiser a : [0, d] → [a, a].
Then, f = V, and the strategy A∗ ∈ A with A∗t = (a(∆A∗

t )), t ≥ 0, is optimal.

Proof. By Itô’s formula, we have for an arbitrary strategy A ∈ A:

e−δ(t∧τA) f (∆A
t∧τA

)− f (∆A
0 )

=
∫ t∧τA

0
e−δs f ′(∆A

s ) dX̄A
s −

∫ t∧τA

0
σ1e−δs f ′(∆A

s ) dB1
s −

∫ t∧τA

0
σ2 Ase−δs f ′(∆A

s ) dB2
s

+
∫ t∧τA

0
e−δs

[
−δ f (∆A

s )− (µ1 + µ2 As) f ′(∆A
s ) +

(σ2
1

2
+

σ2
2 A2

s
2

)
f ′′(∆A

s )
]

ds .

Now, since the running maximum only increases at times where the drawdown is zero
and f ′(0) = 0, the first integral is equal to zero. By continuity (and hence boundedness
over compacts) of the derivative of f , the two stochastic integrals are martingales. The last
integral is non-negative. Thus, taking expectations, we find

Ex(e−δ(t∧τA) f (∆A
t∧τA

)
)
≥ f (x) .

By the boundedness of f , we can take the limit t→ ∞ to find VA(x) ≥ f (x). Taking
the infimum over the set A of admissible strategies, we conclude V(x) ≥ f (x). As we
will see below, it follows from the HJB equation that A∗ is an admissible strategy. Thus,
repeating the above argumentation for the strategy A∗, we see that f is the value of this
strategy and that V = f .

Example 1 (µ2 = 0). If µ2 = 0, investing in the second active only results in an increased
volatility without any expected steady income. Therefore, we expect that it is never optimal to
buy units of the risky asset in this case. The HJB equation becomes particularly simple under this
assumption:

−δV(x)− µ1V′(x) +
σ2

1
2

V′′(x) = 0 , V(d) = 1 , V′(0) = 0 .
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Solving this ordinary differential equation, we find

f (x) =
q1eq2x − q2eq1x

q1eq2d − q2eq1d , q1 =
µ1 +

√
µ2

1 + 2δσ2
1

σ2
1

, q2 =
µ1 −

√
µ2

1 + 2δσ2
1

σ2
1

,

as a candidate solution. A quick calculation shows that this function is increasing and strictly
convex, such that σ2

2 a2/2 · f ′′(x) becomes minimal at a = 0. f solves (5) and V = f is verified by
Theorem 1.

In the following, we consider the more complicated case µ2 6= 0. We focus on the case
µ2 > 0, where holding the risky asset leads to expected profits. The case µ2 < 0 (where
short selling leads to expected profits) can be treated analogously. This is because we could
consider the Brownian motion B̃2 = −B2, the positive drift component µ̃2 = −µ2, and the
strategy Ã = −A to transform the problem: An optimal strategy for the model with µ2 < 0
can be obtained by mirroring an optimal strategy for the case of positive drift around the
x-axis. In view of Theorem 1, our ansatz is to show the existence of a solution to the HJB
equation on the interval [0, d].

3.1. Construction of a Solution to (5)

Throughout this subsection, we assume that µ2 > 0 holds. We denote by C[x1, x2]
the space of continuous functions that are defined on the closed interval [x1, x2] endowed
with the supremum norm ‖ · ‖. We roughly follow the approach in (Belkina et al. 2014) by
defining an operator, the fixed point of which is a solution to the HJB equation. This idea
works for the presented problem, even though the results in (Belkina et al. 2014) apply
to the classical risk model under a different value function. Assume that V is, in fact,
an increasing solution to the HJB equation and that we know the optimiser a(x) at a certain
point x. Then, rearranging the terms of the HJB equation, we have

V′′(x) = 2
δ
(
V(0) +

∫ x
0 V′(y) dy

)
+ (µ1 + µ2a(x))V′(x)

σ2
1 + σ2

2 a(x)2
.

For any other a ∈ [a, a], the equation holds with “≥” in place of “=”. This inspires the
definition of the operator L with

Lu(x) = 2 sup
a∈[a,a]

δ
(
Λ +

∫ x
0 u(y) dy

)
+ (µ1 + µ2a)u(x)

σ2
1 + σ2

2 a2
(6)

for all functions u ∈ C[0, d]. Λ ∈ R represents the unknown value V(0). Since the value
V(d) = 1 is known, it might seem counter-intuitive not to write V(x) = 1−

∫ d
x V(y) dy.

In the following, we will see that the above is more useful. We observe that for every
u ∈ C[0, d], Lu is finite for every x ∈ [0, d]. We will now show that for every Λ, there exists
a unique u ∈ C[0, d], such that u′(x) = Lu(x) holds with initial condition u(0) = 0. We use
a fixed-point argument, so our first step is to construct a contraction. As a preparation, we
need the following Lemmas.

Lemma 1. For ε > 0, we define the function φε : R→ [0, ∞) by

φε(a) =
2δε + |µ1 + µ2a|

σ2
1 + a2σ2

2
.

φε attains a global maximum. As ε→ 0, εφε(a) converges to zero uniformly in a. In particu-
lar, there exists ε > 0 such that εφε(m) < 1, where m denotes the global maximum of φε.
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Proof. Let

a1 = −
(2δε + µ1)σ2 −

√
(2δε + µ1)2σ2

2 + σ2
1 µ2

2

µ2σ2
, a2 =

(2δε− µ1)σ2 −
√
(2δε− µ1)2σ2

2 + σ2
1 µ2

2

µ2σ2
.

A direct calculation shows that φε attains its global maximum at m, where

m =

{
a1 > 0 , if µ1 ≥ 0, µ2 > 0 ,
a2 < 0 , if µ1 < 0, µ2 > 0 .

Both ai converge as ε→ 0. Hence, φε(m) converges and εφε(m)→ 0 for ε→ 0.

The first part of Lemma 1 is used to define the Lipschitz constant in the next result.

Lemma 2. For an arbitrary Λ ∈ R, η ∈ [0, d), and ε ∈ (0, d− η], we define T : C[η, η + ε] →
C[η, η + ε] through

Tu(x) = 2 sup
a∈[a,a]

δ
(
Λ +

∫ x
η u(y) dy

)
+ (µ1 + µ2a)u(x)

σ2
1 + σ2

2 a2

for x ∈ [η, η + ε]. Let φε and m be defined as in Lemma 1. The operator T fulfils

‖Tu− Tw‖ ≤ φε(m)‖u− w‖ ,

for all u, v ∈ C[η, η + ε], so it is Lipschitz-continuous with respect to the uniform norm on
[η, η + ε].

Proof. For all a ∈ [a, a], we define

Tau(x) = 2
δ
(
Λ +

∫ x
η u(y) dy

)
+ (µ1 + µ2a)u(x)

σ2
1 + σ2

2 a2
.

Now, x 7→ Tau(x) is continuous for all u ∈ C[η, η + ε] and, hence, uniformly con-
tinuous on the compact set [η, η + ε]. Thus, the maximum x 7→ Tu(x) of the uniformly
continuous functions is continuous as well. Next, we show that all operators Ta are
Lipschitz-continuous with a common constant. Let u, w ∈ C[η, η + ε]. We have

‖Tau− Taw‖

≤ 2
σ2

1 + a2σ2
2

(
δ sup

x∈[η,η+ε]

∫ x

η
|u(y)− w(y)| dy + |µ1 + µ2a| sup

x∈[η,η+ε]

|u(x)− w(x)|
)

≤ 2δε + |µ1 + µ2a|
σ2

1 + a2σ2
2

‖u− w‖ = φε(a)‖u− w‖ .

Since φε(a) becomes maximal at m, we have found φε(m) as common Lipschitz-
constant. This bound is not necessarily sharp, since we only consider a from the bounded
interval [a, a]. Now, we show the Lipschitz-continuity of T. We consider again u, w ∈
C[η, η + ε]. We fix x ∈ [η, η + ε] and assume that Tu(x) ≥ Tw(x). By definition of T and
Ta, for every ε̃ > 0, there is some a(x) ∈ [a, a], such that |Tu(x)− Ta(x)u(x)| < ε̃. We have
Tw(x) ≥ Ta(x)w(x) and, hence,

|Tu(x)− Tw(x)| ≤ |Tu(x)− Ta(x)u(x)|+ Ta(x)u(x)− Ta(x)w(x)

≤ ε̃ + |Ta(x)u(x)− Ta(x)w(x)| ≤ ε̃ + φε(m)‖u− w‖ .
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Similarly, we could have derived the same upper bound in the case Tu(x) ≤ Tw(x).
The left-hand side does not depend on ε̃, such that we can let ε̃↘ 0. Hence, we have

|Tu(x)− Tw(x)| ≤ φε(m)‖u− w‖

for every x ∈ [η, η + ε]. We can now take the supremum on the left-hand side to conclude
that T is Lipschitz-continuous with respect to the uniform norm.

Remark 1. Lemma 2 implies that L maps C[0, d] onto itself and is Lipschitz-continuous with
respect to the uniform norm on [0, d] when η = 0, ε = d.

Now, we use the second part of Lemma 1 for defining a contraction.

Lemma 3. Let ε be chosen sufficiently small, such that εφε(m) < 1. Let T be defined as in
Lemma 2 and let λ be given. The map J : C[η, η + ε]→ C[η, η + ε] with

Jw(x) = λ +
∫ x

η
Tw(y) dy , w ∈ C[η, η + ε] ,

is a contraction, and thus has a unique fixed point u. u is continuously differentiable on (η, η + ε)
with u(η) = λ. Moreover, u′(x) = Tu(x).

Proof. J is a well-defined map from a complete space to itself. To conclude that it is also a
contraction, we take u, w ∈ C[η, η + ε] and observe:

‖Ju− Jw‖ ≤ |x− η|φε(m)‖u− w‖ ≤ εφε(m)‖u− w‖ < ‖u− w‖ .

The properties of the fixed point follow from the definitions of J and T, respec-
tively.

Now, we compose the solutions on the subintervals to construct a function on [0, d].

Lemma 4. For every Λ, there exists a unique continuously differentiable function u ∈ C[0, d],
such that u′ = Lu and u(0) = 0.

Proof. We divide the interval [0, d] into N parts, choosing a large enough N such that
ε = dN−1 fulfils εφε(m) < 1. We define the operators

T(0)w(x) = 2 sup
a∈[a,a]

δ
(
Λ +

∫ x
0 w(y) dy

)
+ (µ1 + µ2a)w(x)

σ2
1 + σ2

2 a2
,

J(0)w(x) =
∫ x

0
T(0)w(y) dy ,

for w ∈ C[0, dN−1], and by Lemma 3, the latter has the unique fixed point u(0) with
u(0)(0) = 0 and continuous derivative T(0)u(0). Now, we let

Λ0 =
∫ dN−1

0
u(0)(y) dy , λ0 = u(0)(dN−1) .

Inductively, we define on C[kdN−1, (k + 1)dN−1]

T(k)w(x) = 2 sup
a∈[a,a]

δ
(
Λk−1 +

∫ x
kdN−1 w(y) dy

)
+ (µ1 + µ2a)w(x)

σ2
1 + σ2

2 a2
,

J(k)w(x) = λk−1 +
∫ x

kdN−1
T(k)w(y) dy
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and

Λk =
k

∑
j=0

∫ (j+1)dN−1

jdN−1
u(j)(y) dy , λk = u(k)((k + 1)dN−1)

for k = 1, . . . , N − 1, where u(k) denotes the unique fixed point of J(k). From the definition
of the sequence (λk), we conclude that the composition

u(x) = u(0)(x) · I[0,dN−1](x) +
N−1

∑
k=1

u(k)(x) · I(kdN−1,(k+1)dN−1](x)

is continuous. From the definition of the sequence (Λk), we get that the derivative is also
continuous and given by

u′(x) = 2 sup
a∈[a,a]

δ
(
Λ +

∫ x
0 u(y) dy

)
+ (µ1 + µ2a)u(x)

σ2
1 + σ2

2 a2
.

If ũ is a C[0, d]-function with ũ′ = Lũ and ũ(0) = 0, then it is continuously differ-
entiable, and ũ|[0,dN−1] is a fixed point of J(0). Because this functional is a contraction,

ũ|[0,dN−1] = u(0). Repeating this argument for all subintervals [k, (k + 1)dN−1], we find
ũ = u.

We reverse our hypothetical calculations for V to show that the anti-derivative of the
constructed function solves the HJB equation.

Theorem 2. Let u be defined as in Lemma 4. The anti-derivative U(x) = Λ +
∫ x

0 u(y) dy is
twice continuously differentiable. It holds that U(0) = Λ and U′(0) = 0. The function is the
unique solution to U′′(x) = LU′(x) and the HJB equation with these initial conditions.

Proof. Differentiability, initial values and uniqueness are a direct consequence from the
definition of U and Lemma 4. Let a(x) ∈ [a, a] denote the maximiser of LU′(x). We have

U′′(x) = 2
δU(x) + (µ1 + µ2a(x))U′(x)

σ2
1 + σ2

2 a(x)2
, (7)

which is equivalent to

−δU(x)− µ1U′(x) +
σ2

1
2

U′′(x)− µ2a(x)U′(x) +
σ2

2 [a(x)]2

2
U′′(x) = 0.

Since (7) holds with “≥” in place of “=” for all a ∈ [a, a], U solves the HJB equation. In
the same way as in the beginning of this subsection, we obtain that every solution Ũ to the
HJB equation matching the initial conditions is a solution to Ũ′′(x) = LŨ′(x). This implies
uniqueness for the HJB equation.

In the next two Lemmas, we derive properties of the function U and the optimiser a
on the condition that the initial value Λ is positive.

Lemma 5. Let U be defined as in Theorem 2 for Λ > 0. For all x > 0, it holds that U′(x) > 0
and U is strictly convex. The optimiser a(x) is continuous and non-negative with a(0) = 0 and
a(x) = α(x) ∧ a, where

α(x) :=
µ2U′(x)
σ2

2 U′′(x)
. (8)

α(x) is continuously differentiable. If, additionally, µ1 ≥ 0, then U′′ is strictly increasing.
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Proof. We have by U′(0) = 0:

U′′(0) = LU′(0) = 2 sup
a∈[a,a]

δΛ
σ2

1 + σ2
2 a2

=
2δΛ
σ2

1
> 0 , (9)

so a(0) = 0 and α(0) = 0. By the continuity of U′′, it follows that U′(x) is strictly increasing,
at least in a small environment x ∈ [0, x0), x0 > 0. On (0, x0], it holds that U′(x) > 0. If we
define y0 := inf{x ≥ x0 : U′(x) < 0}, we have U′(y0) = 0 by continuity. Again, as in (9),
U′′(y0) > 0. This is not possible because y0 is defined as the first time that U′(x) enters the
negative half plane, meaning that it must be decreasing at this time. Hence, U′(x) > 0 for
x > 0. Now, suppose that there was z0 such that U′′(z0) = 0. Then,

δU(z0) + (µ1 + µ2a)U′(z0) ≤ 0

for all a ∈ [a, a]. This is a contradiction: The first term must be positive and the second
term is non-negative, at least for a, by assumption. We conclude: U′′(x) > 0 for all x ≥ 0.
It follows directly that the optimiser is non-negative:

0 < U′′(x) = 2 sup
a∈[0,a]

δU(x) + (µ1 + µ2a)U′(x)
σ2

1 + σ2
2 a2

. (10)

All variables inducing a negative counter are already excluded, and all values of a < 0
with a positive counter are dominated by the value at a = 0. Moreover, since U solves the
HJB equation and is increasing and convex, the optimiser takes the form a(x) = α(x) ∧ a.
Continuity of α implies continuity of a.

Deriving the right-hand side of (10) with respect to a shows that the maximum is
attained at

α(x) =
−[δU(x) + µ1U′(x)] +

√
[δU(x) + µ1U′(x)]2σ2

2 + µ2
2σ2

1 [U
′(x)]2

σ2µ2U′(x)
, (11)

or on the boundary a. From this representation of α in terms of U and U′, it follows that α
is continuously differentiable.

Now, we show that the second derivative increases in the special case. If µ1 ≥ 0, it
holds that

δU(x) + (µ1 + µ2a)U′(x) < δU(z) + (µ1 + µ2a)U′(z) (12)

for every a ∈ [0, a] if x < z. By (10), this implies that U′′(x) < U′′(z) and U′′ is strictly
increasing.

Lemma 6. We assume that the conditions of Lemma 5 hold and define

a0 =
−µ1µ2 +

√
(µ1µ2)2 + 2δµ2

2σ2
1

2δσ2
2

> 0 .

1. If a ≥ a0, it holds that a(x) = α(x) and a is strictly increasing up to the point where it
reaches a0, and is constant from there on. a(x) is continuously differentiable on (0, d) with
existing limits limh↓0 a′(h) and limh↑d a′(h).

2. If a < a0, there exists x0 := inf{x > 0 : α(x) = a}. It holds that a(x) = α(x) for
x ≤ x0 and a(x) = a for x ≥ x0. a(x) is continuously differentiable on (0, x0 ∧ d)
and on (x0 ∧ d, x0 ∨ d) with existing limits limh↓0 a′(h), limx↑x0 a′(x), limx↓x0 a′(x), and
limh↑d a′(h).
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Proof. Since a > 0 and a(0) = 0, we have a(x) = α(x) for sufficiently small x by Lemma 5.
We let x0 = inf{x > 0 : a(x) = a ∧ a0} > 0. In particular, by a, a0 > 0 and a(0) = 0, we
have a(x) = α(x) for all x ≤ x0. We firstly show that α is increasing at least in a small
environment of zero. We have U′(0) = 0 and U(0), U′′(0) > 0, so there exists ε > 0
such that

U′(x)2 −U(x)U′′(x) < 0 (13)

for all x ∈ (0, ε). This means that x 7→ U(x)
U′(x) is strictly decreasing on this interval. Hence,

x 7→ 2
δ

U(x)
U′(x) + (µ1 + µ2a)

σ2
1 + σ2

2 a2

is decreasing in x for every a, meaning that x 7→ U′′(x)
U′(x) is decreasing. However, then,

α(x) = µ2
σ2

2

U′(x)
U′′(x) is increasing for x ∈ [0, ε).

Now, either (13) holds for all x ≤ x0 and α(x) = a(x) is strictly increasing up to
x0, or there exists at least one point x ∈ [ε, x0] with U′(x)2 −U(x)U′′(x) = 0. We write
z0 = sup{x > 0 : U′(x)2 −U(x)U′′(x) < 0}. Then, α(x) = a(x) is strictly increasing up to
z0. Using that U(z0)/U′(z0) = U′(z0)/U′′(z0), we conclude from the HJB equation that

(2δσ2
2 + µ2

2)α(z0)
2 + 2µ1µ2α(z0)−

µ2
2σ2

1
σ2

2
= 0 .

So, by the non-negativity of the optimiser, α(z0) = a(z0) = a0. This is a contradiction
in the case a < a0, so a(x) = α(x) is strictly increasing on [0, x0) with x0 = inf{x >
0 : α(x) = a}. If a ≥ a0, we get that a(x) = α(x) is strictly increasing on [0, x0) with
x0 = inf{x > 0 : α(x) = a0} = z0.

In the case a < a0, the optimiser a(x) = a is constant for x ≥ x0. This is shown via
direct calculation using the ansatz U(x) = U(x0)(c1eq1(a)(x−x0) + c2eq2(a)(x−x0)), where the
constants fulfil c1 + c2 = 1 and µ2

σ2
2

U′(x0)
U′′(x0)

= a. In the second case of a > a0, it holds that

U(x) = U(z0)eµ2σ−2
2 a0(x−z0) with constant optimiser a(x) = a0 = α(x) for x ≥ z0, if z0

exists. This means that the optimiser is strictly increasing on [0, z0). Once it reaches a0, it is
“trapped” there and constant for all x > z0.

By a(x) = α(x), it follows that a is continuously differentiable on (0, d) if a ≥ a0.
The limit limh↑d a′(h) exists because α is strictly increasing, continuous, and bounded
from above. To show that limh↓0 a′(h) is finite, we make the following observation. Since
a is differentiable and the denominator of (7) is positive, the third derivative of U ex-
ists and is continuous on (0, d). This means that the derivative of a takes the form

a′(x) = U′(x)U′′′(x)−(U′′(x))2

(U′′(x))2 . Suppose that limh↓0 a′(h) = +∞. Then, it must hold that

limh↓0 U′′′(h) = +∞ because U is strictly convex. However, on the other hand, it holds
that (σ2

1
2

+
µ2

2(U
′(x))2

2σ2
2 (U

′′(x))2

)
U′′′(x) = δU(x)− µ1U′′(x)− µ2

σ2
2

U′(x) ,

which follows from differentiating the HJB equation after plugging in the optimiser α(x).
Now, if we let x → 0, the bracket term on the left-hand side converges to a positive
value. The right-hand side also converges, which contradicts the unboundedness of the
third derivative. Hence, limh↑d a′(h) < ∞. If a < a0, a is continuously differentiable on
(0, x0 ∧ d) and on (x0 ∧ d, d). If the latter interval is non-empty, the derivative is equal to
zero. Existence of the limits limh↓0 a′(h), limx↑x0 a′(x) follows in the same way as in the
case a ≥ a0.
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Remark 2. 1. This Lemma implies that U calculated with a ∈ [0, a0] also solves the HJB
equation for the unbounded case where the strategy may be chosen from the interval (−∞, ∞).

2. We note that throughout the considerations above, d > 0 was arbitrary. The uniqueness
implies that if d0 > d and U0 is the solution defined on [0, d0], then U = U0|[0,d]. Moreover,
the optimiser a does not depend on d.

Now, we relate the constructed solution to the value function V and an optimal strat-
egy.

3.2. Solution to the Optimisation Problem

In view of Theorem 1, our natural candidate for the value function is the solution to the
HJB equation, which is equal to one at x = d. Thus, for Λ = 1 and U(x) = 1 +

∫ x
0 u(y) dy

defined as in Theorem 2, we let

f (x) =
U(x)
U(d)

, x ∈ [0, d] . (14)

Theorem 3. If µ2 > 0, f defined in (14) is the unique solution to the HJB equation (5) with
f (d) = 1 and f ′(0) = 0. f is strictly increasing except at zero, and is strictly convex. The pointwise
optimiser a(x) has the properties stated in Lemmas 5 and 6. Moreover, V(x) = f (x) for all
x ∈ [0, d], and the strategy A∗ ∈ A with A∗t = (a(∆A∗

t )), t ≥ 0, is optimal.

Proof. The properties of f follow by Lemma 5. We observe that f solves the HJB equation
under the initial conditions f (0) = (U(d))−1 and f ′(0) = 0, as it is a positive multiple of
the solution U. The optimiser remains the same. Since a(x) is continuously differentiable,
except possibly at one point x0 > 0, and the derivative is bounded for x → 0, it is
Lipschitz-continuous on [0, d]. This implies that (4) has a unique strong solution (compare,
for example, (Pilipenko 2014), Theorem 2.1.1). The verification of f being the value function
and A∗ being optimal follow from Theorem 1.

Thus, we have shown that V is strictly increasing except at zero, and is strictly convex.
The optimal strategy is the feedback strategy defined in Theorem 1 with optimiser a(x).
The function a fulfils a(0) = 0 and is strictly increasing until either a or a0 is reached.
This means that if the drawdown is small, nothing is invested, and as the drawdown
approaches the critical line, slightly more is invested. This holds true for the case µ2 > 0.
Analogously, we could have shown:

Theorem 4. If µ2 < 0, V is the unique solution to the HJB equation (5) with V(d) = 1 and
V′(0) = 0. V is strictly increasing except at zero, and is strictly convex. The pointwise optimiser
a(x) = µ2V′(x)

σ2
2 V′′(x)

∨ a fulfils a(0) = 0 and is continuously differentiable except possibly at one

positive point. It is strictly decreasing until it is constant and bounded from below by

a0 =
−µ1µ2 −

√
(µ1µ2)2 + 2δµ2

2σ2
1

2δσ2
2

< 0 .

In the next subsection, we consider some numerical examples.

3.3. Numerical Examples

We assume that the technical discounting factor is δ = 0.3. The relatively small δ
reflects a long-term strategy, as this would be preferable, for example, in the context of life
insurance. We define d = 1.5 as the critical size in these numerical examples. However,
as noted in Remark 2, the choice of d does not affect the shape of the function a(x). Figure 1
shows the optimal strategy inducing function a(x) and Laplace transform V(x) of the first
passage through d for different combinations of µ1, σ1, µ2, and σ2. In the graphs of the first
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row, the income from the insurance business is already expected to be profitable (µ1 = 0.8,
σ1 = 2). The goal of the insurer is to elongate the time until the first significant drawdown
occurs via investment in a risky asset, which yields a higher return at the cost of increased
uncertainty (µ2 = 1, σ2 = 3). In comparison, the second row displays the functions in the
same situation, but for the case where the insurance portfolio consists of non-profitable
contracts (µ1 = −0.6). The graphs in the third row belong to an example of extremely
negative drift, µ1 = −4, σ1 = 1, µ2 = 1, and σ2 = 3, which is mainly included to show the
variation in shape of the function a(x). In all cases, it holds that µ2 > 0 and a > a0, and the
solutions were obtained via fixed-point iteration.

According to Lemma 6, the function a(x) is strictly increasing with a(0) = 0 and
bounded from above by the constant a0. If the drawdown approaches the critical value d,
the amount invested increases up to the level a0. The drift from the investment is supposed
to keep the process’ paths in the uncritical area. a0 is the critical value for which the added
volatility from the investment is too risky and may push the process over the critical line.
In the numerical examples, it can be observed that, if the drift of the original portfolio µ1
is negative, the investment function a(x) grows larger in a shorter time. If, for regulatory
reasons, it held that a0 > a, the function a would retain its shape, except for staying at
a once this level is reached (see Section 4.1 for an example with a < a0). As shown in
Theorem 3 the value function is increasing and convex in all cases. Moreover, only in the
case of µ1 = 0.8 ≥ 0, the second derivative of V is increasing as well. For a comparison,
the Laplace transform of the first passage through d under the strategy of never investing,
that is, At = 0 for all t ≥ 0, is pictured in the graphs on the right-hand side (dotted lines).
We see here that V is only slightly smaller. However, this effect will be striking for the
solution of the general problem.

Figure 1. Cont.
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Figure 1. (Left) a(x) (solid) is bounded from above by a constant ā0 (dashed). (Right) V(x) (solid,
black), V′(x) (blue), V′′(x) (red). The dotted line represents the Laplace transform under the strategy
of no investments.

4. Minimising the Expected Time with Large Drawdown

Since we have already found the optimal strategy that maximises the time with a
small drawdown, it is natural to extend this with the strategy that minimises the time with
a large drawdown: W(x) = supA∈A Ex(e−δτA

) for τA := inf{t ≥ 0 : ∆A
t < d}. We start

by considering constant strategies. As it turns out, this is sufficient for the case of a large
initial drawdown.

Since the drawdown process under the constant strategy a behaves like an arithmetic
Brownian motion of drift −(µ1 + µ2a) and variance σ2

1 + σ2
2 a2 as long as it is above d,

the value Wa of this strategy inherits its structure from the Laplace transform of the hitting
time of a Brownian motion:

Lemma 7. For a ∈ [a, a] define φa(q) =
σ2

1+σ2
2 a2

2 q2 − (µ1 + µ2a)q and

q2(a) =
(µ1 + µ2a)−

√
(µ1 + µ2a)2 + 2δ(σ2

1 + σ2a2)

σ2
1 + σ2a2

.

q2(a) is the negative solution to φa(q) = δ. The value of the strategy A, which is constant
and equal to a, is given by Wa(x) = eq2(a)(x−d) for all x ≥ d.

Theorem 5. If µ2 ≥ 0 holds in combination with |a| ≤ a or with |a| > a and δ ≤ φa(
2µ2

σ2
2 (a+a)

),

the best constant strategy is A = a. Otherwise, A = a is the best constant strategy. If µ2 < 0
holds in combination with |a| ≥ a or with |a| < a and δ ≤ φa(

2µ2
σ2

2 (a+a)
), the best constant strategy

is A = a. Otherwise, A = a is the best constant strategy. Let ǎ denote the respective optimiser.
It holds that W = W ǎ for x ≥ d and A = ǎ is optimal.

Proof. We conclude from the previous Lemma that we have to maximise q2(a). Since q2(a)
itself is hard to handle as a function of a, we consider the functions φa instead. For every a,
φ′′a (x) = σ2

1 + σ2
2 a2 > 0, so the function is strictly decreasing up to its first zero. It holds

that φa(0) = 0, so there can be at most one negative solution to φa(q) = δ. We start with
the case µ2 ≥ 0. For all a with |a| < a, it holds that

φa(q)− φa(q)
a− a

=
σ2

2 q2(a + a)
2

− µ2q > 0

for all q < 0. For |a| = a with a < 0, φa(q)− φa(q) = −µ2q(a− a) ≥ 0. In either case,
it holds that φa(q) ≥ φa(q), which implies that q2(a) ≥ q2(a).

Now, we assume |a| > a. Let a ∈ (a,−a). Similarly as before, we have φa(q)− φa(q) ≥
0 for all q ∈ [ 2µ2

σ2
2 (a+a)

, 0). On the other hand, φa(q)− φa(q) ≥ 0 for all q ∈ (−∞, 2µ2
σ2

2 (a+a)
].
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By 0 > a + a > a + a, we conclude that φa(q) lies below φa(q) or φa(q) for all q < 0, and
thus cannot induce the maximum. We still have to compare the values on the boundary if
|a| > a. It holds that φa(q)− φa(q) ≥ 0 iff q ∈ [ 2µ2

σ2
2 (a+a)

, 0). This means that the optimiser is

a, in case φa(
2µ2

σ2
2 (a+a)

) = φa(
2µ2

σ2
2 (a+a)

) ≥ δ. The case µ2 < 0 follows analogously.

Now, let ǎ denote the optimiser in the respective cases. We conclude that for every a,
it holds that −δ− φa(q2(ǎ)) ≤ 0 with equality in the case a = ǎ. Thus, W ǎ solves

−δW(x)− µ1W ′(x) +
σ2

1
2

W ′′(x) + sup
a∈[a,a]

−µ2aW ′(x) +
σ2

2 a2

2
W ′′(x) = 0 , (15)

for x ≥ d. The assertion is verified in the same way as in the proof of Theorem 1.

Now, to solve our original problem, we connect the solutions to the two subproblems.
Our ansatz for the optimal strategy is A∗ with

A∗t =

{
a(∆A∗

t ) , if ∆A∗
t ≤ d ,

ǎ , if ∆A∗
t > d ,

(16)

for t ≥ 0. In the case that this is continuous, the existence of the controlled surplus
process follows as in the proof of Theorem 3. Otherwise, weak existence of the controlled
drawdown follows by Theorem 4.1 of (Rozkosz and Slominski 1997). In the non-degenerate
case of µ2 6= 0, a construction similar to the one in Theorem 4.2 of (Semrau 2009) ensures
pathwise uniqueness (choose h(x) = −2(µ1 + µ2a(x))/(σ2

1 + σ2
2 a(x)2), ϕ(x) =

∫ x
0 eh(y) dy,

and use that ϕ′ is bounded away from zero). The Yamada–Watanabe-type Theorem 333 of
(Situ 2005) therefore implies strong existence and uniqueness.

Theorem 6. Let V : [0, d] → [0, δ−1] denote the maximal time to drawdown from the previous
section and let W : [d, ∞)→ [0, δ−1] denote the minimal time in drawdown. We define

f (x) =


−q2(ǎ)V(x)

δ(V′(d)−q2(ǎ)) , if x ≤ d ,
1
δ −

(
1
δ −

−q2(ǎ)
δ(V′(d)−q2(ǎ))

)
W(x) , if x > d .

It holds that v = f and A∗, defined as in (16), is an optimal strategy.

Proof. We have already seen that f solves (5) on [0, d] with f ′(0) = 0, where the second
derivative is assumed to be one-sided for x ∈ {0, d}. Equation (15) implies that this
differential equation can be extended on [d, ∞) in the sense that f solves

−δ f (x)− µ1 f ′(x) +
σ2

1
2

f ′′(x) + inf
a∈[a,a]

−µ2a f ′(x) +
σ2

2 a2

2
f ′′(x) = −1Ix>d . (17)

f can be written as the difference of two convex functions (with a bounded derivative),
so by Theorem 4.3 in (Björk 2015), it follows that(

e−δt f (∆A
t )− f (∆A

0 )

−
∫ t

0
e−δs

[
−δ f (∆A

s )− (µ1 + µ2 As) f ′(∆A
s ) +

(σ2
1

2
+

σ2
2 A2

s
2

)
f ′′(∆A

s )
]

ds
)

t≥0

is a martingale for every A ∈ A. The integrand is larger than or equal to −e−δs1I{∆A
s >d}.

By taking expectations and letting t→ ∞, we conclude that f (x) ≤ Ex(
∫ ∞

0 e−δs1I{∆A
t >d} dt)

for every A ∈ A. In particular,
(
e−δt f (∆A∗

t )− f (∆A∗
0 )+

∫ t
0 e−δs1I{∆A∗

s >d} ds
)

t≥0 is a martin-
gale, so the assertion follows again, as in the proof of Theorem 1.
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We consider numerical examples for the expected discounted time in drawdown and
finish with some concluding remarks.

4.1. Numerical Examples and Remarks

The numerical examples were obtained by solving the subproblems of finding the
functions V and W and then connecting the solutions. Again, we let δ = 0.3 and d = 1.5.
Figure 2 shows the function inducing the optimal strategy given in (16), Laplace transforms
of the passage times, and the value function v for the parameters µ1 = 0, σ1 = 1, µ2 = 1,
σ2 = 2, and a = −0.1 and a ∈ {0.4, 0.15}. That is, the insurance portfolio is not expected
to generate profits and the insurer is allowed to invest a small amount in a risky asset to
minimise the time in drawdown of this portfolio. In the uncritical area, the invested amount
depends on the current drawdown through the function a. Independently from the bounds
a and a, the optimal strategy always lies within the finite interval [0, a0] (here: a0 ≈ 0.254).
If the maximal amount a is smaller than a0, the graph of the function a is flattened at the
top. a0 is antiproportional to σ2, meaning that, to minimise drawdowns, less should be
invested if investment is risky. The presented solution is optimal for arbitrarily large |a|
and a. In the critical area, the investment is chosen maximally to force the processes paths
back into the uncritical area. Hence, it is necessary to restrict investment in this case.

Again, as in Figure 1, the blue lines represent the first and the red lines represent
the second derivatives of the functions of Figure 2. The middle graphs of the figure
display the two different functions V(x) = infA∈A Ex(e−δτA) defined for x ≤ d and
W(x) = supA∈A Ex(e−δτA

) defined for x ≥ d. They are the solutions to the subproblems of
maximising the time in the uncritical area below d and minimising the time in the critical
area above d. As they are expressed via Laplace transforms of the passage time of d, both
fulfil the boundary condition V(d) = W(d) = 1. Since they solve different optimal control
problems, the first and second derivatives will not coincide in general. The graphs on
the right display the function v(x). The function was constructed such that it is once
continuously differentiable. However, as a solution to Equation (17), it cannot be twice
continuously differentiable in any small environment of d because the right-hand side is
discontinuous at this point.

Figure 2. Optimal strategy inducing function a(x), optimal Laplace transform of the first passage
through d from below, V(x), and from above, W(x), and expected discounted time in drawdown
v(x) (solid, black, from left to right). Top: a = 0.4. Bottom: a = 0.15.
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In comparison to the strategy of never investing (represented by the dotted line in the
second and third columns of Figure 2), the expected time in drawdown is visibly reduced
by investing optimally.

The minimisation of drawdowns prevents negative tours from the favourable area
close to the maximum. As soon as the process reaches a new running maximum, the
favourable area slides upwards. On the other hand, the choice of a(0) = 0 implies that the
absolute growth is kept relatively small.

This observation seems counter-intuitive at first sight: Close to zero, it should be
“safer” to invest without causing critical drawdowns. However, under the optimal strategy,
the insurer never invests when the drawdown is small—even if that results in a negative
drift. In fact, accepting a few more technicalities, one can extend the proofs of the previous
subsection to show that if a > 0, there exists an optimiser of similar shape, but with a(x) = a
close to zero. We do not consider this scenario here because an obligatory minimum
investment is not realistic. However, this technical observation adds to the impression
that, with a small drawdown, the insurer invests as little as possible. This means that
the optimal strategy elongating the time to drawdown merely equilibrates the process
close to the previously reached maximum at the cost of missing out on possible profits.
Though this is not ideal from an economical point of view, stability might be preferable
over unbounded profits for single insurance portfolios or in certain scenarios (especially
if they are expected to cause losses without investment). The benefit of stabilised paths
can outweigh the generation of higher profits at higher (drawdown) risk. For this reason,
we expect the approach to work best if either large drawdowns are very likely to occur
(because of a high volatility or expected unprofitability of a certain portfolio) or if there is a
minimum capital requirement that, for regulatory reasons or due to management decisions,
is more important than the generation of profits.

A variation of the model and idea for possible future research is to consider the case
where the portfolio should be self-financing in the sense that the invested amount at time t
lies within the interval [0, XA

t ]. This paper studies how to prevent drawdowns for certain
portfolios or divisions that are allowed to be non-profitable. Therefore, financing the
investments from an external source—for example, through profits generated in other
business lines—is a reasonable model assumption. However, if one seeks to optimise the
entire surplus of the company, external financing becomes less realistic. An interesting
question arising from this is how drawdowns of the company’s compound surplus may
be prevented through investment if there are profitable and non-profitable business lines
and external financing is not allowed. Another extension would be to relax the strong
assumption of independence and to work with correlated Brownian motions B1 and B2

as in (Browne 1995). Moreover, one could study the problem where reinsurance and
investment are simultaneously used to minimise the expected time in drawdown.
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Rozkosz, Andrzej, and Leszek Słomiński. 1997. On stability and existence of solutions of SDEs with reflection at the boundary.

Stochastic Processes and Their Applications 68: 285–302. [CrossRef]
Salminen, Paavo, and Pierre Vallois. 2007. On maximum increase and decrease of Brownian motion. Annales de l’Institut Henri Poincaré,

Probability and Statistics 43: 655–76. [CrossRef]
Schmidli, Hanspeter. 2008. Stochastic Control in Insurance. London: Springer.
Semrau, Alina. 2009. Discrete Approximations of Strong Solutions of Reflecting SDEs with Discontinuous Coefficients. Bulletin of the

Polish Academy of Sciences 57: 169–80. [CrossRef]
Situ, Rong. 2005. Theory of Stochastic Differential Equations with Jumps and Applications. New York: Springer.
Sornette, Didier. 2003. Why Stock Markets Crash: Critical Events in Complex Financial Systems. Princeton: Princeton University Press.
Wang, Wenyuan, Ping Chen, and Shuanming Li. 2020. Generalized expected discounted penalty function at general drawdown for

Lévy risk processes. Insurance: Mathematics and Economics 91: 12–25. [CrossRef]
Zhang, Hongzhong. 2015. Occupation times, drawdowns, and drawups for one-dimensional regular diffusions. Advances in Applied

Probability 47: 210–30. [CrossRef]
Zhang, Hongzhong, and Olympia Hadjiliadis. 2012. Drawdowns and the Speed of Market Crash. Methodology and Computing in Applied

Probability 14: 739–52. [CrossRef]

http://dx.doi.org/10.1080/03461238.2012.699001
http://dx.doi.org/10.1287/moor.20.4.937
http://dx.doi.org/10.1142/S0219024905002767
http://dx.doi.org/10.1016/j.insmatheco.2015.08.007
http://dx.doi.org/10.1007/s00780-013-0209-4
http://dx.doi.org/10.1137/S0040585X97977306
http://dx.doi.org/10.1007/s00780-008-0066-8
http://dx.doi.org/10.1080/10920277.1998.10595671
http://dx.doi.org/10.2307/3318509
http://dx.doi.org/10.1111/j.1467-9965.1993.tb00044.x
http://dx.doi.org/10.1080/0959991042000217903
http://dx.doi.org/10.1080/03461238.2018.1469098
http://dx.doi.org/10.1017/S1748499518000210
http://dx.doi.org/10.1239/jap/1429282615
http://dx.doi.org/10.3150/15-BEJ748
http://dx.doi.org/10.3390/risks6030076
http://dx.doi.org/10.1016/j.spa.2012.06.012
http://dx.doi.org/10.1016/S0304-4149(97)00025-2
http://dx.doi.org/10.1016/j.anihpb.2006.09.007
http://dx.doi.org/10.4064/ba57-2-10
http://dx.doi.org/10.1016/j.insmatheco.2019.12.002
http://dx.doi.org/10.1239/aap/1427814588
http://dx.doi.org/10.1007/s11009-011-9262-7

	Introduction
	The Model and Its Parameters
	Maximising the Time to Drawdown
	Construction of a Solution to (5)
	Solution to the Optimisation Problem
	Numerical Examples

	Minimising the Expected Time with Large Drawdown
	Numerical Examples and Remarks

	References

