
Martinazzi, Stefano; Regoli, Daniele; Flori, Andrea

Article

A tale of two layers: the mutual relationship between
Bitcoin and lightning network

Risks

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Martinazzi, Stefano; Regoli, Daniele; Flori, Andrea (2020) : A tale of two
layers: the mutual relationship between Bitcoin and lightning network, Risks, ISSN 2227-9091,
MDPI, Basel, Vol. 8, Iss. 4, pp. 1-18,
https://doi.org/10.3390/risks8040129

This Version is available at:
https://hdl.handle.net/10419/258082

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/risks8040129%0A
https://hdl.handle.net/10419/258082
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


risks

Article

A Tale of Two Layers: The Mutual Relationship
between Bitcoin and Lightning Network

Stefano Martinazzi 1,* , Daniele Regoli 2,† and Andrea Flori 1

1 Department of Management, Economics and Industrial Engineering, Politecnico di Milano,
20121 Milan, Italy; andrea.flori@polimi.it

2 Data Science and Artificial Intelligence, Intesa Sanpaolo, 20121 Milan, Italy; daniele.regoli@sns.it
* Correspondence: stefano.martinazzi@polimi.it
† The views expressed in this paper are those of the author and should not be attributed to Intesa Sanpaolo or

to the author as representative or employee of Intesa Sanpaolo.

Received: 27 October 2020; Accepted: 26 November 2020; Published: 1 December 2020
����������
�������

Abstract: A major concern of the adoption and scalability of Blockchain technologies refers to their
efficient use for payments. In this work, we analyze how Lightning Network (LN), which represents a
relevant infrastructural novelty, is influenced by the market dynamics of its referring cryptocurrency,
namely Bitcoin. In so doing, we focus on how the LN is efficient in performing transactions and
we relate this feature to the market conditions of Bitcoin. By applying the Toda–Yamamoto variant
of Granger-causality, we note that market conditions of Bitcoin do not significantly influence the
topological configuration of the LN. Hence, although the LN represents a second layer on the Bitcoin
blockchain, our findings suggest that its efficient functioning does not appear to be related to the
simple market performance of its underlying cryptocurrency and, in particular, of its volatile market
fluctuations. This result may therefore contribute to shed light on the practical usage of the LN as a
blockchain technology to favor transactions.

Keywords: bitcoin; lightning network; granger causality; market efficiency; global efficiency

1. Introduction

The growing attention on cryptocurrencies and blockchain solutions is generating a new
literature recognizing the increasing relevance assumed by these technologies in shaping several
economic domains. Undoubtedly, the research agenda has been heavily affected by the impact of
cryptocurrencies’ market behaviours and their extremely volatile dynamics. More generally, the use
of cryptocurrencies as either means of payment or investment assets has influenced a rich stream of
research about the economic fundamentals of these technologies (see, e.g., Baur et al. (2015, 2018)
Böhme et al. 2015; Gomber et al. 2017; Selgin 2015; Yermack 2015). Nevertheless, the adoption of these
technologies in many contexts still appears in its infancy, thus motivating the current debate and
research on how to scale them and, possibly, foster their wider adoption by the business environment
in general (Bech and Garratt 2017; Kumhof and Noone 2018; Polasik et al. 2015).

Against this background, the literature has tried to recognize and analyze the key aspects which
may limit the diffusion and adoption of cryptocurrencies and blockchain technologies. For instance,
since cryptocurrencies are usually not supported by any centralized institution and are generally not
related to tangible assets, governance issues may prevent them from being attractive and functioning
tools for financial applications (Dwyer 2015; Flori 2019a; Weber 2016; Yermack 2017). In addition,
ethical issues may represent a major concern for their adoption and diffusion in business contexts
(Angel and McCabe 2015; Dierksmeier and Seele 2018), and in order to respond to critical issues such
as money laundering activities, tax evasion and insider trading, an adequate regulatory framework is
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no longer considered deferable (Blundell-Wignall 2014; Brito et al. 2014; Pieters and Vivanco 2017).
Finally, technical aspects may play a significant role in the diffusion of these technologies. For instance,
Bitcoin cannot perform consistent amounts of transactions per unit of time since on average every ten
minutes only a single block can be mined and added to the blockchain, meaning a maximum of seven
transactions per second. As a comparison, well known payment systems such as Visa can process
several thousands transactions per second (Croman et al. 2016).

The identification of cryptocurrencies as investment products, commodities, or currencies is
still under discussion (see, e.g., Baek and Elbeck 2015; Baur et al. 2018; Carrick 2016; Flori 2019a;
Hong 2017; Yermack 2015). However, the technological constraints occurring during transactions
and the inherent liquidity limitations suggest that, at least for transaction aspects, cryptocurrencies
may resemble commodities, with values reflecting their intrinsic scarcity and mining costs (see,
e.g., Dwyer 2015; Selgin 2015). Within such a framework, miners are those actors that can add new
blocks containing transaction records to the blockchain, thus playing a pivotal role for the functioning
of the underlying system.

From an economic point of view, the interplay between miners and the other actors operating in
the system can be gauged for instance by the dynamics of the fees, whose value deeply depends on
the amount of transactions waiting to be added into the blockchain but weakly refers to the volume
transferred per unit of time (Khan et al. 2019). As an example, during the Bitcoin boom phase at the
end of 2017, when demand was very high, fees reached an astonishing level of about USD 40 from less
than USD 1 per transaction registered at the beginning of the same year (Lee 2018). Hence, for large
transferred amounts, transactions executed through a blockchain technology can represent a more
convenient solution than traditional payment systems, while blockchain infrastructures could appear
economically inefficient for micro-payments.

For these reasons, many different solutions have been proposed to increase throughput and lower
latencies during transactions, such as the deployment in August 2017 of Bitcoin Cash to increase the
size of the blocks to 8Mb, or the Segregated Witness implemented after the hardfork of November
2017 to quadruplicate the amount of transactions that can be placed into a single block (SegWit,
Bitcoin Improvement Proposal 141). Interestingly, a recent infrastructural novelty refers to a “Layer 2”
solution based on smart contracts and formed by a network of channels established mainly for
micro-payments. This solution is named Lightning Network (hereinafter, LN) and was deployed
in January 2018. More specifically, this network is formed by user counterparts that open bilateral
channels through the issue of a multi-signed transaction on the Bitcoin blockchain. In so doing,
these pairs of counterparts are then enabled to exchange back and forth a predefined amount of
Bitcoin through off-chain transactions that are not uploaded into the blockchain at each operation
(Poon and Dryja 2016), thus facilitating faster transactions. Eventually, if a particular channel is
no longer needed, a multi-signed transaction corresponding to the final balance between the two
counterparts is then uploaded to the blockchain.

Since the LN represents one of the most recognized solutions for scalability, in this paper we
aim to evaluate how this infrastructure is evolving over time and, in particular, we investigate
how its configuration is reflecting the dynamics of Bitcoin, i.e., the market behavior of its referring
cryptocurrency. We opt for the assessment of the efficiency of the LN as a key dimension describing its
functioning. In fact, this network of channels forms a multi-hop framework in which counterparts
can send flows to other counterparts, even without creating a new channel, whenever a common
path linking more channels is available and has enough stored capacity. For this reason, we employ
the topological efficiency proposed by Latora and Marchiori (2001, 2003) to assess its likelihood
to disseminate information through its nodes, which is a critical aspect for successfully routing
transactions in such a multi-hop framework. In line with Martinazzi and Flori (2020), we provide
therefore a network theory analysis of the LN, but in this case we propose an evaluation of the
efficiency on a daily basis to better assess the impact of market dynamics. We consider the period from
12 February 2018, when the LN started, to 12 August 2020. Our study reveals how the size of the LN,
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as well as the capacity stored in its channels, increased remarkably over the period, while its efficiency
has been characterized by phases of ups and downs.

Interestingly, we observe a few erratic behaviours during the period under study, which may be
related to the market dynamics of the underlying cryptocurrency. For this reason, we decide to study
the role played by Bitcoin market dynamics primarily by assessing its market efficient conditions.
In particular, we test econometrically whether the weak form of the Efficient Market Hypothesis (EMH)
(Fama 1970) holds. Several empirical works have already observed that cryptocurrency markets
tend indeed to be inefficient, at least during boom and burst phases, meaning that returns appear
skewed and heavy-tailed distributed, strong volatility clustering and leverage effects are present,
and that multifractality and long-range dependence phenomena for both returns and volatility are
quite common (see, e.g., Bariviera et al. 2017; Begušić et al. 2018; Chu et al. 2015; Phillip et al. 2018;
Takaishi 2018; Zhang et al. 2018 among others). Therefore, we apply a battery of econometric tests
to verify whether Bitcoin market patterns are actually efficient over the sample period. In so doing,
we also contribute to the literature by studying market efficiency for recent observations of Bitcoin
through the inclusion of a comprehensive set of tests. Our findings, supported also by the application
of the Detrended Fluctuation Analysis over the sample period, indicate that Bitcoin is far from being
an efficient market.

More in general, the dependence of Bitcoin market efficiency on investors’ behavioral distortions,
variations in their risk appetite, changes in market conditions, impact of news, or even novelties in
the blockchain infrastructural environment is still under investigation (Brauneis and Mestel 2018;
Caginalp and Caginalp 2018; Dyhrberg et al. 2018; Flori 2019b; Fry 2018; Garcia et al. 2014; Kristoufek
2018; Urquhart 2018). In this work, we propose to evaluate the possible mutual effects occurring
between Bitcoin market conditions and the functioning of the LN. In particular, we study the nexus
between these systems by means of the Toda and Yamamoto (1995)’s variant of the Granger causality
test (Toda and Yamamoto 1995), thus avoiding any pretest bias from cointegration issues. Our analysis
reveals that Bitcoin market conditions are not able to Granger-cause the topological efficiency of
the LN. Hence, the functioning of this second layer of the Bitcoin blockchain does not appear to be
affected by how information is correctly or not spread in its referring crypto-market. From an economic
perspective, this finding may question the practical usage of the LN as a system to favor the adoption
and diffusion of blockchain technologies, since its ability to efficiently route transactions does not
appear to be influenced by the market dynamics of its referring crypto-market. In fact, Bitcoin market
dynamics may influence the LN in several ways, since strong market appreciation may discourage LN
users to block bitcoins within the LN, or may induce them to open channels only with a few selected
counterparts, thus impacting on the configuration of the LN. The contribution of this paper is therefore
twofold. Firstly, we provide a detailed analysis of the evolution of the LN with respect to its topological
configuration to characterize its efficient functioning in routing information through the multi-hop
framework. Secondly, we show how such infrastructural efficiency levels relate to the market dynamics
of its underlying cryptocurrency, revealing that its dynamics appear poorly connected to the market
patterns of Bitcoin. More specifically, we note that Bitcoin market performance does not influence the
level of interconnectivity among the users within the LN, but instead it may affect users’ decisions
on how much bitcoins to store in the corresponding edges of the LN, thus possibly impacting on the
overall functioning of the network.

Bitcoin practical usage and its scalability issue has haunted it, preventing its mass adoption since
its initial stages. Our findings can be used to build the case for arguing that there might be a wide
difference between Bitcoin’s audience and the users of LN. In this regard, our work reveals the lack of
strong relationships between Bitcoin’s market dynamics and one of the most promising technological
improvement underneath it. It should be noted, however, that although the referring cryptocurrency of
LN is Bitcoin, several studies (see, e.g., Aslanidis et al. 2020; Corbet et al. 2018; Dimpfl and Peter 2019;
Katsiampa 2019) have highlighted the market interdependence across cryptocurrencies, possibly hiding
the role of events in other currencies through the impact on Bitcoin.
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The paper is organized as follows. In Section 2 we present the technical aspects behind the LN
and we describe the methodologies applied to compute both the topological and market efficiency
measures. In this section we also discuss the mechanism behind the Granger causality testing, while in
Section 3 we explore the main findings of our study. Section 4 contains concluding remarks.

2. Methodology

2.1. The Lightning Network

LN is the second layer of Bitcoin created to overcome some issues related to the payment system,
which are low throughput (Poon and Dryja 2016) and high confirmation latency (Barber et al. 2012).
Two users in the LN can exchange a pre-established amount of Bitcoin (BTC) instantaneously through
an off-chain bi-directional payment channel based on a smart contract that also allows to perform an
arbitrarily number of transactions exempt from fees. Basically, the only costs are therefore the fees paid
to open the channel and to close it and broadcast the final balance between the two counterparts.

An interesting aspect of the LN is that two separate users that do not share a common channel
might still be able to exchange payments if they can find a shared path with enough capacity to route
the transaction. This routing framework is known as “multi-hop” (Decker and Wattenhofer 2015;
Nowostawski and Tøn 2019; Poon and Dryja 2016). As illustrated in the example of Figure 1, user A
may seek to send 1 BTC to user B, but these two counterparts do not share any direct link. However,
A and B are directly linked with user C through two different channels. If the capacity installed on
those two channels is equal or higher than 1 BTC, A can send its payment to B provided a small
fee paid to C for its role as connector. This example can be extended to paths with more than one
connector, where payments are forwarded through multiple channels as long as they have enough
stored capacity. For instance, A can send 1 BTC to B through users D and E. Conversely, sharing a
common path through user F is not sufficient to route 1 BTC payment since one channel carries only
0.3 BTC.

Figure 1. Representation of different options for a multi-hop transaction. Circles represent users’ nodes
while the bi-directional channels are represented with arrows in both directions.

To characterize the LN, we follow the approach proposed in Miller et al. (2019) and
Guo et al. (2019), employing a daily view of the LN configuration to study its time evolution.
Specifically, we consider a channel to be active if the opening date is the same or earlier than the
one in which the daily snapshot is taken, and the closing date is the same or later than the date of
the snapshot. We then employ a topological analysis borrowed from network theory to assess the
configuration of the LN. In particular, by means of these daily snapshots, we represent the LN at a
given date as an undirected weighted graph in which nodes stand for active users which are connected
by edges representing the corresponding channels. The weight of a certain edge stands for the stored
amount of BTC in the respective channel.
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Finally, following the approach proposed in Martinazzi and Flori (2020), we decide to use as
main representation of the LN’s configuration its topological efficiency. It depends on key elements
of the structure of the network, such as its density and the distribution of the capacity stored in its
channels, hence it is a measure capable to aggregate a great deal of relevant information about the
functioning of the network. For this reason, we refer to the topological efficiency to evaluate how
the resulting configurations are able to spread information throughout the system, meaning how
the network can efficiently perform multi-hop transactions. In so doing, we consider the global
efficiency proposed in Latora and Marchiori (2001, 2003). This measure refers to the average value of
the inverse of the shortest path among each possible couple of nodes. In formula, the global efficiency
is: E (G) = 1

N(N−1) ×∑i 6=j∈G
1

dij
, with G the network composed by N nodes and dij the shortest path

between nodes i and j. Global efficiency is usually normalized by E(Gideal), where Gideal is the fully
connected graph with the same N nodes, and thus it propagates information in the most efficient
possible way. Once normalized, 0 ≤ E(G) ≤ 1, with 0 standing for the totally inefficient configuration,
and 1 meaning the fully connected case. The global efficiency summarizes, therefore, the features
of the level of interconnectivity between the nodes of the network and the distribution of the stored
capacity among the corresponding edges. For these reasons, we decide to apply it to characterize the
effective and efficient functioning of the LN, and we map its evolution over time to evaluate how such
system reacted to the dynamics of its referring cryptocurrency, namely Bitcoin.

2.2. Market Efficiency

Several techniques have been applied to detect market efficiency in cryptomarkets.
Empirical findings reported in the literature typically find that Bitcoin returns have been not uniformly
efficient over time. For instance, inefficient market conditions have been observed by Kristoufek (2018)
in the intervals from the mid-2011 to the mid-2012, and between March and November 2014.
Similarly, Urquhart (2016) finds inefficient conditions since the inception of Bitcoin but also a
tendency towards efficiency in the recent period. By contrast, other authors find opposite results,
e.g., Nadarajah and Chu (2017) claim that Bitcoin is an efficient market in the interval from August
2010 to July 2016. Likewise, Tiwari et al. (2018) observe that Bitcoin is largely efficient in the period
from July 2010 to June 2017.

The detection of efficient market conditions in cryptomarkets appears, therefore, ambiguous in
the literature and findings appear strongly dependent on the selected reference period (for a review
see, e.g., Flori (2019a)). In addition, scholars have also applied several estimation procedures borrowed
from different and multidisciplinary fields. For instance, long-term dependence has been investigated
by Jiang et al. (2018) who exploit the generalized Hurst exponent and a rolling-window estimation
procedure to study the time-varying efficiency of Bitcoin, by Alvarez-Ramirez et al. (2018) who also
point to the cyclical anti-persistence of price returns, and Bariviera et al. (2017) who additionally find
that market liquidity does not seem to affect the level of long-term dependence. Al-Yahyaee et al. (2018)
show that Bitcoin presents levels of long-range persistence higher than those of common asset classes
(e.g., gold, equity indices, the US dollar index). Significant price fluctuations have also stimulated the
detection of the efficient conditions of market volatility. For instance, Bariviera (2017) analyzes the
daily volatility of returns and finds that volatility is persistent during the period from August 2011 to
February 2017, thus supporting the emergence of volatility clustering, while several other works (see
Al-Yahyaee et al. 2018; Baur et al. 2018; Bouri et al. 2019; Drożdż et al. 2018; Phillip et al. 2019 to name a few)
note strong persistence and higher levels of volatility compared to traditional financial instruments.

Hence, following these perspectives proposed in the literature, we decide to employ a rich toolbox
of different econometric tests to analyze market efficiency. Specifically, to test whether returns are
independent observations, we exploit both the Runs Test (Wald and Wolfowitz 1940) and the Bartels
Test (Bartels 1982); instead, to verify serial dependence in the returns, we apply the non-parametric BDS
Test (Broock et al. 1996) and the Automatic Portmanteau Test (Escanciano and Lobato 2009). Finally,
to test whether returns follow a random walk, we consider the DL Test (Domínguez and Lobato 2003)
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and the AVR Test (Choi 1999; Kim 2009; Lo and MacKinlay 1988). In essence, we refer to these tests to
recognize the presence of efficient conditions in the period when LN was deployed. This assessment
therefore provides an aggregate view on the efficient market conditions of Bitcoin over the whole
reference period, namely from 12 February 2018 to 12 August 2020.

In our analysis the daily returns (Rt) at time t are computed as Rt = log(Pt/Pt−1)× 100, with Pt

the price of Bitcoin at time t, while we compute the corresponding volatility as the absolute value of
returns (namely, |Rt|).

In line with the current literature on cryptocurrencies investigating long-term dependency,
we employ the Detrended Fluctuation Analysis (DFA) (Peng et al. 1994, 1995) to provide a daily
evolution of market conditions. DFA is, in fact, a common technique to study the stability conditions
in various financial systems (see, e.g., Spelta et al. 2020). Hence, Bitcoin market returns Rt are shifted
by their mean 〈R〉 and integrated as follows:

xt =
t

∑
i=1

(Ri − 〈R〉); (1)

then, windows with various lengths ∆l are employed to split these transformed series, so that for each
window and value of ∆l the resulting summed data can be fit. Specifically, we use a local least squares
straight-line fit and we minimize the squared errors within each time window. The root-mean-square
deviation from the trend is computed as follows:

F(∆l) =

√√√√ 1
L

L

∑
t=1

[x(t)− x∆l(t)]2 , (2)

with L the total number of data points and x∆l(t) the piecewise sequence of straight-line fits.
Since F(∆l) indicates the average of the summed squares of the residuals computed in the

windows, a log-log graph of F(∆l) versus ∆l is expected to be linear if power law scaling is present,
meaning that statistical self-affinity expressed as F(∆l) ∝ (∆l)α emerges as a straight line on the
log-log graph. We compute the scaling exponent α as the slope of the fitted line using least-squares.
The scaling parameter α, which can be also interpreted as the Hurst exponent, indicates the presence
of self-similarity, and therefore long-term memory, as it maps the scaling of dispersion around the
regressor as the size of the windows increases. The value of α is, therefore, informative for signaling
the following behaviours:

• 0 < α < 0.5: long-term memory and anti-correlation;
• 0.5 < α < 1: long-term memory and correlation;
• α = 0.5: uncorrelated signal (no memory);
• α > 1: non-stationary signal.

In our work, this entire procedure is repeated daily over sliding windows of 250 observations and one
datapoint step forward. For robustness check, in the Appendix A we show also the main results for
sliding windows of length equal to 300 and 600 days. We anticipate here that findings are qualitatively
very similar to those reported in the main analysis of the paper. We retain the daily value of the
exponent α to map the evolution of the market efficiency conditions of Bitcoin.

Finally, to study the mutual relationships between LN and Bitcoin market conditions, we consider
the Toda–Yamamoto test (Toda and Yamamoto 1995). This is a variant of the Granger causality test that
does not rely on pretesting for cointegration issues. Basically, this approach assumes that the Wald test
statistic is valid for Granger causality on p−lags of a certain variable in an overfitted VAR(p + dmax)
model in which dmax refers to the highest order of integration in that system. With dmax > 0,
a regression equation on the system encompassing variables X and Y is thus of the following form:
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Xt = c1 +
p

∑
j=1

αjXt−j +
p

∑
j=1

β jYt−j +
p+dmax

∑
k=p+1

αkXt−k +
p+dmax

∑
k=p+1

βkYt−k + εt, (3)

where the coefficients on the additional lagged variables are not considered in the Wald statistic,
which asymptotically has a chi-square distribution with p degrees of freedom, irrespective of the order
of integration or cointegration properties of the variables in the system (Dolado and Lütkepohl 1996).
Hence, this approach allows us to test linear or nonlinear restrictions on the first p coefficient matrices
using the standard asymptotic theory, even if the processes may be integrated or cointegrated of an
arbitrary order (Toda and Yamamoto 1995).

3. Results

Figure 2 shows two different illustrative snapshots of the LN. The plot on the left is the
representation of LN on the 12 February 2018, while the plot on the right stands for the 12 August 2020.
They refer to the first and the last observation of the LN in our sample. In both snapshots it is possible
to notice the presence of a few large nodes surrounded by smaller ones indistinguishable from each
other. The presence of a few massively endowed nodes highly connected with the rest of the network,
composed by a vast majority of relatively poorly endowed nodes, suggests an overall hub and spoke
structure of the system, a feature already highlighted by Martinazzi and Flori (2020).

Figure 2. Visual representation of the LN. The plot on the left refers to 2018/02/12, while the one on
the right to 2020/08/12.

Moreover, in Table 1 we show some topological measures collected for the LN at the beginning
and at the end of the sample period. The LN grows from 538 nodes, connected by 1985 channels
and with a total capacity of 6.56 BTC (USD 56,861 according to the historical exchange rate) to 7916
simultaneously active nodes, interconnected by 43,654 channels with a total capacity of 1216.29 BTC
(USD 13,945,976). The number of connections per node does not change remarkably in terms of median
values (from two to three connections), while the median capacity of the nodes (namely, the strength
value) increases about four times. Similarly, the average degree increases from 7.37 to 11.03 connections
per node, while the average node’s capacity increases by an order of magnitude. Overall these
topological indicators point to the presence of a vast majority of nodes with few connections and,
possibly, with only a small amount of stored BTC. Furthermore, as we mentioned before, the multi-hop
routing capability of the LN is limited by the possibility of finding paths formed by channels with
enough capacity to forward a payment. Hence, it is interesting to note that the median capacity per
channel increases from about USD 8 to about USD 57 and the mean value from USD 28.64 to USD
319.47, which means that routing payments are likely to become potentially easier along this period.
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Table 1. A collection of topological measures for LN. This table presents some topological measures
extrapolated from the network at its first and last observation in our sample period.

12 February 2018 12 August 2020

Nodes 538 7916
Channels 1985 43, 654
Density 0.014 0.001
Median Degree 2 3
Average Degree 7.37 11.03
Median Strength(USD) 22.80 91.70
Average Strength (USD) 211.34 3523.49
Average Capacity (USD) 28.64 319.47
Median Capacity (USD) 7.80 57.33
Total Capacity (USD) 56, 861 13, 945, 976
Assortativity −0.370 −0.231
Assortativity (W) −0.170 −0.057
Diameter 6 12
Radius (LCC) 4 6
Transitivity (W) 0.120 0.063
Global Efficiency Norm. 0.140 0.014

We also consider some topological measures taking into account the whole configuration
of the network. The assortativity coefficient stands for the tendency of the nodes to connect
with others that possess similar degrees of connections. For a weighted network, an assortative
behaviour arises when nodes with similar weighted degree bond together. The LN, in its unweighted
representation, shows a decisive disassortative behaviour which is typical, for instance, of the internet
infrastructure (Noldus and Van Mieghem 2015). Such disassortative feature is present also in the
weighted representation of the LN (namely, Assortativity (W)), even if in a less remarkable fashion.
Finally, the radius and diameter coefficients, which measure the minimum and maximum eccentricity
distance between any pairs of nodes respectively, indicate an increasing dimension of the network as
reflected also by the rise in the number of participants.

Our main measure of interest, the normalized global efficiency, shows instead a relevant drop
from 0.14 to 0.014. The topological efficiency represents a relevant aspect for the assessment of the
usability of LN as a payment infrastructure since it indicates how flows can effectively move through
the system. In Figure 3 we plot the historical values of the LN’s normalized efficiency against the
density of the network and the median capacity of the channels expressed in USD. The latter are
chosen to display two key aspects about efficiency, namely the inter-connectivity among nodes and
the capacity installed on the corresponding channels. As shown in the figure, the tendency of the
normalized efficiency is comparable with the network’s density, while the growth of the median
capacity presents an opposite pattern, especially in the last period. While it is intuitive to understand
why a decrease in the inter-connectivity of the network deteriorates its efficiency, the relationship with
the median capacity could be not so evident. A possible explanation lays, in fact, in the definition
of the ideal graph, which has the capacity evenly distributed among all its channels, with respect to
the real network characterized by sparser stored capacities and a core of very active nodes. Hence,
an increase in the total capacity will be always distributed in a more efficient way in the ideal graph
than in the real network, therefore decreasing the normalised efficiency of the latter.
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Figure 3. Evolution of LN’s normalized efficiency. The plot exhibits the evolution of LN’s global
normalized efficiency (in light blue), its density (in black) multiplied by 10, and the median capacity
installed on its channels (in red). Both density and efficiency can assume values between 0 and 1.
The y-axis on the left is related to the density and efficiency measures, while the one on the right is
related to the median capacity expressed in USD.

As presented in the Introduction, in order to assess the role played by Bitcoin market conditions
on the efficiency levels of the LN, we primarily analyze how its market dynamics efficiently embeds
information. In Table 2 we report the results of the tests presented in Section 2.2. Although caution
should be taken due to the short sample periods, our findings in Panel A indicate that Bitcoin
returns seem to be characterized by inefficient market conditions. We consider several time windows,
basically one for each year from 2015 to 2019, and two cases that refer to the interval from 2015
to 12 August 2020 and from 12 February 2018 to 12 August 2020, respectively. The latter case
corresponds to our reference period with respect to the deployment of the LN, while the case from 2015
to 12 August 2020 is a scenario extended in terms of the length of the observations in order to enhance
the statistical significance of the results. This latter case practically supports the findings reported for
each year separately. Similarly, the market conditions for volatility appear largely inefficient during
each interval and across each test (see Panel B), thus reflecting the market turbulence characterizing
the persistence of the Bitcoin erratic market behavior.

In addition, to depict the market conditions of Bitcoin on a daily basis, we rely on the DFA
(Peng et al. 1994, 1995). Figure 4 shows the time evolution of the exponents for both the returns
(in green) and volatility (in blue) of Bitcoin. Note how both exponents do not lie in a range around
value 0.5 that corresponds to efficient market conditions, thus supporting the results reported in Table 2.
Furthermore, although price euphoria has stimulated upwards-downwards market dynamics and
relevant price fluctuations, the dynamics of the price of Bitcoin (in gray) does not seem to strongly map
on the corresponding patterns of the DFA exponents. This is true also in the period after the remarkable
market boom phase starting from the beginning of 2017 and culminating in the early part of 2018 when
the LN was established. During the reference period, the correlation values between Bitcoin price and
both the DFA exponents of returns and volatility are low and about 0.04 and 0.05, respectively.
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Table 2. Bitcoin market efficiency conditions. Table reports p-values for the following tests: the Runs
Test (Wald and Wolfowitz 1940), the Bartels Test (Bartels 1982), the BDS Test (Broock et al. 1996),
the Automatic Portmanteau Test (Escanciano and Lobato 2009), the AVR Test (Choi 1999; Kim 2009;
Lo and MacKinlay 1988), and the DL Test (Domínguez and Lobato 2003). For BDS the table reports
the average p-values across specifications with embedding dimensions from 2 to 5; for the AVR test
we compute 500 bootstrap iterations; for DL the table reports both the wild-bootstrap p-values of the
Cramer von Mises test statistic (cp) and of the Kolmogorov-Smirnov test statistic (kp). Panel A refers
to Bitcoin returns, while Panel B reports the results for the corresponding volatility computed as the
absolute value of the returns (i.e., |returns|).

PANEL A

Period Runs
Test

Bartels
Test

BDS
Test

Automatic
Portmanteau

Test
AVR
Test

DL (cp)
Test

DL (kp)
Test

2015/01/01–2015/12/31 0.00053 0.00005 0.00000 0.10644 0.35000 0.00000 0.00000
2016/01/01–2016/12/31 0.01605 0.00016 0.00000 0.08296 0.04800 0.00000 0.00000
2017/01/01–2017/12/31 0.00164 0.00000 0.00000 0.00041 0.00000 0.00000 0.00000
2018/01/01–2018/12/31 0.07434 0.00070 0.00000 0.02037 0.01400 0.00000 0.00000
2019/01/01–2019/12/31 0.00078 0.00000 0.00148 0.00033 0.00800 0.00000 0.00000
2018/02/12–2020/08/12 0.00002 0.00000 0.00000 0.00002 0.00200 0.00000 0.00000
2015/01/01–2020/08/12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

PANEL B

Period Runs
Test

Bartels
Test

BDS
Test

Automatic
Portmanteau

Test
AVR
Test

DL (cp)
Test

DL (kp)
Test

2015/01/01–2015/12/31 0.00036 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
2016/01/01–2016/12/31 0.02127 0.00001 0.00000 0.00055 0.00000 0.00000 0.00000
2017/01/01–2017/12/31 0.00016 0.00000 0.00037 0.00000 0.00000 0.00000 0.00000
2018/01/01–2018/12/31 0.00000 0.00000 0.00081 0.00000 0.00000 0.00000 0.00000
2019/01/01–2019/12/31 0.00016 0.00000 0.03740 0.00092 0.00000 0.00000 0.00000
2018/02/12–2020/08/12 0.00000 0.00000 0.00009 0.00000 0.00000 0.00000 0.00000
2015/01/01–2020/08/12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Figure 4. DFA exponent time evolution. The plot exhibits the DFA exponent (Peng et al. 1994, 1995) for
returns (in green) and volatility (in blue). Estimates consider sliding windows of 250 daily observations
and one datapoint step forward. The shadow area refers to the standard error of the corresponding
coefficient. The log of Bitcoin prices (divided by 103) is reported in gray. The dotted red line stands for
the 0.5 level of the DFA α exponent.
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In particular, the literature has proposed several aspects that may affect the efficiency of crypto
markets (see, e.g., Brauneis and Mestel 2018; Caginalp and Caginalp 2018; Dyhrberg et al. 2018;
Flori 2019b; Fry 2018; Garcia et al. 2014; Kristoufek 2018; Urquhart 2018 to name a few). They refer,
for instance, to investors’ behavioral biases, the impact of news and infrastructural changes. As far as
the latter aspect is concerned, the LN represents one of the main infrastructural novelties within the
framework of payments solutions based on blockchain technologies. For this reason, we aim to explore
whether its functioning has been influenced by the market conditions of its referring cryptocurrency,
namely Bitcoin, or, alternatively, whether it is also possible that LN has affected the market efficiency
conditions of Bitcoin.

Findings reported in Table 2 and Figure 4 indicate that the market conditions for Bitcoin seem to
have been inefficient when the LN started to operate, basically corresponding to the period just after
the remarkable boom phase culminated at the end of 2017. Our next investigation refers, therefore,
to the comparison between the market conditions of Bitcoin and the functioning of LN, the latter in
terms of its ability to perform transactions in a multi-hop system. In so doing, to map the daily market
conditions of Bitcoin we refer to the exponent values from the DFA of both returns and volatility along
with its basic price and returns time series, while we employ the topological efficiency to describe
the functioning of the LN. Due to the nature of these indicators, which may exhibit erratic patterns,
and the potential presence of cointegration issues, we opt for the Granger-like causality test based
on the Toda–Yamamoto approach (Toda and Yamamoto 1995). Other methodologies to run a proper
causality testing when time-series are non-stationary and, possibly, cointegrated can be utilized as well
(see, e.g., Lütkepohl 2005).

We run the Toda–Yamamoto tests over the period from 12 February 2018 to 12 August 2020,
thus covering the eighteen months of existence of the LN in our sample. We consider the topological
efficiency of the LN, the DFA exponents of the returns and volatility of Bitcoin as well as both its raw
price and returns time series. Specifically, the mechanics behind the application of the Toda–Yamamoto
test is based on the following steps. First, for each series we compute the maximum order of integration
(dmax) by calculating the ADF and KPSS tests. Second, we set up VAR models in levels for pairs
of variables and we select the maximum lag length for them (p) using information criteria such as
AIC, SIC, HQ and FPE. Third, we check whether each VAR model is well specified by verifying that
residuals are not serially correlated. Fourth, we add the maximum order of integration to the number of
lags, thus estimating augmented VAR (p + dmax) models. Our assessment is finally based on carrying
out Wald tests for the first p variables. The Wald test statistics will be asymptotically chi-squared
distributed with p degrees of freedom.

Table 3 reports the estimates of the Toda–Yamamoto tests. Panel A reports the case in which
column variables may Granger-cause the LN efficiency. Interestingly, although the LN is a second
layer of the Bitcoin blockchain, the efficiency of the Bitcoin market does not seem to really impact on
the functioning of the LN. In fact, both the tests in which the DFA exponents of the Bitcoin returns
and volatility are compared against the LN topological efficiency present very high p-values. Similarly,
Bitcoin raw prices and returns do not seem to have a statistically significant influence on the LN
efficiency. Hence, it seems that the efficiency of the LN in terms of its ability to perform transactions
in the multi-hop structure is not influenced by the market dynamics of Bitcoin. We recall that the
efficiency of the LN is here dependent on the level of interconnectivity and on the capacity in terms of
bitcoins stored in the edges of the network. Our findings indicate that Bitcoin market performances
may thus not have a role in shaping the LN efficiency, while, as expected, Panel B indicates that the
LN efficiency configuration is not able to Granger-causes the market dynamics of its main referring
cryptomarket. In the Appendix A, we show that such findings are confirmed once we extend the time
windows to compute the DFA to 300 and 600 days instead of 250.
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Table 3. Testing for granger-causality. The table reports the results of the Toda–Yamamoto test
(Toda and Yamamoto 1995). In Panel A we test whether column variables Granger-cause the row
variable, while the opposite for Panel B.

Panel A: Column G-Causes Row BTC Alpha BTC Vol Alpha BTC Price BTC Returns

LN efficiency statistics 5.50 0.70 1.70 1.60
p-value 0.36 0.98 0.42 0.46

Panel B: Row G-Causes Column BTC Alpha BTC Vol Alpha BTC Price BTC Returns

LN efficiency statistics 7.40 2.90 0.41 0.31
p-value 0.19 0.72 0.81 0.86

Then, in order to better understand whether some aspects of the configuration of LN are instead
prone to be influenced by changes in the Bitcoin market performances, we investigate whether
topological features related to the efficiency levels of LN might be Granger-caused by the market
performance of Bitcoin. Therefore, we replicate a similar analysis as the one reported in Table 3, but in
this case we specifically focus on the relationships between Bitcoin returns and a battery of topological
indicators. In particular, in Table 4 we report the estimates related to the Granger-causality of Bitcoin
returns on the following topological indicators for the LN: assortativity, density, transitivity, the median
value of the nodes’ strength, and the median capacity of the edges. Hence, we refer to a simple list of
topological indicators that are able to map the configuration of the LN in terms of both the features of
its nodes and the way edges connecting these nodes are created (see also Table 1 and the corresponding
discussion). Hence, this analysis provides an intuitive indication of the potential elements contributing
to the functioning of the LN.

From Table 4 note how Bitcoin returns do not appear to Granger-cause how similar nodes in the
LN tend to connect together, as shown by the relationship with assortativity. Similarly, it emerges that
the relationship with respect to the overall density of the LN is not significant. Hence, Bitcoin market
performance does not seem to be a significant driver for the creation of channels in the LN, at least
for what concerns the aggregate level of inter-connectivity in the network. In addition, both the
relationships with the assortativity and with the transitivity seem to signal that Bitcoin market
performances are not able to significantly affect the structure of the neighborhood of each node.
This is also supported by the results involving the median values of the nodes’ strengths, which do
not appear influenced by Bitcoin market dynamics. By contrast, it seems that the amount of bitcoins
stored in the channels can be related to Bitcoin market movement. Overall, these findings support the
interpretation that Bitcoin market performances hardly influence the efficiency of the LN through the
creation of channels, but possibly impact on it with the corresponding deployment of stored resources.
Finally, the corresponding reverse relationships are not statistically significant.

Table 4. Testing for the Granger-causality relationship: BTC returns vs. LN configuration. The table
reports the results of the Toda–Yamamoto test (Toda and Yamamoto 1995) in which BTC returns are
tested to verify whether they Granger-cause a list of topological indicators for the LN (reported in
column). These topological indicators refer to respectively: the assortativity, the density, the transitivity,
the median value of the nodes’ strength, and the median capacity of the edges.

Row G-Causes Column Assortativity Density Transitivity Median Strength Median Capacity

BTC returns statistics 0.17 0.96 3.10 0.69 4.70
p-value 0.68 0.33 0.21 0.41 0.03

Previous findings seem to discard the presence of a relevant role for the topological features of
the nodes. The LN is, however, characterized by the existence of a bundle of very active players to
which a cloud of small nodes (in terms of capacity) are connected. For this reason, we also investigate
the potential impact of Bitcoin market returns on the characteristics of these highly centralized nodes
whose dynamics may actually influence the overall functioning of the system. Hence, we select the
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top 0.5% of the nodes in terms of strength, thus representing those nodes in the LN which are likely
to affect the overall functioning of the system, and we test the Toda–Yamamoto Granger-causality of
Bitcoin market returns on their fraction of capacity with respect to the whole LN. We observe that this
relationship is not significant (p-value 0.30). We replicate the same analysis using the top 1% and 10%
of the nodes, obtaining similar results (p-values equal to 0.32 and 0.86 respectively). The centralization
feature of the LN, already observed by Martinazzi and Flori (2020), may influence its functioning since
a huge portion of transactions are likely to occur across the edges of these central nodes. Our analysis
suggests that the tendency towards a centralized configuration of the LN does not seem to be impacted
by Bitcoin market performances.

4. Conclusions

Since its inception, Bitcoin has been criticized for its inability to efficiently perform as many
transactions per second as traditional payments services. This evidence, known as scalability issue,
has been addressed with different tentative solutions, but it has never been completely solved. With this
regard, the LN is a system based on off-chain payment channels and has been considered since its
proposal as a very promising candidate to definitively solve the scalability issue.

This work proposes to investigate the LN functioning by adopting a graph theory perspective to
detect how efficient it is in routing information through its multi-hop framework. In particular, in order
to assess the efficiency of such infrastructure we analyze whether Bitcoin market conditions affect
the functioning of LN. This is a relevant point for practical purposes, since the very volatile nature of
Bitcoin, which is the underlying cryptocurrency of LN, may actually influence the configuration of the
LN, limiting its wider adoption and, eventually, preventing its use as a solution for the scalability issue.

To detect whether Bitcoin market performances play a role in shaping the configuration of the
LN, we opt for an investigation strategy in which Bitcoin market dynamics is synthesized through an
intuitive set of indicators. First, we test Bitcoin for the weak Efficient Market Hypothesis on a daily
basis by means of the Detrended Fluctuation Analysis (DFA) and various statistical tests. We keep
the DFA exponents for the Bitcoin returns and volatility and, alongside prices and returns daily time
series, we test if they Granger-cause the efficiency of LN. This analysis does not reveal any significant
relationship between market conditions of Bitcoin and the topological efficiency of LN and vice-versa.
Then, we focus on a simple indicator of market performance and we test whether Bitcoin daily returns,
largely emphasized by market watchers and blockchain fans, actually impact on specific topological
properties related with the efficiency of LN, such as assortativity, density, transitivity, median nodal
capacity and median channel capacity that we employ to describe the infrastractural features of LN
and its adoption. Once again, our findings reveal that Bitcoin market performances do not seem to
influence the properties of the configuration of the LN, with the only exception represented by the
capacity stored in the channels.

Finally, we investigate the Granger-causality relationship between Bitcoin market returns and
the growth of the most endowed nodes in the LN, which represent the most active nodes in the
network through which a relevant share of transactions in the multi-hop framework is likely to occur.
More precisely, we consider the proportion of the capacity installed over those channels co-owned by
the top 0.5%, 1% and 10% nodes. Our estimates indicate that Bitcoin market performances do not seem
to influence the core of the network.

These results suggest that the forces that drive Bitcoin market patterns are different from those
that affect the evolution of the LN. In the light of these results, we can suppose that the activity of
the LN might be only in part influenced by the interest surrounding Bitcoin market performance,
since the functioning of the LN does not appear to be strongly related to the market dynamics of its
referring cryptocurrency. In fact, our analysis indicates that the very volatile market dynamics of
Bitcoin, although it could influence the configuration of LN by impacting for instance on the amount
stored in the channels, in practice does not affect its level of efficiency. This is an interesting result
for future adoption of LN as an infrastructural solution to favor scalability since it seems to indicate
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that Bitcoin market turmoil and performance play a marginal role in shaping the LN configuration,
which instead seems more related to the distribution of capacities among channels. We can thus
speculate that the LN is an innovation that attracts the interest of the most technologically proficient
users of Bitcoin, while it has little impact whatsoever for those that consider Bitcoin nothing more than
a financial asset.

As noted in (Martinazzi and Flori 2020), the efficiency of the network is one of its main features
and it is strongly affected by the structure and the capacity distributed over its channels. Hence,
users and proponents of LN might emphasize the importance and usability of LN to increase stored
capacity, thus enabling higher effectiveness and making the infrastructure capable to perform indirect
payments in a more efficient way.

There are some limitations in this study. First, the scarce length of the period under analysis may
hinder our conclusions, especially when considering such volatile market patterns. Second, the nature
of Bitcoin and the LN makes impossible to impute precisely node’s ownership, an aspect that would be
interesting to take into account to understand how common users operate across these two networks.
For instance, nodes’ behavior might be relevant to disentangle those cases where the LN is mostly
exploited for testing purposes, where users interested in evaluating and testing this technology may be
more prone to open a channel with a node owned by a recognized institution in the LN. The underlying
behavioral drivers that shape the development of the LN’s structure should be investigated more
carefully in future works also with respect to the overall market dynamics of cryptocurrencies.
For instance, interdependences between the co-movements of different cryptocurrencies have been
empirically shown in many works (see, e.g., Dimpfl and Peter 2019; Katsiampa 2019) highlighting
the presence of herding behavior in the market, which can be exacerbated by periods of market stress
(Raimundo Júnior et al. 2020; Vidal-Tomás et al. 2019). Future works may thus focus on how news
and main announcements may impact on LN infrastructure, its functioning and relationships with
Bitcoin and, more in general, with the marketplace of cryptocurrencies. The detection and stability of
clusters of nodes sharing similar features, in line for instance with other applications in finance (see,
e.g., Flori et al. 2019; Puliga et al. 2016; Spelta et al. 2018), represent another interesting field that can be
investigated to study users’ behavior in the network.
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Appendix A

Table A1. Testing for Granger-causality. The table reports the results of the Toda–Yamamoto test
(Toda and Yamamoto 1995). In Panel A we test whether column variables Granger-cause the row
variable, while the opposite for Panel B. To compute the DFA, we consider time windows of length
n = 300 for the first two columns and n = 600 for the last two.

Panel A: Column G-Causes Row BTC Alpha300 BTC Vol Alpha300 BTC Alpha600 BTC Vol Alpha600

LN efficiency statistics 1.90 1.90 2.20 1.10
p-value 0.60 0.87 0.81 0.98

Panel B: Row G-Causes Column BTC Alpha300 BTC Vol Alpha300 BTC Alpha600 BTC Vol Alpha600

LN efficiency statistics 0.90 3.40 3.10 5.30
p-value 0.83 0.64 0.68 0.50
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