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Abstract: We study price formation in intraday electricity markets in the presence of intermittent
renewable generation. We consider the setting where a major producer may interact strategically
with a large number of small producers. Using stochastic control theory, we identify the optimal
strategies of agents with market impact and exhibit the Nash equilibrium in a closed form in the
asymptotic framework of mean field games with a major player.

Keywords: intraday electricity market; renewable energy; mean field games; major player

1. Introduction

The structure of electricity markets around the world has been profoundly transformed by the
push towards liberalization in the late 90s and, more recently, by the massive arrival of renewable
energy production. Distribution has been separated from production, and, where, in the past, a single
producer could own the entire generation capacity of a given country or region, now a patchwork of
small, often renewable, generators competes with a big historical producer.

The aim of this paper is to develop an equilibrium model for intraday electricity markets where
a big producer with a significant market share competes with a large number of small renewable
producers. The large producer and the small producers both use the intraday markets in order to
compensate their production and demand forecast errors, creating feedback effects on the market
price. The large producer can act strategically, anticipating the impact of its decisions on the market
prices and, thus, on the behavior of the small agents. The small agents are not strategic, and each one
has a negligible effect on the market; however, the behavior of all small agents taken together has a
significant market impact. The large player has the first-mover advantage, but it does not observe the
forecast of the minor players. These, in turn, have the information advantage, since they observe the
forecast of the major player as well as their own forecast. This leads to a stochastic leader-follower
game, where players interact through the market price. We place ourselves in the linear-quadratic
setting, exhibit the unique Nash equilibrium for this game in closed form in the framework of mean
field games with a major player, and provide explicit formulas for the market price and the strategies
of the agents. For a game with a finite number of players, we show how an ε-Nash equilibrium can be
constructed from the mean field game solution.

This paper is a companion paper to Féron et al. (2020), where a similar model is developed for
the case of identical agents with symmetric interactions, and we refer the readers to that paper for
a detailed review of literature on the stochastic and econometric modeling of intraday electricity
markets. Here, we simply mention that a similar linear-quadratic setting with linear market impact
has been used in order to determine optimal strategies for a single energy producer by Aïd et al. (2016)
and Tan and Tankov (2018), while Bouchard et al. (2018) found an analytic expression for the
equilibrium price in a linear-quadratic model of the stock market with symmetric interactions and

Risks 2020, 8, 133; doi:10.3390/risks8040133 www.mdpi.com/journal/risks

http://www.mdpi.com/journal/risks
http://www.mdpi.com
https://orcid.org/0000-0002-3659-3309
http://dx.doi.org/10.3390/risks8040133
http://www.mdpi.com/journal/risks
https://www.mdpi.com/2227-9091/8/4/133?type=check_update&version=2


Risks 2020, 8, 133 2 of 21

perfect information. We also mention the recent paper of Aïd et al. (2020), where an equilibrium
in complete information setting for a finite number of agents is derived in the intraday electricity
market. This paper is close in spirit to the complete information framework of Féron et al. (2020),
but it allows for treating the case of heterogeneous agents in conditions of uncertain production with
possible outages and uncertain demand. However, the complete information setting, where each agent
observes all other agents’ forecasts, does not seem to be realistic in electricity markets. The incomplete
information setting, where each agent only observes its own forecast and the aggregate forecast, may
not be tractable for a finite number of agents. Nevertheless, in Féron et al. (2020), it has been shown
that explicit solutions may be found in the mean field limit, where the number of agents is sent to
infinity, and the influence of every single agent on the entire market becomes negligible. The use
of mean field theory for stochastic control with partial information has also recently been proposed
by Bensoussan and Yam (2019), in a formal fashion, in order to solve the associated Zakai equation.

The mean field games (MFG) are stochastic differential games with infinitely many players
and symmetric interactions. The seminal papers of Lasry and Lions (2007) and Huang et al. (2006)
characterized the Nash equilibrium in this framework through a coupled system of a
Hamilton–Jacobi–Bellman (HJB) and a Fokker–Planck (FP) equation. Carmona and Delarue (2018)
developed an alternative probabilistic approach that was inspired by the Pontryagin principle and
related the mean field game solution to a McKean–Vlasov Forward Backward Stochastic Differential
Equation (FBSDE). The asymptotic results that were obtained in mean field games can be used
to construct approximate equilibria (ε-Nash equilibria) for games with a finite number of players.
Alternatively, the equilibria of N-player games can be shown to converge to the corresponding weak
mean field equilibria Lacker (2020).

While the original MFG setting involves symmetric agents, Huang (2010) introduced linear-quadratic
mean field games with a major player. Nourian and Caines (2013) developed this approach in a general
framework. In both papers, the mean field is exogenous to the actions of the major player. In contrast
to these two papers, Bensoussan et al. (2016) and Carmona and Zhu (2016) considered the endogenous
case, where the major player can influence the mean field. In Bensoussan et al. (2016), this leads to
a leader-follower setting, also known as Stackelberg game. The authors derived a HJB equation and a
FP equation in order to characterize the solution in the general case, while the linear quadratic setting
was tackled with a stochastic maximum principle approach. More recently, Lasry and Lions (2018)
introduced a master equation accounting for this kind of major player model. Cardaliaguet et al. (2020)
showed that the two previous approaches (Lasry and Lions 2018; Carmona and Zhu 2016) lead to the
same Nash equilibria.

Financial markets and energy systems with many small interacting agents are a natural domain of
applications of MFG. Casgrain and Jaimungal (2020) applied the MFG theory to optimal trade execution
with price impact and terminal inventory liquidation condition, Fujii and Takahashi (2020), used this
theory to find an equilibrium price under market clearing conditions. In Casgrain and Jaimungal (2020)
and Fujii and Takahashi (2020), the authors used the extended mean field setting in
order to deal with heterogeneous sub-populations of agents and incomplete information
for Casgrain and Jaimungal (2020). Alasseur et al. (2020) developed a model for the optimal
management of energy storage and distribution in a smart grid system through an extended MFG.
Shrivats et al. (2020) recently applied the theoretical setting that was developed in Casgrain and
Jaimungal (2020) to the case of trading in solar renewable energy certificate markets. Financial markets
with a major player, leader–follower interactions, and terminal inventory constraint were recently
analyzed in (Evangelista and Thamsten 2020; Fu and Horst 2020). In Fu and Horst (2020), the authors
consider a Brownian filtration, impose a zero terminal inventory constraint and characterize the
equilibrium in terms of a McKean-Vlasov FBSDE. In Evangelista and Thamsten (2020), the authors
study a market with a finite number of small players and a major player with first-mover advantage
and information asymmetry, and characterize the solution in terms of a McKean–Vlasov FBSDE in a
more general setting than that of Fu and Horst (2020).
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Among the cited papers, our methods and findings are the closest in spirit to (Bensoussan et al.
2016; Evangelista and Thamsten 2020; Fu and Horst 2020). The main novelty of our paper is the
application of the linear quadratic MFG with a major player to the analysis of electricity markets
in the presence of renewable production; however, we also make a number of contributions to the
mathematical theory. When compared to the article Bensoussan et al. (2016), which, of course, solves a
more general problem, without focusing on a specific application, our paper allows a much more
general dynamics for the driving processes (general semimartingales) and does not require an a priori
bound on the strategies in order to prove the existence of the Nash equilibrium in the presence of a
major player. Unlike the articles (Evangelista and Thamsten 2020; Fu and Horst 2020), which also study
leader-follower games in financial markets, we consider a stochastic terminal constraint, characterize
the equilibrium in explicit form, and show how an ε-Nash equilibrium for the finite-player game may
be constructed from a mean field game solution.

The paper is organized, as follows. In Section 2, we introduce the model and briefly recall the
mean field game solution obtained in Féron et al. (2020) in the case of identical agents. In Section 3,
we present the main results of this paper in the setting allowing for the presence of a major player,
whose influence on the market is not negligible in the MFG limit. In Section 4, we show how the
limiting MFG solution may be used in order to construct an approximate Nash equilibrium in a
Stackelberg game with one major player and N minor players. Finally, in Section 5, equilibrium price
trajectories and the effect of market parameters on the price characteristics are illustrated with the
simulated data.

2. Preliminaries

In this paper, we place ourselves in the intraday market for a given delivery hour starting at time
T, where time 0 corresponds to the opening time of the market (in EPEX Intraday this happens at
3 p.m. on the previous day). In reality, trading stops a few minutes before delivery time (e.g., 5 min. for
Germany). However, for the sake of simplicity, we assume that market participants can trade during
the entire period [0, T]. In the market, there are agents (producers or consumers) that are assumed to
have taken a position in the day-ahead market and use the intraday market in order to manage the
volume risk that is associated to the imperfect demand/production forecast. These forecasts represent
the best estimate of the additional demand as compared to the position taken by the agent in the
spot market: to avoid imbalance penalties, the intraday position of the agent at the delivery date
must, therefore, be equal to the realized demand, or, in other words, the last observed value of the
demand forecast.

We consider the case of a Stackelberg game, where an agent, called a “major agent”, faces a large
number of smaller agents, called “minor agents”. We directly place ourselves in the setting of mean
field games with a major player, that is, we assume that the number of small agents in the market is
infinite, and the influence of each small agent on the market is negligible. Therefore, the aggregate
impact of the minor agents on the market is modelled through a mean field.

Each agent observes the common national demand forecast and the demand forecast of the major
player. In addition, the small agents also observe their individual demand forecasts, which are not
observed by the other agents. Thus, the common filtration of the market contains information about
the forecast of the major player and the common part of the forecasts of the minor players, but the
small agents benefit from a private information advantage when compared to the major player.

The demand forecast process and position of the generic minor agent are given, respectively,
by X := (Xt)0≤t≤T and φ := (φt)0≤t≤T , while the forecast process and position of the major agent are
given, respectively, by (X0

t )t∈[0,T] and (φ0
t )t∈[0,T]. Note that the position and forecast of the minor and

major agents are not expressed in the same units. Indeed, in the mean field game limit considered
in this paper, we assume that the market is very large, so that the position of every minor agent as
compared to the market size is negligible, but the major agent takes up a nonzero share of the market,
so that φ0 and X0 denote the position and forecast of the major agent normalized by the market size.
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We denote, by F, the filtration that contains all information available to the generic minor agent
and by F0 the filtration, which contains all information available to the major agent. This filtration
contains the information about the fundamental price, the information about the demand forecast
of the major agent, and potentially some information regarding the demand forecast of the generic
minor agent (the common noise), but, in general, not the full individual demand forecast of the generic
minor agent.

Throughout the paper and for any F-adapted process (ζt)t∈[0,T], we will denote ζ̄t = E[ζt|F 0
t ] =∫

R xµ
ζ
t (dx), where: µ

ζ
t := L(ζt|F 0

t ). In view of the convergence results of Proposition 9 and
Proposition 10 in Féron et al. (2020), the (normalized) aggregate position of all minor agents is given
by the expectation of φ with respect to the common noise: φ̄t = E[φt|F 0

t ].
We assume that the market price (Pt)t∈[0,T] is given by the fundamental price (St)t∈[0,T] plus

a weighted combination of the aggregate position of the minor agents and the position of the
major agent:

Pt = St + aφ̄t + a0φ0
t , ∀t ∈ [0, T]

where a and a0 are positive weights, which reflect the size of the major agent relative to the combined
size of all minor agents and overall strength of the market impact. Thus, the impact of each minor
agent on the entire market is negligible, but the aggregate position of all minor agents and the position
of the major agent both have a nonzero impact.

We say that the strategy of the generic minor agent (φ̇t)t∈[0,T] is admissible if it is F-adapted and
square integrable. Similarly, the strategy of the major agent (φ̇0

t )t∈[0,T] is admissible if it is F0-adapted
and square integrable. The instantaneous cost of trading for the major agent and the generic minor
agent are defined, respectively, by:

φ̇0
t Pt +

α0(t)
2

(φ̇0
t )

2, and φ̇tPt +
α(t)

2
(φ̇t)

2, ∀t ∈ [0, T] (1)

In both instantaneous costs, the first term represents the actual cost of buying the electricity
and the second term represents the cost of trading, where α(.) and α0(.) are continuous strictly positive
functions on [0, T], reflecting the variation of market liquidity at the approach of the delivery date.

The objective function of the minor agent has the following form:

JMF(φ, φ̄, φ0) := −E
[∫ T

0

α(t)
2

φ̇2
t + (St + aφ̄t + a0φ0

t )φ̇tdt +
λ

2
(φT − XT)

2
]

, (2)

while the objective function of the major agent writes,

JMF,0(φ0, φ̄) := −E
[∫ T

0

α0(t)
2

φ̇0
t

2
+ (St + aφt + a0φ0

t )φ̇
0
t dt +

λ0

2
(φ0

T − X0
T)

2
]

. (3)

Note that this formulation implies (as is the case in real markets) that the major agent pays a much
lower trading cost per unit traded and a much lower imbalance penalty than the minor agents. Indeed,
if the major agent paid the same quadratic cost/penalty as the minor agents, since the position of the
major agent is very large, the quadratic trading cost/penalty would grow much faster than the linear
part (the middle term in the formula), and the limiting formula would degenerate, in the sense that the
trading strategy would be independent from the price. In order to obtain a nondegenerate expression
in terms of the normalized trading strategy of the major agent, we must, therefore, assume that the
actual trading cost and penalty are also renormalized. The quantities α0(t) and λ0 are, thus, different
from α(t) and λ, since they are of different nature: α(t) and λ apply to the actual strategy of the generic
agent, while α0(t) and λ0 apply to the normalized strategy of the major agent. The different nature of
trading costs for minor and major agents is confirmed by other authors (Donier et al. 2015): while the
minor agents post their orders immediately in the order book, the major agent splits its orders into
many small chunks in order to minimize the trading costs.
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To close this introductory section, we briefly recall one of the main results (Theorem 7)
from Féron et al. (2020), which characterizes the mean field equilibrium in the setting of identical
agents; in other words, we assume that a0 = 0 until the end of this section.

Definition 1 (mean field equilibrium). An admissible strategy φ̇∗ := (φ̇∗t )t∈[0,T] is a mean field equilibrium
in the setting of identical agents if it maximizes the functional (2) with a0 = 0 and satisfies φ̄ = φ̄∗.

We make the following assumption.

Assumption 1.

• The process S is square integrable and adapted to the filtration F0.
• The process X is a square integrable martingale with respect to the filtration F.
• The process X that is defined by Xt := E[Xt|F 0

t ] for 0 ≤ t ≤ T is a square integrable martingale with
respect to the filtration F.

Note that, if X is an F-martingale, then X is by construction an F0-martingale, but it may not
necessarily be a martingale in the larger filtration F.

The following theorem characterizes the mean field equilibrium in the identical agent setting.
In the theorem, we decompose the individual demand forecast, as follows: Xt = Xt + X̌t,
where Xt = E

[
Xt|F 0

t
]
, and we use the following shorthand notation:

∆s,t :=
∫ t

s

η(u, t)
α(u)

du with η(s, t) = e−
∫ t

s
a

α(u) du and ∆̃s,t :=
∫ t

s
α−1(u)du

It :=
∫ t

0

η(s, t)
α(s)

Ssds, Ĩt := E
[∫ T

0

η(s, T)
α(s)

Ssds
∣∣∣Ft

]
. (4)

Theorem 1. Under Assumption 1, the unique mean field equilibrium in the setting of identical agents is
given by

φ∗t = −It + λ

[
∆0,t

Ĩ0 + X0

1 + λ∆0,T
+
∫ t

0
∆s,t

dĨs + dXs

1 + λ∆s,T
(5)

+∆̃0,t
X̌0

1 + λ∆̃0,T
+
∫ t

0
∆̃s,t

dX̌s

1 + λ∆̃s,T

]
.

The equilibrium price has the following form:

Pt = St − aIt + aλ

[
∆0,t

Ĩ0 + X0

1 + λ∆0,T
+
∫ t

0
∆s,t

dĨs + dXs

1 + λ∆s,T

]
. (6)

3. A Game of a Major and Minor Agents

In this section, we proceed to characterize the Nash equilibrium in the Stackelberg mean field
game with a major player. Because a single minor agent has an infinitesimal impact on the market
and cannot influence the mean field or the strategy of the major agent, the problem of the generic
minor agent is to maximize JMF(φ, φ̄, φ0) for fixed φ̄ and φ0. On the other hand, by modifying her
strategy φ0, the major agent may influence the strategies of the minor agents and, thus, also the mean
field φ̄. This leads to the following definition of mean field equilibrium. As in the preceding section,
the “consistency condition” in this definition simply translates the fact that the aggregate position φ̄ of
all minor agents is given by the expectation of the representative agent strategy φ with respect to the
common noise.
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Definition 2 (Stackelberg mean field equilibrium). We call the triple φ∗, φ̄∗, φ0∗ Stackelberg mean field
equilibrium for the game with a major and minor players if the following holds:

i. φ∗ and φ0∗ are admissible strategies for, respectively, the representative minor and the major players,
the consistency condition φ̄∗t = E[φ∗t |F 0

t ] is satisfied for all t ∈ [0, T] and for any other admissible
strategy for the representative minor player φ,

JMF(φ, φ̄∗, φ0∗) ≤ JMF(φ∗, φ̄∗, φ0∗)

ii. For any other triple (φ, φ̄, φ0) satisfying condition i.,

JMF,0(φ0, φ̄) ≤ JMF,0(φ0∗, φ̄∗). (7)

Assumption 2. In addition to Assumption 1, we also assume that the process X0 is a square integrable
martingale with respect to the filtration F0.

We start with the characterization of the optimal strategy for the minor agent.

Proposition 1 (Minor representative agent). Let φ̄ and φ0 be fixed. The minor agent strategy φ maximizes (2)
over the set of admissible strategies if and only if:

φ̇t = −
Yt + St + aφt + a0φ0

t
α(t)

, ∀t ∈ [0, T], (8)

where Y is a F-martingale that satisfies YT = λ(φT − XT).

Proof. The proof follows from the first step of the proof of Theorem 1 (see Theorem 7
in Féron et al. (2020)), taking S̃ = S + a0φ0 as fundamental price instead of S.

The problem of the major agent is more complex, since the minor agents observe the major agent’s
actions and modify their strategies accordingly, which means that the mean field φ̄ depends on the
major agent’s strategy φ0, and the problem of the major agent effectively becomes a stochastic control
problem. We start with a reformulation of the definition of Stackelberg equilibrium in terms of φ̄ and
φ0 only.

Lemma 1. Let (φ̄∗, φ0∗) be F0-adapted square integrable processes. There exists φ∗, such that (φ∗, φ̄∗, φ0∗) is
a Stackelberg mean field equilibrium if and only if the couple (φ̄∗, φ0∗) satisfies the following conditions:

i. For every F0-adapted square integrable process ν,

E
[∫ T

0
νt{α(t) ˙̄φ∗t + St + a0φ0∗

t + aφ̄∗t }dt + λ(φ̄∗T − XT)
∫ T

0
νtdt

]
= 0.

ii. For every other couple (φ0, φ̄) satisfying the condition i, the inequality (7) holds true.

Proof. First assume that (φ∗, φ̄∗, φ0∗) is a Stackelberg mean field equilibrium. Subsequently, for every
F0-adapted square integrable process ν,

JMF(φ∗ +
∫ ·

0
νsds, φ

∗, φ0∗) ≤ JMF(φ∗, φ
∗, φ0∗).
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Developing the functionals we get,

E
[

1
2

∫ T

0
α(t)ν2

t dt +
λ

2

(∫ T

0
νtdt

)2
]

+E
[∫ T

0
νt

{
α(t)φ̇∗t + St + aφ̄∗t + a0φ0∗

t

}
dt + λ(φ∗T − XT)

∫ T

0
νtdt

]
≥ 0,

and, since ν is arbitrary, we see that this is equivalent to

E
[∫ T

0
νt

{
α(t)φ̇∗t + St + aφ̄∗t + a0φ0∗

t

}
dt + λ(φ∗T − XT)

∫ T

0
νtdt

]
= 0.

Taking conditional expectations and using Fubini’s theorem, we then obtain condition i. of
the lemma.

Assume now that conditions i. and ii. of the lemma hold true, and let φ∗ be given by Proposition 1
applied to the couple (φ̄∗, φ0∗). Define φ̃∗t := E[φ∗t |F 0

t ]. It remains to show that φ̃∗t = φ̄∗t . Let Y∗ be
an F0-martingale satisfying Y∗T = λ(φ̄∗T − XT). By integration by parts, condition i. of the lemma is
equivalent to

E
[∫ T

0
νt

{
α(t) ˙̄φ∗t + Sta0φ0∗

t + aφ̄∗t + Y∗t
}

dt
]
= 0,

and since ν is arbitrary,
α(t) ˙̄φ∗t + St + a0φ0∗

t + aφ̄∗t + Y∗t = 0,

for all t. On the other hand, by Proposition 1, while taking the expectation with respect to F0, we get
that there exists a F0-martingale Ỹ with ỸT = λ(φ̃∗T − XT), and such that

α(t) ˙̃φ∗t + St + a0φ0∗
t + aφ̄∗t + Ỹt = 0.

Substracting this expression from the previous one, we obtain

α(t)( ˙̄φ∗t − ˙̃φ∗t ) + Y∗t − Ỹt = 0, Y∗T − ỸT = λ(φ̄∗T − φ̃∗T)

Thus,

φ̄∗t − φ̃∗t =
∫ t

0

Ỹs −Y∗s
α(s)

ds

and, therefore, using the terminal condition and the martingale property,

Ỹt −Y∗t = E[ỸT −Y∗T |F 0
t ] = λ

∫ t

0

Ỹs −Y∗s
α(s)

ds + λ(Ỹt −Y∗t )
∫ T

t

ds
α(s)

.

The unique solution of this linear equation is Ỹt = Y∗t for all t, and, therefore, φ̃∗t = φ̄∗t for all t.

The following proposition provides a martingale characterization of the Stackelberg mean
field equilibrium.

Proposition 2. Let (φ̄∗, φ0∗) be F0-adapted square integrable processes. There exists φ∗, such that (φ∗, φ̄∗, φ0∗)

is a Stackelberg mean field equilibrium if and only if

φ̇0∗
t = −M0

t + St + aφt − a0Nt

α0(t)
, ∀t ∈ [0, T], (9)



Risks 2020, 8, 133 8 of 21

where M0 is an F0-martingale and N is an absolutely continuous F0-adapted process, and there exists
an F0-martingale M, and an F0-martingale Y, such that the following system of equations is satisfied:

M0
T = a0NT + a0φ0

T + λ0(φ
0
T − X0

T)

Mt − aφ0
t + α(t)Ṅt − aNt = 0, MT = aφ0

T + (a + λ)NT
Yt + α(t) ˙̄φt + St + aφ̄t + a0φ0

t = 0, YT = λ(φ̄T − XT)

(10)

Proof. The optimization problem of the major agent consists in maximizing the objective function (3)
under the constraint of Lemma 1, part i. Following the methodology of Bensoussan et al. (2016), let us
introduce the Lagrangian for this constrained optimization problem, which writes:

L(φ0, φ̄, ν) = E
[∫ T

0

α0(t)
2

φ̇0
t

2
+ (St + aφt + a0φ0

t )φ̇
0
t dt +

λ0

2
(φ0

T − X0
T)

2
]

+E
[∫ T

0
νt

{
α(t) ˙̄φt + St + a0φ0

t + aφ̄t

}
dt + λ(φ̄T − XT)

∫ T

0
νtdt

]
,

where ν is a square integrable F0-adapted process. We claim that φ0 is the solution of the problem (3) if
and only if there exist ν and φ̄, such that (φ0, φ̄) maximizes the Lagrangian L(·, ·, ν), and φ̄ satisfies the
constraint of Lemma 1. Indeed, let (φ0, φ̄, ν) be such a triple and (φ0′, φ̄′) be another pair of strategies
satisfying the constraint of Lemma 1. Subsequently,

L(φ0, φ̄, ν) ≥ L(φ0′, φ̄′, ν),

and, since both φ̄ and φ̄′ satisfy the constraint of Lemma 1, this implies that inequality (7) holds true.
We now turn to the problem of maximizing the Lagrangian. Let Nt =

∫ t
0 νsds. The first order

condition for φ0 writes: there exists a martingale M0, such that

M0
t + α0(t)φ̇0

t + St + aφ̄t − a0Nt = 0, M0
T = a0NT + a0φ0

T + λ0(φ
0
T − X0

T).

The first order condition for φ̄ writes: there exists a martingale M, such that

Mt − aφ0
t + α(t)Ṅt − aNt = 0, MT = aφ0

T + (a + λ)NT .

Finally, the last condition is given by the constraint that φ̄ is optimal for the generic minor agent.
Hence, conditioning (8) by the common noise, there exists a martingale Y, such that

Yt + α(t) ˙̄φt + St + aφ̄t + a0φ0
t = 0, YT = λ(φ̄T − XT).

From Proposition 2, it follows that the existence and uniqueness of the Stackelberg equilibrium
reduces to the existence and uniqueness of the solution of the linear system of coupled BSDEs
Equation (10).

The following theorem provides an explicit characterization of the equilibrium in the
Stackelberg setting.

Theorem 2 (Explicit solution). Let Ξt = (φ0
t , Nt, φ̄t)′. The following differential equation characterizes

the unique equilibrium of the mean field game with a major agent:

B(t)−1 A Ξt + Ξ̇t = −


α0(t)−1(M0

t + St)

α(t)−1Mt

α(t)−1(Yt + St)

 , (11)
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where N is a F0-adapted process with N0 = 0 and M0, M, and Y are F0-martingales that satisfy:
M0

T = a0NT + a0φ0
T + λ0(φ

0
T − X0

T)

MT = aφ0
T + (a + λ)NT

YT = λ(φ̄T − XT)

(12)

and

A =


0 −a0 a

−a −a 0

a0 0 a

 , B(t) =


α0(t) 0 0

0 α(t) 0

0 0 α(t)

 .

Denoting, by Φ(t), the fundamental matrix solution of the equation B(t)−1 A Ξt + Ξ̇t = 0, the solution is given
in integral form by the following expression:

Ξt = Υt −Π0,t(I + DΠ0,T)
−1(DΥ̃0 −ΛX0)−

∫ t

0
Πs,t(I + DΠs,T)

−1(DdΥ̃s −ΛdXs). (13)

where,

Υt := −Φ(t)
∫ t

0
Φ(s)−1


α0(s)−1Ss

0

α(s)−1Ss

 ds, Xs :=


X0

s

0

Xs

 , D =


a0 + λ0 a0 0

a a + λ 0

0 0 λ

 ,

Λ =


λ0 0 0

0 0 0

0 0 λ

 , Πs,t := Φ(t)
∫ t

s Φ(u)−1B(u)−1du and Υ̃t = E[ΥT |Ft].

Remark 1. These results can be generalized to the setting of several major agents, interacting with the mean-field
of the minor agents, provided that each major agent observes the individual forecasts of the other agents, but not
those of the minor agents. In this case, the constrained optimization problem of one major agent becomes a
constrained game between several major agents. Because the setting remains linear-quadratic, one will still be
able to obtain an explicit solution, at the price of more tedious computations.

Remark 2. If α0(t) = cα(t) for some constant c, the fundamental matrix solution is explicitly given by

Φ(t) = exp
(
−
∫ t

0
B(s)−1 Ads

)
Proof. From Equation (8) in Proposition 1 and (10) in Proposition 2, we immediately deduce the
expression of the characterizing differential equation of the equilibrium (11).

Let Φ(t) be the fundamental matrix solution of the equation B(t)−1 A Ξt + Ξ̇t = 0, which is,
for every C ∈ R3, the solution with initial condition Ξ0 = C is given by Φ(t)C. By a variation of
constants, we have that the solution of (11) is given by:

Ξt = −Φ(t)
∫ t

0
Φ(s)−1


α0(s)−1(M0

s + Ss)

α(s)−1Ms

α(s)−1(Ys + Ss)

 ds.
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Letting:

Ms :=


M0

s

Ms

Ys

 and Ξ̂t = Ξt − Υt,

we obtain the simplified equation:

Ξ̂t = −Φ(t)
∫ t

0
Φ(s)−1B(s)−1Msds.

and, finally, using (12) and the martingale property, the martingale components satisfy:

Mt = −DΦ(T)
∫ t

0
Φ(s)−1B(s)−1Msds− DΠt,TMt + DΥ̃t −ΛXt,

From this, we deduce, on the one hand,

M0 = (I + DΠ0,T)
−1(DΥ̃0 −ΛX0),

and, on the other hand,

(I + DΠt,T)dMt = DdΥ̃t −ΛdXt,

so that, finally:

Ξt = Υt +
∫ t

0
dΠs,t ·Ms = Υt −Π0,tM0 −

∫ t

0
Πs,tdMs

= Υt −Π0,t(I + DΠ0,T)
−1(DΥ̃0 −ΛX0)−

∫ t

0
Πs,t(I + DΠs,T)

−1(DdΥ̃s −ΛdXs).

Let us make some comments regarding how minor and major player strategies change when the
parameters of the model vary. First, when the major player has no price impact, a0 = 0, we recover the
homogeneous mean field setting optimal strategy for the minor player from (10) and (12):

φ̄t =
∫ t

0

η(s, t)
α(s)

(Ys + Ss)ds,

where Y satisfies the equation: {
Yt + α(t) ˙̄φ∗t + St + aφ̄∗t = 0
YT = −λ(φ̄∗T − XT).

Second, we explore the limiting behavior of the optimal strategies for the major agent and mean
field in various limiting cases. In this corollary, we use the notation of Theorem 2.
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Corollary 1.

i. Assume that the fundamental price process S is a martingale. Subsequently, the equilibrium mean field
position of minor agents and the position of the major agent satisfy

Ξt = −Π0,t(I + DΠ0,T)
−1


S0 − λ0X0

0

0

S0 − λX0

− ∫ t

0
Πs,t(I + DΠs,T)

−1d


Ss − λ0X0

s

0

Ss − λXs

 .

ii. In the limit of infinite terminal penalty (when λ, λ0 → ∞), the equilibrium mean field position of minor
agents and the position of the major agent satisfy,

Ξt → Υt −Π0,tΠ−1
0,T(Υ̃0 − D∞X0)−

∫ t

0
Πs,tΠ−1

s,T(dΥ̃s − D∞dXs),

almost surely for all t ∈ [0, T], where

D∞ =


1 0 0

0 0 0

0 0 1

 .

When the fundamental price process S is a martingale, in the limit of infinite terminal penalty, the strategies
do not depend on the fundamental price and we have,

Ξt → Π0,t Π−1
0,T


X0

0

0

X0

+
∫ t

0
Πs,t Π−1

s,T d


X0

s

0

Xs

 .

iii. In the absence of terminal penalties (when λ = λ0 = 0), the equilibrium mean field position of minor
agents and the position of the major agent satisfy,

Ξt = Υt −Π0,t(I + D0Π0,T)
−1D0Υ̃0 −

∫ t

0
Πs,t(I + D0Πs,T)

−1D0dΥ̃s. (14)

Proof. The first part is a simplification of the proof of Theorem 2. Using the expressions of Yt and Ỹt in
Theorem 2 and the martingale property of St , we can rewrite:

Yt = −Π0,tS0 −
∫ t

0
Πs,tdSs, Ỹt = −Π0,TS0 −

∫ t

0
Πs,TdSs.

Substituting these expressions in the Equation (13), we obtain the result.
For the second part, we can rewrite:

Ξt = Υt −Π0,t(I + DΠ0,T)
−1(DΥ̃0 −ΛX0)−

∫ t

0
Πs,t(I + DΠs,T)

−1(DdΥ̃s −ΛdXs)

= Υt −Π0,t(D−1 + Π0,T)
−1(Υ̃0 − D−1ΛX0)−

∫ t

0
Πs,t(D−1 + Πs,T)

−1(dΥ̃s − D−1ΛdXs)

and when λ, λ0 −→ ∞, D−1 → 0 and D−1Λ → D∞. The third part follows by direct substitution of
λ = λ0 = 0 into the general formula.

Interestingly, when the players do not have a terminal penalty (λ = λ0 = 0), the equilibrium
positions of the agents in Equation (14) still contain forward looking terms, which were absent in the
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case of the mean field game with identical players (see Equation (5) with λ = 0). The presence of these
terms is due to the strategic interaction of the major player with the mean field of small agents.

In the limit of zero trading costs, the gain of the major player remains bounded in expectation;
however, contrary to the case of identical players, the optimal strategy of the major agent cannot be
uniquely determined from the optimization problem. Indeed, while assuming that the trading cost for
minor agents is zero, the equilibrium price (computed from Equation (12) in Féron et al. (2020) with
N → ∞) is given by

Pt = St + a0φ0
t + aφ̄t =

λ

a + λ
(aXt +E[ST |Ft] + a0E[φ0

T |Ft]).

Substituting this expression into the optimization problem for the major player, we need to
minimize the following functional:

E
[

λ

a + λ

∫ T

0
φ̇0

t (aXt +E[ST |Ft] + a0E[φ0
T |Ft])dt +

λ0

2
(φ0

T − X0
T)

2
]

= E
[

λ

a + λ
(aφ0

TXT + φ0
TST + a0(φ

0
T)

2) +
λ0

2
(φ0

T − X0
T)

2
]

,

where the equality follows, in particular, from the martingale property of XT . Because the expression
to be minimized only depends on the terminal value φ0

T of the major agent’s position, any strategy
with the optimal terminal value will satisfy the condition of optimality: the Stackelberg equilibrium
will not be unique in this case.

To finish this section, we provide the explicit form of the strategy of the minor agents.

Corollary 2 (Minor agent strategy). Under Assumption 2, the optimal generic minor agent position φ∗ is
given by:

φ∗t =
∫ t

0
∆̃s,t

λdX̌s

1 + λ∆̃s,T
+ ∆̃0,t

λX̌0

1 + λ∆̃0,T
+ φ̄∗t ,

where φ̄∗ is the optimal aggregate position of the minor agents, as given by Theorem 2.

Proof. Let φ̌∗t = φ∗t − φ̄∗t , X̌t = Xt − Xt and Y̌t := Yt − Yt. Subsequently, from the explicit form of Y
and Y in Proposition 1, it follows that Y̌ is an F-martingale and it satisfies

Y̌T = −λ(φ̌∗T − X̌T), Y̌t = α(t) ˙̌φ∗t .

Subsequently,

φ̌∗t =
∫ t

0

Y̌s

α(s)
ds, (15)

and by the martingale property,

Yt = −λE[φ̌∗T − X̌T |Ft] = −λ
∫ t

0

Y̌s

α(s)
ds− λY̌t

∫ T

t

ds
α(s)

+ λX̌t.

Solving this linear equation for Y̌ and then substituting into (15), we obtain the result.

4. Approximate Nash Equilibrium in the N-Player Stackelberg Game

In this section, we derive the ε-Nash approximation for the Stackelberg game. In the present
leader-follower setting, we allow the minor agents to change their strategies when the major agent
deviates from the optimal one.
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Because we would like to study the rate of convergence as N → ∞, we assume that there is
a major player and an infinity of minor players replacing the generic agent. Their demand forecasts
are, respectively, given by Xi

t, i = 0, . . . , ∞, and t ∈ [0, T]. The private demand forecasts of all agents
are defined on the same probability space. Therefore, we impose the following assumption.

Assumption 3.

• The process S is square integrable and adapted to the filtration F0.
• The demand forecast X0 of the major agent is a square integrable F0-martingale.
• The processes (Xi)∞

i=1 are square integrable F-martingales.
• There exists a square intergrable F-martingale X, such that for all i ≥ 1, and all t ∈ [0, T], almost surely,

E[Xi
t|F 0

t ] = Xt.
• The processes (X̌i)∞

i=1 that are defined by X̌i
t = Xi

t − Xt for t ∈ [0, T], are orthogonal square integrable
F-martingales, such that the expectation E[(X̌i

T)
2] does not depend on i.

The strategy (φ̇i) of agent i = 1, . . . , ∞ is said to be admissible if it is F-adapted and square
integrable; the strategy (φ̇0) of the major agent is admissible if it is F0-adapted and square integrable.
For a fixed N ≥ 1, we denote:

PN(φ0
t , ..., φN

t ) = St + aφ
N
t + a0φ0

t

PMF(φ0
t , φ̄t) = St + aφ̄t + a0φ0

t ,

where φ̄N
t = 1

N ∑N
i=1 φi

t is the average position of the minor agents. Additionally, we define in the
N-player game, the objective functions for the major agent:

JN,0(φ0, φ−0) := −E
[∫ T

0

{
α0(t)

2
(φ̇0

t )
2 + φ̇0

t PN(φ0
t , . . . , φN

t )

}
dt +

λ0

2
(φ0

T − X0
T)

2
]

, (16)

and for the minor agents i = 1, . . . , N:

JN,i(φi, φ−i) := −E
[∫ T

0

{
α(t)

2
(φ̇i

t)
2 + φ̇i

tP
N(φ0

t , . . . , φN
t )

}
dt +

λ

2
(φi

T − Xi
T)

2
]

, (17)

as well as the objective function for the minor agents i = 1, . . . , N, in the mean field setting:

JMF(φi, φ̄, φ0) := −E
[∫ T

0

{
α(t)

2
(φ̇i

t)
2 + φ̇i

tP
MF(φ0

t , φ̄t)

}
dt +

λ

2
(φi

T − Xi
T)

2
]

. (18)

We next provide a definition of the ε-Nash equilibrium in the present Stackelberg setting.
As mentioned above, the deviations of the major and minor agents must be treated differently:
when the major agent deviates, we allow the minor agents to adjust their strategies to respond
optimally to the new strategy of the major agent. We say that the minor agent strategies φ1, . . . , φN are
an optimal response to the major agent strategy φ0 if, for every i = 1, . . . , N and for every admissible
minor agent strategy φ̃i,

JN,i(φ̃i, φ−i) ≤ JN,i(φi, φ−i).

Definition 3 (Stackelberg ε-Nash equilibrium). We say that (φi∗
t )t∈[0,T],0≤i≤N is an ε-Nash equilibrium for

the N-player game if these strategies are admissible and the following holds.

i. Deviation of a minor player: for any other admissible strategy φi for the minor player i, i = 1, . . . , N,

JN,i(φi, φ−i∗)− ε ≤ JN,i(φi∗, φ−i∗).
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ii. Deviation of the major player: for any other set of admissible strategies (φi), i = 0, . . . , N, such that
φ1, . . . , φN are optimal responses of minor players to the major player strategy φ0, we have,

JN,0(φ0, φ−0)− ε ≤ JN,0(φ0∗, φ−0∗).

Our definition of ε-Nash equilibrium is different from the one presented in Carmona and Zhu
(2016): while the latter paper assumes that the major player deviates from her strategy unilaterally
(see Definition 4.2 in the cited paper), we allow the minor players to respond to the deviation of the
major player, in agreement with the leader-follower nature of the game. In addition, in Carmona and
Zhu (2016), an a priori bound on the Lp-norm of the new strategy of the major agent is required to
establish Theorem 4.1 in the cited paper, whereas no such bound is needed in our setting.

Proposition 3. Assume that the strategies of the N minor agents are given by

φi∗
t =

∫ t

0
∆̃s,t

λdX̌i
s

1 + λ∆̃s,T
+ ∆̃0,t

λX̌i
0

1 + λ∆̃0,T
+ φ

∗
t ,

where φ
∗ is the third component of the mean field equilibrium defined in Theorem 2. Assume that the strategy of

the major agent is also given by Theorem 2. Let Assumption 3 hold true. Then there exists a constant C < ∞,
which does not depend on N, such that these strategies form an ε-Nash equilibrium of the N-player game with
ε = C

N1/2 .

Remark 3. The ε-Nash equilibrium that is described in Proposition 3 approximates the N-player equilibrium in
the complete information setting (where every player observes the others’ actions), but its implementation for
each agent only requires the knowledge of the common information F0 as well as the agent’s individual forecast.

Proof. We need to show the conditions i. and ii. of Definition 3. Condition i. is shown in the same
way as in the case of homogeneous players (see proof of Proposition 2 in Féron et al. 2020). Therefore,
we focus on condition ii. Assume that all of the agents change their strategies to new ones φ0, . . . , φN ,
such that φ1, . . . , φN are optimal responses to φ0. Let φ̄ be the optimal "mean field" response to the
major agent strategy φ0.

Step 1.

We first suppose that there exists a finite constant A > 0, independent of N, such that
E
[∫ T

0 (φ̇0
t )

2dt
]
< A.

By Proposition 1 in Féron et al. (2020), for some constants c and C, which do not depend on N,
and may change from line-to-line,

E
[∫ T

0
(φ̄t − φ̄N

t )2dt
]
≤ C

N2E
[∫ T

0
(Ss + a0φ0

s )
2ds
]
+

c
N

,

and by our assumption,

E
[∫ T

0
(Ss + a0φ0

s )
2ds
]

= E
[∫ T

0
S2

s ds
]
+ 2a0E

[∫ T

0
S2

s ds
] 1

2

E
[∫ T

0
(φ0

s )
2ds
] 1

2

+E
[∫ T

0
(a0φ0

s )
2ds
]
< C(1 + A).
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Thus, while using Cauchy–Schwartz inequality,

JN,0(φ0, φ−0)− JN,0(φ0∗, φ−0∗)

= JN,0(φ0, φ−0)− JMF(φ0, φ̄) + JMF(φ0, φ̄)− JMF(φ0∗, φ̄∗) + JMF(φ0∗ , φ̄∗)− JN,0(φ0∗, φ−0∗)

≤ JN,0(φ0, φ−0)− JMF(φ0, φ̄0) + JMF(φ0∗ , φ̄∗)− JN,0(φ0∗, φ−0∗)

≤ a

{
E
[∫ T

0
(φ̇0

t )
2dt
] 1

2

E
[∫ T

0
(φ̄t − φ̄N

t )2dt
] 1

2

+E
[∫ T

0
(φ̇0∗

t )2dt
] 1

2

E
[∫ T

0
(φ̄∗t − φ̄N∗

t )2dt
] 1

2
}

= O
(

N−
1
2

)
Step 2.

Let there exist a sufficiently large constant A, independent of N, such that

E
[∫ T

0

(
φ̇0

t

)2
dt
]
> A

Letting ᾱ0 = min0≤t≤T α0(t), and ᾱ = min0≤t≤T α(t), we have, by definition,

JN,0(φ0, φ−0) ≤ −E
[∫ T

0

ᾱ0

2
(φ̇0

t )
2 + φ̇0

t (St + aφ̄N
t + a0φ0

t )dt +
λ0

2
(φ0

T − XT)
2
]

On the other hand, because φi for i = 1, . . . , N are optimal responses to φ0, we get that

E
[∫ T

0

{
α(t)

2
(φ̇i

t)
2 + φ̇i

t(St + aφ̄N
t + a0φ0

t )

}
dt +

λ

2
(φi

T − Xi
T)

2
]
≤ λ

2
E[(Xi

T)
2] ≤ C,

where C < ∞ is defined by C := maxi
λ
2E[(Xi

T)
2]. Summing up the above inequality over i = 1, . . . , N,

dividing by N and using Jensen’s inequality, we obtain

E
[∫ T

0

{
ᾱ

2
( ˙̄φN

t )2 + ˙̄φN
t (St + aφ̄N

t + a0φ0
t )

}
dt +

λ

2
(φ̄N

T − XN
T )2
]
≤ C.

Multiplying this inequality by a
a0

, adding it to the first one, and using integration by parts,
we finally obtain

JN,0(φ0, φ−0) ≤ C−E
[ ∫ T

0

{
ᾱ0

2
(φ̇0

t )
2 +

aᾱ

2a0
( ˙̄φN

t )2 +
St

a0
(a0φ̇0

t + a ˙̄φN
t )

}
dt

+
1

2a0
(aφ̄N

T + a0φ0
T)

2 +
λ0

2
(φ0

T − XT)
2 +

aλ

2a0
(φ̄N

T − XN
T )2

]

≤ C−E
[∫ T

0

ᾱ0

2
(φ̇0

t )
2dt
]
+E

[∫ T

0
S2

t dt
] 1

2

E
[∫ T

0
(φ̇0

t )
2dt
] 1

2

−E
[∫ T

0

aᾱ

2a0
( ˙̄φN

t )2dt
]
+

a
a0
E
[∫ T

0
S2

t dt
] 1

2

E
[∫ T

0
( ˙̄φN

t )2dt
] 1

2

≤ C−E
[∫ T

0

ᾱ0

2
(φ̇0

t )
2dt
]
+E

[∫ T

0
S2

t dt
] 1

2

E
[∫ T

0
(φ̇0

t )
2dt
] 1

2

+
a

ᾱa0
E
[∫ T

0
S2

t dt
]

Thus, if

E
[∫ T

0
(φ̇0

t )
2dt
]
> A,
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for A sufficiently large (but not depending on N), then, from the above estimate, it follows that

JN,0(φ0, φ−0) ≤ JN,0(φ0∗, φ−0∗),

as well.

5. Numerical Illustration

In this section, our objective is to illustrate the theoretical results that are presented in Sections 3
and 4 with numerical simulations. We analyze the role of the major producer in the market and its
impact on price characteristics, such as volatility and price-forecast correlation, and compare this
situation to the homogeneous agent setting studied in Féron et al. (2020). Some comparisons with
the empirical market characteristics are also performed, but we refer the reader to Féron et al. (2020)
and other papers cited therein for a more detailed description of intraday electricity markets and
their empirical features. Here, we will consider production forecasts instead of demand forecasts
because the empirical analyses in Féron et al. (2020) are led on actual wind infeed forecasts, as is
the case in the rest of the paper. Throughout, we consider that the production forecasts are the the
differences between actual production forecasts and the agents’ positions in the market at time 0.
Therefore, the initial values Xi

0, i = 0, . . . , N will be set to 0.

5.1. Model Specification

We now define the dynamics for the fundamental price and the production forecasts used in
the simulations and specify the parameter values. With the objective being to illustrate the model,
the majority of the parameters are not precisely estimated, but they are given ad hoc plausible values.

The evolution of the fundamental price is described, as follows:

dSt = σSdWt (19)

where σs is a constant and (Wt)t∈[0,T] is Brownian motion. We also assume that the liquidity functions
α(.) and α0(.) have a specific form, given by

α(t) = α× (T − t) + β, ∀t ∈ [0, T] (20)

α0(t) = α0 × (T − t) + β0, ∀t ∈ [0, T] (21)

where α, β, α0, and β0 are strictly positive constants. Thus, the liquidity functions are decreasing with
time. This assumption relies on the fact that the market becomes more liquid as we get closer to the
delivery time and it is less costly to trade when the market is liquid.

To simulate production forecasts, we assume the following dynamics:

dX̄t = σ̄dB̄t (22)

dX̌0
t = σ0dB0

t , (23)

dX̌i
t = σXdBi

t, i ∈ {1, . . . , N} (24)

where σ̄, σ0, and σX are constants and (B̄t)t∈[0,T], (Bi
t)t∈[0,T], i ∈ {0, . . . , N} are independent Brownian

motions, also independent from (Wt)t∈[0,T].
In this illustration, we choose the same parameters for the dynamics of the common and individual

production forecasts, as well as the forecast of the major agent. The common volatility is calibrated
to wind energy forecasts in Germany over January 2015 during the last quotation hour, by using the
classical volatility estimator

σ̄ = σ0 = σX = σ̂ =

√
∆t

n′ − 1

n′

∑
i=1

Y2
i (25)
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with ∆t being the time step between two observations, Yi = Xti − Xti−1 as the increment between
two successive observations, and n′ depicting the total number of observed increments. Because the
forecasts are updated every 15 min, there are three daily variations during the last hour of forecasts
from the 3 January to the 31 January. Thus, for each delivery hour, we dispose of n′ = 87 increments in
order to estimate the volatility.

Table 1 specifies the model parameters.

Table 1. Parameters of the model.

Parameter Value Parameter Value

S0 40 e/MWh a 1 e/MWh2

σS 10 e/MWh.h1/2 λ 100 e/MWh2

X0 0 MWh λ0 100 e/MWh2

σ̄ 73 MWh/h1/2 α 0.3 e/h·MW2

X̌i
0 0 MWh α0 0.3 e/h·MW2

σX , σ0 73 MWh/h1/2 β 0.1 e/MW2

N 100 β0 0.1 e/MW2

5.2. Equilibrium Price and Market Impact

In Figure 1, we plot the major agent production forecast and common production forecast
(respectively, the orange and blue solid lines) together with the equilibrium position of the major agent
and the aggregate position of the minor agents given by Theorem 2 and Proposition 2 (respectively,
the orange and blue dashed lines). For comparison, we also plot the aggregate position in the identical
agent case (dotted green line). All of the trajectories have been computed with the same production
forecasts, the same fundamental price, initial values, volatilities, and parameters, as specified in Table 1,
except for the price impact coefficients of major and minor player, which differ according to model
specification. In the Stackelberg game, we chose a0 = a = 0.5 e/MWh2 and, in the homogeneous case,
we kept a = 1 e/MWh2.

Figure 1. Demand forecasts and agents’ positions in the Stackelberg game.

We observe that the strategy in the setting of identical agents and the strategy of the minor player
in the Stackelberg setting converge to the same terminal value due to the terminal penalty. However,
in the Stackelberg case, the minor agent position tends to follow the one of the major player during the
first part of the trading period. In the case of identical agents, the fluctuations are not as strong, since,
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contrary to the case when a major agent is present, the minor agents have no incentive to modify their
trajectory to follow the leader. During the second half of the trading period, the minor agent position
deviates further away from the one of the major agent in order to target the same terminal position
as the mean field in the case of identical agents. We can argue that the strategy of the minor agent
becomes more sensitive to the terminal constraint as we get closer to the delivery time: the weight of
the terminal constraint in the strategy increases due to the decrease of the instantaneous trading cost.

5.3. Volatility and Price-Forecast Correlation

In this paragraph, we illustrate with simulations the effect of the presence of the major agent on
the price characteristics, such as the volatility and the correlation between the price and renewable
infeed forecasts. The volatility was estimated from simulated price trajectories using a kernel-based
non parametric estimator of the instantaneous volatility:

σ̂2
t =

∑n
i=1 Kh(ti−1 − t)∆P̃2

ti−1

∑n
i=1 Kh(ti−1 − t)(ti − ti−1)

, (26)

where K(.) is the Epanechnikov kernel: K(x) = 3
4 (1− x2)1[−1,1](x) and Kh(x) = 1

h K( x
h ). The parameter

h was taken equal to 0.08 h (≈5 min).
For a fixed scenario of production forecasts for the minor and major players, as drawn in Figure 1,

we estimated the volatility of the simulated market price for different values of the weights a0 and
a assigned, respectively, to the major player and the mean field of minor players in the price impact
function. We studied three different combinations of weights in order to illustrate the impact of the
minor players and the major player in the game: a0 = a = 0.5 e/MWh2, the impact of the major player
and the minor players is the same; a0 = 0.9, a = 0.1 e/MWh2, the major player has a lot more impact
than the minor players, and finally a0 = 0 e/MWh2, a = 1 e/MWh2, equivalent to a market without
a major player. These weights can be seen as the respective market shares that are held by the major
agent and the minor players.

Figure 2, left graph, shows the estimated volatility trajectories for the three different cases of
market shares of the major agent averaged over 1000 simulations. We note that the volatility of the
market price depends on the strength of impact of the major player: the greater a0, the higher the
volatility. A possible explanation for this phenomenon is that stronger competition in the market
(when the major agent is absent or has a small market share) reduces profit opportunities in the market
and the agents, therefore, trade less actively.

For comparison, we also plot, in Figure 2, right graph, the volatility estimated from empirical
intraday electricity price data using the same estimator (26). This graph is taken from Féron et al. (2020).
We see that the phenomenon of increasing volatility at the approach of the delivery date, which is
clearly visible in the actual electricity markets, is well reproduced by our model.

An important stylized feature of intraday market prices, observed empirically
in Kiesel and Paraschiv (2017) and Féron et al. (2020), is the correlation between the price and
renewable production forecasts. In Figure 3, we plotted the correlation between the increments of the
market price and the increments of the renewable production forecast of the major agent as a function
of time, in the market impact setting a0 = a = 0.5 e/MWh2; as well as the correlation between the
price increments and increments of the total aggregate forecast of both the major and minor players.
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Figure 2. (Left) volatility of simulated prices for different market shares of the major agent.
(Right) volatility for different delivery hours, estimated empirically from EPEX spot intraday market
data of January 2017 for the Germany delivery zone.

The correlation is computed over 15-min. increments while using the following estimator:

ρ̂t =
∑Nsim

k=1 (∆Yk
t − ∆Yt)(∆Pk

t − ∆Pt)√
∑Nsim

k=1 (∆Yk
t − ∆Yt)2 ∑Nsim

k=1 (∆Pk
t − ∆Pt)2

,

with Nsim the number of simulations (we considered Nsim = 50,000) and where ∆Yk
t and ∆Pk

t =

PMF,k
t+dt − PMF,k

t are the increments of, respectively, the forecast process and market price.

Figure 3. Correlation between the price increments and the major player renewable production increments
vs. the correlation between the price increments and the total renewable production increments.

For the sake of clarity, we only draw the Monte Carlo confidence interval for the case of the
correlation between the major player production and the price considered in Figure 3. A similar
confidence interval was obtained for the case of total production correlation. In Figure 3, we observe
that the correlation between the production forecast increments of the major agent and price is lower
in absolute value than the correlation between the total production forecast increments and the price.
However, the gap between the correlations diminishes as we approach the delivery time.

6. Conclusions

In this paper, we applied the theory of linear quadratic mean-field games with a major player to
the analysis of intraday electricity markets. The linear quadratic setting, while allowing for obtaining
explicit formulas for the equilibrium price and optimal strategies of the agents, requires one to impose
a number of quite stringent assumptions on the price dynamics, such as linear market impact and
quadratic hedging cost. While these assumptions have been used in a number of papers on optimal
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trading and order execution in financial markets, their validity in electricity markets remains to be
studied. Contrary to equity and bond markets, the literature on market impact and microstructure
of electricity markets is in the nascent state and we hope that our paper will motivate more in-depth
analysis of this topic, and more detailed studies of order book data of electricity markets. Another
important aspect of our study is the theoretical demonstration of the correlation between the renewable
production forecasts and market prices. As the renewable penetration and the participation of
renewable producers in intraday market increases, these correlations will become more important and
they may erode the profits of the renewable producers, impeding investment flows into this important
domain. Therefore, one may need to develop alternative market structures facilitating the participation
of renewable producers.
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