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Abstract: In the past 25 years, computer scientists and statisticians developed machine learning
algorithms capable of modeling highly nonlinear transformations and interactions of input features.
While actuaries use GLMs frequently in practice, only in the past few years have they begun study-
ing these newer algorithms to tackle insurance-related tasks. In this work, we aim to review the
applications of machine learning to the actuarial science field and present the current state of the
art in ratemaking and reserving. We first give an overview of neural networks, then briefly outline
applications of machine learning algorithms in actuarial science tasks. Finally, we summarize the
future trends of machine learning for the insurance industry.

Keywords: machine learning; ratemaking; reserving; property and casualty insurance; neural networks

1. Introduction

The use of statistical learning models has been a common practice in actuarial science
since the 1980s. The field quickly adopted linear models and generalized linear models for
ratemaking and reserving. The statistics and computer science fields continued to develop
more flexible models, outperforming linear models in several research fields. To our
knowledge and given the sparse literature on the subject, the actuarial science community
largely ignored these until the last few years. In this paper, we review nearly a hundred
articles and case studies using machine learning in property and casualty insurance.

A case study comparing machine learning models for ratemaking was conducted by
Dugas et al. (2003), who compared five classes of models: linear regression, generalized
linear models, decision trees, neural networks and support vector machines. From their
concluding remarks, we read, “We hope this paper goes a long way towards convinc-
ing actuaries to include neural networks within their set of modeling tools for ratemak-
ing.” Unfortunately, it took 15 years for this suggestion to be noticed. Recent events
have sparked a spurge in the popularity of machine learning, especially in neural net-
works. Frequently quoted reasons for this resurgence include introducing better activation
functions, datasets composed of many more images, and much more powerful GPUs
LeCun et al. (2015).

Machine learning algorithms learn patterns from data. Linear regression learns lin-
ear relationships between features and a response variable, which may be too simple to
reflect the real world. Generalized linear models (GLMs, also including logistic regression
(LR)) add a link function to express a random variable’s mean as a function of a linear
relationship between features. This addition enables the modeling of simple nonlinear
effects. For example, a logarithmic link function produces multiplicative relationships
between input features and the response variable. While these models are simple, eas-
ily explainable and have desirable statistical properties, they are often too restrictive to
learn complex effects. Property and casualty insurance (P&C) covers risks that result from
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the combination of multiple sources (causes), including behavioral causes. Rarely will a
linear relationship be enough to model complex behaviors. Nonlinear transformations
and interactions between variables could more accurately reflect reality. To include these
effects in GLMs, the statistician must create these features by hand and include them in the
model. For example, to model a 3rd degree polynomial of a variable x, we would need to
supplement x, x2 and x3 as new features. Creating these transformations and interactions
by hand (a task called feature engineering) is tedious, so only simple transformations and
interactions are usually tested by actuaries.

A first truly significant advantage of recent machine learning models simplifies the pre-
vious drawback: recent models learn nonlinear transformations and interactions between
variables from the data without manually specifying them. This is performed implicitly
with tree-based models and explicitly with neural networks.

The second advantage of machine learning is that many models exist for different
types of feature formats. For instance, convolutional neural networks may model data
where order or position is essential, like text, images, and time series of constant length.
Recurrent neural networks may model sequential data like text and time series (think
financial data, telematics trips or claim payments). Most data created today is unstruc-
tured, meaning it is hard to store in spreadsheets or other traditional support. Historical
approaches to dealing with this data have been to structure them first (actuaries aggregate
individual reserves in structured triangles). Much individual information is lost when
structuring (aggregating). Many machine learning models can take the unstructured data
directly, opening possibilities for actuaries to better understand the problems, data and
phenomenon they study.

The field of machine learning is expanding rapidly and shows great promise for use
in actuarial science. The introduction of machine learning in actuarial science is recent
and not neatly organized: when reviewing the literature, we identified independent and
exclusive contributions. In this review, we analyze and synthesize the work conducted in
this area. For each topic, we present the relevant literature and provide possible future
directions for research.

1.1. Research Methodology

We followed a structured methodology to search for contributions in this review.
A three-pronged approach was used:

1. Query research databases (Google Scholar, ProQuest, SSRN, arXiv, ResearchGate)
for a combination of machine learning keywords (machine learning, data science,
decision tree (DT), classification and regression trees (CART), neural network (NN)
convolutional neural networks (CNN), recurrent neural networks (RNN), random
forest (RF), gradient boosting (GBM/GBT/XGBoost), generalized additive model
(GAM, GAMLSS), support vector machine (SVM, SVR, SVC), principal component
analysis (PCA), autoencoders (AE), computer science) AND the subjects of interest
in our review (actuarial science, general insurance, home insurance, auto insurance,
P&C insurance, ratemaking, reserving).

2. Query actuarial journals (in no particular order, Risks, ASTIN Bulletin, Insurance:
Mathematics and Economics (IME), Scandinavian Actuarial Journal (SAJ), Variance,
North American Actuarial Journal (NAAJ), European Actuarial Journal (EAJ)).

3. For each pertinent article, we searched references therein for similar contributions.

In the introduction, we included publications classified as overviews.1 References for
books and lecture notes are also included. These overview publications are often not peer-
reviewed and do not propose new modeling approaches but provide empirical evidence or
strategic plans that set the stage for research.

1 Overviews consist of white papers, case studies, reviews, surveys and reports if published in research journals or conference proceedings,
sponsored by professional actuarial organizations or large insurance companies.
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In the main review on reserving and ratemaking, we limited the contributions to
articles in journals, conferences, and preprints. The time limit for research was August 2020.
Although we do not have a beginning time limit, papers before 2015 are mainly included
for historical context.

This review considered papers that have analyzed the topic of machine learning in
pricing or reserving. Priority was given to models that adapted machine learning models to
a specific insurance task. Due to the unique structure of reserving data, most contributions
for reserving fit this criterion. We also included papers that have analyzed the topic of
machine learning by justifying the use of a specific algorithm within a context or providing
specific conclusions or model interpretations for the selected machine learning model.
We read several papers where the authors proposed that a machine learning model could
be used to perform a certain sub-task of a more significant process. Unless the model’s
choice was justified, we did not consider these papers as part of this review.

We organize contributions with a thematic approach while using chronological order-
ing within themes.

1.2. Scope of This Review and Similar Work

In this paper, we review the literature on machine learning in P&C insurance. Due to
the early stage of research, the literature is mostly composed of white papers and case
studies. We include the works that have been useful to set the stage for research. Addi-
tionally, machine learning innovations are produced at a very high rate. This literature
review contains some non-peer-reviewed works so that it is up to date with the current
state-of-the-art.

In the past few years, efforts similar to ours include white papers, comparative studies,
surveys from industry, and lecture notes. In Table 1, we summarize the aspects treated in
each contribution.

Table 1. Overview papers on machine learning in actuarial science.

Description Reference Methodologies/Approaches

Book Frees et al. (2014a, 2014b) GLM, GAM
Comparative study Dugas et al. (2003) GLM, DT, NN, SVM
Comparative study Noll et al. (2018) GLM, DT, GBT, NN
Comparative study Diana et al. (2019) GLM, RF, GBT, NN
Comparative study Lee and Antonio (2015) GLM, GAM, NN, GBT, CART
Comparative study Kašćelan et al. (2016) SVR, Kernel LR
Comparative study Fauzan and Murfi (2018) GBT, AdaBoost, RF, NN
Comparative study Maynard et al. (2019) XGBoost, RF, LR, NN,

Lecture notes Wuthrich and Buser (2019) GLM, GAM, NN, RF, GBM, SVM
Lecture notes Denuit et al. (2019a, 2019b, 2019c) GLM, GAM, GBM, NN

Report Bothwell et al. (2016) –
Report Harej et al. (2017) NN
Report Jamal et al. (2018) RF, NN, GBM
Review Corlosquet-Habart and Janssen (2018) NN, RF, GBM, SVM
Review Albrecher et al. (2019) –
Review Grize et al. (2020) CART, NN, XGBoost
Review Śmietanka et al. (2020) –
Review Richman(2020a, 2020b) NN
Survey Rioux et al. (2019) –

White paper Bruer et al. (2015) –
White paper Panlilio et al. (2018) GLM, GBT, NN
White paper Richman et al. (2019) NN
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Recent interest in predictive modeling in actuarial science has emerged, and Frees et al.
(2014a) presented a survey of early applications of such models. The premise is encouraging:
as data becomes more abundant and machine learning models more robust, insurers should
have the capacity to capture most heterogeneity represented by insured individuals and
compute a premium that represents their individual risk in a more accurate way.

We assume the reader is familiar with most statistical learning models such as GLMs,
generalized additive models, random forests, gradient boosted machines, support vector
machines and neural networks. Otherwise the reader is directed to Friedman et al. (2001)
or Wuthrich and Buser (2019). The only model described in this review is the neural
network since we believe it is underrepresented in actuarial science. Many white or review
papers reflecting on the use of big data and machine learning in actuarial science are
available, we highlight Richman (2020a, 2020b) (with a focus on deep learning). The ASTIN
Big Data/Data Analytics working party published Bruer et al. (2015), composed of a
collection of ideas concerning the direction of data analytics and big data, which our
paper wishes to update five years later. Another work related to this paper but with
a wider (but less specific) scope is Corlosquet-Habart and Janssen (2018), who collected
high-level ideas of the use of big data in insurance. They present general machine learning
techniques, while our goal is to present machine learning applications in actuarial science.
In Grize et al. (2020), the authors present case studies on car insurance and home insurance
pricing. We highlight the 6th section of that paper, enumerating several challenges for the
insurance industry, including establishing a data-oriented company culture, continuing
education and ethical concerns, including fairness and data ownership. We expand on the
issue of fairness later in this paper.

Professional organizations have also shown great interest in machine learning and
big data by creating working parties and calls for papers. The working group, “Data
Science” of the Swiss Association of Actuaries, has recently published a series of tutorials
to offer actuaries an easy introduction to data science methods with actuarial use, see
Noll et al. (2018), Ferrario et al. (2018), Schelldorfer and Wuthrich (2019), Ferrario and
Hämmerli (2019) and others. The Casualty Actuarial Society (CAS) had a data and tech-
nology working party who published a report Bothwell et al. (2016). The Institute and
Faculty of Actuaries set up the Modelling, Analytics and Insights in Data working party
and published their conclusions in Panlilio et al. (2018). The Society of Actuaries sponsored
a survey of machine learning in insurance in Diana et al. (2019). The Society of Actuaries
and the Canadian Institute of Actuaries sponsored a survey of predictive analytics in the
Canadian life insurance industry Rioux et al. (2019). The Society of Actuaries also published
a report on harnessing the new sources of data and the skills actuaries will need to deal
with these new issues2. Actuarial research journals have also been announcing special
issues on predictive analytics, for example, Variance3 and Risks.4

1.3. Generalized Data on This Review

To provide an overall view of the research, we provide generalized data of papers
covered in the review. Figure 1 presents a breakdown of the 77 publications by year since
2015 (among the contributions in Tables 1–4). The increasing trend shows how current this
subject is. Note that 2020 data are limited to August. We observe that pricing has started
using machine learning before reserving because the research context is already familiar
with pricing using generalized linear models. Reserving, being an unstructured source of
data is less straightforward, but the number of publications using machine learning has
increased in the past two years.

2 https://www.soa.org/resources/research-reports/2019/big-data-future-actuary/.
3 http://www.variancejournal.org/issues/archives/?fa=article_list&year=2018&vol=12&issue=1.
4 Claim Models Taylor (2020), Machine Learning Asimit et al. (2020) and Finance, insurance and risk management (https://www.mdpi.com/journal/

risks/special_issues/Machine_Learning_Finance_Insurance_Risk_Management).

https://www.soa.org/resources/research-reports/2019/big-data-future-actuary/
http://www.variancejournal.org/issues/archives/?fa=article_list&year=2018&vol=12&issue=1
https://www.mdpi.com/journal/risks/special_issues/Machine_Learning_Finance_Insurance_Risk_Management
https://www.mdpi.com/journal/risks/special_issues/Machine_Learning_Finance_Insurance_Risk_Management
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Figure 1. Number of publications per year.

Figure 2 presents the number of publications by source (among the contributions in
Tables 2–4). Journals with a single paper were grouped in Other and mainly consisted
of pricing. The categories of journals included in Other are business, statistics, expert
systems, finance.
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Figure 2. Number of publications by source.

Finally, the distribution of model families is presented in Figure 3 (among the contribu-
tions in Tables 2–4). In our experience and after analyzing the best models in competitions
hosted on Kaggle, decision tree ensembles work best for structured problems, while neural
networks work best for unstructured problems. This is in line with the breakdown of mod-
els in this review: pricing uses structured data and boosting (XGBoost, GBT) is the most
popular pricing framework, while reserving uses unstructured data (due to the triangular
format of aggregated reserves or the time series format of individual reserves) and neural
networks are the most popular for reserving models. We believe that GAMs are popular
for pricing since actuaries are already familiar with generalized linear models, and GAMs
are generalizations of GLMs.

The remainder of the paper is organized as follows. In Section 2, we briefly introduce
neural networks and present two methods to estimate the parameters of a probability
distribution. Section 3 covers machine learning applications to ratemaking, while Section 4
covers their applications to reserving. Section 5 concludes the review by summarizing the
future trends and challenges using machine learning in insurance.
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Figure 3. Number of publications by model.

2. Neural Networks

In this section, we present a brief introduction to fully connected neural networks. We
also present how to estimate the parameters of random variables with this model.

Neural networks construct a function f such that f (xi, θ) = yi, i = 1, . . . , n, where
xi corresponds to the features in the model, yi is a response variable and θ are model
parameters. This function is built as a composition (aggregation) of functions (layers)

f (xi) = f3 ◦ f2 ◦ f1(xi), i = 1, . . . , n. (1)

In this case of 3 chained functions, f1 corresponds to the first layer, f2 to the second layer
and f3 to the third layer. Since we are not interested in the first or second layers’ output, we
call these hidden layers. The last layer is called the output layer since this is the output of
the classification or regression model. The number of chained functions is called the depth
of the model. Each function is nonlinear; composing multiple functions produces a highly
nonlinear model, thus having much flexibility to estimate the function f .

2.1. Basics and Notation

Let xi = (xi1, . . . , xip) ∈ Rp be the p-dimensional features for observation i inputted
into the neural network. We define the first hidden layer as

h(1)j = g(1)
(

z(1)j

)
, j = 1, . . . , J(1), (2)

with

z(1)j =
p

∑
k=1

w(1)
kj xik + b(1)j , j = 1, . . . , J(1), (3)

where J(1) is the width of the first hidden layer, g(1) is a nonlinear function called the
activation function. If the width is equal to 1 and the activation function g is the sigmoid
function

g(x) =
1

1 + e−x (4)

(sometimes noted σ(x)), we recognize the inverse link function in the logistic regression.
However, we could use the hidden layer values as input variables in another function. The
second hidden layer values are

h(2)j = g(2)
(

z(2)j

)
, j = 1, . . . , J(2), (5)

with

z(2)j =
J(2)

∑
i=1

w(2)
ij h(1)j + b(2)j , j = 1, . . . , J(2), (6)
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where J(2) is the width of the second hidden layer, and g(2) is the second activation function.
We may then repeat this process for L layers, where values of the hidden layer are

h(l)j = g(l)
(

z(l)j

)
, j = 1, . . . , J(l), 1 ≤ l < L, (7)

with

z(l)j =
J(l−1)

∑
i=1

w(l)
ij h(l−1)

j + b(l)j , j = 1, . . . , J(l), l < l ≤ L, (8)

and
oj = g(L)

(
z(L)

j

)
, j = 1, . . . , J(L), (9)

where J(L) is the output size. In Figure 4, we present the graphical diagram for a neural
network with two hidden layers. Here, J(1) = J(2) which is often the case in practice
but does not need to be. Usually, J(L) = 1 for regression, such that the model predicts a
single value and g(L) can be interpreted as the GLM link function. In other cases, notably
when the neural network predicts the parameters of a probability distribution, J(L) will
correspond to the number of parameters that define the random variable. We will return to
this in Section 2.2.
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g(x) = max(0, x). (11)
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Along with the sigmoid function defined in (4), popular choices of activation (nonlin-
earity) functions are the hyperbolic tangent (tanh), given by

g(x) = tanh(x) = 2σ(2x)− 1 =
ex − e−x

ex + e−x (10)

and the Rectified Linear Unit (ReLU), defined by

g(x) = max(0, x). (11)

We briefly reviewed neural networks in this section, but interested readers may refer
to Goodfellow et al. (2016) for a comprehensive overview of the field.

Neural networks may be used in regression tasks and classification tasks. For regres-
sion, there is a single output value representing the prediction. To better illustrate this idea,
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we present the link between neural networks and GLMs. The prediction formula for a
GLM is

ŷi = E[Yi] = g−1

(
p

∑
j=1

xijβ j + β0

)
. (12)

A neural network with no hidden layer and one output neuron corresponds to a GLM.
This process is shown in Figure 5. In neural network graph notation, each node (other than
in the input layer) implicitly contains an activation function, omitting to draw a node for g.
Each arrow between nodes has a weight, and the bias is also assumed.
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Therefore, a neural network with many hidden layers may be viewed as stacked GLMs.
Each hidden layer adds non-linearity and can learn complex functions and non-linear interactions
between input values. We may interpret the output layer as a GLM on transformed input variables,
where the model learns the necessary transformations, performing automatic feature engineering.

A significant drawback of neural networks is that they are black boxes and offer minimal
theoretical guarantees. In order to perform risk management, we also need a probability distribution.
The next subsection presents how to estimate parameters of a probability distribution with
neural networks.

2.2. Estimating Probability Distribution Parameters with Neural Networks

Most data scientists fitting neural networks for regression use a mean squared error loss function,
and the output of the network is the expected value of the response variable. The two drawbacks to
this approach are that (1) the mean squared error assumes a normal distribution, and (2) there is no
way to quantify variability. Instead of directly predicting the outcome, we propose estimating the
random variable parameters directly, surmounting these drawbacks.

Let us first consider a discrete response variable and assume that the Poisson distribution is
appropriate, as in Fallah et al. (2009). Let n represent the number of observations in the training dataset.
The output of the neural network is the intensity parameter λi, i = 1, . . . , n. The exponential function
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Goodfellow et al. (2016) for a comprehensive overview of the field.
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between neural networks and GLMs. The prediction formula for a GLM is

ŷi = E[Yi] = g−1

(
p

∑
j=1

xijβ j + β0

)
. (12)

A neural network with no hidden layer and one output neuron corresponds to a GLM. This
process is shown in Figure 5. In neural network graph notation, each node (other than in the input
layer) implicitly contains an activation function, omitting to draw a node for g. Each arrow between
nodes has a weight, and the bias is also assumed.
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Figure 5. Visualizing a GLM in a neural network graph diagram. (a) Graph in GLM notation. (b) Graph
in NN notation.

Therefore, a neural network with many hidden layers may be viewed as stacked GLMs.
Each hidden layer adds non-linearity and can learn complex functions and non-linear interactions
between input values. We may interpret the output layer as a GLM on transformed input variables,
where the model learns the necessary transformations, performing automatic feature engineering.
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Therefore, a neural network with many hidden layers may be viewed as stacked
GLMs. Each hidden layer adds nonlinearity and can learn complex functions and non-
linear interactions between input values. We may interpret the output layer as a GLM
on transformed input variables, where the model learns the necessary transformations,
performing automatic feature engineering.

A significant drawback of neural networks is that they are black boxes and offer
minimal theoretical guarantees. In order to perform risk management, we also need a
probability distribution. The next subsection presents how to estimate parameters of a
probability distribution with neural networks.

2.2. Estimating Probability Distribution Parameters with Neural Networks

Most data scientists fitting neural networks for regression use a mean squared error
loss function, and the output of the network is the expected value of the response variable.
The two drawbacks to this approach are that (1) the mean squared error assumes a normal
distribution, and (2) there is no way to quantify variability. Instead of directly predicting
the outcome, we propose estimating the random variable parameters directly, surmounting
these drawbacks.

Let us first consider a discrete response variable and assume that the Poisson distribu-
tion is appropriate, as in Fallah et al. (2009). Let n represent the number of observations
in the training dataset. The output of the neural network is the intensity parameter
λi, i = 1, . . . , n. The exponential function is the logical choice for the final activation func-
tion g(L) such that the intensity parameter is positive. The loss function is the negative
log-likelihood, proportional to

−
n

∑
i=1

yi ln λi − λi.

See Figure 6a for a graphical representation of a network with one hidden layer.
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Figure 6. Examples of neural network architectures for EF distributions. (a) An approach for non-linear
Poisson regression. (b) The approach proposed by Denuit et al. (2019a).

Another method to estimate parameters of exponential family (EF) distributions with neural
networks is presented in Denuit et al. (2019a). Exponential family distributions have a probability
density function of the form

fY(yi|xi) = exp
(

yiθi − a(θi)

φ
+ c(yi, φ)

)
, i = 1, . . . , n (13)

with g(µi) = a′(θi) = x′iβ. The mean and variance are respectively given by

E[Yi] = a′(θi)

and
Var(Yi) = φa′′(θi).

The loss function is the unscaled deviance. In this approach, the neural network is designed to
estimate only the mean parameter ŷi = a′(θi), see Figure 6b. For distributions with two parameters
(gamma, normal), we obtain the second parameter using the method of moments method with the
χ2 statistic:

φ̂ =
1

n−m

n

∑
i=1

(yi − ŷi)
2

a′′(θi)
,

where n is the number of observations used to train the model, and m is the number of parameters
in the model. We note that neural networks often have a very high number of parameters, so the
denominator n−m may be large (or negative if n < m).

The difference between models in Figure 6a,b is that the first model estimates the parameter of the
Poisson distribution, while the second model predicts the mean of the random variable. We note that
due to the non-convexity of loss functions in neural networks, the solutions will be different unless the
predicted parameter corresponds to the random variable’s mean.
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Another method to estimate parameters of exponential family (EF) distributions with
neural networks is presented in Denuit et al. (2019a). Exponential family distributions have
a probability density function of the form

fY(yi|xi) = exp
(

yiθi − a(θi)

φ
+ c(yi, φ)

)
, i = 1, . . . , n (13)

with g(µi) = a′(θi) = x′iβ. The mean and variance are respectively given by

E[Yi] = a′(θi)

and
Var(Yi) = φa′′(θi).

The loss function is the unscaled deviance. In this approach, the neural network is
designed to estimate only the mean parameter ŷi = a′(θi), see Figure 6b. For distributions
with two parameters (gamma, normal), we obtain the second parameter using the method
of moments method with the χ2 statistic:

φ̂ =
1

n−m

n

∑
i=1

(yi − ŷi)
2

a′′(θi)
,

where n is the number of observations used to train the model, and m is the number of
parameters in the model. We note that neural networks often have a high number of
parameters, so the denominator n−m may be large (or negative if n < m).

The difference between models in Figure 6a,b is that the first model estimates the
parameter of the Poisson distribution, while the second model predicts the mean of the
random variable. We note that due to the nonconvexity of loss functions in neural networks,
the solutions will be different unless the predicted parameter corresponds to the random
variable’s mean.

For distributions outside the exponential family or when the number of parameters in
the neural network is high, another technique is preferable to estimate distribution param-
eters. We generalize the neural network presented in Fallah et al. (2009). In this approach,
the output of the neural network corresponds to the parameters of the distribution, and
the loss function is the negative log-likelihood (NLL) of observations

−
n

∑
i=1

ln f (yi|xi).
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In Figure 7a, we present a negative binomial neural network, where the output of the
network is the two parameters of the model. The r parameter must be positive, so this
parameter’s activation function could be the exponential function. The p parameter has a
[0, 1] domain so that we can use a sigmoid activation function. The Tweedie distribution,
important in actuarial science, can also be trained using a neural network. The output
of the network corresponds to the distribution’s three parameters, see Figure 7b. Since
the domain for every parameter is the positive real numbers, we can use the exponential
activation function for each output neuron.
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3. Pricing with Machine Learning

This section provides an overview of machine learning techniques for actuarial a priori pricing
(also referred to as ratemaking or setting tariffs). The objective in pricing is to predict future costs
associated with a new customer’s insurance contract with no claim history information for this
customer. Since GLMs are current practice, we do not cover contributions using this method. We first
present pricing with conventional features, followed by neural pricing. These contributions are
summarized in Table 2. Then, we present a brief overview of telematics pricing with machine learning
and conclude with an outlook on the pricing literature. Contributions for conventional pricing and
telematics pricing usually apply the methods to auto insurance datasets.

3.1. Conventional Pricing

Generalized linear models aim to establish a relationship between variables and the response by
combining a link function and a response distribution. This relationship is determined by the GLM
score, the linear relationship between variables and regression weights. The linear relationship may
be too restrictive to model the response distribution adequately. GAMs and neural networks offer
solutions by adding flexibility to the score function. Another popular approach for pricing is using
tree-based methods, which often surpass other algorithms for regression tasks. Since a priori pricing is
a straightforward regression task, actuaries may use most regression models like GLMs, tree-based
models and neural networks.
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3. Pricing with Machine Learning

This section provides an overview of machine learning techniques for actuarial a
priori pricing (also referred to as ratemaking or setting tariffs). The objective in pricing
is to predict future costs associated with a new customer’s insurance contract with no
claim history information for this customer. Since GLMs are current practice, we do not
cover contributions using this method. We first present pricing with conventional features,
followed by neural pricing. These contributions are summarized in Table 2. Then, we
present a brief overview of telematics pricing with machine learning and conclude with an
outlook on the pricing literature. Contributions for conventional pricing and telematics
pricing usually apply the methods to auto insurance datasets.

Table 2. Summary of contributions in pricing.

Reference Models

Christmann (2004) LR, SVR
Denuit and Lang (2004) GAM

Paglia and Phelippe-Guinvarc’h (2011) CART
Guelman (2012) GBT
Liu et al. (2014) SVC

Klein et al. (2014) GAMLSS
Sakthivel and Rajitha (2017) NN

Henckaerts et al. (2018) GAMLSS
Quan and Valdez (2018) DT

Yang et al. (2018) GBT
Lee and Lin (2018) Boosting
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Table 2. Cont.

Reference Models

Yang et al. (2019) NN
Wüthrich and Merz (2019) GLM, NN

Fontaine et al. (2019) GLM
Diao and Weng (2019) CART

Wüthrich (2019) NN
So et al. (2020) Adaboost

Zhou et al. (2020) GBT
Henckaerts et al. (2020) GBT

3.1. Conventional Pricing

Generalized linear models aim to establish a relationship between variables and the
response by combining a link function and a response distribution. This relationship is
determined by the GLM score, the linear relationship between variables and regression
weights. The linear relationship may be too restrictive to model the response distribution
adequately. GAMs and neural networks offer solutions by adding flexibility to the score
function. Another popular approach for pricing is using tree-based methods, which often
surpass other algorithms for regression tasks. Since a priori pricing is a straightforward
regression task, actuaries may use most regression models like GLMs, tree-based models
and neural networks.

We start this section by presenting the frequency models. In Christmann (2004), the
probability of filing m claims is modeled by

Pr(M = m|xi) =

{
1− Pr(M > 0|xi), m = 0
Pr(M = m|M > 0|xi)Pr(M > 0|xi), m > 0,

where Pr(M > 0) is predicted with a logistic regression and Pr(M = m|M > 0) is modeled
with a support vector regressor.

Another method to perform frequency modeling is by considering frequency not as a
discrete random variable but as a class to predict. This approach is used in Liu et al. (2014),
using the support vector classifier. In a similar spirit, So et al. (2020) presented a multiclass
Adaboost algorithm to classify the number of claims filed in a period. This new algorithm
is capable of handling class imbalance (a large proportion of zero claims). We note that
these approaches treat a regression task as a classification task, classifying discrete counts
instead of a discrete probability distribution. This approach is rare in practice, but see
Chapter 4 of Deng (1998) or Salman and Kecman (2012) for examples where this technique
works well.

The main disadvantage of the three frequency models is that predictions are determin-
istic, meaning that a single value is predicted instead of a distribution. This approach is
not frequently used in actuarial science since a distribution is useful for diagnosing model
accuracy and calculating other actuarial metrics.

The remaining papers in this subsection deal with total costs associated with an insur-
ance contract. Generalized additive models in insurance academia were first studied by
Denuit and Lang (2004) and revisited with GAMLSS in Klein et al. (2014). This model was
also used in actuarial ratemaking by Henckaerts et al. (2018), who employed generalized
additive models to discover nonlinear relationships in continuous and spatial risk factors.
Then, these flexible functions are binned into categorical variables and used as a variable in
a GLM. GAMs also appear in telematics pricing in Boucher et al. (2017), who explored the
nonlinear relationship between distance driven or driving duration and claim frequency.

A modification of the regression tree is presented in Paglia and Phelippe-Guinvarc’h
(2011) to adjust for exposures different than one. Instead of dividing total claims by the
exposure to return to the unit exposure base, the offset is incorporated in the deviance
function, which served as a splitting criterion.
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Gradient boosting is applied to prediction of at-fault accident loss costs in Guelman
(2012). Multivariate decision trees are applied in Quan and Valdez (2018) to model the
joint distribution of response variables in multiple coverages. Extensions to random
forests and gradient boosting are also presented. The TDboost algorithm is presented in
Yang et al. (2018). This algorithm uses gradient boosting to estimate the parameters of a
Tweedie distribution. As opposed to the XGBoost framework, explicit update formulas
are established from the profile likelihood. Important interactions are identified using
partial dependence plots. A zero-inflated variant is presented in Zhou et al. (2020). Then,
Henckaerts et al. (2020) compared GLM, GAM, trees and gradient boosting machine to
predict future costs associated with an insurance contract. Many methods of variable
importance and interpretability are applied, a crucial step in insurance pricing. To extract
interactions, they applied Friedman et al. (2008).

In Lee and Lin (2018), a boosting algorithm is presented. The original gradient
boosting is based on three actions: a basis, a regression and an adjustment. The delta
boosting machine is proposed, combining the regression and adjustment steps. Therefore,
the algorithm is said to be computationally efficient. Algorithms for distributions in the
Tweedie family are presented, and the model is applied to car insurance claims data.

Then, Diao and Weng (2019) presented the regression tree credibility model, a tree-
based method for pricing with credibility theory. The classic Bühlmann–Straub credibility
premium is applied within each tree terminal node. To our knowledge, this is the only
contribution using machine learning for a posteriori pricing.

A model capable of performing variable selection, such as elastic-net, for multiple
response variables with a Tweedie distribution, is presented in Fontaine et al. (2019).
A multitask regression model selects variables useful for many regression tasks, so useless
variables are less likely to be retained. The proposed algorithm updates weights via the
proximal gradient descent scheme to update model coefficients.

Mixture of experts or model averaging are other flexible approaches to insurance
pricing. Since these methods are not machine learning but statistical, we do not investigate
further but highlight Fung et al. (2019a, 2019b); Hu et al. (2018, 2019); Jurek and Zakrzewska
(2008); Počuča et al. (2020); Richman and V. Wüthrich (2020); Ye et al. (2018). See Fung et al.
(2020) for an application in reserving.

3.2. Neural Pricing

Early attempts of applying neural networks for insurance pricing include Lowe and
Pryor (1996), Pelessoni and Picech (1998), Speights et al. (1999) and Francis (2001). Neural
networks are also used in Chapados et al. (2002), who compared statistical learning models
for estimating the pure premium. They also compared support vector regression but
concluded that their predictive performance is not good since data are asymmetric, and
the model must be overfitted to learn something useful. A fairness criterion is then defined
to ensure the pure premium does not systematically discriminate against a specific group
in the population.

A neural network is used to predict a posteriori frequency in Sakthivel and Rajitha (2017).
The model input is historical claim frequency for a contract, along with the credibility factor
and estimated annual claims frequency calculated using Bayesian credibility theory. The
model output is the estimated annual claims frequency for the following year.

The adversarial variational Bayes method is used to model a Tweedie distribution
with mixed models in Yang et al. (2019). Parameters of this distribution are optimized
using adversarial variational Bayes, minimizing the Kullback–Leibler divergence with a
variance reduction technique to stabilize gradients.

An interesting model proposition is the Combined Actuarial Neural Net (CANN)
approach of Wuthrich (2019); Wüthrich and Merz (2019), where a neural network is used
to model nonlinear relationships that were not captured by a simpler model. An example
CANN model could be starting with a GLM to estimate

gGLM(E[Y]) = Xβ. (14)
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Then, the GLM coefficients β̂ are estimated. This task is repeated with a neural network
to estimate

gNN(E[Y]) = bL + WLh[L−1]. (15)

Finally, the two regression functions are added

gCANN(E[Y]) = Xβ + b[L] + W [L]h[L−1]. (16)

We can interpret the GLM as a skip connection to the fully-connected neural network.
In reality, the GLM predicts the pure premium, and the neural network adjusts for nonlinear
transformations and interactions that the GLM could not capture. We can therefore interpret
the original GLM parameters, partially explaining the final prediction.

While neural network predictions may be accurate at the policyholder level, it may
not be at the portfolio level. This goes against an actuarial pricing principle Casualty
Actuarial Society, and Committee on Ratemaking Principles (1988), which states, “A rate
provides for all costs associated with the transfer of risk,” meaning that equity among
all insured in the portfolio is maintained. Wüthrich (2019) proposed two methods that
address this issue. The first uses a GLM step to the gradient descent method’s early stopped
solution because GLMs are unbiased at the portfolio level. The other is to apply a penalty
term in the loss function.

Machine learning models require large datasets. Publicly available datasets for insur-
ance pricing are few, making research with complex models difficult. Generating synthetic
datasets keeping the risk characteristics but removing confidential information is therefore
important. Kuo (2019b) presented a model based on CTGAN to synthesize tabular data,
and Côté et al. (2020) compared additional approaches.

3.3. Telematics Pricing

Telematics data is one of the first unstructured data sources to be extensively used in
insurance pricing since it provides a better exposure base. This data source enables Pay-As-
You-Drive insurance, where the premium is a multiple of the vehicle (in the distance or
duration). A more recent innovation is the Pay-how-you-drive insurance model, where
surcharge or discounts are applied based on driving behavior. An early survey of telematics
use in insurance companies is presented in Yao and Katz (2013).

Telematics data are highly voluminous and unstructured, two situations where flexible
algorithms have high predictive performance. For this reason, many models for telematics
pricing are based on machine learning. Table 3 presents a summary of telematics models
using machine learning.

Table 3. Summary of contributions in telematics pricing.

Reference Models

Boucher et al. (2017) GAM
Wüthrich (2017) k-means

Gao and Wüthrich (2018) PCA, AE
Gao et al. (2018) GAM
Gao et al. (2019) GAM

Pesantez-Narvaez et al. (2019) LR, GBT
Gao and Wüthrich (2019) CNN

Narwani et al. (2020) LR, GBT, k-means
Gao et al. (2020) CNN

3.3.1. Pay-as-You-Drive

A pure premium should represent the expected loss for an insurance contract to an
exposure. An example of such exposure could be the value of the insured good, since if the
value of materials doubles, the insurance contract should, in principle, also double. When
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pricing a contract, we must define an exposure base. According to Werner and Modlin (2010),
a good exposure base should

• be proportional to the expected loss;
• be practical (objective and inexpensive to obtain and verify);
• consider preexisting exposure base established within the industry.

Indeed, car insurance has, for a long time, been based on car-years insured. While
reported kilometers-driven is often used as a rating variable, it is not always used as an
exposure base since it is expensive to verify (and simple for the insured to provide false
information). The use of telematics data to investigate alternative exposure bases was
done in Boucher et al. (2013), who showed that the relationship between annual driven
kilometers and the frequency of claims was not linear, concluding there is a reduced risk of
accidents as a result of experience. The relationship has been modeled individually with the
use of GAMs in Boucher et al. (2017), so these variables may not be used as exposure bases
(offsets, in a linear or additive model). However, they must be considered a rating variable
to capture the pure premium relationship fully. Then, Verbelen et al. (2018) combines
policy information with telematics information with a GAM model and the models which
include both types of data have a better regression performance on most criteria. Telematics
data have also enabled different statistical distribution assumptions based on the usage of
the vehicle. For example, Ayuso et al. (2014) analyzed the time between frequency claims
based on distance.

3.3.2. Pay-How-You-Drive

In traditional non-life insurance ratemaking, an issue with providing an adequate
premium for the risk is that losses associated with contracts may take time to manifest.
For example, a hazardous driver may be fortunate and have no accident, while a skilled
and alert diver may experience bad luck and get involved in an accident rapidly. It was
impossible to differentiate between the driving styles and many years of experience (along
with credibility theory), leading an actuary to price a contract for the risk accurately. The
use of variables describing the driving context (for instance, road type or acceleration
tendencies) is a groundbreaking solution since this data may rapidly provide insights on
driving behavior. Thus, individuals with the same classical actuarial attributes may be
priced differently according to the insured driving style through the data collected from
telematics devices Weidner et al. (2017).

We are currently in a stage where the velocity and volume of telematics data are
hard to manage since actuaries are not historically equipped with the computer science
skills associated with dealing with such data. Additionally, the little available data are
sometimes not accompanied by claims data, meaning it is challenging to validate if a
driving style is riskier or safer. For example, one could think that an individual with hard
breaking tendencies represents an increased probability of an accident. However, this
individual may have higher reflexes enabling him to make such adjustments rapidly. To
our knowledge, some insurance companies consider hard breaks as accidents. The reason
is that hard breaks occur during accidents or near-misses, so any insured performing a
hard break had or almost had an accident. This hypothesis increases accident frequency in
the dataset, potentially leading to better model performance. Since the study of telematics
data is in its infancy, such expert knowledge hypotheses must be made.

However, there have been some efforts to summarize driving behaviors in the actuarial
literature. Weidner et al. (2016) presents a method to build a driving score based on pattern
recognition and Fourier analysis. Then, a solution to the small number of observations
was proposed by Weidner et al. (2017), who used a Random Waypoint Principle model
to generate stochastic simulations of trip data, under constraints, such as speed limits,
acceleration and brake performance. A clustering analysis based on medians of speed,
acceleration and deceleration is performed to create classes of trips. Then, the few trip data
available can be associated with each class.
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Another approach to summarize driving styles was proposed by Wüthrich (2017) through
the use of velocity–acceleration heatmaps. These heatmaps are generated for different
speed buckets to represent the velocity and acceleration tendencies of drivers. Then, the
k-means algorithm is applied to create similar clusters of drivers. Note that contrarily to
Weidner et al. (2017), these heatmaps are generated by drivers and not by trips, meaning a
change in drivers is an issue with this approach. This idea is followed by Gao and Wüthrich
(2018), who use Principal Component Analysis and autoencoders to project the velocity-
acceleration heatmaps in a two-dimensional vector that can be used as part of rating variables.

In Pesantez-Narvaez et al. (2019), logistic regression is compared to gradient boost-
ing to predict the occurrence of a claim using telematics data. They conclude that the
higher training difficulty associated with XGBoost makes this approach less attractive than
logistic regression.

A study by Gao and Wüthrich (2019) examined the use of convolution neural networks
in classifying a driver based on the telematics data (speed, angle and acceleration) of short
trips (180 s). Classification results were encouraging, but only three drivers could be
modeled at once due to the small volume of data.

As previously stated, clustering or classification models are hard to evaluate since
researchers may have access to telematics data but not the claims data associated with
these trips. Therefore, it is up to the actuaries’ domain knowledge to adapt the insurance
premium based on identified clusters’ characteristics. Additionally, the models proposed
do not contextualize the data, meaning the surrounding conditions that caused the driving
patterns (speed limits, weather, traffic, road conditions) are not used when classifying the
drivers. More recently, Gao et al. (2018) and Gao et al. (2019) proposed a GAM Poisson
regression model that provides early evidence of the explanatory power of telematics
driving data. Then, Gao et al. (2020) provided empirical evidence that using velocity-
acceleration heatmaps in convolutional neural networks improves pricing.

The clustering and creation of driver scores is a branch of transportation research
(see Castignani et al. (2015); Chen and Chen (2019); Ferreira et al. (2017); Wang et al. (2020)).
We highlight Narwani et al. (2020), who presented a driver score based on a classification
of the presence of claim and k-means clustering with similar drivers.

3.4. Outlook on Pricing

Telematics pricing is a new problem in actuarial science since data are only available
recently. As the industry begins to share data with researchers, there is enormous potential
for this technology in the pricing literature. There is a gap in the literature for feature
engineering with pay-how-you-drive models. In our conversations with insurers and after
surveying the literature, expert priors (like velocity-acceleration heatmaps or number of
hard breaks) are the preferred methods used in practice and research to model telematics
trips. We believe that recurrent neural networks will provide more insights into driving
patterns but have not found any literature on the subject. Actuarial science researchers
could also look at autonomous driving models — sometimes based on deep reinforcement
learning — to model driver behavior.

Finally, actuaries must be conscious of the debate on insurance fairness in science and
technology studies (STS), political science and sociology of markets. Insurance is becoming
individualized or personalized due to increased predictive abilities (machine learning) and
more data (telematics, wearable technology and smartphone sensors). This questions the
role of insurance in society, transitioning from pooling risks (wealth redistribution) to the
transfer of individual risks by paying a premium proportional to the actual hazard. See
Barry (2019); Keller et al. (2018); Frezal and Barry (2019); Barry and Charpentier (2020);
Cevolini and Esposito (2020) for an overview of this debate.

4. Reserving with Machine Learning

This section reviews the contributions to the actuarial science literature that use
machine learning for reserving. While the link between regression and a priori ratemaking
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is straightforward, it is not for reserving. Thus, actuaries must modify the machine learning
algorithm to fit reserving data or modify reserving data to fit structured datasets for
regression. Reserving is a time series forecasting problem, see Benidis et al. (2020); Lim and
Zohren (2020) for recent reviews on forecasting with machine learning. We say that the total
reserve (Tot Res) is the sum of the reported but not settled (RBNS) reserve and the incurred
but not reported (IBNR) reserve. We also note that the overdispersed Poisson model (ODP)
and chain ladder (CL) can model total, RBNS or IBNR. An overview of contributions using
machine learning for reserving with aggregate (Agg) and individual (Ind) data is presented
in Table 4.

Table 4. Summary of contributions in reserving.

Description Reference Approaches Type

ODP England and Verrall (2001) GAM Agg
ODP Spedicato et al. (2014) GAMLSS Agg
IBNR Lopes et al. (2012) SVR Agg

CL Wüthrich (2018b) NN Agg
Tot Res Kuo (2019a) RNN Agg

ODP Gabrielli et al. (2019) NN Agg
ODP Gabrielli (2020b) NN Agg

— Mulquiney (2006) NN Ind
Tot Res Wüthrich (2018a) CART Ind
RBNS Llaguno et al. (2017) — Ind
RBNS Lopez et al. (2016) CART Ind

Tot Res Baudry and Robert (2019) CART Ind
Simulation Gabrielli and Wüthrich (2018) NN Ind

Tot Res Pigeon and Duval (2019) GBT Ind
RBNS Lopez et al. (2019) CART Ind
RBNS Kuo (2020) RNN Ind
RBNS Lopez and Milhaud (2020) CART Ind
RBNS Gabrielli (2020a) NN Ind
RBNS De Felice and Moriconi (2019) CART Ind

CL Carrato and Visintin (2019) k-means Ind
Tot Res Delong et al. (2020) NN Ind
RBNS Crevecoeur and Antonio (2020) GBM Ind
RBNS Lopez and Milhaud (2020) CART Ind

4.1. Aggregate Reserving

Reserving data is unstructured: since the number of payments and the time until a
claim closes are unknown at the time of reporting (or at a certain valuation date), we may
not store individual claims neatly in spreadsheets. For this reason, actuaries classically
aggregate claim information in two ways:

1. aggregation of multiple claims at the portfolio level or other grouping types if the
actuary believes that development patterns are heterogeneous within the portfolio;

2. aggregation of continuous-time into interval time, usually yearly, quarterly or monthly.

The usual aggregate reserve strategy is to estimate loss development factors (LDFs)
to project the reserve at a particular period to the next period. The LDFs are determined
as averages of age-to-age factors of observations split in accident year/development year
triangles.

Let Ci,j(x) be the incremental claims amount for accident year i = 1, . . . , I and devel-
opment year j = 1, . . . , J, where x are optional regression parameters. Let f j be the loss
development factor for period j. The Mack chain ladder assumption is

E[Ci,j(x)] = f j−1(x)Ci,j−1(x).
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Many nonparametric models for aggregate reserving have been proposed, such as
GAMs England and Verrall (2001). The incremental paid claims Ci,j is modelled with a
GAM, where

E[Ci,j] = mi,j, Var(Ci,j) = ϕmρ
i,j,

and
ln mi,j = ui,j + δt + c + sθi (i) + sθj(j) + sθj(ln j),

where ui,j are offsets, δt represents an inflation term. Smooth spline terms are sθi (i) for
accident years and sθj(j) + sθj(ln j) for development years. An extension to GAMLSS
(with distribution other than the one-parameter exponential family) is then presented in
Spedicato et al. (2014).

In Lopes et al. (2012), a two-stage procedure is proposed for estimating IBNR values.
The first step consists of calculating chain ladder estimates of IBNR values, and a section
step applies SVR and Gaussian process regression to residuals of the first model.

4.2. Neural Aggregate Reserving

An extension of chain ladder reserving is offered in Wüthrich (2018b), who models
development factors ln f j−1(x) with a shallow neural network. The loss function is a
weighted square loss (with positive observed claims) given by

Lj =
1

σj−1

I−j

∑
i=1

∑
x:Ci,j−1(x)>0

Ci,j−1(x)

(
Ci,j(x)

Ci,j−1(x)
− f j−1(x)

)2

, j = 1, . . . , J.

When ignoring attributes from x, the loss function becomes the Mack CL model. In
Gabrielli et al. (2019), the cross-classified over-dispersed Poisson reserving model is gen-
eralized to neural networks. This enables more flexibility, including the joint modeling
of claims triangles across different lines of business. This idea is expanded to the joint
development of claim counts and claim amounts in Gabrielli (2020b). A more general ODP
model is presented in Lindholm et al. (2020), which uses regression functions like GBM
and NN.

Recurrent neural networks are neural networks capable of dealing with sequential data.
Therefore, they are well suited for reserving tasks. This model is examined in Kuo (2019a)
for aggregate triangles. Aggregate loss experience data for subsequent is fed to a recurrent
neural network layer. Company information is fed to an embedding layer.5 Both layers are
combined with fully-connected layers to predict claims outstanding and paid loss.

4.3. Individual Reserving

With individual reserving, actuaries may observe individual claims (removing the
aggregation within the portfolio). This is also called triangle-free reserving or granular
reserving. The advantage is twofold. First, the reserving model may depend on the claim’s
characteristics that may impact its development pattern, for instance, line of business,
injury part, and age of the claimant. Second, actuaries may model individual events within
a claim. For instance, in discrete time individual reserving, predicted values may include

• claim status (open, close, reopen), a classification task;
• activity status (presence of claim or change in case reserve indicator during the period),

a classification task;
• individual payment value or change in case reserve value conditional on the presence

of claim during the period, a regression task;
• involvement of lawyers or doctors, a classification task.

Some individual reserving models also deal with claims continuously (removing the
aggregation within periods). Since individual reserving is useful for following individ-

5 Embeddings are vectorial representations of data created with deep neural networks to compress high dimensional data, categorical data or
unstructured data.



Risks 2021, 9, 4 18 of 26

ual claims, these models usually focus on RBNS claims and use aggregate methods for
IBNR claims.

Machine learning methods have rapidly become a methodology of choice for the
analysis of individual reserves. The use of neural networks for individual reserving dates
back to Mulquiney (2006), extending the previous state-of-the-art GLM reserving models.
See Taylor (2019) for a recent review of reserving models.

Individual reserving brings up new challenges for actuaries. First, this approach
requires dealing with two types of data. In Taylor et al. (2008), the notion of static variables
and dynamic variables is brought up. Static variables remain constant over the claim
settlement process, while dynamic variables may change over time. For example, the
gender of the client will most likely remain the same, while the client’s age will evolve for
claims spanning over one year. Another example of dynamic variables is the claims paid
and a variable indicating if a claim is open or closed. Reserving models need to deal with
dynamic variables since we try to model payments over time, and variables often change
in time. The paper goes on to propose a few parametric individual loss reserving models.

Public individual claims data may be difficult to obtain for researchers. In this situa-
tion, simulation offers a great way to generate anonymized individual claims histories and
attributes. Such a model is offered in Gabrielli and Wüthrich (2018)6, who train a neural
network to predict individual claim histories based on a risk portfolio. For every claim,
we have individual characteristics that models may use as input variables. A sequence of
claim amounts and closed/open status for each claim is available for every development
year (for a maximum of 12 years). This simulation machine produces observations at the
individual level but time-aggregated to periods of one year (for this reason, continuous
models are not appropriate for this type of data). Many of the contributions of this section
use this simulation machine as applications of individual reserving models.

A flexible method for applying machine learning techniques in individual claims
reserving is proposed in Wüthrich (2018a). Only regression trees are considered in the
paper, and only the number of payments is modelled, although actuaries may scale the
approach to other applications. Regression trees are used to model a claim indicator
and a close indicator, using variables from initial claim information and past payments.
Llaguno et al. (2017) expand this model by removing the reliance on dynamic variables with
clustering, and De Felice and Moriconi (2019) consider frequency and severity components.

One problem in reserving is that claims that take more time to develop are usually
more expensive (and short settling times are usually associated with smaller claim amounts).
When building a reserving model with a particular valuation date, we include a higher
proportion of smaller claims than reality. The complete claims history of short settling times
is included in the dataset, but only partial claim histories of longer developing claims. This
is a problem of right censoring, and Lopez et al. (2016) presents a modified weighted CART
algorithm to take this into account. Lopez et al. (2019) use weighted CART as an extension
of Wüthrich (2018a). See also Lopez and Milhaud (2020) for an alternate approach to loss
reserving using the weighted CART.

The gradient boosting algorithm is applied in Pigeon and Duval (2019), using indi-
vidual reserving claim histories to predict the total payment. The paper provides multiple
approaches for dealing with incomplete (undeveloped) data. Since complete claim histo-
ries are needed to train the model, underdeveloped claims are completed using aggregate
techniques such as Mack or Poisson GLM. Bootstrap is applied to complete triangles, so
the variance of final reserves isn’t underestimated. Variables are used in the model, such as
age, but not in the gradient boosted tree, only as variables in the Poisson GLM. The case
study in this paper is useful for practitioners since many hypotheses are compared and
validated.

A creative approach for individual claims reserving was proposed by Baudry and
Robert (2019). Although machine learning contributions are not the focus of the paper, the

6 See also https://github.com/kasaai/simulationmachine for a user-friendly package.

https://github.com/kasaai/simulationmachine
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train and test database building provides future researchers with the opportunity to deal
with individual claims data with many kinds of machine learning models.

Another approach to reserving is clustering observations into homogeneous groups.
Carrato and Visintin (2019) explains how to use the chain ladder method for individual
data. They then propose clustering observations based on static variables like the line of
business and dynamic variables like payment sequence. Then, they construct a linear chain
ladder model for each cluster.

Finally, we highlight Crevecoeur and Antonio (2020), who present a hierarchical
framework for working with individual reserves. The likelihood function for RBNS is
decomposed into temporal dimensions (chronological events) and event dimensions (called
update vectors, composed of distributions for a payment indicator, a closed indicator and
a payment size). The framework allows for any modeling technique at each layer, so
actuaries may use machine learning algorithms to model the three event types (the paper
uses GLMs and GBMs). Additionally, many aggregate reserving models can be restated as
hierarchical reserving models.

4.4. Neural Individual Reserving

The simulation machine is used in Gabrielli et al. (2019). When only one aggregated
claims triangle is available, a machine learning algorithm cannot be trained. To create many
triangles, individual claim histories are split in a train and test dataset, and aggregated
triangles are build using the subset of claim histories. They then apply a neural network to
predict the total reserve.

An individual claim reserving model is presented in Delong et al. (2020). The reserving
task is broken down into six steps, and a neural network is trained for each task: modeling
IBNR counts, payment status process of RBNS claims, an indicator of RBNS recovery
claims, expected claim and recovery payments of RBNS claims, an indicator of IBNR with
no payment, and claim amounts of nonzero IBNR claims.

In Gabrielli (2020a), the RBNS prediction task is separated into sub-networks. For each
possible development period, a sub-network predicts the type of payment (classification
task) and the mean parameter of a log-normal distribution for the amount of payment. This
network leverages parameter sharing, a principle of multitask learning that generalizes
features learned in the network.

An individual claims model for RBNS claims using recurrent neural networks is
introduced in Kuo (2020). The author uses an encoder LSTM for past cash flows and claim
status sequences and a decoder LSTM to generate a paid loss distribution. Also, a Bayesian
neural network at the output of the decoder enables uncertainty quantification.

4.5. Outlook on Reserving

While several researchers proposed models for aggregate reserving with machine
learning, most of these approaches build separate runoff triangles for every set of variables
(or cluster of similar attributes). When actuaries aggregate reserving data in development
triangles, they lose individual development characteristics. Simple models like the chain
ladder are often sufficient for large risk portfolios. Individual reserving may benefit much
more from modern machine learning methods.

There are three main approaches to individual reserving with machine learning.
The first uses the framework introduced by Wüthrich (2017) and uses past payments as
attributes to the model. The second, headed by Mario Wüthrich and Andrea Gabrielli,
construct complex fully-connected neural network architectures developed using in-depth
knowledge of the reserving problem (domain knowledge). The problem with using these
complex architectures in machine learning is that they tend not to generalize well to
other tasks. For an actuary to implement these models in practice, they need to have a
high understanding of neural networks and of the reserving problem, a combination of
skills that is currently rare. Thus, we believe models with simpler architectures that learn
development patterns from data will be more feasible in practice. This third approach,
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headed by Kevin Kuo, treat the reserving problem as a time series problem and use
recurrent neural networks.

According to the authors, the main problem with individual reserving research with
machine learning is that researchers do not compare models (or are only compared to the
chain ladder model). However, many models have a publicly available code. Therefore, it
is hard for practitioners to determine the best model to implement and determine which
technique is state-of-the-art. Since most researchers use the same simulation machine from
Gabrielli and Wüthrich (2018), we hope this changes.

5. Conclusions

This paper reviewed the literature on pricing and reserving for P&C insurance.
Insurance ratemaking with machine learning and traditional structured insurance

data is straightforward since the regression setup is natural. Since actuaries use GLMs
for insurance pricing, the leap to GAMs, GBMs or neural networks is natural. The next
step for the ratemaking literature is to incorporate novel data sources in ratemaking with
neural networks. Insurers already collect telematics data, and works on these datasets use
novel machine learning algorithms as predictive models. Other novel sources of data are
mainly unstructured, meaning they do not fit neatly in a spreadsheet. Examples include
images, geographic data, textual data and medical histories. Other sources of data could
be structured but of large size. See Blier-Wong et al. (2020) and Blesa et al. (2020) for use of
open data and Pechon et al. (2019) to select potential features.

Most reserving approaches fit into three main approaches: a generic framework
using past payments as attributes in the model, modifying the chain-ladder to incorporate
more flexible relationships, and using recurrent neural networks. In our experience, the
second approach is favorable for actuaries that have in-depth knowledge of their book
of business to construct the network architectures. If there is sufficient data, the third
approach with recurrent neural networks offer more modeling flexibility and enhance
their understanding of the claim development process. The RNN approach is successful in
finance (see, e.g., Giles et al. (1997); Maknickienė et al. (2011); Oancea and Ciucu (2014);
Roman and Jameel (1996); Rout et al. (2017); Wang et al. (2016)) but not popular in actuarial
science for the moment.

We also identified three overall challenges: explainability, prediction uncertainty and
discrimination.

Machine learning models learn complex nonlinear transformations and interactions
between variables. Although establishing a cause and effect relationship is not required
in practice LaMonica et al. (2011), regulatory agencies could require the proof of a causal
relationship to include a variable. See Henckaerts et al. (2020) and Kuo and Lupton (2020)
for studies of variable importance in actuarial science.

Quantifying the variability of predictions is vital for solvability and risk management
purposes. Models like GBMs and neural networks usually ignore process and parameter
variance. Due to the bias–variance tradeoff (increasing model flexibility usually also
increases prediction uncertainty), actuaries should beware of being seduced by better
predictive performance if they ignore the resulting increase in prediction variance (feature
significance). Studying this uncertainty could also lead to omitting a feature in a model.

Some regulatory agencies may prohibit using a protected attribute like sex, race or
age in a model. A simple approach in practice is anticlassification, which consists of
simply removing the protected attributes. However, proxy features in the dataset could
reconstruct the effect of using the protected attribute. See Lindholm et al. (2020) for a
discrimination-free approach to ratemaking.
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AVB adversarial variational Bayes
CART classification and regression trees
DT decision tree
EF exponential family
GAM generalized additive model
GBM gradient boosting machine
GBT gradient boosted trees
GLM generalized linear model
knn k-nearest neighbour
LDA linear discriminant analysis
LR logistic regression
NB naïve Bayes
NLL negative log-likelihood
NN neural network
P&C property and casualty
RF random forest
RNN recurrent neural network
SVM support vector machine
SVR support vector regression
SVC support vector classifier
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