
Abdullah-A Aldhufairi, Fadal; Samanthi, Ranadeera G.M.; Sepanski, Jungsywan
H.

Article

New families of bivariate copulas via unit lomax
distortion

Risks

Provided in Cooperation with:
MDPI – Multidisciplinary Digital Publishing Institute, Basel

Suggested Citation: Abdullah-A Aldhufairi, Fadal; Samanthi, Ranadeera G.M.; Sepanski,
Jungsywan H. (2020) : New families of bivariate copulas via unit lomax distortion, Risks, ISSN
2227-9091, MDPI, Basel, Vol. 8, Iss. 4, pp. 1-19,
https://doi.org/10.3390/risks8040106

This Version is available at:
https://hdl.handle.net/10419/258059

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your
personal and scholarly purposes.

You are not to copy documents for public or commercial
purposes, to exhibit the documents publicly, to make them
publicly available on the internet, or to distribute or otherwise
use the documents in public.

If the documents have been made available under an Open
Content Licence (especially Creative Commons Licences), you
may exercise further usage rights as specified in the indicated
licence.

  https://creativecommons.org/licenses/by/4.0/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://doi.org/10.3390/risks8040106%0A
https://hdl.handle.net/10419/258059
https://creativecommons.org/licenses/by/4.0/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/


risks

Article

New Families of Bivariate Copulas via Unit
Lomax Distortion

Fadal Abdullah-A Aldhufairi *, Ranadeera G.M. Samanthi and Jungsywan H. Sepanski

Department of Statistics, Actuarial and Data Sciences, Central Michigan University,
Mount Pleasant, MI 48859, USA; saman1rg@cmich.edu (R.G.M.S.); sepan1jh@cmich.edu (J.H.S.)
* Correspondence: aldhu1fa@cmich.edu

Received: 9 September 2020; Accepted: 4 October 2020; Published: 14 October 2020
����������
�������

Abstract: This article studies a new family of bivariate copulas constructed using the unit-Lomax
distortion derived from a transformation of the non-negative Lomax random variable into a variable
whose support is the unit interval. Existing copulas play the role of the base copulas that are distorted
into new families of copulas with additional parameters, allowing more flexibility and better fit to
data. We present general forms for the new bivariate copula function and its conditional and density
distributions. The properties of the new family of the unit-Lomax induced copulas, including the
tail behaviors, limiting cases in parameters, Kendall’s tau, and concordance order, are investigated
for cases when the base copulas are Archimedean, such as the Clayton, Gumbel, and Frank copulas.
An empirical application of the proposed copula model is presented. The unit-Lomax distorted
copula models outperform the base copulas.

Keywords: Archimedean copula; distortion; Kendall’s tau; lomax distribution; tail dependence

1. Introduction

Numerous data sets in the field of actuarial science, finance, and medicine contain random
variables, such as stock indexes and returns, that cannot be treated under the assumption of
independence. A copula is one of the tools that can be used to extract the dependence behaviors among
variables, regardless of the individualistic behavior of each variable.

A copula is a multivariate distribution function whose margins are the uniform distribution on the
unit interval. Sklar’s theorem (see Sklar (1959)) proves the existence of a unique copula that captures
the dependence structures among continuous random variables. This allows researchers to expand
venues for modeling multivariate data in the real world; not only by using existing copulas, but also
by establishing new copulas (Nelsen (2006); Joe (2015)). Such real-world data include stock returns
and heavy-tailed finance data; see, e.g., Nguyen et al. (2020) and references therein.

In the bivariate case, if two continuous random variables, X and Y, with margins F and G have
a joint distribution function (cdf) H,, there exists a unique copula C such that H(x, y) = P(X ≤
x, Y ≤ y) = C(F(x), G(y)). Let u = F(x) and v = G(y). The copula function C is a cdf given by
C(u, v) = H(F−1(u), G−1(v)), u, v ∈ [0, 1],, where F−1 and G−1 are the respective quantile functions
of X and Y. The joint probability density function (pdf), denoted by h(x, y), is therefore h(x, y) =

c(F(x), G(y)) f (x)g(y), where f and g are the respective pdf’s of X and Y and c is the copula pdf
such that c(u, v) = ∂2C(u, v)/∂u∂v. A copula C is called Archimedean if it can be expressed as
C(u, v) = φ[−1](φ(u) + φ(v)), u, v ∈ [0, 1], where the generator φ : [0, 1] → [0, ∞) is a continuous,
strictly decreasing, and convex function with φ(1) = 0. The pseudo inverse φ[−1](t) is φ−1(t) if
0 ≤ t ≤ φ(0), and 0 if φ(0) ≤ t ≤ ∞. The generator φ is called strict if φ(0) = ∞, and φ[−1] = φ−1.

One purpose of this paper is to construct new bivariate copulas. Sklar’s theorem gives rise
to the inversion method that derives copula representations from multivariate joint distributions.
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Another method studied by Joe and Hu (1996) is known as the mixture of max-infinity divisible
(max-id) method and is given by Cψ(u, v) = ψ

[
− log K(eψ−1(u), eψ−1(v))

]
, u, v ∈ [0, 1], where K is a

bivariate max-id copula and ψ(.) is a Laplace transform function. This method is used to build the
bivariate families of copulas BB1-BB7; see Joe (2015). Another approach is to develop new Archimedean
generators using various rules explained by Genest et al. (1995) in Frees and Valdez (1998).

Here, we are interested in employing the distortion method. A function T is called a distortion
function if it is continuous and increasing on [0,1] with T(0) = 0 and T(1) = 1. The following
framework is then used to construct a new family of copulas:

CT(u, v) = T
(
C
(
T−1(u), T−1(v)

))
, u, v ∈ [0, 1], (1)

which is the distortion of the third kind in Valdez and Xiao (2011). If C is Archimedean, then CT(u, v) =
T ◦φ−1(φ(T−1(u))+φ(T−1(v))

)
, where φ is the generator of C. That is, in this case, CT is Archimedean

with generator Φ(u) = φ(T−1(u)), which is the right composition of the generator φ and the inverse
distortion T−1.

Di Bernardino and Rulliere (2013) obtained admissible conditions such that CT in (1) is a
copula function. For example, T could take the form of T(u) = F̄(− log(u)), u ∈ [0, 1], where F̄
is a survival distribution satisfying certain admissible requirements; see Durante et al. (2010).
Samanthi and Sepanski (2019) investigated beta-distorted copulas where the beta distribution serves
as the distortion function. Recent literature focusing on how the tail dependence properties are
modified under various distortions include Sepanski (2020); Lin et al. (2018); and Durante et al. (2010).

For example, T could take the form of T(u) = F̄(− log(u)), u ∈ [0, 1], where F̄ is
a survival distribution satisfying certain admissible requirements; see Durante et al. (2010).
Samanthi and Sepanski (2019) investigated beta-distorted copulas where the beta distribution serves
as the distortion function. Di Bernardino and Rulliere (2013) obtained admissible conditions, such that
CT in (1) is a copula function.

In this paper, we propose a distortion function, named unit-Lomax distortion. It is derived from
a transformation of the non-negative two-parameter Lomax random variable into a variable whose
support is the unit interval. This paper is organized as follows. Section 2 contains the proposed
unit-Lomax distortion, admissibility specification of the parameter space, general forms of the cdf,
pdf, and conditional distribution of the induced copula, and some examples. Limiting cases and tail
behaviors are featured in Sections 3 and 4, respectively. Sections 5 and 6 present formulas for Kendall’s
tau and Spearman’s rho and concordance ordering of the induced copula Density contour plots and
simulation studies are illustrated in Section 7. Section 8 presents an application with performance
results, followed by concluding remarks in Section 9.

2. Proposed Copula

In this section, we set forth the mechanism for the proposed distortion, the copula functions
resulting from the distortion, and some illustrative examples.

2.1. Proposed Unit Lomax Distortion

Let Y be a nonnegative continuous random variable with cdf L(y). Define the random variable
U = 1/(1 + Y) for y ∈ [0, ∞). The cdf T(u) of U maps [0, 1] to [0, 1] and is given by

T(u) = P(U ≤ u) = P(Y ≥ 1
u
− 1) = 1− L(u−1 − 1), for u ∈ (0, 1]. (2)

It is strictly increasing and continuous such that T(0) = 0 and T(1) = 1. Note that the cdf T(u)
is a distortion function. If Y is a Lomax random variable, we call U a unit Lomax (UL) random
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variable, since it has the unit interval as its support. The cdf of a Lomax random variable is given by
1− (1 + by)−a, where y ≥ 0 and a, b > 0. In this case, applying (2), the cdf of U is therefore given by

T(u) = [1 + b(u−1 − 1)]−a, u ∈ (0, 1], (3)

which is the survival distribution of a Lomax random variable evaluated at u−1 − 1. When b = 1,
then T(u) = ua, the power distortion. The corresponding pdf is given by

t(u) =
ab
u2 [1 + b(u−1 − 1)]−a−1,

and the inverse function of the UL cdf is

T−1(u) =
[

1
b
(u−1/a − 1) + 1

]−1
. (4)

We say that T is an admissible distortion if (1) is a copula. A copula C by definition has the
following properties: 1) C(u, 0) = C(0, v) = 0, (u, v) ∈ I2 where I = [0, 1]; 2) C(u, 1) = u and
C(1, v) = v, (u, v) ∈ I2; and 3) C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0, for u1 ≤ u2, v1 ≤ v2,
and (u1, u2), (v1, v2) in I2.

Theorem 3.3.3 in (Nelsen (2006), p. 96) shows that T is admissible if, and only if, T is increasing
and convex. Using the result, we next derive the following corollary that specifies the admissible
parameter space for the UL distortion T.

Corollary 1. Let T(u) be the UL distortion in (3). Define S = {(a, b) : a ≥ 1 and b ≥ 2/(a + 1)}.
The function CT in (1) is a copula if a and b belong in the set S.

Proof. We wish to find the conditions on the parameters a and b under which T is convex. From (3),
the first derivative T

′
and second derivative T

′′
of T are given by

T′(u) =
ab
u2 [1 + b(u−1 − 1)]−a−1,

T
′′
(u) =

T′(u)
u

[
−2 +

(a + 1)bu−1

1− b + bu−1

]
=

T′(u)
u

[
2u(b− 1) + b(a− 1)

u + b(1− u)

]
. (5)

When b ≥ 1, then (5) is nonegative for all u ∈ (0, 1] if a ≥ 1. When b < 1,

2u(b− 1) + b(a− 1) ≥ 2(b− 1) + b(a− 1), for 0 < u ≤ 1.

In this case, T
′′
(u) is nonnegative if b(a+ 1)− 2 ≥ 0, i.e, 2/(a+ 1) ≤ b < 1, which places the constraint

of a ≥ 1. Combining the two cases by graphing, we derive the admissible space S.

2.2. Unit-Lomax Distorted Copulas

Define C(v|u) = ∂C(u, v)/∂u, c(u, v) = ∂2C(u, v)/∂v∂u, t(s) = d T (s)/ds and t
′
(s) = d t(s)/ds.

If the distorted copula CT with a base copula of C in (1) is a copula, its conditional cdf and pdf have
the following general forms, respectively,

CT(v|u) =
∂CT(u, v)

∂u
=

t(C(x, y))C(x|y)
t (x)

(6)

cT(u, v) =
∂2CT(u, v)

∂v∂u
=

1
t(x)t(y)

[
t
′
(C(x, y))C(x|y)C(y|x) + t(C(x, y))c(x, y)

]
(7)
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where x = T−1(u), and y = T−1(v). Note that dT−1(u)/du = 1/t
(
T−1(u)

)
. The functions in (6)

and (7) are needed for simulations and parameter estimations. There are built-in functions for the
conditional cdf and pdf of the base copula in R copula package.

The form of the copula CT using the UL distortion can be ascertained by applying (1), (3) and (4)
and is given by

CT(u, v) =
{

1 + b
[(

C
(
[
1
b
(u−1/a − 1) + 1]−1, [

1
b
(v−1/a − 1) + 1]−1

))−1

− 1
]}−a

(8)

for a, b ∈ S. The base copula is a special case of the induced copula with a = b = 1. The conditional cdf
and copula pdf defined in (6) and (7) are tedious and therefore not displayed.

If the base copula C is an Archimedean copula with generator φ, then C(T−1(u), T−1(v)) =

φ−1(φ(T−1(u)) + φ(T−1(v))). Setting x = φ(T−1(u)) and y = φ(T−1(v)), then the induced copula CT
is given by

CT(u, v) =
{

1 + b
[(

φ−1(x + y)
)−1 − 1

]}−a
= H̄(x, y).

Note that x and y are strictly decreasing transforms mapping 0 to ∞ and 1 to 0. Therefore, H̄ may
be seen as a bivariate survival distribution. The conditional cdf and copula pdf can be derived by
using H̄ and φ as follows:

CT(v|u) =
∂H̄(x, y)

∂x
∂x
∂u

and cT(u, v) =
∂2H̄(x, y)

∂y∂x
∂x
∂u

∂y
∂v

.

Let φ
′
(s) = ∂φ(s)/∂s and φ

′′
(s) = ∂2φ(s)/∂s∂s, then

∂x
∂u

=
∂

∂u
[
φ(T−1(u))

]
=

φ′
(
(T−1(u)))

t
(
T−1(u)

) ;
∂H̄(x, y)

∂x
=

ab[H̄(x, y)]1+1/a

d1
;

∂2H̄(x, y)
∂y∂x

=
ab[H̄(x, y)]1+1/a

d1

{
(a + 1)b[H̄(x, y)]1/a

d1
− 2

d2
− φ

′′
(φ−1(x + y))

[φ′(φ−1(x + y))]2

}
;

where d1 = 1/[(φ−1(x + y))2φ
′
(φ−1(x + y))] and d2 = φ

′
(φ−1(x + y))φ−1(x + y).

2.3. Examples

Here, we consider five popular copulas, namely, Clayton, Gumbel, Frank, Galambos, and BB1
copulas as the base copulas in (8). The parameter in the one-parameter base copula is denoted by θ and
the additional parameter in the BB1 copula is denoted by δ. Note when a = b = 1, the UL distortion
yields the identity distortion and the induced copula is the based copula.

Example 1. UL-Clayton copula. If the base copula is the Clayton copula defined as C(u, v; θ) = (u−θ + v−θ −
1)−1/θ , θ > 0 with generator φ(u) = θ−1(u−θ − 1), the UL-Clayton copula is expressed as

CT(u, v) =
{

1 + b
[(

[
1
b
(u−1/a − 1) + 1]θ + [

1
b
(v−1/a − 1) + 1]θ − 1

)1/θ

− 1
]}−a

(9)

with generator Φ(u) = θ−1{[(u−1/a − 1)/b + 1]θ − 1}. If θ = 1, the UL-Clayton copula is the Clayton
copula. If b = 1, then (9) result in

CT(u, v) = (u−θ/a + v−θ/a − 1)−1/θ/a,

where the parameters θ and a cannot be uniquely identified.
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Example 2. UL-Gumbel copula. If the base copula is the Gumbel copula defined as C(u, v; θ) =

exp{−[(− log u)θ + (− log v)θ ]1/θ}, θ ≥ 1 with the generator φ(u) = (− log u)θ , the UL-Gumbel copula is
expressed as

CT(u, v) =
{

1 + b
[

exp
([(

log[
1
b
(u−1/a − 1) + 1]

)θ
+
(

log[
1
b
(v−1/a − 1) + 1]

)θ]1/θ
)
− 1
]}−a

with generator Φ(u) =
[
log
(
(u−1/a − 1)/b + 1

)]θ
. If b = 1, the above function returns the Gumbel copula.

A power distortion of an extreme-value copula does not yield a new copula (see Durante et al. (2010)). It is
known that the Gumbel copula is a max-stable or extreme value such that [C(u1/a, v1/a)]a = C(u, v), a ≥ 1;
see Gudendorf and Segers (2010).

Example 3. UL-independence copula. If the base copula is the independence copula defined as C(u, v) = uv
with generator φ(u) = − log u, the UL-independence copula is expressed as

CT(u, v) =

{
1 + b

[(1
b
(u−1/a − 1) + 1

)(1
b
(v−1/a − 1) + 1

)
− 1
]}−a

=

[
1
b
(u−1/a − 1)(v−1/a − 1) + u−1/a + v−1/a − 1

]−a

The resulting UL-independence copula is a two-parameter copula with generator Φ(u) = log[(u−1/a −
1)/b + 1]. If b = 1, the UL-independence copula yields the independence copula.

Example 4. UL-Frank copula. If the base copula is the Frank copula defined as C(u, v; θ) = −θ−1 log{1 +

[(e−θu − 1)(e−θv − 1)]/(e−θ − 1)}, θ 6= 0, with generator φ(u) = − log[(e−θu − 1)/(e−θ − 1)], the
UL-Frank copula is expressed as

CT(u, v) =
{

1 + b
[(
− 1

θ
log
(

1 +
[D(u)− 1][D(v)− 1]

e−θ − 1

))−1

− 1
]}−a

,

where D(s) = e−θ[b−1(s−1/a−1)+1]−1
. Its generator is given by Φ(u) = − log

{
[D(u) − 1]/(e−θ − 1)

}
.

Unlike the base Frank copula that is reflection symmetric such that C(u, v) = C(1− u, 1− v) + u + v− 1 for
u, v ∈ [0, 1], the UL-Frank copula is not.

Example 5. UL-Galambos copula. If the base copula is the Galambos copula defined as C(u, v; θ) =

uv exp{[(− log u)−θ + (− log v)−θ ]−1/θ}, θ ≥ 0, the UL-Galambos copula is expressed as

CT(u, v) =
{

1 + b
[(

exp
(
[(log(Υ(u)))−θ + (log(Υ(v)))−θ ]−1/θ

)
Υ(u)Υ(v)

)−1

− 1
]}−a

,

where Υ(s) = b−1(s−1/a − 1) + 1. The Galambos copula is an extreme-value copula; see Gudendorf and Segers
(2010). If b = 1, the UL-Galambos copula is the Galambos copula.

Example 6. UL-BB1 copula. If the base copula is the BB1 copula defined as C(u, v; θ) = {1 + [(u−θ − 1)δ +

(v−θ − 1)δ]1/δ}1/θ , θ ≥ 0, δ ≥ 1, with generator φ(u) = (u−θ − 1)δ. The Clayton copula is a subfamily of the
BB1 copula with δ = 1. The four-parameter UL-BB1 copula is expressed as

CT(u, v) =
{

1 + b
[(

1 +
(
[Q(u)− 1]δ + [Q(v)− 1]δ

)1/δ
)1/θ

− 1
]}−a

,

where Q(s) = [b−1(s−1/a − 1) + 1]θ with generator Φ(u) = [Q(u)− 1]δ.
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Example 7. UL-Gaussian copula. Let Φ−1(·) denote the inverse function of the univariate standard normal
cdf Φ(·) and

Φ2(s1, s2) =
∫ s1

−∞

∫ s2

−∞

1

2π
√

1− θ2
exp

(
− x2 − 2θxy + y2

2
√

1− θ2

)
dxdy

be the bivariate standard Gaussian cdf with correlation parameter θ ∈ [−1, 1]. The bivariate Gaussian copula
with parameter θ is then given by

C(u, v; θ) = Φ2

(
Φ−1(u), Φ−1(v)

)
.

The UL-Gaussian copula is expressed as

T ◦Φ2

(
Φ−1(T−1(u)

)
, Φ−1(T−1(v)

))
.

Example 8. UL-t copula. Let F−1
ν (·) denote the inverse function of the univariate Student t cdf Fν(·) with ν

degrees of freedom and

F2,ν(s1, s2) =
∫ s1

−∞

∫ s2

−∞

Γ(
ν + 2

2
)

Γ( ν
2 )πν

√
1− θ2

(
1 +

x2 − 2θxy + y2

ν(1− θ2)

)− ν+2
2

dxdy

be the bivariate Student t cdf with ν degrees of freedom and correlation parameter θ ∈ [−1, 1]. The bivariate
t-copula with parameter θ is then given by

C(u, v; θ) = F2,ν

(
F−1

ν (u), F−1
ν (v)

)
.

The UL-t copula is expressed as

T ◦ F2,ν

(
F−1

ν

(
T−1(u)

)
, F−1

ν

(
T−1(v)

))
.

3. Limiting Cases

This section deals with the limiting behavior as one or more parameters go to a boundary for
the UL-distorted copulas. If b = 1 or b→ 1, T approaches the power distortion and the UL-distorted
copula in (8) is of the following expression CT(u, v) = [C(u1/a, v1/a)]a for a ∈ S and u, v ∈ [0, 1].

The following proposition studies the limit of the UL-distorted copulas as b → ∞ without
specifying the base copula.

Proposition 1. Let C be any base copula. Consider the UL-distorted copula CT defined in (8) with (a, b) ∈ S.
The UL-distorted copula approaches the Clayton copula as b→ ∞.

Proof. Set k = 1/b, x = T−1(u), and y = T−1(v). As k → 0+ or b → ∞, x and y go to 1. Define
A(u, v) = [(C(x, y))−1 − 1]/k. From (8) and by L’Hopital’s Rule, we have

lim
k→0+

A(u, v) = lim
k→0+

Cv|u(x, y)(u−1/a − 1)x2 + Cu|v(x, y)(v−1/a − 1)y2

[C(x, y)]2

= u−1/a + v−1/a − 2,
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since T−1(u) = [(u−1/a− 1)/b+ 1] goes to 1, the conditional copula cdf’s Cv|u(x, y), Cu|v(x, y), and the
copula C(x, y) go to 1 as k→ 0+. Therefore,

lim
b→∞

CT(u, v) = lim
k→0+

[1 + A(u, v)]−a = (u−1/a + v−1/a − 1)−a,

which is the Clayton copula with parameter a.
Note that the generator of the Clayton copula is φ(u) = (u−a − 1)/a. By L’Hopital’s Rule, it goes

to − log u. as a → ∞. Therefore, the Clayton copula approaches the independence copula as a goes
to ∞.

Example 9. Consider the UL-independence copula in Example 3. Note that, with a fixed,

CT(u, v) =

[
1
b
(u−1/a − 1)(v−1/a − 1) + u−1/a + v−1/a − 1

]−a

→ (u−1/a + v−1/a − 1)−a as b→ ∞ (10)

That is, as b→ ∞, the UL-independence copula approaches the Clayton copula, which further confirms the
results in Proposition 1. As a → ∞, The resulting Clayton copula in (10) goes to C⊥, where C⊥(u, v) = uv,
for u, v ∈ [0, 1]. The independence copula of total lack of concordance has been transformed into a family of
UL-independence copulas with a concordance measure ranging from 0 to 1.

The limit of CT(u, v) in the parameter θ or δ inherited from the base copula can be evaluated
through the limit of the base copula in the parameter. The limits of some existing copulas can be found
in Joe (2015). If the base copula C converges to C+, where C+(u, v) = min(u, v), then,

CT(u, v) = T
(

C
(
T−1(u), T−1(v)

))
= T

(
min

(
T−1(u), T−1(v)

))
= min(u, v)

since T is increasing. Copulas that approach C+ as their parameter go to ∞ include the Clayton,
Frank, and Gumbel, BB1 copulas. If a base copula converges in its parameter to the independence
copula, the corresponding UL distorted copula converges to the UL-independence copula in the
parameter. The Clayton copula approaches the independence copula as θ goes to 0; so do the Frank
and Galambos copulas.

4. Tail Dependence Coefficients and Tail Orders

Tail dependence properties can be useful in determining an appropriate copula model for data
fitting. In this section, we first expound briefly preliminaries and then establish the relationships in tail
dependence coefficients and tail orders between the base copula and the affiliated UL-distorted copula.

A function f is regularly varying at 0+ with index ζ if limu→0+ f (tu)/ f (u) = tζ for each t > 0,
and is slowly varying at 0+ if ζ = 0. Let f1 and f2 be two functions. If limu→u0 f1(u)/ f2(u) = 1,
we denote it by f1(u) ∼ f2(u) as u → u0. Define C̄(u, v) = P(U > u, V > v) = 1− u− v + C(u, v)
and the survival copula Ĉ(u, v) = C̄(1− u, 1− v) = u + v− 1 + C(1− u, 1− v). If C(u, u) ∼ uκL`(u),
as u→ 0+, for some slowly varying function `(u), κL is called the lower tail order of C. If Ĉ(u, u) ∼
uκU `∗(u), u → 0+, for some slowly varying function `∗(u), then κL is the upper tail order of C. The
lower tail dependence coefficient is defined as λL = limu→0+ C(u, u)/u; and the upper tail dependence
is defined as λU = limk→1+ C̄(u, u)/(1− u). If κL > 1 (or κU > 1), then λL = 0 (or λU = 0). For more
details, see Joe (2015).

The lower tail dependence coefficient for the UL-distorted copula on the grounds of the form
indicated in (1) is denoted and given by, with v = T−1(u),

λT,L = lim
u→0+

T(C(T−1(u), T−1(u)))
u

= lim
v→0+

T(C(v, v))
T(v)

.
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The upper tail dependence coefficient is denoted and given by

λT,U = 2− lim
u→1−

1− T(C(T−1(u), T−1(u)))
1− u

= 2− lim
u→1−

1− T(C(u, u))
1− T(u)

.

The following Theorems 1 and 2 respectively present the relationships in the lower and upper tail
behaviors between the initial copula and the induced copula.

Theorem 1. Let T be the admissible UL distortion. Assume that C(u, u) ∼ uκL`(u) as u→ 0+, where `(u) is
slowly varying. Let κT,L be the lower tail order of CT in (1). Then

(i) the lower tail order of CT is κL.
(ii) the lower tail dependence coefficient λT,L of CT is (λL)

a.

Proof. Note that, for a, b ∈ S,

lim
u→0+

T(u)
ua = lim

u→0+

[
1 + b(u−1 − 1)

u−1

]−a

= b−a, lim
u→0+

T−1(u)
u1/a = lim

u→0+

[
1
b (u
−1/a − 1) + 1

u−1/a

]−1

= b.

Therefore, T(u) ∼ b−aua and T−1(u) ∼ bu1/a as u → 0+. Since C(u, u) ∼ uκL`(u) as u → 0+,
we obtain

CT(u, u) = T(C(T−1(u), T−1(u)))

=
T
(
C
(
T−1(u), T−1(u)

))
[C
(
T−1(u), T−1(u)

)
]a

[
C
(
T−1(u), T−1(u)

)(
T−1(u)

)κL`
(
T−1(u)

)]a[
(T−1(u))κL`(T−1(u))

]a

∼ b−a (1)a baκL uκL [`(T−1(u))]a

∼ uκL ba(κL−1)[`
(
T−1(u)

)
]a

Note that, for any t > 0,, we have

lim
u→0+

`(T−1(tu))
`(T−1(u))

= lim
u→0+

`
(
[T−1(tu)/T−1(u)]T−1(u)

)
` (T−1(u))

= lim
u→0+

`(t1/aT−1(u))
` (T−1(u))

.

Since ` is slowly varying, it follows that limu→0+ `(t1/aT−1(u))/`(T−1(u)) = 1 and [`
(
T−1(u)

)
]a

is slowly varying. Therefore, by definition, the lower tail order of CT is κL.
The lower tail dependence coefficient of CT is, if exists,

λT,L = lim
u→0+

T(C(u, u))
T(u)

= lim
u→0+

T(C(u, u))
C(u, u)a

[
C(u, u)

u

]a ua

T(u)
= b−a (λL)

a ba = (λL)
a.

When the parameters a = b = 1, the upper tail order and dependence coefficient of the induced
copula are indeed same as those of the base copula.

Theorem 2. Let T be the admissible UL distortion. Assume that Ĉ(u, u) ∼ uκU `∗(u) as u→ 0+, where `∗(u)
is slowly varying. Let κT,U be the upper tail order of CT in (1). Then

(i) the upper tail order of CT is κU .
(ii) the upper tail dependence coefficient λT,U of CT is λU .



Risks 2020, 8, 106 9 of 19

Proof. Applying Taylor series, we have (1 + u)s ∼ 1 + su as u→ 0+ and

T(1− u) = [1 + b((1− u)−1 − 1)]−a ∼ (1 + bu)−a ∼ 1− abu, (11)

T−1(1− u) =
[

1 +
1
b

(
(1− u)−1/a − 1

)]−1
∼
(

1 +
u
ab

)−1
∼ 1− u

ab
.

Since Ĉ(u, u) = C̄(1− u, 1− u) = 2u− 1 + C(1− u, 1− u) ∼ uκU `(u) as u → 0+ and by (11),
it follows that

T
(

C
(
T−1(1− u), T−1(1− u)

))
∼ T

(
C
(
1− u

ab
, 1− u

ab
))

∼ T
(

1−
(2u

ab
− C̄(1− u

ab
, 1− u

ab
)
))

∼ 1− ab
[

2u
ab
− C̄(1− u

ab
, 1− u

ab
)

]
∼ 1− 2u + uκU (ab)1−κU `∗ (u/ab) .

Therefore,

ĈT(u, u) = 2u− 1 + T
(

C
(
T−1(1− u), T−1(1− u)

))
∼ uκU (ab)1−κU `∗(u/ab) as u→ 0+.

That is, the induced copula has an upper tail order κU .
The upper tail dependence coefficient is given by

λT,U = 2− lim
u→1−

1− T
(
C(u, u)

)
1− T(u)

= 2− lim
u→1−

{ [
1 + b[C(u, u)]−1 − 1)

1 + b(u−1 − 1)

]−a−1 [C(u, u)
u

]−2 dC(u, u)
du

}
= λU ,

by L’Hopital’s rule and limu→1− dC(u, u)/du = 2 − λU . If b = 1, the UL distortion is the
power distortion. The results for the tail dependence coefficients are the same as those shown
in Durante et al. (2010).

Adopting Table 4.1 in Joe (2015), we next display the tail orders or tail dependence coefficients for
some commonly used based copulas and the UL distorted copulas.

In Table 1, λt
L = Fν+1

(
−
√
(ν + 1)(1− θ)/(1 + θ)

)
, where Fν(.) is the univariate Student t cdf

with ν degrees of freedom. Since a ≥ 1, the UL distortion leads to a copula model with weaker lower
tail dependence and identical upper tail dependence as the base copula model.

Table 1. Examples of tail orders and dependence coefficients.

Copula λL or κL λT ,L or κT ,L λU or κU

BB1 λL = 2−1/θδ λT,L = 2−a/θδ λU = 2− 21/δ

Clayton λL = 2−1/θ λT,L = 2−a/θ κU = 2
Frank κL = 2 κT,L = 2 κU = 2
Galambos κL = 2− 2−1/θ κT,L = 2− 2−1/θ λU = 2−1/θ

Gaussian κL = 2/(1 + θ) κT,L = 2/(1 + θ) κU = 2/(1 + θ)
Gumbel κL = 21/θ κT,L = 21/θ λU = 2− 21/θ

t λL = 2λt
L λT,L = (2λt

L)
a λU = 2λt

L

5. Measures of Concordance

In this section, we derive formulas of two widely used nonparametric concordance measures
known as Kendall’s tau and Spearman’s rho for the UL-distorted copulas.
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For a base copula C, Kendall’s tau and Spearman’s rho are, respectively, given by

τ = 4
∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1,

ρs = 12
∫ 1

0

∫ 1

0
C(u, v)dudv,

where dC(u, v) = [∂2C(u, v)/∂u∂v]dudv. Applying (7) and (1), Kendall’s tau, denoted by τT , and
Spearman’s rho, denoted by ρT , of the UL-distorted copulas can be, respectively, derived as follows

τT = 4
∫ 1

0

∫ 1

0

T
(
C(x, y)

)
t(x)t(y)

[
t
′
(C(x, y))C(x|y)C(y|x) + t(C(x, y))c(x, y)

]
dudv− 1,

ρT = 12
∫ 1

0

∫ 1

0
T
(
C(x, y)

)
t(x)t(y)du dv,

where x = T−1(u), y = T−1(v), and t(u) = dT(u)/du.
If C is Archimedean with generator φ, Kendall’s tau coefficient can be calculated by

τ = 1 + 4
∫ 1

0

φ(u)
φ′(u)

du,

where φ′(u) = ∂φ(u)/∂u. In this case, the induced copula CT is Archimedean with generator
φ
(
T−1(u)

)
. Kendall’s tau of the induced copula is given by, with a substitution of v = T−1(u),

τT = 1 + 4
∫ 1

0

φ
(
T−1(u)

)
φ
′(T−1(u)

) t
(
T−1(u)

)
du = 1 + 4

∫ 1

0

φ(v)
φ′(v)

t2(v)dv, (12)

which may need to be computed numerically.

Example 10. Kendall’s tau of the UL-Clayton copula. Since the Clayton copula is Archimedean with generator
φ(u) = (u−θ − 1)/θ and φ(u)/φ

′
(u) = −u(1− uθ)/θ. By (12), we have

τT = 1− 4(ab)2

θ

∫ 1

0

(1− uθ)

u3 [1 + b(u−1 − 1)]−2a−2du.

Example 11. Kendall’s tau of the UL-Gumbel copulas. The Gumbel copula is Archimedean with generator
φ(u) = (− log u)θ and φ(u)/φ

′
(u) = (u log u)/θ. By (12), Kendall’s tau is given by

τT = 1 +
4(ab)2

θ

∫ 1

0

log u
u3 [1 + b(u−1 − 1)]−2a−2du.

Example 12. Kendall’s tau of the UL-Frank copula. The Frank copula is Archimedean with generator
φ(u) = − log[(e−θu − 1)/(e−θ − 1)] and φ(u)/φ

′
(u) = −θ−1(1 − eθu) log[(e−θu − 1)/(e−θ − 1)].

By (12), Kendall’s tau is derived as

τT = 1− 4(ab)2

θ

∫ 1

0

(1− eθu) log[(e−θu − 1)/(e−θ − 1)]
u4 [1 + b(u−1 − 1)]−2a−2du.

If a = b = 1, Kendall’s tau is equal to 1 + 4[D(θ) − 1]/θ, where the Debye function is defined as
D(θ) = θ−1

∫ θ
0 u/(eu − 1)du, see (Nelsen (2006), p. 171).

6. Concordance Ordering

Consider a family of copulas {C(·; δ)}, indexed by a parameter δ in an interval. We say that C
is positively ordered, denoted by Cδ1 ≺ Cδ2 , if C(u, v; δ1) ≤ C(u, v; δ2), for all u, v ∈ [0, 1] whenever
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δ1 ≤ δ2. It is negatively ordered if C(u, v; δ1) ≥ C(u, v; δ2), for all u, v ∈ [0, 1] whenever δ1 ≤ δ2.
Nelsen (1997) showed sufficient conditions on the generator under which a family of Archimedean
copulas is ordered by concordance.

Proposition 2. The family of T-distorted copulas of the form in (1) retains the concordance ordering of the
family of base copulas C.

Proof. If the base copula family {C(·; θ)} is positively ordered, then C(u, v; θ1) ≤ C(u, v; θ2) for
u, v ∈ [0, 1] if θ1 ≤ θ2. Let x = T−1(u) and y = T−1(v), then C(x, y; θ1) ≤ C(x, y; θ2). Since T is
increasing, T

(
C(x, y; θ1)

)
≤ T

(
C(x, y; θ2)

)
. This leads to the conclusion that CT(u, v; θ1) ≤ CT(u, v; θ1)

if θ1 ≤ θ2 when fixing the values of the parameters in the distortion function T. Similarly, we can
verify that the family of distorted copulas {CT} is negatively ordered by θ if the family of base copulas
{C(·; θ)} is negatively ordered by θ.

By the definition of a measure of concordance, if Cδ1 ≺ Cδ2 then τCδ1
≤ τCδ2

, where τCδ
is Kendall’s

tau for the copula Cδ; see Nelsen (2006). That is, if a family of copulas is ordered by a parameter, then its
Kendall’s tau is either nonincreasing or nondecreasing in the parameter. In the following examples,
we demonstrate by plotting Kendall’s tau values that the families of the UL-Clayton, UL-Gumbel,
and UL-Frank copulas are not ordered by the parameters a and b stemming from the distortion
function.

Example 13. Consider the UL-Clayton copula in Example 8 and Kendall’s tau formula in Example 10. Figure 1
displays plots for the values of Kendall’s tau for various ranges of parameter values. They disclose that Kendall’s
tau is not monotone in the parameter b when a = 30 and in the parameter a when b = 8. They also confirm
that the distorted copula is ordered by the parameter θ as the family of the Clayton copulas is ordered by the
parameter θ.

Figure 1. Kendall’s-tau surface plot for the UL-Clayton copula for various parameter values.

Example 14. Consider the UL-Gumbel copula in Example 2 and Kendall’s tau formula in Example 11. As shown
in Figure 2, e.g., Kendall’s tau is not monotone in b when a = 30 and in a when b = 30. The concordance
ordering in a or b can fail to hold. All plots show a monotone Kendall’s tau in θ.
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Figure 2. Kendall’s-tau surface plot for the UL-Gumbel copula for various parameter values.

Example 15. Consider the UL-Frank copula in Example 4 and Kendall’s tau formula in Example 12. Figure 3
leads to the same conclusions observed from Figures 1 and 2.

Figure 3. Kendall’s-tau surface plot for the UL-Frank copula for various parameter values.

7. Density Contour Plots and A Simulation Study

In this section, we feature some graphical and numerical results.

7.1. Density Contour Plots

Density contour plots can effectively illustrate the concordance and tail dependence behaviors
between two variables. Figure 4 shows the contour plots for various bivariate probability densities,
denoted by h(x, y) in Section 1, using the UL distorted copulas with standard normal margins. The first
row displays the contours constructed from the base copulas, the Clayton, Gumbel, and t-copulas;
and the second and third rows the UL-distorted copulas, with (a, b) = (1.5, 2) and (a, b) = (3, 0.75),
respectively. The parameter θ is chosen so that Kendall’s tau of the base copula is either 0.5 or −0.5.



Risks 2020, 8, 106 13 of 19

Figure 4. Density contour plots constructed from using the UL-distorted copulas with standard normal
margins and parameter values (a, b) = (1, 1), (1.5, 2), and (3, 0.75).

For the t-copula, the degrees of freedom ν is 4 by default in R and the parameter θ is either 0.71
or −0.71. Note that t-copulas are reflective symmetric. Based on the plots in the first three columns,
as shown in Theorem 1, when the parameter a increases the strength of lower tail dependence weakens
or stays none, and the strength of upper tail dependence appears to remain the same for distorted
copulas. The plots in the last column are constructed using a t-copula with a negative Kendall’s tau of
−0.5 as the base copula. In this case, the definitions of tail dependence in Section 4 are not applicable;
neither are Theorems 1 and 2.

7.2. A Simulation Study

We next conduct a simulation study, similar to those in Yang et al. (2011), to evaluate the flexibility
of the UL-distorted copulas.

To generate bivariate data from the proposed copulas, we use the conditional distribution methods;
see Devroye (1986) or Joe (2015). Let C(v|u1) = P(V ≤ v|U1 = u1) = ∂C(u1, v)/∂u1. The following
algorithm is applied: (i) generate two independent random values (u1, v) from the uniform distribution
on the unit interval and (ii) solve C(u2|u1) = v for u2. The desired pair is (u1, u2)

We simulated three bivariate data sets of 1000 observations from the Clayton, Gumbel, and t
copulas with parameter values 2, 2, and 0.71 (ν = 4), receptively. The UL-distorted models were
then fit to the three data sets. The parameters were estimated by the pseudo-likelihood estimation
method described in Section 8 here. The P-P plots of empirical cdf and estimated cdf under each of
the UL-distorted models are displayed in the first row of Figure 5. For the second row of P-P plots,
three data sets of size 1000 were generated from the UL-Clayton, UL-Gumbel, and UL-t copulas with
parameter (θ, a, b) of (2, 1.5, 3),(2, 1.5, 3), and (0.71, 1.5, 3), respectively. The degree of freedom for the
t-copula is 4. We also fit widely used copulas such as the Clayton, BB1, Galambos, Gaussian, t, Gumbel,
and Frank copulas to the second sets of simulated data.
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Figure 5. P-P plots of the empirical cumulative distribution and estimated cumulative distribution
for various theoretical models. The first row displays the results from fitting data generated
from the Clayton, Gumbel, and t copulas. The second row is from the UL-Clayton, UL-Gumbel,
and UL-t-copulas.

The black curve is the one resulting from fitting the correct copula model. Reading the
areas between the black and other curves, for example, the distribution for the data simulated
from the Gumbel copula with upper tail dependence and no lower tail dependence appears to be
approximated well by various UL-distorted copulas, except the UL-Clayton copula without upper tail
dependence. However, the distribution for the data simulated from the UL-Gumbel copula appears
to be approximated less well by non-distorted base copulas, except the Gumbel copula. One would
expect the UL-distorted copulas to be more flexible due to extra parameter and more reliable in the
sense that UL-distorted copula would tend to improve the fit.

8. Application

Here, we analyze CRSPday data to see the performance of the UL-distorted copulas. The data are
readily available in “Ecdat” R package. It contains daily returns collected between 1989 and 1998 in
the United States. We consider daily returns for IBM stock (IBM) and the historical value-weighted
indexes (CRSP) by the Center for Research in Security Price. Based on the definition and research by
the National Bureau of Economic Research (NBER) and Walsh (1993), the eight-month period between
July 1990 and March 1991 is a recession in the NBER’s chronology. After the recession, the 1990s
was a period of economic growth. We thus split the sample period into two sub-periods: the crisis
period (July 1990 to March 1991) and the post-crisis period (April 1991 to December 1998). Splitting
the sample allows us to explore the impact of a financial crisis and differences in the relations between
the two variables, by using copula models.

Table 2 presents summary statistics in percentage of the two variables, including the standard
deviation (SD), first quartile (Q1), and third quartile (Q3) for the crisis and post-crisis periods separately.
Other than the maximum values for IBM, there are few differences between the crisis and post-crisis
periods in summary statistics for the two variables.
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Table 2. Summary statistics in percentage of IBM and CRSP during crisis and post-crisis periods.

Period Variable n mean min Q1 Median Q3 Max SD

Crisis IBM 209 0.00 −9.97 −0.94 0.00 0.94 6.07 1.55
CRSP 209 0.04 −3.15 −0.56 0.00 0.66 3.31 1.00

Post-crisis IBM 1962 0.09 −10.74 −0.10 0.00 1.05 12.94 1.86
CRSP 1962 0.07 −6.59 −0.26 0.08 0.46 4.82 0.76

Scatter plots are displayed in Figure 6 to visualize possible data features, such as the joint
behavior of extreme values between IBM and CRSP or between pseudo-IBM (v̂) and pseudo-CRSP
(û), i.e, the empirical distributions of IBM and CRSP. The scatter plots indicate that there is a stronger
agreement in IBM and CRSP for the crisis-period data than for the post-crisis data. Note that 0the
sample Kendall’s taus for crisis and post-crisis periods are 0.55 and 0.30, respectively. From Figure 6a,
there seems to be upper tail dependence and weak lower tail dependence in the crisis-period data.
One might therefore choose copula models with upper tail dependence such as Galambos and Gumbel
copulas in Table 3. For the post-crisis data, Figure 6b appears to have lower and upper tail dependence,
in which case, t-copula and BB1 copulas might be appropriate.

(a) IBM versus CRSP and pseudo-IBM versus pseudo-CRSP during crisis period.

(b) IBM versus CRSP and pseudo-IBM versus pseudo-CRSP during post-crisis period.
Figure 6. The scatter plots.
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The maximum pseudo-likelihood estimation (MPLE) introduced by Genest et al. (1995) is used
to fit parameters of a copula model. Let {(xj, yj)

n
j=1} be the set of observations. Define F̂(x) =

∑n
j=1 J(xj ≤ x)/n and Ĝ(y) = ∑n

j=1 J(yj ≤ y)/n, where J(·) is the indicator function. The MPLE
method first estimates the marginal distributions F and G using the empirical distributions F̂ and Ĝ,
and then maximizes the pseudo-log-likelihood function given by

L(θ, a, b) =
n

∑
i=1

log cT(û1i, û2i; θ, a, b), (13)

where cT is the copula pdf and the pseudo-observations û1i = F̂(xi) and û2i = F̂(yi).
In addition to the parameter estimates with their standard error in the parentheses, Table 3

containing results for the crisis-period data and Table 4 for the post-crisis data report the maximum
pesudo-log-likelihood value (MPLL) in (13), AIC, τ̂, λ̂L, and λ̂U . The asterisk notation (*) indicates
that either the lower or the upper tail dependence coefficient has a value of 0. The parameter estimate
computed for the base copula is used as the initial value when maximizing the UL-distorted copula
models. The built-in R function optim() is employed to solve for the MPLE estimates.

Table 3. MPLL, AIC, τ̂, λ̂L, λ̂U , and parameter estimates (standard error in parentheses) for the base
and UL distorted copulas during crisis period.

Family MPLL AIC τ̂ λ̂L λ̂U θ̂ â b̂

Clayton 63.8 −125.5 0.42 0.62 * 1.47(0.16) – –
Frank 78.9 −155.8 0.54 * * 6.47(0.55) – –
Galambos 90.7 −179.3 0.54 * 0.62 1.47(0.17) – –
Gaussian 90.4 −178.8 0.55 * * 0.77(0.03) – –
Gumbel 90.4 −178.8 0.39 * 0.47 1.64(0.05) – –
t 90.4 −178.8 0.56 0.28 0.28 0.77(0.03) – –
BB1 92.3 −180.5 0.55 0.27 0.57 0.27(0.15) – –
BB1 – – – – – 1.95(0.16) – –

UL-Clayton 63.8 −121.5 0.42 0.62 * 1.47(0.04) 1.00(0.28) 1.00(0.01)
UL-Frank 79.2 −152.3 0.54 * * 6.72(0.71) 1.21(0.51) 1.15(0.19)
UL-Galambos 92.7 −179.4 0.55 * 0.56 1.21(0.18) 2.45(1.73) 6.01(0.88)
UL-Gaussian 92.1 −178.2 0.56 * * 0.94(0.02) 19.13(0.54) 4.00(0.36)
UL-Gumbel 92.3 −178.5 0.55 * 0.57 1.92(0.19) 2.02(1.66) 4.00(0.80)
UL-t 92.1 −178.2 0.54 0.00 0.49 0.90(0.03) 9.00(0.48) 4.00(0.01)
UL-BB1 92.3 −176.6 0.55 0.09 0.57 0.35(0.40) 2.36(0.01) 2.98(0.50)
UL-BB1 – – – – – 1.92(0.21) – –

The asterisk notation (*) indicates that either the lower or the upper tail dependence coefficient has a value of 0.

Since the sample size for the crisis-period data is smaller, one would expect that the standard
errors of parameter estimates for each model in Table 3 are larger than those in Table 4. Furthermore,
the UL-distorted copula model is expected to perform better than its base copula model in terms of
MPLL, due to the extra parameters.

In Table 3, not surprisingly, copula models with upper tail dependence perform well in terms
of MPLL and AIC. The UL-distorted copula provides a better fit than its copula base in terms of the
MPLL. AIC penalized a model for additional parameters. Two extra parameters are inoculated into
the UL-distorted copula model. Partly due to the fact that a smaller sample size leads to a smaller
likelihood value, the BB1 copula model is the winner in terms of AIC for fitting the crisis-period data.

For the post-crisis data, based on Table 4, the t-copula of the Elliptical class and the BB1 copula of
the Archimedean class perform well. Just as for the crisis-period data, the Clayton and Frank copulas
fit the data poorly in comparison with other copula models in the table. However, there is a sizable
improvement in MPLL and AIC for the UL-Clayton and UL-Galambos copula models, which, in
a way, reflects the simulation study results. The UL-distorted copula model outperforms its base
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copula in terms of MPLL. In terms of the AIC, the UL-BB1 copula model of four parameters offers no
improvement over its base copula. The rest of the UL-distorted copula models of three parameters
deliver a better fit than its base copula in terms of AIC. Among the selected models, the UL-distorted
t-copula model is the best performer.

Table 4. MPLL, AIC, τ̂, λ̂L, λ̂U , and parameter estimates (standard error in parentheses) for the base
and UL distorted copulas during post-crisis period.

Family MPLL AIC τ̂ λ̂L λ̂U θ̂ â b̂

Clayton 201.6 −401.3 0.24 0.35 * 0.66(0.04) – –
Frank 213.4 −424.8 0.31 * * 3.00(0.15) – –
Galambos 200.3 −399 0.27 * 0.34 0.64(0.02) – –
Gaussian 231.1 −460.3 0.30 * * 0.46(0.02) – –
Gumbel 203.3 −404.7 0.28 * 0.35 1.38(0.02) – –
t 240.5 −477 0.30 0.09 0.09 0.46(0.02) – –
BB1 240.6 −477.3 0.30 0.20 0.22 0.36(0.05) – –
BB1 – – – – – 1.20(0.03) – –

UL-Clayton 216.2 −426.4 0.33 0.51 * 1.04(0.18) 1.01(0.01) 3.98(0.09)
UL-Frank 223.8 −441.6 0.30 * * 3.87(0.36) 2.15(0.43) 1.02(0.03)
UL-Galambos 239.8 −473.7 0.31 * 0.20 0.43(0.04) 2.04(0.59) 9.46(0.36)
UUL-Gaussian 238 −470 0.30 * * 0.67(0.04) 4.72(1.26) 4.02(0.28)
UL-Gumbel 240.9 −475.9 0.30 * 0.21 1.19(0.03) 2.14(0.65) 10.75(0.44)
UL-t 242.1 −478.1 0.31 0.02 0.08 0.44(0.15) 1.57(1.88) 2.12(1.55)
UL-BB1 242.3 −476.6 0.30 0.12 0.18 0.28(0.08) 1.01(0.11) 1.88(0.74)
UL-BB1 – – – – – 1.16(0.03) – –

The asterisk notation (*) indicates that either the lower or the upper tail dependence coefficient has a value of 0.

For the crisis data, the respective estimates for upper and lower tail dependence coefficients are
0.27 and 0.57, based on the BB1 copula model. For the post-crisis data, they are 0.01 and 0.08 based on
the UL-t-copula. The estimated Kendall’s tau coefficients resulting from top performers are close to
the sample Kendall’s tau coefficients of 0.55 and 0.30, for crisis and post-crisis data, respectively.

The UL-distortion induced model is expected to enhance the model fit in terms of MPLL. However,
in terms of AIC, due to the penalization for extra parameters, the UL-distortion induced copula may
not perform as well as its base copula.

The Cramer-von Mises goodness-of-fit statistic (CvM) is conducted to test the adequacy of copula
models in Table 3. The CvM is calculated as the sum of square deviations between the empirical cdf and
the estimated copula cdf. A bootstrap approach is used to approximate p-values; see Genest et al. (2009)
for details. For the two sample sizes of 209 and 1962, we computed the bootstrapped p-value based on
1000 replications. Table 5 reports the results. For example, for post-crisis data, fitting the UL-t model
results in a CvM value of 0.0354 with a p-value of almost 1 indicating the UL-t model is appropriate.
While not all the base copulas chosen appear adequate, all the UL-distorted copula models provide an
adequate fit based on Cramer-von Mises goodness-of-fit test.

Table 5. Cramer-von Mises test statistics in hundredths and p-values in parentheses for copulas in
Tables 3 and 4.

Crisis Period Post-Crisis Period

Model Base UL-Distorted Base UL-Distorted

BB1 1.25(≈ 1) 1.21(≈ 1) 1.78(0.37) 2.07(≈ 1)
t 1.13(0.86) 1.76(≈ 1) 2.26(0.21) 3.54(≈ 1)
Gaussian 1.14(0.82) 1.14(≈ 1) 1.14(0.85) 2.46(≈ 1)
Gumbel 0.08(0.94) 1.17(≈ 1) 8.70(0.00) 2.66(≈ 1)
Galambos 0.06(0.96) 1.15(≈ 1) 9.73(0.00) 5.04(0.94)
Frank 2.91(0.05) 3.12(≈ 1) 6.96(0.05) 5.42(0.89)
Clayton 15.36(0.00) 15.51(0.44) 29.35(0.11) 23.25(0.18)
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9. Concluding Remarks

This research proposes a mechanism to construct a distortion function and explores the properties
of the family of copulas induced by the unit Lomax distortion. Explicit expressions for the UL-Clayton,
UL-Gumbel, UL-independence, UL-Frank, UL-Galambos, and UL-BB1 copulas are given. In addition
to the limiting cases in the parameters, the tail behaviors including the dependence coefficients
and orders are studied for the UL distorted copulas. Kendall’s tau formulas for the UL-Clayton,
UL-Gumbel, and UL-Frank copulas are derived and used to investigate the concordance ordering.
The maximum pseudo-likelihood estimation is employed to fit the copula model. The Cramer-von
Mises goodness-of-fit statistic is conducted to evaluate the adequacy of copula models. As expected,
the UL-distorted copula outperforms its base copula.

The construction mechanism described in Section 2 utilizes a transformation of a nonnegative
continuous random variable Y to a variable U, whose support is the unit interval. The paper considers
the transformation of U = 1/(1 + Y), where Y is a Lomax random variable. One possible candidate
for Y is the Weibull random variable with cdf 1− e(−bx)a

, a, b > 0. However, upon further calculations,
the resulting distortion is not admissible. There are undoubtedly other employable transformations
and nonnegative random variables. An example is the transformation, e−Y, of a Weibull random
variable. We are currently examining this case. Distortion of multivariate copulas is more complicated
and will be investigated further in a separate paper.
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