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Abstract: Different types of natural events hit the United States every year. The data of natural
hazards from 1900 to 2016 in the US shows that there is an increasing trend in annul natural disaster
losses after 1980. Climate change is recognized as one of the factors causing this trend, and predictive
analysis of natural losses becomes important in loss prediction and risk prevention as this trend
continues. In this paper, we convert natural disaster losses to the year 2016 dollars using yearly
average Consumers Price Index (CPI), and conduct several tests to verify that the CPI adjusted
amounts of loss from individual natural disasters are independent and identically distributed. Based
on these test results, we use various model selection quantities to find the best model for the natural
loss severity among three composite distributions, namely Exponential-Pareto, Inverse Gamma-
Pareto, and Lognormal-Pareto. These composite distributions model piecewise small losses with
high frequency and large losses with low frequency. Remarkably, we make the first attempt to derive
analytical Bayesian estimate of the Lognormal-Pareto distribution based on the selected priors, and
show that the Lognormal-Pareto distribution outperforms the other two composite distributions in
modeling natural disaster losses. Important risk measures for natural disasters are thereafter derived
and discussed.

Keywords: composite distributions; predictive analysis; bayesian inference; natural disaster; climate
change; risk measures

1. Introduction

Different types of natural events hit the United States (US) every year. The east coast
of the US suffers hurricanes, the middle of the US sees tornadoes, the west coast of the US
endures earthquake, and the south of the US bears a variety of issues such as hurricane,
wind, drought, and floods1. The data of the occurrence and damage of natural events from
1900 to present in the US, from the Emergency Events Database (EM-DAT)—International
Disaster Database2, showed that every year’s natural disaster losses after 1980 have been
increasing. Climate change is recognized as one of the contributors to this increasing
natural losses. Injury, homelessness, displacement, and economic losses from natural
events can have significant impact on populations and societies. Predictive analysis of
future natural events is imperative to provide important information for prevention and
remedy plans to reduce the human impact and economic losses from natural disasters.

Various research has attempted to model the frequencies and damages due to the
natural events. Levi and Partrat (1991) analyzed hurricane losses between 1954 and 1986 in
the US, and found that the amounts of losses were independent and identically distributed
(i.i.d.) and independent of the frequencies of hurricanes. These assumptions are confirmed
in our research, based on the EM-DAT natural disaster data from 1900 to 2016 after taking
into account price inflations. The number of losses in different years is converted into 2016

1 See http://www.nytimes.com/interactive/2011/05/01/weekinreview/01safe.html.
2 https://www.emdat.be/emdat_db/.
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dollars using the annual average Consumers Price Index (CPI)3. We found that both the
numbers of natural events and the CPI adjusted total damages have been increasing over
the time; however there is no visible trend in the individual CPI adjusted losses, which is
consistent with the conclusion claimed by Levi and Partrat (1991).

To discover the distribution features of individual losses from natural disasters, we
use the most recent 37 years of the CPI adjusted amounts of natural losses to investigate
appropriate parametric distribution models for the amount of loss caused by individual
natural event, i.e., natural loss severity. Levi and Partrat (1991) proposed to use lognormal
distribution for the losses of natural events based on the hurricane data between 1954
and 1986 in the US. However, this distribution cannot describe the typical feature of the
natural disaster losses, i.e., many small amounts of losses and occasional occurrence of
huge amount of losses. Some researchers argued to use composite distributions to capture
this recognized feature.

A composite distribution has a threshold for the support of the loss random vari-
able, with the Pareto distribution usually used to model a large loss beyond the threshold
amount and popular parametric continuous distributions used for a small amount of
loss below the threshold. For example, Bakar et al. (2015) developed several Weibull
distribution-based composite models for heavy tailed insurance loss data. In our paper,
we compare the performance of three composite distributions, namely Exponential-Pareto
(Exp-Pareto), Inverse Gamma-Pareto (IG-Pareto), and Lognormal-Pareto (LN-Pareto), and
the corresponding three non-composite parametric models, based on the negative loglikeli-
hood, the Akaike information criterion, and Bayesian information criterion. All the three
model selection criteria show that the composite distributions fit the data better than the
non-composite models.

We thereafter apply the three composite models to the data and select the best fitted
composite model for the loss severity of natural events. For consistent model comparison,
we make the first attempt to derive analytic Bayesian estimation of the LN-Pareto com-
posite distribution, because Aminzadeh and Deng (2018, 2019) has analytically derived
Bayesian estimators for Exp-Pareto and IG-Pareto. In addition, Bayesian method enables
us to perform predictive analysis of future losses of natural disasters using the best fitted
composite model.

Cooray and Cheng (2015) developed Bayesian estimators for the LN-Pareto composite
model based on a Markov Chain Monte Carlo (MCMC) simulation algorithm. In our paper,
we carefully select prior distributions for the LN-Pareto composite model and derive a
closed form Bayesian estimators for the unknown parameters of the LN-Pareto distribution.
The mean squared errors (MSE) of the Bayesian estimation method and the maximum
likelihood (ML) estimation method show that Bayesian estimation method outperform the
ML estimation method in estimating these three composite models.

The comparison results show that the LN-Pareto is the best among these three com-
posite models for the loss severity of natural disasters. Various risk measures of natural
event losses are thereafter presented based on the LN-Pareto distribution. Same risk mea-
sures based on the other two composite distributions of natural losses are also provided
for comparison.

The remainder of this paper is organized as follows. Section 2 describes the natural
disaster data and tests the assumption that individual loss amounts are independent and
identically distributed. Section 3 introduces three composite distributions and compare
these models with the corresponding non-composite models. Section 4 derives Bayesian
estimators for the LN-Pareto composite distribution and demonstrates the performance
of Bayesian estimation method versus the ML estimation method. Section 5 presents risk
measures of the future natural disaster losses based on the LN-Pareto model and the other
two composite distributions. The concluding remarks are given in Section 6.

3 The CPI data was download from Bureau of Labor Statistics https://data.bls.gov/pdq/SurveyOutputServlet.

https://data.bls.gov/pdq/SurveyOutputServlet
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2. Natural Losses in the US
2.1. The Data

The EM-DAT contains worldwide data on the occurrence and impact of natural events
from 1900 to the present day. The database is compiled from various sources, including
United Nation agencies, non-governmental organizations, insurance companies, research
institutes and press agencies. There were a total of 258 natural events in the US from 1900 to
2016, among which 156 events happened between 1980 to 2016, accounting for 60% of the
total events during this one third of the whole time period. This observation is consistent
with the fact that Earth’s climate is changing faster than at any point in the history as a
result of human activities.

We also look into the trend of the natural loss amounts from 1900 to 2016. To eliminate
the effect of price inflation, we convert the amounts of losses in each year into the year 2016
dollars. Let CPIt be the annual average CPI in year t and yt be the CPI adjusted amount of
losses in that year, then we have

yt = loss amount in year t× CPI2016

CPIt
, for t = 1900, 1991, . . . , 2016.

After price inflation effect being adjusted, the amount of losses during 1980 to 2016 accounts
for 85.3% of the total losses. Figure 1 shows the yearly number of natural events and the
CPI adjusted (in 2016 dollars) total damage costs from 1900 to 2016 in the US. We can see
that both the number of natural events and the CPI adjust damage costs in each year have
been increasing over these years, especially after 1980.
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Figure 1. The number and damage costs of natural events from 1900 to 2016 in the US. (a) The
number of natural events; (b) Total damage in 2016 dollars (’0000000 US$).
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To demonstrate the change in both number and damage costs of natural events caused
by human activities, we break down the data to be before and after 1980. Figure 2 displays
the percentage of the number of occurrence to the total number of occurrence and the
percentage of the CPI adjusted damage costs to the total losses by different time periods
(before and after 1980) and by different types of natural disasters. The exact numbers for
this figure are listed in Tables A1 and A2 in Appendix A.

(a)

(b)

Figure 2. The percentage of the number of occurrence and damage costs of natural disasters to the
total occurrence and damage losses by different types of natural events before and after 1980 in the
US. (a) Percent of the number of occurrence; (b) Percent of the damage costs.

We can see that storms and floods account for most of natural events. The damage
costs from natural events after 1980 account for the majority of the total costs, among which
the damage costs caused by storms after 1980 account for more than half. In addition, these
storm losses were caused by fewer storms after 1980 than before 1980, indicating higher
average storm losses after 1980 than before 1980. However, this is not the case for other
types of natural events.

Although there is an obvious increasing trend in both the numbers and the total
damage costs of natural events after 1980, it is not trivial to find out the pattern in the
economic losses of individual natural events. Based on the aforementioned features of the
natural loss data, we use the natural losses in the most recent 37 years from 1980 to 2016.
There are a total number of 462 natural events in these 37 years, and only seven events
caused economic loss above 2× 107 (in 2016 dollars). In Figure 3, we depict the scatter plot
of those losses below 2× 107, and we can see that there is no identified trend in individual
natural disaster losses.
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Figure 3. The scatter plot of individual natural disaster losses after 1980 in the US.

We are interested in how to appropriately model individual natural disaster losses.
Motivated by this research question and the above observations, in this paper we aim to
investigate the features of the severity of natural events, attempt to find appropriate loss
severity models for natural disasters, and provide the predictive modeling of loss severity
for risk management and insurance arrangement.

2.2. The i.i.d. Assumption for Loss Severity

Let the random variable N denote the number of occurrences per year and Xi, for
i = 1, 2, . . . , N, be the severity random variable of the ith occurrence of natural events
occurring in each year. The vector ~X = (X1, X2, . . . , XN)

T denotes the random vector of
yearly loss severity. We use the natural disaster data between 1980 to 2016, and the random
variable N has a sample size of 37. Table A3 in Appendix B lists the CPI adjusted individual
natural damage losses in these 37 years. It can easily be seen that random variable N takes
one of the values 0, 2, 6, 8, . . . , 28 over the 37 years. One value of N is zero, because there
was no record of natural events in year 1988. In all other years, there were at least two
natural events every year. Therefore, there are 36 non-zero realizations (nk,~xk)k=1,2,...,36 of
(N, ~X). The ith column in the matrix (~x1,~x2, . . . ,~x36)T are the realizations of Xi, i.e., the ith
occurrence of natural disasters in each of 36 years.

Let mi be the sample size of the ith random variable Xi. From Table A3 we also
see that X1, the 1st severity random variable, has 36 non-zero values and therefore the
sample size m1 = 36. The realization of X1 is (x1

1, x2
1, . . . , x36

1 )T , which takes the value
(1019.45, 1056.14, . . . , 550.00) million in 2016 dollars. X28, the 28th severity random variable
with m28 = 1 and takes only one non-zero value 1822.71 millions in 2016 dollars, because
there is only one year with 28 losses. The total number of the observation is ∑28

k=1 mk = 462.
We want to test the general assumption that X1, X2, . . . , X28 are independent and

identically distributed random variables. Since X21, X22, . . . X28 have small sample sizes,
we group them together as one random variable X21. Applying the nonparametric methods,
the Kendall Tau test and the Spearman test (see Gibbons and Chakraborti 2003), we test the
independence assumption for X1, X2, . . . , X21 as follows.

For Xi, Xj, i 6= j, where i, j = 1, 2, . . . , 21, the null hypotheses and alternative hypothe-
ses are

H0 : ρXi ,Xj = 0, Ha : ρXi ,Xj 6= 0
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Let m = min(mi, mj). The Kendall Tau statistic is

T =
1
(m

2 )
∑

1≤k≤l≤m
Akl ,

where Akl =


1 (xk

i − xl
i)(xk

j − xl
j) > 0

0 (xk
i − xl

i)(xk
j − xl

j) = 0
−1 (xk

i − xl
i)(xk

j − xl
j) < 0

Let Rk and Sk be the rank of xk
i and xk

j among m observations respectively, for k =

1, 2, . . . , m. The Spearman rho test statistic is

R =
∑m

k=1(Rk − R̄)(Sk − S̄)√
∑m

k=1(Rk − R̄)2 ∑m
k=1(Sk − S̄)2

,

where R̄ and S̄ are the average of Rk and Sk respectively.

For X1, X2, . . . , X21, there are total of
(

21
2

)
= 210 tests. We obtain 210 values of all

the Kendall Tau test statistic and Spearman test statistic with the corresponding p-values.
Table 1 lists the pairs of severity random variables with the null hypotheses being rejected
at the significance level of 1%. All other pairs have non-significant test results and we fail
to reject the null hypotheses at the significance level of 1%. Based on these test results, it is
reasonable to assume that X1, X2, ... are independent.

Table 1. Pairs of severity losses with significant Kendall and Spearman test results.

Pairs Kendall Tau Statistics
(p-Value)

Spearman Statistics
(p-Value)

X1, X5 −0.373
(0.002)

−0.546
(0.001)

X7, X21 0.393
(0.0051)

0.566
(0.003)

X9, X16 −0.575
(0.009)

−0.769
(0.0034)

Next, the Kruskal-Wallis test is used to verify the identical distribution assumption.
The details of this test are introduced by Gibbons and Chakraborti (2003). Let Fi be the
cumulative distribution function of Xi, i = 1, 2, . . . , 21. In our Kruskal-Wallis test, the null
hypotheses and alternative hypotheses are

H0 : F1 = F2 = · · · = F21, Ha : Fi 6= Fj, for some i 6= j.

There are a total of 462 observations. Sort all the 462 observations in an increasing
order. If there are more than one observations with an identical value, then the median
is assigned as the rank for these observations. Define Ti to be the sum of the ranks of
all the observations of Xi, where i = 1, 2, . . . , 21. We have T1 = 8817, T2 = 8444, . . . , and

T21 = 6656.5. It is clear that
21

∑
i=1

Ti = 462(462 + 1)/2 = 106,854.

Under the null hypotheses, E(Ti) = mi(462 + 1)/2. Therefore, E(T1) = 8334, E(T2) =
88,334, . . . , and E(T21) = 6019. The Kruskal-Wallis Statistic is

KW =
12

462(462 + 1)

21

∑
i=1

1
mi

(Ti − E(Ti))
2 = 19.4274
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Asymptotically, KW has Chi-Square distribution with the degree of freedom 20,
with the p-value 0.494. We fail to reject H0 at the significance level 1%. Therefore, it is
reasonable to assume that X1, X2, . . . are identically distributed.

2.3. Non-Parametric Distribution of Loss Severity

Based on the test results, we can reasonably assume that the CPI adjusted natural
disaster damage random variable is independent and identically distributed. Let X denote
the CPI adjusted damage random variable with unknown distribution F(x). The 462
individual damage losses are the realizations of the loss severity random variable X.
As we explore an appropriate parametric distribution F(x) for the natural disaster loss
severity, we first look at the non-parametric distribution of X, which is also called a data
dependent distribution.

Let y1 < y2 < · · · < yk be the k unique loss values, and si be the number of times
the observations yi appears in the sample. Let rj = ∑k

i=j si be the number of observations
greater than or equal to yj. The Nelson-Aalen estimator of the cumulative hazard rate
function is

Ĥ(x) =


0 x < y1

∑
j−1
i=1

si
ri

yj−1 ≤ x < yj, j = 2, . . . , k
∑k

i=1
si
ri

x ≥ yk

Therefore, Ŝ(x) = exp(−Ĥ(x)) and F̂(x) = 1− Ŝ(x) = 1− exp(−Ĥ(x)). The Kol-
mogorov -Smirnov (K-S) confidence band of unknown distribution F(x) can also be
constructed based on the Nelson Aalen estimate of distribution F̂(x). Define the K-S
statistics by Dn = sup

x
(|F̂(x)− F(x)|), where n is sample size. To form 100(1− α)% con-

ference band, we select a number d such that P(Dn ≥ d) = α. Then, the lower band
is FL(x) = max(F̂(x) − d, 0) and the upper band is FU(x) = max(F̂(x) + d, 0). We set
α = 0.05 and the true unknown distribution of loss lies between FL(x) and FU(x) with
95% confidence.

The plots of F̂(x), FL(x), and FU(x) is given in Panel (a) of Figure 4. We also display
the histogram of the CPI adjusted severity of the natural events in Panel (b) of Figure 4. We
can see that the histogram of the CPI adjusted severity of the natural event losses is both
skewed and fat-tailed, which shows the typical feature that there are many small losses
and a few very large losses.

0 100 200 300 400 500 600
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50

100

150

200

250

(a)

Figure 4. Cont.
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Figure 4. The histogram and the empirical distribution with 95% confidence bands of the CPI
adjusted natural losses from 1980 to 2016 in the US. (a) The histogram of the CPI adjusted natural
losses; (b) The empirical distribution with 95% confidence bands of the CPI adjusted natural losses.

3. Composite Models

We confirmed that the natural event severity data has the typical feature of high fre-
quency of small losses and low frequency of large losses; while the traditional distributions
such as the normal, exponential, inverse-gamma, and log-normal distributions, are not
able to describe this feature. Some researchers have addressed this feature of insurance
data by using composite models for insurance losses. The probability density function of a
composite model consists of two distributions, namely probability density functions f1(x)
and f2(x). The general composite model has the probability density function as follows.

fX(x) =
{

c f1(x) 0 < x ≤ θ
c f2(x) θ ≤ x < ∞

,

where c is a normalized constant and θ is the parameter that represents the threshold of
the supports for the two distributions. In order to make the composite density function
smooth, it is usually assumed that the pdf fX(x) is continuous and differentiable at θ, that
is f1(θ) = f2(θ) and f

′
1(θ) = f

′
2(θ).

3.1. Three Composite Distributions

Cooray and Ananda (2005) introduced a two-parameter continuous and differen-
tiable composite LN-Pareto model, which is a two-parameter lognormal density up to an
unknown threshold value and a two-parameter Pareto density for the rest of the model.
The resulting density is similar in shape to a lognormal density with the tail behavior
quite similar to a Pareto density. They applied the proposed composite model to a fire
insurance data to show the importance of the proposed composite LN-Pareto distribution
in describing insurance claim data.

Motivated by Cooray and Ananda (2005), Teodorescu and Vernic (2006) introduced
a composite Exp-Pareto distribution, which is an exponential density up to an unknown
threshold value and a two parameter Pareto density for the rest of the model. The model is
reduced to a one-parameter distribution after satisfying the continuous and differentiable
condition. Aminzadeh and Deng (2019) proposed an IG-Pareto composite model. Under
the general assumption of smoothness and continuity, the IG-Pareto model is reduced to
be a one parameter model. Let Φ(·) be the cumulative distribution function (cdf) of the
standard normal distribution. Table 2 summarizes the distribution density function of Exp-
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Pareto, LN-Pareto, and IG-Pareto composite models, and Figure 5 plots three distribution
functions with various parameter values.

Table 2. The distribution density functions of three composite models.

f1(x) f2(x) The Composite pdf f (x)

Exp-Pareto f1(x) = λe−λx,
x > 0, λ > 0

f2(x) =
αθα

xα+1 ,

x ≥ θ > 0, α > 0
f (x) =


0.775

θ
e
−1.35x

θ , 0 < x ≤ θ

0.2θ0.35

x1.35 , θ ≤ x < ∞

IG-Pareto f1(x) =
βαx−α−1e−β/x

Γ(α)
,

x > 0, α > 0, β > 0

f2(x) =
aθa

xa+1 ,

x ≥ θ, a > 0, θ > 0

f (x) =


c(kθ)αx−α−1e

−kθ
x

Γ(α)
, 0 < x ≤ θ

c(α− k)θα−k

xα−k+1 , θ ≤ x < ∞

where α = 0.308289, k = 0.144351, c = 0.711384

LN-Pareto f1(x) =
e−

1
2 (

lnx−µ
σ )2

xσ
√

2π
,

x > 0, σ > 0

f2(x) =
αθα

xα+1 ,

x ≥ θ, α > 0, θ > 0

f (x) =


βθβe−0.5( β

k )
2 ln2(x/θ)

(1 + Φ(k))xβ+1 , 0 < x ≤ θ

βθβ

(1 + Φ(k))xβ+1 , θ ≤ x < ∞

where k = 0.372238898
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(a) Exponential-Pareto composite model
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(b) Inverse Gamma-Pareto composite model
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(c) Lognormal-Pareto composite model
Figure 5. The cumulative distribution functions of three composite models with various parameter values.

We can see that the Nelson Aalen estimate of the unknown distribution of the natural
disaster severity loss random variable is quite similar to the distributions of three composite
models. This indicates that composite models might be able to describe the features of the
natural disaster damage losses. In the next section, we will compare the performance of
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these three composite distributions in modeling the natural disaster loss severity based on
standard model comparison and selection criteria.

3.2. Model Selection for Loss Severity

The maximum likelihood estimators for the unknown parameters of the Exp-Pareto,
IG-Pareto, and Lognormal-Pareto composite models have been derived by Teodorescu and
Vernic (2006), Aminzadeh and Deng (2019), and Cooray and Ananda (2005) respectively.
We know that the parameter θ is the unknown threshold value dividing the domain of the
two distributions of a composite model, and the maximum likelihood functions changes
when the value of θ changes; therefore, a grid search method has to be used to find the ML
estimates. The grid search algorithm can be briefly summarized as follows.

1. Sort the sample of the natural disaster damage losses in an increasing order, i.e.,
x1 < x2 < . . . ,< xn, where n is the sample size. Let n∗ be the size of the partial
sample of the first n∗ losses x1, x2, . . . , xn∗ . Start from n∗ = 1.

2. Compute the maximum likelihood estimates θ̂ and β̂ as in Table 3 for the given n∗. If θ̂

is in between xn∗ ≤ θ̂ ≤ xn∗+1, we found n∗; otherwise, increase n∗ by 1.
3. Repeat Step 2 for n∗ = 2, 3, . . . , till xn∗ ≤ θ̂ ≤ xn∗+1. The ML estimates of the

parameters are found based on the correct n∗.

In our research, Mathematica software is used to code the algorithm. Table 3 lists the ML
estimates of three composite distributions.

Table 3. The ML estimates of the unknown parameter in three composite models.

Composite Model ML Estimates of Parameters

Exp-Pareto θ̂ =
1.35n∗ x̄n∗

1.35n∗ − 0.35n
, where x̄n∗ =

1
n∗

n∗

∑
i=1

xi.

IG-Pareto θ̂ =
n∗α + (α− k)n∗

kS
, where S =

n∗

∑
i=1

x−1
i ,

α = 0.308289, k = 0.144351.

LN-Pareto

If n∗ = 1,

θ̂ = x1
( n∗

∏
i=1

xi/x1
)k2

, β̂ = n∗
( n∗

∑
i=1

ln(xi/x1

)−1
, where k = 0.372238898;

otherwise,

θ̂ = exp
( nk2

n∗ β̂

)( n∗

∏
i=1

xi
) 1

n∗ , β̂ =
k2B +

√
k4B2 + 4n∗nk2 A

2A
,

where A = n∗
n∗

∑
i=1

(lnxi)
2 − (

n∗

∑
i=1

lnxi)
2, B = n

n∗

∑
i=1

lnxi − n∗
n

∑
i=1

lnxi.

Based on the ML estimates, we use the negative log-likelihood (NLL) value, the
Akaike’s Information Criterion (AIC), the Bayesian Information Criterion (BIC) goodness-
of-fit measures to compare the appropriateness of these three composite models in modeling
the natural disaster severity.

NLL can be used to compare models with the same number of parameters. It is
equivalent to the maximum value of the likelihood function and defined as

NLL = − log L
(
x1, x2, . . . , xn|θ

)
,

where θ is the vector of unknown parameters. The smaller the NLL value, the larger the
value of the likelihood function, and the better the fitted model.

AIC was defined by Akaike (1973) as

AIC = −2 log L
(
x1, x2, . . . , xn|θ

)
+ 2q,
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where q is the number of unknown parameters. The smaller the AIC value, the better
the fitted model. The first term −2 log L(x1, x2, . . . , xn|θ) will decrease when the number
of unknown parameters increases and is offset by the value of 2q, indicating a trade-off
between the goodness-of-fit and the number of parameters.

BIC was developed by Schwarz (1978) and defined as

BIC = −2 log L
(
x1, X2, . . . , xn|θ

)
+ q log(n),

where n is sample size and q is the number of parameters. BIC penalizes a large number
of parameters and a big size of sample. The smaller the BIC, the better the fitted model.
Interested readers are referred to Burnham and Anderson (2002) for more details about
these model selection criteria.

Based on the sample of 462 natural disaster damage losses in the US from 1980 to
2016, the values of the NLL, AIC, and BIC and the maximum likelihood estimates of the
three composite models are summarized in Table 4. For comparison, we also fit three non-
composite parametric models, namely the Exponential, Lognormal, and Inverse Gamma
distributions, to the natural disaster data.

Table 4. The ML estimates of three composite models and three non-composite models for the
severity of natural events in the US.

Model ML Estimates of Parameters NLL AIC BIC

Exp-Pareto θ̂ = 25.561 2698.02 5398.05 5402.19
n∗ = 189

IG-Pareto θ̂ = 2.86262 2719.35 5440.7 5444.83
n∗ = 64

LN-Pareto θ̂ = 20.94751406 2327.74 4659.49 4667.76
β̂ = 0.22044516
n∗ = 174

Exponential
X ∼ Exp(λ)

λ̂ = 5.32× 10−3 2881.23 5764.47 5768.61

Inverse Gamma α̂ = 0.254669 2813.29 5630.58 5638.85
X ∼ IG( α, β) β̂ = 0.527914

Lognormal µ̂ = 3.50972 3058.66 6121.31 6129.58
X ∼ LN( µ, σ) σ̂ = 2.1659785

We can see that three composite models fit the natural disaster losses better than three
corresponding non-composite models. This supports the claim that a composite model can
describe the distribution features of insurance data and natural disaster losses. Among
three composite models, the LN-Pareto fit the data better than the other two composite
models, in terms of the NLL, AIC, and BIC values. Therefore, the LN-Pareto composite
distribution is the best model to conduct Bayesian predictive analysis of the natural disaster
losses in the US.

4. The Bayesian Estimate
4.1. Bayesian Estimator of LN-Pareto

There is no analytical Bayesian estimator of the LN-Pareto composite distribution
in the current literature. Cooray and Cheng (2015) found the Bayesian estimation for
LN-Pareto based on the MCMC method. In this paper, we use conjugate priors for the two
parameters of the LN-Pareto and make the first attempt to derive a closed-form Bayesian
estimator without the MCMC simulation.
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Recall the LN-Pareto probability density function given by Cooray and Ananda (2005),
as listed in Table 2,

fX(x|θ, β) =


βθβ

(1 + Φ(k))xβ+1 e−0.5( β
k )

2 ln2(x/θ) 0 < x ≤ θ

βθβ

(1 + Φ(k))xβ+1 θ ≤ x < ∞
, (1)

where k = 0.372238898 and Φ(·) is the cdf of the standard normal distribution.
We use Gamma(a1, b1) to be the prior distributions of β and LN(c1, ( k

β )
2) to be the

prior distribution of θ|β, where a1, b1, c1 are hyper parameters. The prior distributions have
probability density functions as follows.

ρ(β) ∝
βa1−1e−

β
b1

Γ(a1)b
a1
1

, a1 > 0, b1 > 0

ρ(θ|β) ∝
β

k
e
− 1

2( k
β
)2
(ln(θ)−c1)

2

, c1 > 0

Without loss of generality, we assume that x1 < x2 < ... < xn is an ordered random
sample from the LN-Pareto distribution. Given n∗, the size of the partial sample of the
first n∗ losses x1, x2, . . . , xn∗ , such that xn∗ ≤ θ ≤ xn∗+1. The likelihood function can be
written as

L(x|θβ) ∝
βnθnβ

(∏n
i=1 xi)β+1 e−0.5( β

k )
2 ∑n∗

i=1(ln(xi)−ln(θ))2
.

To find posterior distributions π(β|x) and π(θ|β, x), we need the joint pdf f (x, θ, β) of
(x, θ, β), which is obtained as

f (x, θ, β) = L(x|θ, β)ρ(θ|β)ρ(β) (2)

The joint distribution function in Equation (2) can be reduced to

f (x, θ, β) ∝ βn+a1 e
−β(1+b1P)

b1 e
(
−0.5( β

k )
2 A2

)
θnβ−1e−0.5( β

k )
2(n∗+1)(ln(θ)−A1)

2
, (3)

where P =
n

∑
i=1

ln xi, A1 =
∑n∗

i=1 ln(xi) + c1

n∗ + 1
, and A2 =

n∗

∑
i=1

ln2(xi) + c2
1 − (n∗ + 1)A2

1.

From Equation (3), the posterior probability distribution functions can be obtained as

π(β|x) ∝ βn+a1−1e
−β(1+b1P)

b1 e
(
−0.5( β

k )
2 A2

)
, (4)

and

π(θ|β, x) ∝ βθnβ−1e
−0.5 (ln(θ)−A1)

2

( k
β
√

n∗+1
)2

. (5)

It is noted that the right hand side of Equation (5) is the kernel of a lognormal distribution
with parameters A1 and k

β
√

n∗+1
.

Our next step is to find E[θ|β, x], the expectation of the posterior distribution in
Equation (5), i.e., the conditional Bayes estimate of θ under the squared error loss function.
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We first need to find the normalizating constant C1 for the probability density function in
Equation (5). Let ξ = k

β
√

n∗+1
, then

∫ ∞

0
C1βθnβ−1e

−0.5 (ln(θ)−A1)
2

( k
β
√

n∗+1
)2

dθ

= C1

∫ ∞

0

k
ξ
√

n∗ + 1
θnβ−1e

−0.5 (ln(θ)−A1)
2

ξ2 dθ

=
C1k√
n∗ + 1

√
2π
∫ ∞

0
θnβ 1

θξ
√

2π
e
−0.5 (ln(θ)−A1)

2

ξ2 dθ (6)

=
C1k√
n∗ + 1

√
2πE[θnβ]

=
C1k√
n∗ + 1

√
2πMln(θ)(nβ) = 1,

where MY(t) denotes the moment generating function of a random variable Y. ln(θ) ∼
Normal(A1, ξ2) based on the probability density functions of a lognormal distribution.
As a result of Equation (6) we get

1 =
C1k√
n∗ + 1

√
2πeA1(nβ)+.5ξ2(nβ)2

.

Therefore,

C1 =

√
n∗ + 1√

2πk
e−(A1(nβ)+.5ξ2(nβ)2)

and the conditional Bayes estimate of θ is

θ̂Bayes|β = E[θ|β, x] = e(A1+.5ξ2(2nβ+1)) (7)

The Bayes estimate of β can be derived based on the posterior probability distribution
function of β in Equation (4). Let C2 denote the normalizating constant for the probability
distribution function of β. Let B1 = n + a1, B2 = b1

1+b1P . We have

∫ ∞

0
C2e
(
−0.5( β

k )
2 A2

)
βB1−1e−

β
B2 dβ

= C2Γ(B1)BB1
2

∫ ∞

0
C2e
(
−0.5( β

k )
2 A2

)
βB1−1e−

β
B2

Γ(B1)BB1
2

dβ = 1

Please note that
βB1−1e−

β
B2

Γ(B1)BB1
2

is the probability density function of Gamma(B1, B2). As a

result
C2 = (Γ(B1)BB−1

2 E[e−0.5( β
k )

2 A2 ])−1,

and the Bayes estimate of β is

β̂Bayes = E[β|x] = B1B2E1

E2
, (8)

where E1 and E2 are the expected values E[e−0.5( β
k )

2 A2 ], when β follows Gamma(B1 +
1, B2) and Gamma(B1, B2) distribution respectively. Numerical integration in software
Mathematica is used to compute both E1 and E2. Similar to the ML estimation method, the
following grid searching method is used in Bayesian estimation:
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1. Sort the sample of size n in increasing order, i.e., x1 < x2 < ...,< xn and let n∗ be the
size of the partial sample of the first n∗ losses x1, x2, . . . , xn∗ . Start from n∗ = 1.

2. Compute the Bayes estimate β via (8) for the given n∗.
3. Compute the conditional Bayes estimate of θ via (7), given β̂Bayes from Step 2. If

xn∗+1 ≤ θ̂Bayes|β ≤ xn∗+1, then we found n∗. otherwise, increase n∗ by 1.
4. Repeat Step 2 and 3 for n∗ = 2, 3, . . . till xn∗+1 ≤ θ̂Bayes|β ≤ xn∗+1, and we found the

correct n∗.

The values of β̂Bayes and θ̂Bayes|β found based on the correct n∗, represent the actual
Bayes estimates of the parameters β and θ. We therefore obtain analytical Bayesian estimates
of the LN-Pareto composite model without simulation.

4.2. Validation by Simulation

We employ simulation studies to validate the accuracy of the proposed Bayesian
estimation method for the LN-Pareto distribution, and compare it with the ML estimation
method. In each simulation, we generate a sample of n observations from the LN-Pareto
composite density function given by Equation (1) for different selected values of θ and β.
Then we obtain the ML estimates and Bayesian estimates of these two parameters, based
on the simulated samples. We repeat the simulation for N = 100 times. The average value
of the estimates (denoted by ¯̂θ and β̂ ) and the mean squared errors (MSE, denoted by ε) are
computed. MSEs show the differences between the true values and the estimated values of
the parameters and intuitively indicate the performance of the estimation method.

Bayesian estimates of θ and β needs appropriate values of the hyper-parameters
a1, b1, and c1. Recall that the prior distribution for β is a Gamma distribution with hyper-
parameter a1 and b1. Therefore, when specifying the values of hyper-parameter a1 and b1,
we need to make sure the product of a1 and b1, which is the expectation of the Gamma
prior distribution, equal to the preset value of β. In addition, since the variance of the
Gamma prior distribution is proportional to b2

1, we choose b1 very small and then solve a1
from the equation a1 ∗ b1 = β. For example, when the selected true value for β is 0.5, a1
and b1 are chosen to be a1 = 100 and b1 = 0.005 such that b1 is small and the product of a1
and b1 is 0.5.

Similarly, the conditional prior of θ|β are assumed to follow a log-normal distribution
LN(c1, ( k

β )
2), therefore we choose c1 to be the solution of the equation exp(c1 + 0.5( k

β )
2) =

θ, based on the expectation of the log-normal distribution. Table 5 lists Bayesian estimates
and the ML estimates using simulated data from the LN-Pareto composite distribution
with different values of the parameters.

From Table 5, we can see that the informative Bayesian estimates outperform the ML
estimates in both cases β < 1 and β > 1, for Bayesian estimates have smaller MSEs than
the ML estimates in all the simulation scenarios. Please note that as sample size n increases,
both ML estimation and Bayes method provide more accurate estimates for θ, in terms
of smaller MSEs when n increases. However, in Equation (8) the Bayesian estimate of β
is proportional to n since B1 = n + a1. As n increases, the MSE of Bayesian estimate of
β increases slightly but is still much smaller than the MSE of the ML estimates. These
simulation results indicate that Bayesian estimates are consistently better than the ML
estimates if choosing reasonable hyper-parameters.
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Table 5. Comparison of the ML and Bayesian estimates.

θ = 5 β = 0.5 (a1 = 100, b1 = 0.005, c1 = 1.33231)

n θ̂ML εθML β̂ML εβML θ̂Bayes εθBayes β̂Bayes εβBayes

20 7.8604 4.0640 0.4747 0.1611 5.6933 2.0959 0.4641 0.0402
50 7.8942 3.8006 0.4435 0.1121 5.7941 1.2265 0.4338 0.0688

100 7.6421 3.6415 0.4333 0.1056 5.8745 1.1874 0.4058 0.0960

θ = 20 β = 0.5 (a1 = 560, b1 = 0.001, c1 = 2.71861)

n θ̂ML εθML β̂ML εβML θ̂Bayes εθBayes β̂Bayes εβBayes

20 21.8966 12.2540 0.5878 0.2626 20.5062 5.5390 0.5341 0.0345
50 19.9977 4.9775 0.5738 0.2431 20.5262 3.3892 0.5025 0.0065

100 19.5730 3.6691 0.5467 0.1830 21.2182 3.0585 0.4629 0.0379

θ = 5 β = 1.5 (a1 = 3000, b1 = 0.0005, c1 = 1.57865)

n θ̂ML εθML β̂ML εβML θ̂Bayes εθBayes β̂Bayes εβBayes

20 5.342 1.2443 1.510 0.3811 5.076 0.3877 1.480 0.02047
50 5.041 0.5606 1.528 0.2181 5.038 0.2526 1.451 0.0492

100 5.035 0.2344 1.516 0.1389 5.111 0.2196 1.406 0.0941

θ = 20 β = 1.5 ( a1 = 3000, b1 = 0.0005, c1 = 2.96494)

n θ̂ML εθML β̂ML εβML θ̂Bayes εθBayes β̂Bayes εβBayes

20 20.698 3.3162 1.560 0.4157 20.556 1.8798 1.460 0.04030
50 20.763 3.0164 1.468 0.2479 20.460 1.0797 1.404 0.09601

100 20.218 2.6237 1.466 0.2839 20.637 0.9563 1.324 0.1762

4.3. Bayesian Estimates of Three Composite Models

Aminzadeh and Deng (2018, 2019) have derived closed-form Bayesian estimators of
the unknown parameter of Exp-Pareto and IG-Pareto distributions. The Bayesian estimate
of θ in Exp-Pareto distribution is

θ̂Bayes =
b2 + 1.35 ∑n∗

i=1 xi

a2 − 0.35n + 1.35n∗ − 1
,

where a2 and b2 are hyper-parameters, n is the sample size and equal to 462 for our data,
and n∗ is the size of partial sample, as aforementioned.

The Bayesian estimate of θ in IG-Pareto distribution is

θ̂Bayes =
a3(na + n∗k + b3)

(a3k ∑n∗
i=1

1
xi
+ 1)

,

where a3 and b3 are hyper-parameters, and k = 0.144351, a = 0.163847, as specified in
Table 2, for the IG-Pareto distribution.

Based on the Bayesian estimators given by Aminzadeh and Deng (2018, 2019) and
the Bayesian estimators for the LN-Pareto distribution derived in this research, we have
closed form Bayesian estimators for all three composite models. Based on the CPI adjusted
natural disaster losses from 1980 to 2016 in the US, we obtain analytical Bayesian estimates
of the three composite models for natural loss severity in Table 6.
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Table 6. Bayesian estimates of three composite models for the severity of natural events in the US.

Model Prior Distributions Bayesian Estimates NLL AIC BIC

Exp-Pareto θ ∼ Inverse-Gamma(10, 5) θ̂ = 23.1451
n∗ = 183

2697.57 5397.13 5401.27

IG-Pareto θ ∼ Gamma(50, 1) θ̂ = 4.3818
n∗ = 77

2699.17 5400.34 5404.48

LN-Pareto
θ ∼ LN(1.61352, 2.857)
β ∼ Gamma(20,500, 1.1 × 10−6)

θ̂ = 19.2316
β̂ = 0.220173
n∗ = 168

2327.63 4659.27 4667.54

Bayesian estimation also shows that the LN-Pareto is the best model among all three
composite distribution models for the smallest NLL, AIC, and BIC values. Comparing the
NLL, AIC, and BIC values in Tables 4 and 6, we can see that Bayesian estimation method
has smaller values of these three criteria when fitting three composite models to the natural
losses data. Kass and Raftery (1995) claimed that difference of 10 or more is strong evidence
to favor the model with a smaller BIC value. Although the advantage of Bayesian estimate
over the ML estimate is marginal especially in fitting Exp-Pareto and LN-Pareto to the
data, Bayesian estimation overall performs better than the ML estimation method. The
advantage of Bayesian method will be significant and favorable when the sample size
is small.

5. Risk Measures

In this section, we are going to investigate risk measures of the loss severity of natural
events, based on the LN-Pareto composite model. Two important risk measures, Value at
Risk (VaR) and Tailed Value at Risk (TVaR), are used in our research. As comparison, we
also display VaR and TVaR of loss severity based on the other two composite models.

Value at Risk and Tailed Value at Risk

VaR is a point risk measurement and describes the minimum loss with the desired
level of confidence. Given a level of confidence p and a cumulative distribution function
F(x) of a loss random variable X, VaR is defined as

Pr(X ≤ VaRp(X)) = p, i.e., VaRp(X) = F−1(p).

For example, if the VaR of the natural disaster loss severity is $100 million at a 95%
confidence level, there is a only a 5% chance that the damage from a natural event will
be more than $100 million in any natural disaster. This risk measure can be used by an
insurance company to assess reinsurance need and risk management, so that the losses can
be covered without putting the company at risk.

TVaR was developed as an alternative to VaR. It describes the average loss over VaR
for a given confidence level p. Mathematically put,

TVaRp(X) = E[X|X > VaRp(X)] =

∫ ∞
VaRp(x) x f (x)dx

1− p
.

In three composite distributions, the Pareto distribution is used to model large losses
with small frequencies. However, the expectation of the Pareto distribution does not exists
if the shape parameter is smaller than 1. This is true for all fitted composite distributions in
our research. Therefore, we define Limited Tailed Value at Risk (LTVaR) as

LTVaR = E[(X ∧ b)|X > VaRp(X)] =

∫ b
VaRp(x) x f (x)dy +

∫ ∞
b b f (x)dy

1− p
,
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where b is the maximum liability of a loss. From its definition, LTVaR is the average of
the losses that are great than VaR but capped by the loss limit b, and therefore greater
than the limited expectation. LTVaR is a very useful measure and can be easily imple-
mented in insurance because this concept matches the maximum insurance benefit of an
insurance policy.

Table 7 displays the derived VaRp and LTVaRp at 85% confidence level from the
three Bayesian estimated and ML estimated composite distributions. b is chosen to be 105

(’0000000 US$) for LTVaR0.85. Table 7 shows that the theoretical VaR0.85(X) based on three
composite models are different when a different estimation method is used.

Table 7. Risk measures (in ’0000000 US$) of natural events’ severity from three composite models.

Models VaR0.85(x) LTVaR0.85(x)

Bayesian Estimation
Exp-Pareto 1073 30,723
IG-Pareto 58,212 98,041
LN-Pareto 11,070 75,860

ML Estimation
Exp-Pareto 1185 31,770
IG-Pareto 38,029 94,619
LN-Pareto 11,963 76,946

For the IG-Pareto model, the Bayesian estimation method is significantly better than
the ML estimation and these two estimation methods result in dramatic difference in the
theoretical VaR0.85(X) and LTVaR0.85(X). For the other two composite models, although
the Bayesian estimation method has marginally lower BIC values than the ML estimation
method, the theoretical VaR0.85(X) and LTVaR0.85(X) are significantly different. Therefore,
we need to be cautious in the choice of model estimation methods when calibrating a
composite model.

Secondly, large values of theoretical VaR0.85(X) and LTVaR0.85(X) indicates that com-
posite distributions do take care of the fat tail problem in our real world situation and
that the average loss in the worst cases will not be underestimated by a composite model.
Moreover, both the ML estimation and Baysian estimation methods confirm that the LN-
Pareto fits the US natural disaster data better than the other two composite models, and our
simulation validation has verified that the Bayesian estimation method for the LN-Pareto
distribution is more accurate than the ML estimation; therefore, we would like to put more
weight on the result from the Bayesian estimated LN-Pareto model, as highlighted by bold
font in in Table 7.

6. Conclusions

In this paper, we propose using composite distributions to model natural disaster
losses. A composite model piece-wisely models the typical feature of insurance losses,
that is, high frequency of small amount of losses and low frequency of large amount of
losses. We use the US natural disaster data from 1980 to 2016 in our research, considering
the change in natural disasters’ occurrence after 1980 due to climate change.

There are a total of 462 natural disasters during 1980 to 2016. After converting the
amounts of losses into the year 2016 dollars, we test the assumption that natural disaster
severity random variables in different years are independent and identically distributed.
Our tests support the i.i.d assumption and we are able to use all the natural losses as
realizations of one natural disaster severity random variable.

Based on the sample of 462 natural losses, we compare the performance of three
composite distributions in modeling the natural losses in the US, namely Exp-Pareto, IG-
Pareto, and LN-Pareto distributions. Based on the ML estimation method, we find that
composite distributions fit the natural disaster losses better than the corresponding non-
composite distributions according to the NLL, AIC, and BIC measures. In addition, we also
find that the LN-Pareto model is the best one among these three composite distributions,
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We make the first attempt to derive analytical Bayesian estimates for the LN-Pareto
model. Simulation studies are conducted to assess the performance of the derived Bayesian
estimates. The values of the MSEs from simulation show that the analytical Bayesian
estimation performs better than the ML estimation method for the LN-Pareto distribution
with various values for its parameters. The simulation study also reveals that Bayesian
method is superior to ML in particular if the sample size is not very large.

In this research, the MCMC method is not used since we derived closed form Bayesian
estimates for the LN-Pareto model. Based on the analytical Bayesian estimates of the
three composite models, it is confirmed that LN-Pareto composite model is the best fit to
the natural disaster losses. Bayesian estimation is proven to perform better than the ML
estimation, according to the NLL, AIC, and BIC values.

Several risk measures for natural losses based on these three composite models are
thereafter presented and compared. The differences in the derived risk measures from
different composite distributions and different estimation methods reveal the importance
of choosing an appropriate composite model for modeling natural losses and the difficulty
in estimating the model.

Our research provides alternative information for insurance and risk management of
natural disasters. We acknowledge the sparseness of natural disaster data. There are only
462 individual natural losses in the past 37 years and we rely on the CPI data to convert
the losses to be consistent and free of the effect of price inflations over years. In the future
research, we will continue to investigate the features of composite models and explore
Bayesian model selection in predictive analysis of natural losses.
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Appendix A. Number and Loss Amounts of Natural Events from 1900 to 2016

Table A1. The number of occurrence of the natural events breakdown by time, type of natural events
from 1900 to 2016.

1900 to 1980 1980 to 2016 1900 to 2016 % of
All Events

Drought 1
(9.09%)

10
(90.91%)

11 4.26%

Earthquake 14
(43.75%)

18
(56.25%)

32 12.40%

Epidemic 0
(0.00%)

4
(100.00%)

4 1.55%

Extreme temperature 9
(29.03%)

22
(70.97%)

31 12.02%

Flood 17
(32.69%)

35
(67.31%)

52 20.16%
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Table A1. Cont.

1900 to 1980 1980 to 2016 1900 to 2016 % of
All Events

Landslide 2
(40.00%)

3
(60.00%)

5 1.94%

Storm 54
(58.70%)

38
(41.30%)

92 35.66%

Volcanic activity 0
(0.00%)

1
(100.00%)

1 0.39%

Wildfire 5
(16.67%)

25
(83.33%)

30 11.63%

Total 102
(39.53%)

156
(60.47%)

258 100.00%

Table A2. The adjusted total damage (’0000000 US$) breakdown by time, type of natural events from
1900 to 2016.

1900 to 1979 1980 to 2016 1900 to 2016 % of
All Damages

Drought 0
(0.00%)

4371.623471
(100.00%)

4371.623471 3.62%

Earthquake 1521.333617
(19.08%)

6454.101764
(80.92%)

7975.435381 6.60%

Epidemic 0
(0.00%)

0
(0.00%)

0 0.00%

Extreme temperature 1633.100124
(43.24%)

2143.756251
(56.76%)

3776.856375 3.13%

Flood 4260.932883
(30.94%)

9511.711943
(69.06%)

13,772.64483 11.40%

Landslide 0
(0.00%)

2.027634158
(100.00%)

2.027634158 0.00%

Storm 10,143.84049
(11.57%)

77,499.01392
(88.43%)

87,642.85441 72.54%

Volcanic activity 0
(0.00%)

250.4927427
(100.00%)

250.4927427 0.21%

Wildfire 253.0904446
(8.34%)

2782.634167
(91.66%)

3035.724612 2.51%

Total 17,812.29756
(14.74%)

103,015.3619
(85.26%)

120,827.6595 100.00%

Appendix B. Damage Losses from Natural Events from 1980 to 2016
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Table A3. Individual damage losses from natural event (’000000 US$) from 1980 to 2016.

Year # of
Losses 1st Loss 2nd Loss 3th Loss 4th Loss 5th Loss . . .

1980 6 1019.45 87.38 58.25 2504.93 5825.41 2504.93

1981 2 1056.14 1217.20

1982 8 572.04 2487.12 84.31 99.48 248.71 104.46 497.42 1243.56

1983 9 7229.13 2409.71 74.70 15.06 1265.10 722.91 240.97 313.26 36.15

1984 10 1683.05 80.85 2309.98 69.30 46.20 39.27 80.85 265.65 69.30 1385.99

1985 10 2453.60 2007.49 3345.82 26.99 758.39 1784.44 446.11 22.31 516.59 0.89

1986 5 1.58 3832.23 87.59 65.70 54.75

1987 7 450.01 8.45 242.96 33.80 122.54 21.13 10.56

1988 0

1989 4 13,548.78 10,839.03 735.51 967.77

1990 6 23.32 73.45 183.63 918.16 64.27 82.63

1991 9 59.03 2643.25 52.86 4405.41 52.86 1762.17 1497.84 1762.17 590.33

1992 8 128.30 171.07 145.41 8553.35 5132.01 153.96 171.07 45,332.75

1993 7 315.58 207.62 166.09 8304.74 19,931.38 1660.95 12.46

1994 7 161.95 3.24 404.87 48,584.41 1133.64 809.74 3.40

1995 12 196.86 3307.18 4724.55 1330.75 1102.39 3149.70 4724.55 157.48 15.75 15.75
3149.70 4724.55

1996 6 1070.78 5200.92 13.00 2294.52 764.84 30.59
1997 17 269.17 3.74 2.99 366.37 74.77 373.84 224.31 299.07 747.69 149.54

224.31 299.07 89.72 747.69 747.69 2243.06 7476.85

1998 25 2061.41 2945.61 1472.44 406.39 690.57 6294.66 220.87 147.24 88.35 6.63
73.62 0.88 92.03 1472.44 2.94 1774.21 544.80 663.33 92.03 295.22

2208.65 736.22 397.56 92.03 295.22

1999 18 648.28 144.06 3976.11 288.84 1440.62 216.09 132.54 100.84 10,084.33 288.84
144.06 1440.62 10.08 90.04 288.12 0.43 1584.68 432.19
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Table A3. Cont.

Year # of
Losses 1st Loss 2nd Loss 3th Loss 4th Loss 5th Loss . . .

2000 16 627.20 292.69 2090.65 139.38 39.72 11.29 1393.77 231.37 69.69 125.44
305.24 13.94 27.88 487.82 1533.15 696.88

2001 12 338.80 31.17 2.44 8131.24 17.62 27.10 13.55 40.66 5.42 9.49
4.07 2710.41

2002 16 533.65 267.49 6.67 17.34 5.34 2935.05 26.68 267.49 1334.11 26.68
400.23 933.88 2668.23 601.02 8.81 4402.57

2003 13 6521.93 32.61 5217.54 138.26 4395.78 260.88 521.75 22.17 65.22 4565.35
4.43 2739.21 260.88

2004 14 381.17 5.72 1397.61 889.39 76.23 0.22 20,328.81 79.41 13,976.06 22,869.91
10,164.40 2.67 1.27 635.28

2005 11 307.23 245.78 36.87 430.12 6.55 430.12 2740.48 19,662.63 17,573.48 301.08
122.89

2006 20 1428.61 714.31 1904.82 308.34 14.29 535.73 101.19 1190.51 8.33 19.05
119.05 18.45 39.12 29.76 113.10 357.15 29.76 178.58 107.15 428.58

2007 15 32.41 578.77 810.28 150.48 2893.85 364.63 1157.54 578.77 162.06 405.14
2315.08 347.26 347.26 694.52 347.26

2008 16 501.63 2.23 780.32 1783.58 113.70 1337.69 200.65 33,442.22 1449.16 2229.48
668.84 1114.74 1226.21 11,147.41 122.62 401.31

2009 12 185.71 1901.83 111.87 268.49 2796.80 559.36 1230.59 671.23 2237.44 1118.72
950.91 1678.08

2010 7 2586.57 2971.80 13.76 2201.33 110.07 1651.00 550.33

2011 14 2133.97 195.26 11,736.86 14,937.82 2027.28 7789.01 1066.99 3200.96 800.24 3734.45
4908.14 213.40 2133.97 8535.90

2012 22 182.94 1620.30 1881.64 219.52 181.89 627.21 2090.71 52,267.70 2.09 52.27
4181.42 209.07 522.68 5226.77 4704.09 104.54 3554.20 1463.50 1986.17 731.75

219.52 20,907.08

2013 26 1648.42 1133.29 309.08 3193.82 309.08 2163.55 22.05 515.13 927.24 2.06
25.76 25.76 2.06 334.84 180.30 309.08 1957.50 10.30 1339.34 2.06

206.05 103.03 2266.58 103.03 103.03 1133.29
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Table A3. Cont.

Year # of
Losses 1st Loss 2nd Loss 3th Loss 4th Loss 5th Loss . . .

2014 19 2.03 2027.63 101.38 3953.89 273.73 66.91 1622.11 709.67 172.35 101.38
253.45 91.24 212.90 253.45 1622.11 760.36 2534.54 2230.40 20.28

2015 28 172.14 506.31 1417.66 961.98 1012.62 162.02 1417.66 2734.06 658.20 101.26
81.01 2.03 708.83 101.26 961.98 151.89 1417.66 2.03 1721.45 101.26

273.41 141.77 911.35 607.57 405.05 151.89 3037.85 1822.71

2016 25 550.00 125.00 3900.00 2000.00 2400.00 1000.00 1100.00 300.00 1000.00 150.00
50.00 10,000.00 100.00 600.00 550.00 10,000.00 1200.00 275.00 20.00 1200.00

100.00 2300.00 1600.00 1200.00 2300.00
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