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Abstract: In this paper, we study the Parisian time of a reflected Brownian motion with drift on
a finite collection of rays. We derive the Laplace transform of the Parisian time using a recursive
method, and provide an exact simulation algorithm to sample from the distribution of the Parisian
time. The paper was motivated by the settlement delay in the real-time gross settlement (RTGS)
system. Both the central bank and the participating banks in the system are concerned about the
liquidity risk, and are interested in the first time that the duration of settlement delay exceeds a
predefined limit. We reduce this problem to the calculation of the Parisian time. The Parisian time is
also crucial in the pricing of Parisian type options; to this end, we will compare our results to the
existing literature.

Keywords: Brownian motion; Parisian time; exact simulation; real-time gross settlement system

1. Introduction

Suppose we have a system of rays emanating from a common origin and a particle moving on
this system. On each ray, the particle behaves as a reflected Brownian motion with drift; and once
at the origin, it instantaneously chooses a ray for its next excursion randomly according to a given
distribution. We are interested in the time length the particle spends on each ray, and the first time that
the excursion time length on a ray exceeds a predefined threshold. We call this first exceeding time of
threshold a Parisian time, as it generalizes the concept of Parisian time of standard Brownian motion
in literature.

The study of excursion time length of Brownian motion goes back to Chung (1976). Other aspects
of Brownian excursion have also been considered. Durrett et al. (1977) developed the relationships
between the Brownian excursions, meanders and bridges using the limit processes of conditional
functionals of Brownian motion. Imhof (1984) derived the joint density concerning the maximum of
Brownian motion and 3-dimensional Bessel process. Kennedy (1976) derived the distribution of the
maximum of excursion via the limiting processes and relates it to the standard Brownian motion. Getoor
and Sharpe (1979) obtained a limiting result on the distribution of additive functionals over Brownian
excursions. A literature review can be found in Zhang (2014).

More recently, Chesney et al. (1997) studied the Parisian time of Brownian motion, and used the
result to price the Parisian type options. They are path-dependent options whose payoff depends not
only on the final value of the underlying asset, but also on the path trajectory of the underlying above
or below a predetermined barrier for a length of time. The two-sided Parisian option was considered
in Dassios and Wu (2010), its pricing depends on the Parisian time of a drifted Brownian motion with a
two-sided excursion time threshold. It turns out that the Parisian times derived in Chesney et al. (1997)
and Dassios and Wu (2010) can be viewed as the special cases of our result. Moreover, the results in
the current paper can be used to price more complicated Parisian type options. For more details about
Parisian options, see Schröder (2003), Anderluh and van der Weide (2009) and Labart and Lelong (2009).
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This paper is motivated by the real-time gross settlement system (RTGS, and known as CHAPS in
the UK, see McDonough 1997; Padoa-Schioppa 2005). The participating banks in the RTGS system
are concerned about liquidity risk and wish to prevent the excessive liquidity exposure between
two banks. There is evidence suggesting that in CHAPS, banks usually set bilateral or multilateral
limits on the exposed position with others (see Becher et al. 2008), this mechanism was studied
by Che and Dassios (2013) using a Markov model. For a single bank, namely bank A, let a reflected
Brownian motion be the net balance between bank A and bank i, and let ui be the bilateral limit set up
by bank A for bank i, Che and Dassios (2013) calculated the probability that the limit is exceeded in a
finite time.

We consider another source of liquidity risk, the time-lag between the execution of the transaction
and its final completion. As it is explained in McDonough (1997) and Padoa-Schioppa (2005), if a
counterparty does not settle an obligation for the full value when due but at some unspecified time
thereafter, the expected liquidity position of the payee could be affected. The settlement delay may
force the payee to cover its cash-flow shortage by funding at short notice from other sources, which
may result in a financial loss due to higher financing costs or to damage to its reputation. In more
extreme cases, it may be unable to cover its cash-flow shortage at any price, in which case it may be
unable to meet its obligation to others. As the settlement delay is the major source of liquidity risk
in the RTGS system, both the central bank and the participating banks are interested in the length of
the delay. Previous research in Che and Dassios (2013) has shown that the Markov-type models are
adequate for CHAPS, we will extend this model here to study the settlement delay. For bank A and
bank i in CHAPS, we view the net balance between them as a reflected Brownian motion with drift.
Assume that bank A has set a time limit di on the duration of settlement delay for bank i, and they are
interested in the first time that the limit is exceeded. In practice, an individual bank could set multiple
limits or even remove the limit on different types of counterparties. We reduce this problem to the
calculation of the Parisian time of a reflected Brownian motion with drift on rays. For more details
about the CHAPS, see Che (2011) and Soramäki et al. (2007).

We construct the reflected Brownian motion with drift on rays in Section 2, then calculate the
Laplace transform of the Parisian time in Section 3. An exact simulation algorithm to sample from the
distribution of the Parisian time is provided in Section 4. We discuss the application of these results in
Section 5.

2. Construction of the Underlying Process and the Parisian Time

In this section, we construct the reflected Brownian motion with drift on a finite collection of
rays, and define the Parisian time we are interested in. Let n be a finite positive integer, we denote
by S a system containing n rays emanating from the common origin, i.e., S := {S1, . . . , Sn}, and fix
a distribution P := {Pi}i=1,...,n, so that ∑n

i=1 Pi = 1. We also define the functions µ(Si) := µi and
σ(Si) := σi for i = 1, . . . , n, where µi ∈ R and σi ∈ R+ are constants (see Figure 1).

Consider a planar process X(t) on the system of rays S. We represent the position of X(t) by
(|X(t)|, Θ(t)), where |X(t)| denotes the distance between X(t) and the origin, and Θ(t) ∈ {S1, ..., Sn}
indicates the current ray of the process. Let U(t) := µ(Θ(t))t + σ(Θ(t))Wt be the “driving process”,
and |X(t)| be the Skorokhod reflection of U(t), i.e.,

|X(t)| = U(t) + max
0≤s≤t

(−U(s))+, t ≥ 0.

Then, |X(t)| has the same distribution as a reflected Brownian motion with drift µ(Θ(t)) and
dispersion σ(Θ(t)). A proof of this can be seen in Jeanblanc et al. (2009) Section 4.1, Peskir (2006)
and Graversen and Shiryaev (2000).
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ray S2, excursion time threshold d2

µ(S2) = µ2, σ(S2) = σ2

ray S1, excursion time threshold d1

µ(S1) = µ1, σ(S1) = σ1

ray S5, excursion time threshold d5

µ(S5) = µ5, σ(S5) = σ5

ray S4, excursion time threshold d4

µ(S4) = µ4, σ(S4) = σ4

ray S3, excursion time threshold d3

µ(S3) = µ3, σ(S3) = σ3 ε

0

Figure 1. A system of 5 rays emanating from a common origin.

We expect Θ(t) to be constant during each excursion of X(t) away from the origin and has
the same distribution as P when X(t) returns to the origin. To this end, we initialize Θ(t) with
P(Θ(0) = Si) = Pi, i = 1, . . . , n, and let Θ(t) remain constant whenever |X(t)| 6= 0. Once |X(t)| = 0,
Θ(t) is randomized according to P, i.e.,

P
(
Θ(t) = Si | |X(t−)| = 0

)
= Pi, i = 1, . . . , n, ∀t > 0.

This means the coefficients of U(t) remain constant whenever |X(t)| 6= 0, and the Skorokhod
reflection of U(t) has the same distribution as a reflected Brownian motion with drift µi and dispersion
σi on each ray Si.

Therefore, we summarize the behaviour of X(t) as follows. The initial state of X(t) is distributed
as P(X(0) = (0, Si)) = Pi, i = 1, . . . , n. Then it behaves as a Brownian motion with drift µi and
dispersion σi on ray Si, as long as it does not return to the origin. Once at the origin, it instantaneously
chooses a new ray according to P, independently of the past behaviour; that is,

P(X(t) = (0, Si) | |X(t−)| = 0) = Pi, i = 1, . . . , n.

There are some special cases of X(t). When µi = 0 and σi = 1 for i = 1, . . . , n, X(t) becomes a
Walsh Brownian motion. When n = 2, P1 = α = 1− P2, µ1 = µ2 = 0 and σ1 = σ2 = 1, X(t) recovers
the skew Brownian motion. We also obtain a Brownian motion with drift µ and dispersion σ by setting
n = 2, P1 = P2 = 1

2 , µ1 = µ, µ2 = −µ and σ1 = σ2 = σ; and a reflected Brownian motion by setting
n = 1, P1 = 1, µ = 0 and σ = 1.

Next, we define the last zero time and excursion time length of X(t) as g(t) := sup{s ≤ t |
|X(s)| = 0} and U(t) := t− g(t). Then U(t) represents the time length X(t) has spent in the current
ray since last time at the origin. On each ray Si, there is a threshold di > 0 for the excursion time length,
our target is to find the first time that the threshold is exceeded by U(t). Thus, we are interested in the
Parisian time τ defined as

τi := inf{t ≥ 0 | U(t) ≥ di, Θ(t−) = Si}, for i = 1, . . . , n,

τ := min
i=1,...,n

τi.
(1)

Note that X(t) may make an excursion with infinite time length on a ray Si if the drift µi on this
ray is positive. Since our target is to study the Parisian time τ, we are only interested in the excursion
time length up to di, even if the total length is infinite.

We need to calculate the excursion time length of X(t), but the problem is there is no first excursion
from zero; before any t > 0, the process has made an infinite number of small excursions away from
the origin. To approximate the dynamic of a Brownian motion, Dassios and Wu (2010) introduced the
“perturbed Brownian motion”, we will extend this idea here.
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For every ε > 0, we define a perturbed process Xε(t) = (|Xε(t)|, Θε(t)) on the system of rays S.
On each ray Si, |Xε(t)| behaves as a reflected Brownian motion with drift µi, dispersion σi and starting
from ε, as long as it does not return to the origin. Once at the origin, Xε(t) not only chooses a new ray
according to P, but also jumps to ε on the new ray. In other words, Xε(t) has a perturbation of size ε at
the origin which can be described as

P
(
Xε(t) = (ε, Si) | |Xε(t−)| = 0

)
= Pi, i ∈ {1, . . . , n}.

Hence, we describe the behaviour of Xε(t) as follows. The initial state of Xε(t) is distributed as
P(Xε(0) = (ε, Si)) = Pi, i = 1, . . . , n. Then it behaves as a Brownian motion with drift µi, dispersion
σi and starting from ε on ray Si, as long as it does not return to the origin. Once at the origin, it
instantaneously chooses a new ray according to P and jumps to ε on the new ray.

We define the Parisian time of Xε(t) similarly as before. Let gε(t) := sup{s ≤ t | |Xε(s)| = 0}
and Uε(t) := t− gε(t). We are interested in the Parisian time τε defined as

τε
i := inf{t ≥ 0 | Uε(t) ≥ di, Θε(t−) = Si}, for i = 1, . . . , n,

τε := min
i=1,...,n

τε
i ,

As ε→ 0, the perturbation at origin vanishes, and Xε(t)→ X(t) in a pathwise sense, then τε → τ

in distribution. Hence, we will first derive the Laplace transform of τε, then take the limit lim
ε→0

E(e−βτε
)

to calculate the Laplace transform of the Parisian time τ.

3. Laplace Transform of τ

We present the main result of the paper in this section. For simplicity, we denote the
symmetric function

Ψ(x) := 2
√

πxΦ(
√

2x)−
√

πx + e−x2
, x ∈ R,

where Φ(.) is the cumulative distribution function of standard normal distribution, and the constant

Ci := Pi

 2√
2πσ2

i di

Ψ

µi
√

di√
2σ2

i

+
µi

σ2
i

 ,

where µi, σi, Pi and di are defined in Section 2. For µi ∈ R, σi ∈ R+, Pi ∈ (0, 1] and di > 0, we deduce
from the definition that Ci > 0.

Theorem 1. Let X(t) be a reflected Brownian motion with drift on a system of rays S, where µi ∈ R, σi ∈ R+,
Pi ∈ (0, 1] and di > 0 are the drift, dispersion, entering probability and excursion time threshold of ray Si,
i = 1, . . . , n. For β ≥ 0, the Laplace transform of the Parisian time τ is

E
(

e−βτ
)
=

∑n
i=1 e−βdi Ci

∑n
i=1 Ci + ∑n

i=1 Pi
∫ di

0 (1− e−βv)e
−

µ2
i

2σ2
i

v
1√

2πσ2
i v3

dv

, (2)

and the expectation of τ is

E(τ) =
∑n

i=1 diCi + ∑n
i=1 Pi

∫ di
0 e
−

µ2
i

2σ2
i

v
1√

2πσ2
i v

dv

∑n
i=1 Ci

. (3)
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Proof. We prepare some preliminary formulas for the proof. From Section 2, we know Xε(t) starts
from ε on ray Si, and behaves as a Brownian motion with drift µi and dispersion σi as long as it does
not return to the origin. Let gi(ε, t) be the density of the first hitting time at 0 of such a Brownian
motion, then

gi(ε, t) =
ε√

2πσ2
i t3

e
− (ε+µi t)2

2σ2
i t , for µi ∈ R, σi ∈ R+, ε > 0, t > 0, i = 1, . . . , n.

We define the following functions in ε,

Li(ε) :=
∫ di

0
e−βsgi(ε, t)dt and Ui(ε) :=

∫ ∞

di

e−βdi gi(ε, t)dt,

and call them Li and Ui for convenience. In their Laplace transforms respectively, Li represents the
excursion time length of Xε(t) on ray Si if it is shorter than the threshold di, and Ui represents the
excursion time length if it is longer than di. In the latter case, we set the excursion time length to be di
because we are only interested in the excursion up to the threshold.

These functions have the limits

lim
ε→0

Ui(ε) = 0 and lim
ε→0

Li(ε) = 1.

Moreover, we calculate the limits of their derivatives to be

lim
ε→0

(
d
dε

Ui(ε)

)
= e−βdi

 2√
2πσ2

i di

Ψ

µi
√

di√
2σ2

i

+
µi

σ2
i

 , (4)

lim
ε→0

(
d
dε

Li(ε)

)
=− 2√

2πσ2
i di

Ψ

(√
µ2

i di

2σ2
i
+ βdi

)
− µi

σ2
i

=−

 2√
2πσ2

i di

Ψ

µi
√

di√
2σ2

i

+
µi

σ2
i

− ∫ di

0
(1− e−βy)e

−
µ2

i
2σ2

i
y 1√

2πσ2
i y3

dy,

(5)

the last equation can be checked using Ψ(x) = 1 +
∫ 1

0 (1− e−x2v) 1
2v3/2 dv, which is obtained by a direct

calculation from the definition of Ψ(x).
Now we study the Parisian time τε. Define the sequence of random times

ζ0 = 0, ζm+1 = inf{t > ζm | |Xε(t)| = 0}, for m ∈ N0

recursively, and the mutually exclusive events

Cm := {ζm ≤ τε < ζm+1}, for m ∈ N0.

Then, Cm denotes the event that the exceeding of threshold occurs during the (m+ 1)-th excursion
of Xε(t) away from the origin. Next, we set {Xε(0) = (ε, Si)} for an arbitrary but fixed i, and calculate
the Laplace transforms E(e−βτε

1{Cm} | Xε(0) = (ε, Si)) for m ∈ N0.
For m = 0, we interpret C0 as follows. Starting from ε on ray Si, Xε(t) spends more than di time

before hitting the origin, hence the exceeding occurs during the first excursion. This is equivalent to
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the event that a Brownian motion with drift µi and dispersion σi spends more than di time to travel
from ε to 0, which has probability

∫ ∞
di

gi(ε, t)dt. Thus (τε1{C0} | Xε(0) = (ε, Si)) = di, and

E
(

e−βτε
1{C0} | Xε(0) = (ε, Si)

)
=
∫ ∞

di

e−βdi gi(ε, t)dt = Ui.

Next, we consider the event C1. In this case, the duration of the first excursion of Xε(t) is shorter
than di, and the Laplace transform of the duration is

∫ di
0 e−βsgi(ε, t)dt. After the first excursion, Xε(t)

returns to the origin and jumps to (ε, Sk) with probability Pk, then exceeds the excursion time threshold
dk before returning to the origin. The behaviour of Xε(t) during the second excursion is similar to
what we described for C0, with the index i replaced by k. Thus, we have

E
(

e−βτε
1{C1} | Xε(0) = (ε, Si)

)
=

(∫ di

0
e−βsgi(ε, t)dt

)( n

∑
k=1

PkE
(

e−βτε
1{C0} | Xε(0) = (ε, Sk)

))
= Li

(
n

∑
k=1

PkUk

)
.

In the same way, we consider the event C2. In this case, the duration of the first excursion of Xε(t)
is shorter than di, with the Laplace transform

∫ di
0 e−βsgi(ε, t)dt. After the first excursion, Xε(t) returns

to the origin and jumps to (ε, Sk) with probability Pk. Restarting from (ε, Sk), Xε(t) will exceed the
excursion time threshold exactly during the second excursion (hence the third in total). The behaviour
of Xε(t) during the second and third excursions is similar to what we described for C1, with the index
i replaced by k. Hence,

E
(

e−βτε
1{C2} | Xε(0) = (ε, Si)

)
=

(∫ di

0
e−βsgi(ε, t)dt

)( n

∑
k=1

PkE
(

e−βτε
1{C1} | Xε(0) = (ε, Sk)

))

=Li

(
n

∑
k=1

PkLk

(
n

∑
j=1

PjUj

))
= Li

(
n

∑
k=1

PkLk

)(
n

∑
j=1

PjUj

)
.

The same explanation applies to Cm for any positive integer m, i.e., the duration of the first
excursion of Xε(t) is shorter than di, after that Xε(t) restarts from (ε, Sk) and exceeds the threshold
exactly during the m-th excursion. Hence, we deduce that

E
(

e−βτε
1{Cm} | Xε(0) = (ε, Si)

)
= Li

(
n

∑
k=1

PkE
(

e−βτε
1{Cm−1} | Xε(0) = (ε, Sk)

))
.

This implies a recursive structure between the Laplace transforms of τε conditioned on Cm and
Cm−1, we solve for

E
(

e−βτε
1{Cm} | Xε(0) = (ε, Si)

)
= Li

(
n

∑
k=1

PkLk

)m−1( n

∑
j=1

PjUj

)
, m = 1, 2, . . . .

Since the exceeding of threshold may occur during any excursion of Xε(t), we need to sum the
result over m ∈ N0, this gives

E
(

e−βτε | Xε(0) = (ε, Si)
)
=

∞

∑
m=0

E
(

e−βτε
1{Cm} | Xε(0) = (ε, Si)

)
=Ui +

∞

∑
m=1

(
Li(

n

∑
k=1

PkLk)
m−1(

n

∑
j=1

PjUj)

)
= Ui +

Li(∑n
j=1 PjUj)

1−∑n
k=1 PkLk

,
(6)
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the last equation holds because for each k, gk(ε, t) is a probability density function on (0, ∞), so for any
β ≥ 0,

0 <
n

∑
k=1

PkLk =
n

∑
k=1

Pk

∫ dk

0
e−βsgk(ε, s)ds ≤

n

∑
k=1

Pk

∫ dk

0
gk(ε, s)ds <

n

∑
k=1

Pk = 1.

Equation (6) boils down the Laplace transform of τε to the initial state of Xε(t), which is distributed
as P(Xε(0) = (ε, Si)) = Pi. Then we calculate the Laplace transform of τε to be

E
(

e−βτε
)
=

n

∑
i=1

PiE
(

e−βτε | Xε(0) = (ε, Si)
)

=
n

∑
i=1

Pi

(
Ui +

Li(∑n
j=1 PjUj)

1−∑n
k=1 PkLk

)
=

∑n
i=1 PiUi(ε)

1−∑n
k=1 PkLk(ε)

.

(7)

As ε → 0, both numerator and denominator of the right hand side of (7) tend to 0, then we
can calculate the limit lim

ε→0
E(e−βτε

) using (4) and (5), and this gives E(e−βτ). The expectation of τ is

obtained by applying the moment generating function.

As in Section 2, X(t) can be reduced to a Brownian motion with drift or a standard Brownian
motion by choosing the parameters accordingly, then we can compare Theorem 1 with the results in
the existing literature.

Remark 1. When n = 2, µ1 = µ ≥ 0, µ2 = −µ, σ1 = σ2 = 1, P1 = P2 = 1
2 and d1 > 0, d2 > 0,

Equation (2) becomes the Laplace transform of the two-sided Parisian time of a Brownian motion with drift

E
(

e−βτ
)
=

e−βd1

(√
d2Ψ(µ

√
d1
2 ) + µ

√
d1d2π

2

)
+ e−βd2

(√
d1Ψ(µ

√
d2
2 )− µ

√
d1d2π

2

)
√

d2Ψ
(√

(β + µ2

2 )d1

)
+
√

d1Ψ
(√

(β + µ2

2 )d2

) ,

this is the main result of Dassios and Wu (2010). Moreover, for n = 2, P1 = P2 = 1
2 , µ1 = µ2 = 0,

σ1 = σ2 = 1, we set d2 > 0 and let d1 → ∞, then Equation (2) gives the Laplace transform of the one-sided
Parisian time of a standard Brownian motion

E(e−βτ)→ 1
1 + 2

√
πβd2 exp(βd2)Φ(

√
2βd2)

,

this was derived in Section 8.4.1 of Chesney et al. (1997).

4. Exact Simulation Algorithm of the Parisian Time

In this section, we provide an exact simulation algorithm to sample from the distribution of
the Parisian time τ. Our algorithm is based on the exact simulation schemes of the truncated
Lévy subordinator developed in Dassios et al. (2020). We refer to Algorithms 4.3 and 4.4
of Dassios et al. (2020) as AlgorithmI(.) and AlgorithmII(. , .),their full steps are attached in
Appendix A.

Theorem 2. Exact simulation algorithm of the Parisian time τ.

1. Initialize µi, σi, Pi, di and calculate Ci for i = 1, . . . , n. Set λ = ∑n
i=1 Ci.

2. Generate a multinomial random variable I whose probability function is

P(I = i) =
Ci

∑n
j=1 Cj

for i = 1, ..., n,
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via the following steps:

(a) Generate an uniform random variable U1 ∼ U[0, 1].
(b) Set P(I = 0) = 0. For i = 1, ..., n, find the unique i such that

i−1

∑
j=0

P(I = j) < U1 ≤
i

∑
j=0

P(I = j),

then return I = i.

3. Generate a random variable τ∗ via the following steps:

(a) Generate an exponential random variable T ∼ exp(λ) by setting U2 ∼ U[0, 1], then return T =

− 1
λ ln(1−U2).

(b) For each i = 1, ..., n, generate the following subordinator:

• If µi = 0, generate a subordinator Xi by setting α = 1
2 and

Xi = AlgorithmI

 TPi√
2πσ2

i di

Γ(1− α)

α

 ;

• If µi 6= 0, generate a subordinator Xi by setting α = 1
2 and

Xi = AlgorithmII

 TPi√
2πσ2

i di

Γ(1− α)

α
,

µ2
i di

2σ2
i

 .

(c) Set τ∗ = ∑n
i=1 diXi.

4. Output τ = τ∗ + dI .

Proof. For simplicity, we denote by M := ∑n
i=1 e−βdi Ci and λ := ∑n

i=1 Ci, then the Laplace transform
(2) can be written as

E
(

e−βτ
)
=

M

λ + ∑n
i=1 Pi

∫ di
0 (1− e−βv)e

−
µ2

i
2σ2

i
v

1√
2πσ2

i v3
dv

, for β ≥ 0.

Since Ci > 0 for i = 1, . . . , n, we know λ > 0, and the denominator of E(e−βτ) is positive.
This enables us to rewrite the Laplace transform in an integration format using the exponential function

E
(

e−βτ
)
=M

∫ ∞

0
exp

−t

λ +
n

∑
i=1

Pi

∫ di

0
(1− e−βv)e

−
µ2

i
2σ2

i
v 1√

2πσ2
i v3

dv

 dt

=
M
λ

∫ ∞

0
λe−λt exp

− n

∑
i=1

tPi√
2πσ2

i di

∫ 1

0
(1− e−βdiz)e

−
µ2

i di
2σ2

i
z 1

z3/2 dz

 dt.

(8)

Equation (8) can be understood as a product of the Laplace transforms of two independent random
variables, hence we can generate them separately, and view the Parisian time τ as their summation.

Denote by I a multinomial random variable with the probability function

P(I = i) =
Ci

∑n
j=1 Cj

for i = 1, ..., n,

then we can generate I using the strip method, this becomes Step 2. Note that the random variable
dI = {d1, . . . , dn} has the Laplace transform
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E
(

e−βdI
)
=

n

∑
i=1

(
e−βdi

Ci

∑n
j=1 Cj

)
=

M
λ

.

Next, we denote by τ∗ the random variable whose Laplace transform is

E
(

e−βτ∗
)
=
∫ ∞

0
λe−λt exp

− n

∑
i=1

tPi√
2πσ2

i di

∫ 1

0
(1− e−βdiz)e

−
µ2

i di
2σ2

i
z 1

z3/2 dz

 dt (9)

For each i, we interpret the expression

exp

− tPi√
2πσ2

i di

∫ 1

0
(1− e−βdiz)e

−
µ2

i di
2σ2

i
z 1

z3/2 dz

 (10)

as the Laplace transform of the random variable diXi(
tPi√

2πσ2
i di

), where Xi(
tPi√

2πσ2
i di

) is a subordinator

with truncated Lévy measure

e
−

µ2
i di

2σ2
i

z 1
z3/21{0<z<1}dz

at time tPi√
2πσ2

i di
. Comparing (10) with (A1), we know Xi(.) can be generated via Algorithms 4.3 and

4.4 in Appendix A.

Moreover, (9) implies that τ∗
law
= ∑n

i=1 diXi(
TPi√
2πσ2

i di
), where T ∼ exp(λ) is an exponential random

variable. Hence, we generate T in Step 3(a), sample from Xi(
TPi√
2πσ2

i di
) in Step 3(b) and calculate τ∗ via

Step 3(c).

Finally, since E(e−βτ) = E(e−βdI )E(e−βτ∗), we have the representation τ
law
= dI + τ∗, where dI

and τ∗ are independent, then τ can be generated via Step 4.

Next, we illustrate the accuracy and performance of the exact simulation algorithm with a
numerical example. We set n = 7, and

µ1 = 0, µ2 = 0.5, µ3 = −0.3, µ4 = 0, µ5 = 0.2, µ6 = 0, µ7 = −0.1;

σ1 = 1.5, σ2 = 2, σ3 = 1.3, σ4 = 1, σ5 = 2, σ6 = 1, σ7 = 1;

P1 = 0.1, P2 = 0.2, P3 = 0.1, P4 = 0.2, P5 = 0.2, P6 = 0.1, P7 = 0.1;

d1 = 1, d2 = 3, d3 = 2.5, d4 = 1.5, d5 = 1.5, d6 = 0.5, d7 = 2.5.

Using the exact simulation algorithm, we generate samples from the Parisian time and calculate
their average. On the other hand, we use Equation (3) to calculate the true expectation of τ to be 3.0534.
Then we consider the following two standard measures for the associated error of the algorithm,

1. difference = sample average − true expectation
2. standard error = sample standard deviation√

number of samples

Table 1 reports the results, we see that the algorithm can achieve a high accuracy, and one has to
generate more samples to decrease the standard error.
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Table 1. Sample average and accuracy of the exact simulation algorithm.

Sample Size Sample Average Difference Standard Error

1000 3.0666 0.0132 0.0616
4000 3.0302 −0.0232 0.0304

16,000 3.0470 −0.0065 0.0155
64,000 3.0509 −0.0025 0.0077

256,000 3.0520 −0.0014 0.0039
1,024,000 3.0538 0.0004 0.0019

In addition, we estimate the distribution function of the Parisian time. Using the exact simulation
algorithm and the smoothing techniques (see Bowman and Azzalini 1997), we get the estimated curve
for the distribution function. On the other hand, we apply the Gaver–Stehfest method (see Cohen 2007)

to invert the Laplace transform E(e−βτ)
β numerically and obtain the inverted curve for the distribution

function. These curves are provided in Figure 2, they show that the exact simulation algorithm
provides a good approximation for the distribution of the Parisian time.

We also illustrate the performance of the algorithm by recording the CPU time needed to generate
these samples from the Parisian time. The experiment is implemented on an Intel Core i5-5200U
CPU@2.20GHz processor, 8.00GB RAM, Windows 10, 64-bit Operating System and performed in
Matlab R2019b. No parallel computing is used. Table 2 reports the results.
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Figure 2. Inverted and numerical estimated curves of the distribution function.

Table 2. CPU time of the exact simulation algorithm.

Sample Size CPU Time (in seconds)

1000 0.201831
4000 0.725738

16,000 3.080721
64,000 12.214876

256,000 52.715700
1,024,000 201.460605

5. Discussion

We can apply this model to study the settlement delay in CHAPS. For an individual bank A,
we assume that there are n counterparties in the system, namely bank 1, bank 2, . . . , bank n. We also
assume that bank A uses an internal queue to manage its outgoing payments, and once the current
payment is settled, it has probability Pi to make another payment to bank i, i = 1, . . . , n. Let a reflected
Brownian motion with drift µi and dispersion σi be the net balance between bank A and bank i.
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To avoid the excessive exposure to liquidity risk, a time limit di has been set for the duration of
settlement delay between bank A and bank i. Both the central bank and the participating banks are
interested in the first time that the limit is exceeded.

We model the net balance between bank A and the counterparties by the planar process X(t),
and view the first exceeding time as the Parisian time of X(t). Using the results in the current
paper, we can sample from this first exceeding time and estimate its distribution function numerically.
We remark that this approach can be adopted by both the policymaker in the central bank and the
credit control departments of the participating banks to lay down decisive actions. For example,
the central bank may use time-dependent transaction fees to provide incentives to earlier settlements.
Alternatively, the participating banks may also learn to coordinate their payments over time, creating
non-binding behavioural conventions or implicit contracts.

In particular, an empirical method has been developed in Denbee and Zimmerman (2012) to
detect the apparent ‘free-riding’ in the RTGS system, referring to the behaviour that the banks wait for
incoming payments to fund subsequent outgoing payments and not supply an amount of liquidity
to the system commensurate with the share of payments they are responsible for. Suppose the banks
are required to hold buffers of liquid assets in order that they can make payments in a stress scenario,
and the buffers are continuously calculated based on past activity. Banks may have an incentive
to delay their payments so that the regulatory buffer will be reduced at subsequent recalibrations.
The method in Denbee and Zimmerman (2012) could help to detect this behaviour and calibrate
buffers independent of strategic actions. The study in the current paper provides another point of
view towards this method. We can estimate the distribution of the settlement delay and take this into
consideration when calculating the buffers.

It is also possible to extend the model in the current paper to the settlement systems other than
CHAPS. For example, the structure of settlement delay in Interbank Electronic Payment System (SPEI
operated by Banco de México) has been specified in Alexandrova-Kabadjova and Solis (2012) with
real transactions data from 7 April to 7 May 2010. We may assume that the Markov model is adequate
for SPEI, and use these data to calibrate the parameters of the model. Moreover, the observations
in Alexandrova-Kabadjova and Solis (2012) suggest that low value payments do not increase the
settlement delay in the system. This is reasonable under the assumption that the net balance between
two banks follows a reflected Brownian motion with drift, because the process will make an infinite
number of small excursions at the origin.

This paper has focused on the model with one central bank (or agent) and several domestic
participants, which is classified as a ‘within border payment system’ (see Bech et al. 2020). For a
cross-border payment system, however, we need to consider a model containing two or more central
banks, each with their own domestic participants. Assume that the system offers payment versus
payment (PvP, see Bech et al. 2020) services, then the settlement delay may originate in any local
system, and the first exceeding time of settlement delay of the whole system can be viewed as the joint
distribution of the Parisian times of the local systems. With the technique developed in this paper, we
are able to simulate the marginal distributions of the local exceeding time, but not the joint distribution.
This is a topic for future research, and the result would be beneficial on a global scale.

In addition, our Brownian-type model reflects the random fluctuations of payments and delays,
but the external events that can influence these are not taken into account. For example, the operational
risks related to computer and telecommunication system breakdown may increase the settlement
delay, see Rochet and Tirole (1996) for the impact of computer problem of the Bank of New York in
1985 and the San Francisco earthquake in 1989. More recently, many reports have suggested the impact
of global pandemic in 2020 on the settlement systems. These might be interesting for a further study.
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Appendix A. Exact Simulation of Truncated Subordinator

In this appendix, we attach Algorithms 4.3 and 4.4 of Dassios et al. (2020). These algorithms
exactly generate samples from the truncated subordinator Z(t) with Laplace transform

E
(

e−vZ(t)
)
= exp

(
− αt

Γ(1− α)

∫ 1

0
(1− e−vz)

e−ηz

zα+1 dz
)

. (A1)

We first present two ancillary algorithms, namely Algorithms 4.1 and 4.2 of Dassios et al. (2020).

Lemma A1 (Algorithm 4.1 of Dassios et al. 2020). Exact simulation of (T, W).

1. Set ξ = Γ(1− α)−1; A0 = (1− α)α
α

1−α .

2. minimise C(λ) = A0eξ
1
α λ1− 1

α α(1−α)
1
α−1

(A0 − λ)α−2.
3. record critical value λ∗; set C = C(λ∗).
4. repeat {
5. sample U ∼ U[0, π]; U1 ∼ U[0, 1],

6. set Y = 1−U
1

1−α
1 ; AU = [sinα(αU) sin1−α((1− α)U)/ sin(U)]

1
1−α ,

7. sample R ∼ Γ(2− α, Au − λ); V ∼ U[0, 1].
8. if (V ≤ AUeξR1−αYα

e−λ∗R(AU − λ∗)α−2Yα−1(1− (1−Y)α)/C), break.
9. }

10. sample U2 ∼ U[0, 1],
11. set T = R1−αYα; W = Y− 1 + [(1−Y)−α −U2((1−Y)−α − 1)]−

1
α .

12. return (T, W).

Lemma A2 (Algorithm 4.2 of Dassios et al. 2020). Exact simulation of {Z(t)|T > t}.

1. sample U1 ∼ U[0, π]; set AU1 = [sinα(αU1) sin1−α((1− α)U1)/ sin(U1)]
1

1−α .
2. repeat {

3. sample U2 ∼ U[0, 1]; set Z =

[
− log(U2)

AU1 t
1

1−α

]− 1−α
α

.

4. if (Z < 1), break.
5. }
6. return Z.

Next we provide the Algorithm 4.3 and 4.4 of Dassios et al. (2020).

Theorem A1 (Algorithm 4.3 of Dassios et al. 2020). Exact simulation of the subordinator Z(t) when η = 0.
The input is t.

1. set Z = 0; S = 0.
2. repeat {
3. sample (T, W) via Algorithm 4.1; set S = S + T, Z = Z + 1 + W.
4. if (S > t), break.
5. }
6. set ZS−T = Z− 1−W; sample Zt−(S−T) via Algorithm 4.2.
7. return ZS−T + Zt−(S−T).
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Theorem A2 (Algorithm 4.4 of Dassios et al. 2020). Exact simulation of the subordinator Z(t) when η > 0.
The inputs are (t, η).

1. repeat {
2. sample Zt via Algorithm 4.3; V ∼ U[0, 1].
3. if (V ≤ exp(−ηZt)), break.
4. }
5. return Zt.

Proof. For the proof as well as the motivation of the algorithms above, see Dassios et al. (2020).
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