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Abstract: We propose a fully data-driven approach to calibrate local stochastic volatility (LSV)
models, circumventing in particular the ad hoc interpolation of the volatility surface. To achieve this,
we parametrize the leverage function by a family of feed-forward neural networks and learn their
parameters directly from the available market option prices. This should be seen in the context of
neural SDEs and (causal) generative adversarial networks: we generate volatility surfaces by specific
neural SDEs, whose quality is assessed by quantifying, possibly in an adversarial manner, distances to
market prices. The minimization of the calibration functional relies strongly on a variance reduction
technique based on hedging and deep hedging, which is interesting in its own right: it allows the
calculation of model prices and model implied volatilities in an accurate way using only small sets
of sample paths. For numerical illustration we implement a SABR-type LSV model and conduct a
thorough statistical performance analysis on many samples of implied volatility smiles, showing the
accuracy and stability of the method.

Keywords: LSV calibration; neural SDEs; generative adversarial networks; deep hedging;
variance reduction; stochastic optimization

1. Introduction

Each day a crucial task is performed in financial institutions all over the world: the calibration of
stochastic models to current market or historical data. So far the model choice was not only driven by
the capacity of capturing empirically observed market features well, but also by the computational
tractability of the calibration process. This is now undergoing a big change since machine-learning
technologies offer new perspectives on model calibration.

Calibration is the choice of one model from a pool of models, given current market and historical
data. Depending on the nature of data this is considered to be an inverse problem or a problem of
statistical inference. We consider here current market data, in particular volatility surfaces, therefore we
rather emphasize the inverse problem point of view. We however stress that it is the ultimate goal
of calibration to include both data sources simultaneously. In this respect machine learning might
help considerably.

We can distinguish three kinds of machine learning-inspired approaches for calibration to
current market prices: First, having solved the inverse problem already several times, one can
learn from this experience (i.e., training data) the calibration map from market data to model
parameters directly. Let us here mention one of the pioneering papers by Hernandez (2017) that
applied neural networks to learn this calibration map in the context of interest rate models. This was
taken up in Cuchiero et al. (2018) for calibrating more complex mixture models. Second, one can
learn the map from model parameters to model prices (compare e.g., Liu et al. (2019a, 2019b)) and
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then invert this map possibly with machine learning technology. In the context of rough volatility
modeling, see Gatheral et al. (2018), such approaches turned out to be very successful: we refer here
to Bayer et al. (2019) and the references therein. Third, the calibration problem is considered to be
the search for a model which generates given market prices and where additionally technology from
generative adversarial networks, first introduced by Goodfellow et al. (2014), can be used. This means
parameterizing the model pool in a way which is accessible for machine learning techniques and
interpreting the inverse problem as a training task of a generative network, whose quality is assessed
by an adversary. We pursue this approach in the present article and use as generative models so-called
neural stochastic differential equations (SDE), which just means to parameterize the drift and volatility
of an Itô-SDE by neural networks.

1.1. Local Stochastic Volatility Models as Neural SDEs

We focus here on calibration of local stochastic volatility (LSV) models, which are in view
of existence and uniqueness still an intricate model class. LSV models, going back to
Jex (1999); Lipton (2002); Ren et al. (2007), combine classical stochastic volatility with local volatility to
achieve both a good fit to time series data and in principle a perfect calibration to the implied volatility
smiles and skews. In these models, the discounted price process (St)t≥0 of an asset satisfies

dSt = StL(t, St)αtdWt, (1)

where (αt)t≥0 is some stochastic process taking values in R, and (a sufficiently regular function)
L(t, s) the so-called leverage function depending on time and the current value of the asset and W a
one-dimensional Brownian motion. Note that the stochastic volatility process α can be very general
and could for instance be chosen as rough volatility model. By slight abuse of terminology we call α

stochastic volatility even though it is strictly speaking not the volatility of the log price of S.
For notational simplicity we consider here the one-dimensional case, but the setup easily translates

to a multivariate situation with several assets and a matrix valued analog of α as well as a matrix
valued leverage function.

The leverage function L is the crucial part in this model. It allows in principle to perfectly calibrate
the implied volatility surface seen on the market. To achieve this goal L must satisfy

L2(t, s) =
σ2

Dup(t, s)

E[α2
t |St = s]

, (2)

where σDup denotes Dupire’s local volatility function (see Dupire (1994, 1996)). For the derivation of (2),
we refer to Guyon and Henry-Labordère (2013). Please note that (2) is an implicit equation for L as it
is needed for the computation of E[α2

t |St = s]. This in turn means that the SDE for the price process
(St)t≥0 is actually a McKean–Vlasov SDE, since the law of (St, αt) enters in the characteristics of the
equation. Existence and uniqueness results for this equation are not at all obvious, since the coefficients
do not satisfy any kind of standard conditions like for instance Lipschitz continuity in the Wasserstein
space. Existence of a short-time solution of the associated nonlinear Fokker-Planck equation for the
density of (St)t≥0 was shown in Abergel and Tachet (2010) under certain regularity assumptions on the
initial distribution. As stated in Guyon and Henry-Labordère (2012) a very challenging and still open
problem is to derive the set of stochastic volatility parameters for which LSV models exist uniquely for
a given market implied volatility surface. We refer to Jourdain and Zhou (2016) and Lacker et al. (2019),
where recent progress in solving this problem has been made.

Despite these intriguing existence issues, LSV models have attracted—due to their appealing
feature of a potentially perfect smile calibration and their econometric properties—a lot of attention
from the calibration and implementation point of view. We refer to Cozma et al. (2017); Guyon and
Henry-Labordère (2012); Guyon and Henry-Labordère (2013) for Monte Carlo (MC) methods (see
also Guyon (2014, 2016) for the multivariate case), to Ren et al. (2007); Tian et al. (2015) for PDE
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methods based on nonlinear Fokker-Planck equations and to Saporito et al. (2017) for inverse problem
techniques. Within these approaches the particle approximation method for the McKean–Vlasov
SDE proposed in Guyon and Henry-Labordère (2012); Guyon and Henry-Labordère (2013) works
impressively well, as very few paths must be used to achieve very accurate calibration results.

In the current paper we propose an alternative, fully data-driven approach circumventing in
particular the interpolation of the volatility surface, being necessary in several other approaches in
order to compute Dupire’s local volatility. This means that we only take the available discrete data
into account and do not generate a continuous surface interpolating between the given market option
prices. Indeed, we just learn or train the leverage function L to generate the available market option
prices accurately. Although in principle the method allows for calibration to any traded options,
we work here with vanilla derivatives.

Setting T0 = 0 and denoting by T1 < T2 · · · < Tn the maturities of the available options,
we parametrize the leverage function L(t, s) via a family of neural networks Fi : R → R with
weights θi ∈ Θi, i.e.

L(t, s, θ) = 1 + Fi(s, θi), t ∈ [Ti−1, Ti), i ∈ {1, . . . , n}.

We here consider for simplicity only the univariate case. The multivariate situation just means
that 1 is replaced by the identity matrix and the neural networks Fi(·, θi) are maps from Rd → Rd×d.

This then leads to the generative model class of neural SDEs (see Gierjatowicz et al. (2020) for
related work), which in the case of time-inhomogeneous Itô-SDEs, just means to parametrize the drift
µ(·, ·, θ) and volatility σ(·, ·, θ) by neural networks with parameters θ, i.e.,

dXt(θ) = µ(Xt(θ), t, θ)dt + σ(Xt(θ), t, θ)dWt, X0(θ) = x. (3)

In our case, there is no drift and the volatility (for the price) reads as

σ(St(θ), t, θ) = St(θ)

(
1 +

n

∑
i=1

Fi(St(θ), θi)1[Ti−1,Ti)
(t)

)
αt. (4)

Progressively for each maturity, the parameters of the neural networks are learned by optimizing
the following calibration criterion

inf
θ

sup
γ

J

∑
j=1

wγ
j `

γ(πmod
j (θ)− πmkt

j ) , (5)

where J is the number of considered options and where πmod
j (θ) and πmkt

j stand for the respective
model and market prices.

Moreover, for every fixed γ, `γ is a nonlinear non-negative convex function with `γ(0) = 0 and
`γ(x) > 0 for x 6= 0, measuring the distance between model and market prices. The terms wγ

j , for fixed
γ, denote some weights, in our case of vega type (compare Cont and Ben Hamida (2004)). Using such
vega type weights allows to match implied volatility data, our actual goal, very well. The parameters γ

take here the role of the adversarial part. Indeed, by considering a family of weights and loss functions
parameterized by γ enables us to take into account the uncertainty of the loss function. In this sense
this constitutes a discriminative model as it modifies the distribution of the target, i.e., the different
market prices, given θ and thus the model prices. This can for instance mean that the adversary
chooses the weights wγ in such a way to put most mass on those options where the fit is worst or that
it modifies `γ by choosing πmkt within the bid-ask spread with the largest possible distance to the
current model prices. In a concrete implementation in Section 4.3, we build a family of loss functions
like this, using different market implied volatilities lying in the bid-ask spread. We can therefore also
solve such kind of robust calibration problems.
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The precise algorithms are outlined in Sections 3 and 4, where we also conduct a thorough
statistical performance analysis. Notice that as is somehow quite typical for financial applications,
we need to guarantee a very high accuracy, whence a variance reduction technique to compute the
model prices via Monte Carlo is crucial for this learning task. This relies on hedging and deep hedging,
which allows the computation of accurate model prices πmod(θ) for training purposes with only up
to 5× 104 trajectories. Let us remark that we do not aim to compete with existing algorithms, as
e.g., the particle method by Guyon and Henry-Labordère (2012); Guyon and Henry-Labordère (2013),
in terms of speed but rather provide a generic data-driven algorithm that is universally applicable
for all kind of options, also in multivariate situations, without resorting to Dupire type volatilities.
This general applicability comes at the expense of a higher computation time compared to Guyon
and Henry-Labordère (2012); Guyon and Henry-Labordère (2013). In terms of accuracy, we achieve
an average calibration error of about 5 to 10 basis points, whence our method is comparable or in
some situations even better than Guyon and Henry-Labordère (2012) (compare Section 6 and the
results in Guyon and Henry-Labordère (2012)). Moreover, we also observe good extrapolation and
generalization properties of the calibrated leverage function.

1.2. Generative Adversarial Approaches in Finance

The above introduced generative adversarial approach might seem at first sight unexpected as
generative adversarial models or networks are rather applied in areas such as photorealistic image
generation. From an abstract point of view, however, a generative network is nothing else than a neural
network (mostly of recurrent type) Gθ depending on parameters θ, which transports a standard input
law PI to a target output law PO. In our case, PI corresponds to the law of the Brownian motion W and
the stochastic volatility process α. The target law PO is given in terms of certain functionals, namely
the set of market prices, and is thus not fully specified.

Denoting the push-forward of PI under the transport map Gθ by Gθ
∗PI , the goal is to find

parameters θ such that Gθ
∗PI ≈ PO. For this purpose, appropriate distance functions must be

used. Standard examples include entropies, integral distances, Wasserstein or Radon distances, etc.
The adversarial character appears when the chosen distance is represented as supremum over certain
classes of functions, which can themselves be parameterized via neural networks of a certain type.
This leads to a game, often of zero-sum type, between the generator and the adversary. As mentioned
above, one example, well known from industry, is calibrating a model to generate prices within a
bid-ask spread: in this case there is more than one loss function, each of them representing a distance
to a possible price structure, and the supremum over these loss functions is the actual distance between
generated price structure and the target. In other words: the distance to the worst possible price
structure within the bid-ask spread should be as small as possible (see Section 4.3).

In our case the solution measure of the neural SDE as specified in (3) and (4) corresponds to the
transport Gθ

∗PI and we measure the distance by (5), which can be rewritten as

inf
θ

sup
γ

J

∑
j=1

wγ
j `

γ(EGθ∗PI
[Cj]︸ ︷︷ ︸

model price

− EPO [Cj]︸ ︷︷ ︸
market price

), (6)

where Cj are the corresponding option payoffs.
In general, one could consider distance functions dγ such that the game between generator and

adversary appears as

inf
θ

sup
γ

dγ(Gθ
∗PI ,PO) .

The advantage of this point of view is two-fold:
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1. we have access to the unreasonable effectiveness of modeling by neural networks, due to their
good generalization and regularization properties;

2. the game theoretic view disentangles realistic price generation from discriminating with different
loss functions, parameterized by γ. This reflects the fact that it is not necessarily clear which loss
function one should use. Notice that (6) is not the usual form of generative adversarial network
(GAN) problems, since the adversary distance `γ is nonlinear in PI and PO, but we believe that it
is worth taking this abstract point of view.

There is no reason these generative models, if sufficient computing power is available, should not
take market price data as inputs, too. This would correspond, from the point of view of generative
adversarial networks, to actually learn a map Gθ,market prices, such that for any price configuration
of market prices one has instantaneously a generative model given, which produces those prices.
This requires just a rich data source of typical market prices (and computing power!).

Even though it is usually not considered like that, one can also view the generative model as an
engine producing a likelihood function on probability measures on path space: given historic data,
PO is then just the empirical measure of the one observed trajectory that is inserted in the likelihood
function. This would allow, with precisely the same technology, a maximum likelihood approach,
where one searches for those parameters of the generative network that maximize the likelihood
of the historic trajectory. This then falls in the realm of generative approaches that appear in the
literature under the name “market generators”. Here the goal is to precisely mimic the behavior
and features of historical market trajectories. This line of research has been recently pursued in
e.g., Kondratyev and Schwarz (2019); Wiese et al. (2019); Acciaio and Xu (2020); Bühler et al. (2020);
Henry-Labordère (2019).

From a bird’s eye perspective this machine-learning approach to calibration might just look like a
standard inverse problem with another parameterized family of functions. We, however, insist on one
important difference, namely implicit regularizations (see e.g., Heiss et al. (2019)), which always appear
in machine-learning applications and which are cumbersome to mimic in classical inverse problems.

Finally, let us comment more generally on machine-learning approaches in mathematical finance,
which become more and more prolific. Concrete applications include hedging Bühler et al. (2019),
portfolio selection Gao et al. (2019), stochastic portfolio theory Samo and Vervuurt (2016);
Cuchiero et al. (2020), optimal stopping Becker et al. (2019), optimal transport and robust finance
Eckstein and Kupper (2019), stochastic games and control problems Huré et al. (2018) as well as
high-dimensional nonlinear partial differential equations (PDEs) Han et al. (2017); Huré et al. (2019).
Machine learning also allows for new insights into structural properties of financial markets
as investigated in Sirignano and Cont (2019). For an exhaustive overview of machine-learning
applications in mathematical finance, in particular for option pricing and hedging we refer to
Ruf and Wang (forthcoming).

The remainder of the article is organized as follows. Section 2 introduces the variance reduction
technique based on hedge control variates, which is crucial in our optimization tasks. In Section 3
we explain our calibration method, in particular how to optimize (5). The details of the numerical
implementation and the results of the statistical performance analysis are then given in Section 4
as well as Section 6. In Appendix A we state stability theorems for stochastic differential equations
depending on parameters. This is applied to neural SDEs when calculating derivatives with respect
to the parameters of the neural networks. In Appendix B we recall preliminaries on deep learning
by giving a brief overview of universal approximation properties of artificial neural networks and
briefly explaining stochastic gradient descent. Finally, Appendix C contains alternative optimization
approaches to (5).

2. Variance Reduction for Pricing and Calibration Via Hedging and Deep Hedging

This section is dedicated to introducing a generic variance reduction technique for Monte Carlo
pricing and calibration by using hedging portfolios as control variates. This method will be crucial in
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our LSV calibration presented in Section 3. For similar considerations we refer to Potters et al. (2001);
Vidales et al. (2018).

Consider on a finite time horizon T > 0, a financial market in discounted terms with r traded
instruments (Zt)t∈[0,T] following an Rr-valued stochastic process on some filtered probability space
(Ω, (Ft)t∈[0,T],F ,Q). Here, Q is a risk neutral measure and (Ft)t∈[0,T] is supposed to be right
continuous. In particular, we suppose that (Zt)t∈[0,T] is an r-dimensional square integrable martingale
with càdlàg paths.

Let C be an FT-measurable random variable describing the payoff of some European option at
maturity T > 0. Then the usual Monte Carlo estimator for the price of this option is given by

π =
1
N

N

∑
n=1

Cn, (7)

where (C1, . . . , CN) are i.i.d with the same distribution as C and N ∈ N. This estimator can easily be
modified by adding a stochastic integral with respect to Z. Indeed, consider a strategy (ht)t∈[0,T] ∈
L2(Z) and some constant c. Denote the stochastic integral with respect to Z by I = (h • Z)T and
consider the following estimator

π̂ =
1
N

N

∑
n=1

(Cn − cIn), (8)

where (I1, . . . , IN) are i.i.d with the same distribution as I. Then, for any (ht)t∈[0,T] ∈ L2(Z) and c,
this estimator is still an unbiased estimator for the price of the option with payoff C since the expected
value of the stochastic integral vanishes. If we denote by

H =
1
N

N

∑
n=1

In,

then the variance of π̂ is given by

Var(π̂) = Var(π) + c2Var(H)− 2cCov(π, H).

This becomes minimal by choosing

c =
Cov(π, H)

Var (H)
.

With this choice, we have

Var(π̂) = (1−Corr2(π, H))Var(π).

In particular, in the case of a perfect pathwise hedge, where π = H a.s., we have Corr(π, H) = 1
and Var(π̂) = 0, since in this case

Var(π) = Var(H) = Cov(π, H).

Therefore, it is crucial to find a good approximate hedging portfolio such that Corr2(π, H)

becomes large. This is subject of Sections 2.1 and 2.2 below.

2.1. Black–Scholes Delta Hedge

In many cases, of local stochastic volatility models as of form (1) and options depending only on
the terminal value of the price process, a Delta hedge of the Black–Scholes model works well. Indeed,
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let C = g(ST) and let π
g
BS(t, T, s, σ) be the price at time t of this claim in the Black–Scholes model. Here,

s stands for the price variable and σ for the volatility parameter in the Black–Scholes model. Moreover,
we indicate the dependency on the maturity T as well. Then choosing as hedging instrument only the
price S itself and as approximate hedging strategy

ht = ∂sπ
g
BS(t, T, St, L(t, St)αt) (9)

usually already yields a considerable variance reduction. In fact, it is even sufficient to consider αt

alone to achieve satisfying results, i.e., one has

ht = ∂sπ
g
BS(t, T, St, αt), (10)

This reduces the computational costs for the evaluation of the hedging strategies even further.

2.2. Hedging Strategies as Neural Networks—Deep Hedging

Alternatively, in particular when the number of hedging instruments becomes higher, one can
learn the hedging strategy by parameterizing it via neural networks. For a brief overview of neural
networks and relevant notation used below, we refer to Appendix B.

Let the payoff be again a function of the terminal values of the hedging instruments,
i.e., C = g(ZT). Then in Markov models it makes sense to specify the hedging strategy via a function
h : R+ ×Rr → Rr

ht = h(t, z),

which in turn will correspond to an artificial neural network (t, z) 7→ h(t, z, δ) ∈ NN r+1,r with
weights denoted by δ in some parameter space ∆ (see Notation1 A1). Following the approach in
(Bühler et al. 2019, Remark 3), an optimal hedge for the claim C with given market price πmkt can be
computed via

inf
δ∈∆

E
[
u
(
−C + πmkt + (h(·, Z·−, δ) • Z·)T

)]
for some convex loss function u : R→ R+. Recall that (h • Z)T denotes the stochastic integral with
respect to Z. If u(x) = x2, which is often used in practice, this then corresponds to a quadratic hedging
criterion.

To tackle this optimization problem, we can apply stochastic gradient descent, because we fall in
the realm of problem (A3). Indeed, the stochastic objective function Q(δ)(ω) is given by

Q(δ)(ω) = u(−C(ω) + πmkt + (h(·, Z·−, δ)(ω) • Z·(ω))T).

The optimal hedging strategy h(·, ·, δ∗) for an optimizer δ∗ can then be used to define

(h(·, Z·−, δ∗) • Z·)T

which is in turn used in (8).
As always in this article we shall assume that activation functions φ of the neural network as

well as the convex loss function u are smooth, hence we can calculate derivatives with respect to δ

in a straight forward way. This is important to apply stochastic gradient descent, see Appendix B.2.
We shall show that the gradient of Q(δ) is given by

∇δQ(δ)(ω) = u′(−C(ω) + πmkt + (h(·, Z·−, δ)(ω) • Z·(ω))T)(∇δh(·, Z·−, δ)(ω) • Z·(ω))T ,

1 We here use δ to denote the parameters of the hedging neural networks, as θ shall be used for the networks of the
leverage function.
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i.e., we are allowed to move the gradient inside the stochastic integral, and that approximations with
simple processes, as we shall do in practice, converge to the correct quantities. To ensure this property,
we shall apply the following theorem, which follows from results in Appendix A.

Theorem 1. For ε ≥ 0, let Zε be a solution of a stochastic differential equation as described in Theorem A2
with drivers Y = (Y1, . . . , Yd), functionally Lipschitz operators Fε,i

j , i = 1, . . . , r, j = 1, . . . , d and a process

(Jε,1, . . . Jε,r), which is here for all ε ≥ 0 simply J1{t=0}(t) for some constant vector J ∈ Rr = J, i.e.

Zε,i
t = Ji +

d

∑
j=1

∫ t

0
Fε,i

j (Zε)s−dY j
s , t ≥ 0.

Let (ε, t, z) 7→ f ε(t, z) be a map, such that the bounded càglàd process f ε := f ε(.−, Z0
.−) converges ucp to

f 0 := f 0(.−, Z0
.−), then

lim
ε→0

( f ε • Zε) =
(

f 0 • Z0)
holds true.

Proof. Consider the extended system

d( f ε • Zε) =
d

∑
j=1

f ε(t−, Zε
t−) Fε,i

j (Zε)t−dY j
t

and

dZε,i
t =

d

∑
j=1

Fε,i
j (Zε)t−dY j

t ,

where we obtain existence, uniqueness and stability for the second equation by Theorem A2, and from
where we obtain ucp convergence of the integrand of the first equation: since stochastic integration is
continuous with respect to the ucp topology we obtain the result.

The following corollary implies the announced properties, namely that we can move the gradient
inside the stochastic integral and that the derivatives of a discretized integral with a discretized
version of Z and approximations of the hedging strategies are actually close to the derivatives of the
limit object.

Corollary 1. Let, for ε > 0, Zε denote a discretization of the process of hedging instruments Z ≡ Z0 such
that the conditions of Theorem 1 are satisfied. Denote, for ε ≥ 0, the corresponding hedging strategies by
(t, z, δ) 7→ hε(t, z, δ) given by neural networks NN r+1,r, whose activation functions are bounded and C1,
with bounded derivatives.

1. Then the derivative ∇δ(h(·, Z·−, δ) • Z) in direction δ at δ0 satisfies

∇δ(h(·, Z·−, δ0) • Z) = (∇δh(·, Z·−, δ0) • Z).

2. If additionally the derivative in direction δ at δ0 of ∇δhε(·, Z·−, δ0) converges ucp to ∇δh(·, Z·−, δ0) as
ε→ 0, then the directional derivative of the discretized integral, i.e.
∇δ(hε(·, Zε

·−, δ0) • Zε) or equivalently (∇δhε(·, Zε
·−, δ0) • Zε), converges, as the discretization mesh

ε→ 0, to
lim
ε→0

(∇δhε(·, Zε
·−, δ0) • Zε) = (∇δh(·, Z·−, δ0) • Z).
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Proof. To prove (1), we apply Theorem 1 with

f ε(·, Z·−) =
h(·, Z·−, δ0 + εδ)− h(·, Z·−, δ0)

ε
,

which converges ucp to f 0 = ∇δh(·, Z·−, δ0). Indeed, by the neural network assumptions, we have
(with the sup over some compact set)

lim
ε→0

sup
(t,z)

∥∥∥∥h(t, z, δ0 + εδ)− h(t, z, δ0)

ε
−∇δh(t, z, δ0)

∥∥∥∥ = 0,

by equicontinuity of {(t, z) 7→ ∇δh(t, z, δ0 + εδ) | ε ∈ [0, 1]}.
Concerning (2) we apply again Theorem 1, this time with

f ε(·, Z·−) = ∇δhε(·, Z·−, δ0),

which converges by assumption ucp to f 0 = ∇δh(·, Z·−, δ0).

3. Calibration of LSV Models

Consider an LSV model as of (1) defined on some filtered probability space (Ω, (Ft)t∈[0,T],F ,Q),
where Q is a risk neutral measure. We assume the stochastic process α to be fixed. This can for instance
be achieved by first approximately calibrating the pure stochastic volatility model with L ≡ 1, so to
capture only the right order of magnitude of the parameters and then fixing them.

Our main goal is to determine the leverage function L in perfect accordance with market data.
We here consider only European call options, but our approach allows in principle to take all kind of
other options into account.

Due to the universal approximation properties outlined in Appendix B (Theorem A3) and in
spirit of neural SDEs, we choose to parameterize L via neural networks. More precisely, set T0 = 0
and let 0 < T1 · · · < Tn = T denote the maturities of the available European call options to which we
aim to calibrate the LSV model. We then specify the leverage function L(t, s) via a family of neural
networks, i.e.,

L(t, s, θ) =

(
1 +

n

∑
i=1

Fi(s, θi)1[Ti−1,Ti)
(t)

)
, (11)

where Fi ∈ NN 1,1 for i = 1, . . . , n (see Notation A1). For notational simplicity we shall often omit the
dependence on θi ∈ Θi. However, when needed we write for instance St(θ), where θ then stands for
all parameters θi used up to time t.

For purposes of training, similarly as in Section 2.2, we shall need to calculate derivatives of the
LSV process with respect to θ. The following result can be understood as the chain rule applied to
∇θS(θ), which we prove here rigorously by applying the results of Appendix A.



Risks 2020, 8, 101 10 of 31

Theorem 2. Let (t, s, θ) 7→ L(t, s, θ) be of form (11) where the neural networks (s, θi) 7→ Fi(s, θi) are bounded
and C1, with bounded and Lipschitz continuous derivatives2, for all i = 1, . . . , n. Then the directional derivative
in direction θ at θ̂ satisfies the following equation

d
(
∇θSt(θ̂)

)
=
(
∇θSt(θ̂)L(t, St(θ̂), θ̂) + St(θ̂)∂sL(t, St(θ̂), θ̂)∇θSt(θ̂)

+ St(θ̂)∇θ L(t, St(θ̂), θ̂)
)

αtdWt ,
(12)

with initial value 0. This can be solved by variation of constants, i.e.

∇θSt(θ̂) =
∫ t

0
Pt−sSs(θ̂)∇θ L(s, Ss(θ̂), θ̂)αsdWs, (13)

where

Pt = E
(∫ t

0

(
L(s, Ss(θ̂), θ̂) + Ss(θ̂)∇sL(s, Ss(θ̂), θ̂)

)
αsdWs

)
with E denoting the stochastic exponential.

Proof. First note that Theorem A1 implies the existence and uniqueness of

dSt(θ) = St(θ)L(t, St(θ), θ)αtdWt ,

for every θ. Here, the driving process is one-dimensional and given by Y =
∫ ·

0 αsdWs. Indeed,
according to Remark A1, if (t, s) 7→ L(t, s, θ) is bounded, càdlàg in t and Lipschitz in s with a Lipschitz
constant independent of t, S· 7→ S·(θ)L(·, S·(θ), θ) is functionally Lipschitz and Theorem A1 implies
the assertion. These conditions are implied by the form of L(t, s, θ) and the conditions on the neural
networks Fi.

To prove the form of the derivative process we apply Theorem A2 to the following system: consider

dSt(θ̂) = St(θ̂)L(t, St(θ̂), θ̂)αtdWt ,

together with
dSt(θ̂ + εθ) = St(θ̂ + εθ)L(t, St(θ̂ + εθ), θ̂ + εθ)αtdWt ,

as well as

d
St(θ̂ + εθ)− St(θ̂)

ε
=

St(θ̂ + εθ)L(t, St(θ̂ + εθ), θ̂ + εθ)− St(θ̂)L(t, St(θ̂), θ̂)

ε
αtdWt

=
(St(θ̂ + εθ)− St(θ̂)

ε
L(t, St(θ̂ + εθ), θ̂ + εθ)

+ St(θ̂)
L(t, St(θ̂ + εθ), θ̂ + εθ)− L(t, St(θ̂), θ̂)

ε

)
αtdWt.

In the terminology of Theorem A2, Zε,1 = S(θ̂), Zε,2 = S(θ̂ + εθ) and Zε,3 = St(θ̂+εθ)−St(θ̂)
ε .

Moreover, Fε,3 is given by

Fε,3(Z0
t ) = Z0,3

t L(t, Z0,2
t , θ̂ + εθ) + Z0,1

t ∂sL(t, Z0,1
t , θ̂)Z0,3

t +O(ε)

+ Z0,1
t

L(t, Z0,1
t , θ̂ + εθ)− L(t, Z0,1

t , θ̂)

ε
,

(14)

2 This just means that the activation function is bounded and C1, with bounded and Lipschitz continuous derivatives.
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which converges ucp to

F0,3(Z0
t ) = Z0,3

t L(t, Z0,2
t , θ̂) + Z0,1

t ∂sL(t, Z0,1
t , θ̂)Z0,3

t + Z0,1
t ∇θ L(t, Z0,1

t , θ̂).

Indeed, for every fixed t, the family {s 7→ L(t, s, θ̂ + εθ), | ε ∈ [0, 1]} is due to the form of the
neural networks equicontinuous. Hence pointwise convergence implies uniform convergence in s.
This together with L(t, s, θ) being piecewise constant in t yields

lim
ε→0

sup
(t,s)
|L(t, s, θ̂ + εθ)− L(t, s, θ̂)| = 0,

whence ucp convergence of the first term in (14). The convergence of term two is clear. The one of term
three follows again from the fact that the family {s 7→ ∇θ L(t, s, θ̂ + εθ) | ε ∈ [0, 1]} is equicontinuous,
which is again a consequence of the form of the neural networks.

By the assumptions on the derivatives, F0,3 is functionally Lipschitz. Hence Theorem A1 yields
the existence of a unique solution to (12) and Theorem A2 implies convergence.

Remark 1.

1. For the pure existence and uniqueness of

dSt(θ) = St(θ)L(t, St(θ), θ)αtdWt ,

with L(t, s, θ) of form (11), it suffices that the neural networks s 7→ Fi(s, θi) are bounded and Lipschitz,
for all i = 1, . . . , n (see also Remark A1).

2. Formula (13) can be used for well-known backward propagation schemes.

Theorem 2 guarantees the existence and uniqueness of the derivative process. This thus allows
the setting up of gradient-based search algorithms for training.

In view of this let us now come to the precise optimization task as already outlined in Section 1.1.
To ease the notation, we shall here omit the dependence of the weights w and the loss function ` on
the parameter γ. For each maturity Ti, we assume to have Ji options with strikes Kij, j ∈ {1, . . . , Ji}.
The calibration functional for the i-th maturity is then of the form

argmin
θi∈Θi

Ji

∑
j=1

wij`(π
mod
ij (θi)− πmkt

ij ), i ∈ {1, . . . , n}. (15)

Recall from the introduction that πmod
ij (θi) (πmkt

ij respectively) denotes the model (market resp.) price
of an option with maturity Ti and strike Kij. Moreover, ` : R→ R+ is some non-negative, nonlinear,
convex loss function (e.g., square or absolute value) with `(0) = 0 and `(x) > 0 for x 6= 0, measuring
the distance between market and model prices. Finally, wij denote some weights, e.g., of vega type
(compare Cont and Ben Hamida (2004)), which we use to match implied volatility data rather than
pure prices. Notice that we here omit for notational convenience the dependence of wij and ` on
parameters γ which describe the adversarial part.

We solve the minimization problems (15) iteratively: we start with maturity T1 and fix θ1. This then
enters in the computation of πmod

2j (θ2) and thus in (15) for maturity T2, etc. To simplify the notation in
the sequel, we shall therefore leave the index i away so that for a generic maturity T > 0, (15) becomes

argmin
θ∈Θ

J

∑
j=1

wj`(π
mod
j (θ)− πmkt

j ).
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Since the model prices are given by

πmod
j (θ) = E[(ST(θ)− Kj)

+], (16)

we have πmod
j (θ)− πmkt

j = E
[
Qj(θ)

]
where

Qj(θ)(ω) := (ST(θ)(ω)− Kj)
+ − πmkt

j . (17)

The calibration task then amounts to finding a minimum of

f (θ) :=
J

∑
j=1

wj`(E
[
Qj(θ)

]
). (18)

As ` is a nonlinear function, this is not of the expected value form of problem (A3).
Hence standard stochastic gradient descent, as outlined in Appendix B.2, cannot be applied in a
straightforward manner.

We shall tackle this problem via hedge control variates as introduced in Section 2. In the following
we explain this in more detail.

3.1. Minimizing the Calibration Functional

Consider the standard Monte Carlo estimator for E[Qj(θ)] so that (18) is estimated by

f MC(θ) :=
J

∑
j=1

wj`

(
1
N

N

∑
n=1

Qj(θ)(ωn)

)
, (19)

for i.i.d samples {ω1, . . . , ωN} ∈ Ω. Since the Monte Carlo error decreases as 1√
N

, the number of

simulations N must be chosen large (≈ 108) to approximate well the true model prices in (16). Note that
implied volatility to which we actually aim to calibrate is even more sensitive. As stochastic gradient
descent is not directly applicable due to the nonlinearity of `, it seems necessary at first sight to compute
the gradient of the whole function f̂ (θ) to minimize (19). As N ≈ 108, this is however computationally
very expensive and leads to numerical instabilities as we must compute the gradient of a sum that
contains 108 terms. Hence with this method an (approximative) minimum in the high-dimensional
parameter space Θ cannot be found in a reasonable amount of time.

One very expedient remedy is to apply hedge control variates as introduced in Section 2 as
variance reduction technique. This allows the reduction of the number of samples N in the Monte
Carlo estimator considerably to only up to 5× 104 sample paths.

Assume that we have r hedging instruments (including the price process S) denoted by (Zt)t∈[0,T]
which are square integrable martingales under Q and take values in Rr. Consider, for j = 1, . . . , J,
strategies hj : [0, T]×Rr → Rr such that h(·, Z·) ∈ L2(Z) and some constant c. Define

Xj(θ)(ω) := Qj(θ)(ω)− c(hj(·, Z·−(θ)(ω)) • Z·(θ)(ω))T (20)

The calibration functionals (18) and (19), can then simply be defined by replacing Qj(θ)(ω) by
Xj(θ)(ω) so that we end up minimizing

f̂ (θ)(ω1, . . . , ωN) =
J

∑
j=1

wj`

(
1
N

N

∑
n=1

Xj(θ)(ωn)

)
. (21)
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To tackle this task, we apply the following variant of gradient descent: starting with an initial
guess θ(0), we iteratively compute

θ(k+1) = θ(k) − ηk G(θ(k))(ω
(k)
1 , . . . , ω

(k)
N ), (22)

for some learning rate ηk, i.i.d samples (ω(k)
1 , . . . , ω

(k)
N ), where the values

G(θ(k))(ω
(k)
1 , . . . , ω

(k)
N )

are gradient-based quantities that remain to be specified. These samples can either be chosen to be
the same in each iteration or to be newly sampled in each update step. The difference between these
two approaches is negligible, since N is chosen so as to yield a small Monte Carlo error, whence the
gradient is nearly deterministic. In our numerical experiments we newly sample in each update step.

In the simplest form, one could simply set

G(θ(k))(ω
(k)
1 , . . . , ω

(k)
N ) = ∇ f̂ (θ)(ω(k)

1 , . . . , ω
(k)
N ). (23)

Note however that the derivative of the stochastic integral term in (20) is in general quite expensive.
We thus implement the following modification.

We set

ωN = (ω1, . . . , ωN),

QN
j (θ)(ω

N) =
1
N

N

∑
n=1

Qj(θ)(ωn),

QN(θ)(ωN) = (QN
1 (θ)(ωN), . . . , QN

J (θ)(ω
N)),

and define f̃ : RJ → R via

f̃ (x) =
J

∑
j=1

wj`(xj).

We then set
G(θ)(ωN) = Dx( f̃ )(XN(θ)(ωN))Dθ(QN)(θ)(ωN).

Please note that this quantity is actually easy to compute in terms of backpropagation. Moreover,
leaving the stochastic integral away in the inner derivative is justified by its vanishing expectation.
During the forward pass, the stochastic integral terms are included in the computation; however
the contribution to the gradient (during the backward pass) is partly neglected, which can e.g., be
implemented via the tensorflow stop_gradient function.

Concerning the choice of the hedging strategies, we can parameterize them as in Section 2.2 via
neural networks and find the optimal weights δ by computing

argmin
δ∈∆

1
N

N

∑
n=1

u(−Xj(θ, δ)(ωn)). (24)

for i.i.d samples {ω1, . . . , ωN} ∈ Ω and some loss function u when θ is fixed. Here,

Xj(θ, δ)(ω) = (ST(θ)(ω)− Kj)
+ − (hj(·, Z·−(θ)(ω), δ) • Z·(θ)(ω))T − πmkt

j .

This means to iterate the two optimization procedures, i.e., minimizing (21) for θ (with fixed δ)

and (24) for δ (with fixed θ). Clearly the Black–Scholes hedge ansatz as of Section 2.1 works as well,
in this case without additional optimization with respect to the hedging strategies.

For alternative approaches how to minimize (18), we refer to Appendix C.
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4. Numerical Implementation

In this section, we discuss the numerical implementation of the proposed calibration method.
We implement our approach via tensorflow, taking advantage of GPU-accelerated computing.
All computations are performed on a single-gpu Nvidia GeForce R© GTX 1080 Ti machine. For the
implied volatility computations, we rely on the python py_vollib library.3

Recall that a LSV model is given on some filtered probability space (Ω, (Ft)t∈[0,T],F ,Q) by

dSt = StαtL(t, St)dWt, S0 > 0,

for some stochastic process α. When calibrating to data, it is, therefore, necessary to make further
specifications. We calibrate the following SABR-type LSV model.

Definition 1. The SABR-LSV model is specified via the SDE,

dSt = StL(t, St)αtdWt,

dαt = ναtdBt,

d〈W, B〉t = ρdt,

with parameters ν ∈ R, ρ ∈ [−1, 1] and initial values α0 > 0, S0 > 0. Here, B and W are two correlated
Brownian motions.

Remark 2. We shall often work in log-price coordinates for S. In particular, we can then consider L as a
function of X := log S rather then S. By denoting this parametrization again with L, we therefore have L(t, X)

instead of L(t, S) and the model dynamics read as

dXt = αtL(t, Xt)dWt −
1
2

α2
t L2(t, Xt)dt,

dαt = ναtdBt,

d〈W, B〉t = ρdt.

Please note that α is a geometric Brownian motion, in particular, the closed form solution for α is available
and given by

αt = α0 exp
(
−ν2

2
t + νBt

)
.

For the rest of the paper we shall set S0 = 1.

4.1. Implementation of the Calibration Method

We now present a proper numerical test and demonstrate the effectiveness of our approach on a
family of typical market smiles (instead of just one calibration example). We consider as ground truth a
situation where market smiles are produced by a parametric family. By randomly sampling smiles from
this family we then show that they can be calibrated up to small errors, which we analyze statistically.

4.1.1. Ground Truth Assumption

We start by specifying the ground truth assumption. It is known that a discrete set of prices can
be exactly calibrated by a local volatility model using Dupire’s volatility function, if an appropriate

3 See http://vollib.org/.

http://vollib.org/
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interpolation method is chosen. Hence, any market observed smile data can be reproduced by the
following model (we assume zero riskless rate and define X = log(S)),

dSt = σDup(t, Xt)StdWt,

or equivalently

dXt = −
1
2

σ2
Dup(t, Xt)dt + σDup(t, Xt)dWt, (25)

where σDup denotes Dupire’s local volatility function Dupire (1996). Our ground truth assumption
consists of supposing that the function σDup (or to be more precise σ2

Dup) can be chosen from a
parametric family. Such parametric families for local volatility models have been discussed in the
literature, consider e.g., Carmona and Nadtochiy (2009) or Carmona et al. (2007). In the latter, the
authors introduce a family of local volatility functions ãξ indexed by parameters

ξ = (p1, p2, σ0, σ1, σ2)

and p0 = 1− (p1 + p2) satisfying the constraints

σ0, σ1, σ2, p1, p2 > 0 and p1 + p2 ≤ 1.

Setting k(t, x, σ) = exp
(
−x2/(2tσ2)− tσ2/8

)
, ãξ is then defined as

ã2
ξ(t, x) =

∑2
i=0 piσik(t, x, σi)

∑2
i=0(pi/σi)k(t, x, σi)

.

In Figure 1a we show plots of implied volatilities for different slices (maturities) for a realistic
choice of parameters. As one can see, the produced smiles seem to be unrealistically flat. Hence we
modify the local volatility function ãξ to produce more pronounced and more realistic smiles. To be
precise, we define a new family of local volatility functions aξ indexed by the set of parameters ξ as

a2
ξ(t, x) =

1
4
×min

(
2,

∣∣∣∣∣∣
(

∑2
i=0 piσik(t, x, σi) + Λ(t, x)

) (
1− 0.6× 1(t>0.1)

)
∑2

i=0(pi/σi)k(t, x, σi) + 0.01

∣∣∣∣∣∣
)

, (26)

with

Λ(t, x) :=
(
1(t≤0.1)

1 + 0.1t

)λ2

min
{(

γ1 (x− β1)+ + γ2 (−x− β2)+
)κ , λ1

}
.

We fix the choice of the parameters γi, βi, λi, κ as given in Table 1. By taking absolute values
above, we can drop the requirement p0 > 0 which is what we do in the sequel. Please note that a2

ξ is
not defined at t = 0. When doing a Monte Carlo simulation, we simply replace a2

ξ(0, x) with a2
ξ(∆t, x),

where ∆t is the time increment of the Monte Carlo simulation.
What is left to be specified are the parameters

ξ = (p1, p2, σ0, σ1, σ2)

with p0 = 1− p1 − p2. This motivates our statistical test for the performance evaluation of our method.
To be precise, our ground truth assumption is that all observable market prices are explained by a
variation of the parameters ξ. For illustration, we plot implied volatilities for this modified local
volatility function in Figure 1b for a specific parameter set ξ.

Our ground truth model is now specified as in (25) with σDup replaced by aξ , i.e.,

dXt = −
1
2

a2
ξ(t, Xt)dt + aξ(t, Xt)dWt. (27)



Risks 2020, 8, 101 16 of 31

Table 1. Fixed Parameters for the ground truth assumption a2
ξ .

γ1 γ2 λ1 λ2 β1 β2 κ

1.1 20 10 10 0.005 0.001 0.5

(a) (b)
Figure 1. Implied volatility of the original parametric family ãξ (a) versus our modification aξ (b) for
maturity T = 0.5, the x-axis is given on log-moneyness ln(K/S0).

4.1.2. Performance Test

We now come to the evaluation of our proposed method. We want to calibrate the SABR-LSV
model to synthetic market prices generated by the previously formulated ground truth assumption.
This corresponds to randomly sampling the parameter ξ of the local volatility function aξ and to
compute prices according to (27). Calibrating the SABR-LSV model, i.e., finding the parameters ν, ρ,
the initial volatility α0 and the unknown leverage function L, to these prices and repeating this multiple
times then allows for a statistical analysis of the errors.

As explained in Section 3, we consider European call options with maturities T1 < · · · < Tn and
denote the strikes for a given maturity Ti by Kij, j ∈ {1, . . . , Ji}. To compute the ground truth prices for
these European calls we use a Euler-discretization of (27) with time step ∆t = 1/100. Prices are then
obtained by a variance reduced Monte Carlo estimator using 107 Brownian paths and a Black–Scholes
delta hedge variance reduction as described previously. For a given parameter set ξ, we use the same
Brownian paths for all strikes and maturities.

Overall, in this test, we consider n = 4 maturities with Ji = 20 strike prices for all i = 1, . . . , 4.
The values for Ti are given in Figure 2a. For the choice of the strikes Ki, we choose evenly spaced
points, i.e.,

Ki,j+1 − Ki,j =
Ki,20 − Ki,1

19
.

For the smallest and largest strikes per maturity we choose

Ki,1 = exp (−ki) , Ki,20 = exp (ki) ,

with the values of ki given in Figure 2b.

T1 T2 T3 T4

0.15 0.25 0.5 1.0

(a)

k1 k2 k3 k4

0.1 0.2 0.3 0.5

(b)
Figure 2. Parameters for the synthetic prices to which we calibrate: (a) maturities; (b) parameters that
define the strikes for the call options per maturity.
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We now specify a distribution under which we draw the parameters

ξ = (p1, p2, σ0, σ1, σ2, )

for our test. The components are all drawn independently from each other under the uniform
distribution on the respective intervals given below.

- Ip1 = [0.4, 0.5]
- Ip2 = [0.4, 0.7]

- Iσ0 = [0.5, 1.7]
- Iσ1 = [0.2, 0.4]

- Iσ2 = [0.5, 1.7]

We can now generate data by the following scheme.

• For m = 1, . . . , 200 simulate parameters ξm under the law described above.
• For each m, compute prices of European calls for maturities Ti and strikes Kij for i = 1, . . . , n = 4

and j = 1, . . . , 20 according to (27) using 107 Brownian trajectories (for each m we use new
trajectories).

• Store these prices.

Remark 3. In very few cases, the simulated parameters were such that the implied volatility computation for
model prices failed at least for one maturity due to the remaining Monte Carlo error. In those cases, we simply
skip that sample and continue with the next, meaning that we will perform the statistical test only on the samples
for which these implied volatility computations were successful.

The second part consists of calibrating each of these surfaces and storing pertinent values for
which we conduct a statistical analysis. In the following we describe the procedure in detail:

Recall that we specify the leverage function L(t, x) via a family of neural networks, i.e.,

L(t, x) = 1 + Fi(x) t ∈ [Ti−1, Ti), i ∈ {1, . . . , n = 4},

where Fi ∈ NN 1,1 (see Notation A1). Each Fi is specified as a 4-hidden layer feed-forward network
where the dimension of each of the hidden layers is 64. As activation function we choose leaky-ReLU4

with parameter 0.2 for the first three hidden layers and φ = tanh for the last hidden layer. This choice
means of course a considerable overparameterization, where we deal with much more parameters
than data points. As is well known from the theory of machine learning, this however allows a profit to
be made from implicit regularizations for the leverage function, meaning that the variations of higher
derivatives are small.

Remark 4. In our experiments, we tested different network architectures. Initially, we used networks with
three to five hidden layers with layer dimensions between 50 and 100 and activation function tanh in all layers.
Although the training was successful, we observed that training was significantly slower with significant lower
calibration accuracy compared to the final architecture. We also tried classical ReLU, but observed that the
training sometimes got stuck due to flat gradients. In case of pure leaky-ReLU activation functions, we observed
numerical instabilities. By adding a final tanh activation, this computation was regularized leading to the results
we present here.

Since closed form pricing formulas are not available for such an LSV model, let us briefly specify
our pricing method. For the variance reduced Monte Carlo estimator as of (21) we always use
a standard Euler-SDE discretization with step size ∆t = 1/100. As variance reduction method,

4 Recall that φ : R→ R is the leaky-ReLu activation function with parameter α ∈ R if φ(x) = αx1(x<0) + x1(x≥0). In particular,
classical ReLu is is retrieved by setting α = 0.
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we implement the running Black–Scholes Delta hedge with instantaneous running volatility of the
price process, i.e., L(t, Xt)αt is plugged in the formula for the Black–Scholes Delta as in (9). The only
parameter that remains to be specified, is the number of trajectories used for the Monte Carlo estimator
which is done in Algorithms A1 and A2 below.

As a first calibration step, we calibrate the SABR model (i.e., (1) with L ≡ 1) to the synthetic
market prices of the first maturity and fix the calibrated SABR parameters ν, ρ and α0. This calibration
is not done by the SABR formula, but rather in the same way the LSV model calibration is implemented:
we use a Monte Carlo simulation based engine where gradients are computed via backpropagation.
The calibration objective function is analog to (21) and we compute the full gradient as specified
in (23). We only use a maximum of 2000 trajectories and the running Black–Scholes hedge for variance
reduction per gradient computation, as we are only interested in an approximate fit. In fact, when
compared to a better initial SABR fit achieved by the SABR formula, we observed that the calibration
fails more often due to local minima becoming an issue.

For training the parameters θi, i = 1, . . . , 4, of the neural networks we apply Algorithm A1 in the
Appendix D.

4.2. Numerical Results for the Calibration Test

We now discuss the results of our test. We start by pointing out that from the 200 synthetic market
smiles generated, four smiles caused difficulties, in the sense that our implied volatility computation
failed due to the remaining Monte Carlo error in the model price computation, compare Remark 3.
By increasing the training parameters slightly (in particular the number of trajectories used in the
training), this issue can be mitigated but the resulting calibrated implied volatility errors stay large
out of the money where the smiles are extreme, and the training will take more time. Hence, we opt
to remove those four samples from the following statistical analysis as they represented unrealistic
market smiles.

In Figure 3 we show calibration results for a typical example of randomly generated synthetic
market data. From this it is already visible that the worst-case calibration error (which occurs out of
the money) ranges typically between 5 and 15 basis points. The corresponding calibration result for
the square of the leverage function L2 is given in Figure 4.

Let us note that our method achieves a very high calibration accuracy for the considered range
of strikes across all considered maturities. This can be seen in the results of a worst-case analysis
of calibration errors in Figure 5. There we show the mean as well as different quantiles of the data.
Please note that the mean always lies below 10 basis point across all strikes and maturities.

Regarding calibration times, we can report that from the 196 samples, 191 finished within
26 to 27 min. In all these cases, the abort criterion was active on the first time it was checked,
i.e., after 5000 iterations. The other five samples are examples of smiles comparable to the four where
implied volatility computation itself failed. In those cases, more iteration steps where needed resulting
in times between 46 and 72 min. These samples also correspond to the less successful calibration results.

To perform an out of sample analysis, we check for extra- and interpolation properties of the
learned leverage function. This means that we compute implied volatilities on an extended range and
compare to the implied volatility of the ground truth assumption. The strikes of these ranges are again
computed by taking 20 equally spaced points as before, but with parameters ki as of table Figure 2b
multiplied with 1.5. This has also the effect that the strikes inside the original range do not correspond
to the strikes considered during training, which allows for an additional analysis of the interpolation
properties. These results are illustrated in Figure 6, from which we see that extrapolation is very close
to the local volatility model.

4.3. Robust Calibration—An Instance of the Adversarial Approach

Let us now describe a robust version of our calibration methodology realized in an adversarial
manner. We start by assuming that there are multiple “true” option prices which correspond to
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the bid-ask spreads observed on the market. The way we realize this in our experiment is to
use several local volatility functions that generate equally plausible market implied volatilities.
Recall that the local volatility functions in our statistical test above are functions of the parameters
(p0, p1, σ0, σ1, σ2). We fix these parameters and generate 4 smiles from local volatility functions with
slightly perturbed parameters

(p0 + ui1, p1 + ui2, σ0 + ui3, σ1 + ui4, σ2 + ui5) for i = 1, . . . , 4,

where uij are i.i.d. uniformly distributed random variables, i.e., uij ∼ U[−u,u] with u = 0.01. The loss
function for maturity Ti in the training part now changes to

inf
θ

Ji

∑
j=1

wj sup
m=1,...,4

`

(
1
N

N

∑
n=1

Xj,m(θ)(ωn)

)
, (28)

with Xj,m defined as Xj in (20) (see also (17)) but with synthetic market prices m = 1, . . . , 4 generated
by the m-th local volatility function. We are thus in an adversarial situation as described in the
introduction: we have several possibilities for the loss function corresponding to the different market
prices and we take the supremum over these (individually for each strike). In our toy example we can
simply compute the gradient of this supremum function with respect to θ. In a more realistic situation,
where we do not only have 4 smiles but a continuum we would iterate the inf and sup computation,
meaning that we would also perform a gradient step with respect to m. This corresponds exactly to
the adversary part. For a given parameter set θ, the adversary tries to find the worst loss function.

In Figure 7, we illustrate the result of this robust calibration, where find that the calibrated model
lies between the four different smiles over which we take the supremum.

Figure 3. Cont.
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Figure 3. Left column: implied volatilities for the calibrated model together with the data (synthetic
market) implied volatilities for a typical example of a synthetic market sample for all available
maturities. Right column: calibration errors by subtracting model implied volatilities from the data
implied volatilities. The x-axis is given in log-moneyness ln(K/S0).

Figure 4. Plot of the calibrated leverage function x 7→ L2(t, x) at t ∈ {0, T1, T2, T3} in the example
shown in Figure 3. The x-axis is given in log-moneyness ln(K/S0).
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Figure 5. Boxplots of absolute calibration errors of implied volatilities for the statistical test as specified
in Section 4.1.2 for the four synthetic market data slices (maturities). The errors for Kj in the i-th row
correspond to the calibration error of the synthetic market implied volatility for strike Ki,j . Depicted
are the mean (horizontal line), as well as the 0.95, 0.70, 0.3, 0.15 quantiles for the absolute calibration
error per strike.
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Figure 6. Extra- and interpolation as described in Section 4.2 between the synthetic prices of the ground
truth assumption against the corresponding calibrated SABR-LSV model. Plots are shown for all
four considered maturities {T1, . . . , T4} as defined in Figure 2a. The x-axis is given in log-moneyness
ln(K/S0).

Figure 7. Robust calibration as described in Section 4.3 for all four maturities, the x-axis is given in
log-moneyness ln(K/S0).
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5. Conclusions

We have demonstrated how the parametrization by means of neural networks can be used to
calibrate local stochastic volatility models to implied volatility data. We make the following remarks:

1. The method we presented does not require any form of interpolation for the implied volatility
surface since we do not calibrate via Dupire’s formula. As the interpolation is usually done ad
hoc, this might be a desirable feature of our method.

2. Similar to Guyon and Henry-Labordère (2012); Guyon and Henry-Labordère (2013), it is possible
to “plug in” any stochastic variance process such as rough volatility processes as long as an
efficient simulation of trajectories is possible.

3. The multivariate extension is straight forward.
4. The level of accuracy of the calibration result is of a very high degree. The average error

in our statistical test is of around 5 to 10 basis points, which is an interesting feature in its
own right. We also observe good extrapolation and generalization properties of the calibrated
leverage function.

5. The method can be significantly accelerated by applying distributed computation methods in the
context of multi-GPU computational concepts.

6. The presented algorithm is further able to deal with path-dependent options since all
computations are done by means of Monte Carlo simulations.

7. We can also consider the instantaneous variance process of the price process as short end of
a forward variance process, which is assumed to follow (under appropriate assumptions) a
neural SDE. This setting, as an infinite-dimensional version of the aforementioned “multivariate”
setting, then qualifies for joint calibration to S&P and VIX options. This is investigated in a
companion paper.

8. We stress again the advantages of the generative adversarial network point of view. We believe
that this is a crucial feature in the joint calibration of S&P and VIX options.

6. Plots

This section contains the relevant plots for the numerical test outlined in Section 4.
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Appendix A. Variations of Stochastic Differential Equations

We follow here the excellent exposition of Protter (1990) to understand the dependence of solutions
of stochastic differential equations on parameters, in particular when we aim to calculate derivatives
with respect to parameters of neural networks.

Let us denote by D the set of real-valued, càdlàg, adapted processes on a given stochastic basis
(Ω,F ,Q) with a filtration (satisfying usual conditions). By Dn we denote the set of Rn-valued, càdlàg,
adapted processes on the same basis.

Definition A1. An operator F from Dn to D is called functional Lipschitz if for any X, Y ∈ Dn

1. the property Xτ− = Yτ− implies F(X)τ− = F(Y)τ− for any stopping time τ,
2. there exists an increasing process (Kt)t≥0 such that for t ≥ 0

‖F(X)t − F(Y)t‖ ≤ Kt sup
r≤t
‖Xr −Yr‖.
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Functional Lipschitz assumptions are sufficient to obtain existence and uniqueness for general
stochastic differential equations, see (Protter 1990, Theorem V 7).

Theorem A1. Let Y = (Y1, . . . , Yd) be a vector of semimartingales starting at Y0 = 0, (J1, . . . , Jn) ∈ Dn a
vector of processes and let Fi

j , i = 1, . . . , n, j = 1, . . . , d be functionally Lipschitz operators. Then there is a
unique process Z ∈ Dn satisfying

Zi
t = Ji

t +
d

∑
j=1

∫ t

0
Fi

j (Z)s−dY j
s

for t ≥ 0 and i = 1, . . . , n. If J is a semimartingale, then Z is a semimartingale as well.

With an additional uniformity assumption on a sequence of stochastic differential equations with
converging coefficients and initial data we obtain stability, see (Protter 1990, Theorem V 15).

Theorem A2. Let Y = (Y1, . . . , Yd) be vector of semimartingales starting at Y0 = 0. Consider for ε ≥ 0,
a vector of processes (Jε,1, . . . , Jε,n) ∈ Dn and functionally Lipschitz operators Fε,i

j for i = 1, . . . , n, j = 1, . . . , d.
Then, for ε ≥ 0, there is a unique process Zε ∈ Dn satisfying

Zε,i
t = Jε,i

t +
d

∑
j=1

∫ t

0
Fε,i

j (Zε)s−dY j
s

for t ≥ 0 and i = 1, . . . , n. If Jε → J0 in ucp, Fε(Z0)→ F0(Z0) in ucp, then Zε → Z0 in ucp.

Remark A1. We shall apply these theorems to a local stochastic volatility model of the form

dSt(θ) = St(θ)L(t, St(θ), θ)αtdWt ,

where θ ∈ Θ, (W, α) denotes some Brownian motion together with an adapted, càdlàg stochastic process α (all
on a given stochastic basis) and S0 > 0 is some real number.

We assume that for each θ ∈ Θ

(t, s) 7→ L(t, s, θ) (A1)

is bounded, càdlàg in t (for fixed s > 0), and globally Lipschitz in s with a Lipschitz constant independent of t
on compact intervals . In this case, the map

S 7→ S·L(·, S·, θ)

is functionally Lipschitz and therefore the above equation has a unique solution for all times t and any θ by
Theorem A1. If, additionally,

lim
θ→θ̂

sup
(t,s)
|L(t, s, θ)− L(t, s, θ̂)| = 0, (A2)

where the sup is taken over some compact set, then we also have that the solutions S(θ) converge ucp to S(θ̂),
as θ → θ̂ by Theorem A2.

Appendix B. Preliminaries on Deep Learning

We shall here briefly introduce two core concepts in deep learning, namely artificial neural
networks and stochastic gradient descent. The latter is a widely used optimization method for
solving maximization or minimization problems involving the first. In standard machine-learning
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terminology, the optimization procedure is usually referred to as “training”. We shall use both
terminologies interchangeably.

Appendix B.1. Artificial Neural Networks

We start with the definition of feed-forward neural networks. These are functions obtained by
composing layers consisting of an affine map and a componentwise nonlinearity. They serve as
universal approximation class which is stated in Theorem A3. Moreover, derivatives of these functions
can be efficiently expressed iteratively (see e.g., Hecht-Nielsen (1992)), which is a desirable feature
from an optimization point of view.

Definition A2. Let M, N0, N1, . . . , NM ∈ N, φ : R → R and for any m ∈ {1, . . . , M}, let wm : RNm−1 →
RNm , x 7→ Amx + bm be an affine function with Am ∈ RNm×Nm−1 and bm ∈ RNm . A function RN0 → RNM

defined as
F(x) = wM ◦ FM−1 ◦ · · · ◦ F1, with Fm = φ ◦ wm for m ∈ {1, . . . , M− 1}

is called a feed-forward neural network. Here the activation function φ is applied componentwise. M− 1
denotes the number of hidden layers and N1, . . . , NM−1 denote the dimensions of the hidden layers and N0 and
NM the dimension of the input and output layers.

Remark A2. Unless otherwise stated, the activation functions φ used in this article are always assumed to be
smooth, globally bounded with bounded first derivative.

The following version of the so-called universal approximation theorem is due to K. Hornik
(Hornik 1991). An earlier version was proved by G. Cybenko (Cybenko 1989). To formulate the result,
we denote the set of all feed-forward neural networks with activation function φ, input dimension N0

and output dimension NM by NN φ
∞,N0,NM

.

Theorem A3 (Hornik (1991)). Suppose φ is bounded and nonconstant. Then the following statements hold:

1. For any finite measure µ on (RN0 ,B(RN0)) and 1 ≤ p < ∞, the set NN φ
∞,N0,1 is dense in

Lp(RN0 ,B(RN0), µ).
2. If in addition φ ∈ C(R,R), thenNN φ

∞,N0,1 is dense in C(RN0 ,R) for the topology of uniform convergence
on compact sets.

Since each component of an RNM -valued neural network is an R-valued neural network, this result
easily generalizes to NN φ

∞,N0,NM
with NM > 1.

Notation A1. We denote byNN N0,NM the set of all neural networks inNN φ
∞,N0,NM

with a fixed architecture,
i.e., a fixed number of hidden layers M − 1, fixed input and output dimensions Nm for each hidden layer
m ∈ {1, . . . , M− 1} and a fixed activation function φ. This set can be described by

NN N0,NM = {F(·, θ) | F feed forward neural network and θ ∈ Θ},

with parameter space Θ ∈ Rq for some q ∈ N and θ ∈ Θ corresponding to the entries of the matrices Am and
the vectors bm for m ∈ {1, . . . , M}.

Appendix B.2. Stochastic Gradient Descent

In light of Theorem A3, it is clear that neural networks can serve as function approximators.
To implement this, the entries of the matrices Am and the vectors bm for m ∈ {1, . . . , M} are subject
to optimization. If the unknown function can be expressed as the expected value of a stochastic
objective function, one widely applied optimization method is stochastic gradient descent, which we
shall review below.
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Indeed, consider the following minimization problem

min
θ∈Θ

f (θ) with f (θ) = E[Q(θ)] (A3)

where Q denotes some stochastic objective function5 Q : Ω×Θ→ R, (ω, θ) 7→ Q(θ)(ω) that depends
on parameters θ taking values in some space Θ.

The classical method how to solve generic optimization problems for some differentiable objective
function f (not necessarily of the expected value form as in (A3)) is to apply a gradient descent
algorithm: starting with an initial guess θ(0), one iteratively defines

θ(k+1) = θ(k) − ηk∇ f (θ(k)) (A4)

for some learning rate ηk. Under suitable assumptions, θ(k) converges for k→ ∞ to a local minimum
of the function f .

In the deep learning context, stochastic gradientdescent methods, going back to stochastic
approximation algorithms proposed by Robbins and Monro (1951), are much more efficient. To apply
this, it is crucial that the objective function f is linear in the sampling probabilities. In other words,
f needs to be of the expected value form as in (A3). In the simplest form of stochastic gradient descent,
under the assumption that

∇ f (θ) = E[∇Q(θ)],

the true gradient of f is approximated by a gradient at a single sample Q(θ)(ω) which reduces the
computational cost considerably. In the updating step for the parameters θ as in (A4), f is then replaced
by Q(θ)(ωk), hence

θ(k+1) = θ(k) − ηk∇Q(θ(k))(ωk). (A5)

The algorithm passes through all samples ωk of the so-called training data set, possibly several
times (specified by the number of epochs), and performs the update until an approximate minimum
is reached.

A compromise between computing the true gradient of f and the gradient at a single sample
Q(θ)(ω) is to compute the gradient of a subsample of size Nbatch, called (mini)-batch, so that
Q(θ(k))(ωk) used in the update (A5) is replaced by

Q(k)(θ) =
1

Nbatch

Nbatch

∑
n=1

Q(θ)(ωn+kNbatch
), k ∈ {0, 1, ..., bN/Nbatchc − 1}, (A6)

where N is the size of the whole training data set. Any other unbiased estimators of ∇ f (θ) can of
course also be applied in (A5).

Appendix C. Alternative Approaches for Minimizing the Calibration Functional

We consider here alternative algorithms for minimizing (18).

5 We shall often omit the dependence on ω.
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Appendix C.1. Stochastic Compositional Gradient Descent

One alternative is stochastic compositional gradient descent as developed
e.g., in Wang et al. (2017). Applied to our problem this algorithm (in its simplest form) works
as follows: starting with an initial guess θ(0), and y(0)j , j = 1, . . . , J one iteratively defines

y(k+1)
j = (1− βk)y

(k)
j + βkQj(θ

(k))(ωk) j = 1, . . . , J,

θ(k+1) = θ(k) − ηk

J

∑
j=1

wj`
′(y(k+1)

j )∇Qj(θ
(k))(ωk)

for some learning rates βk, ηk ∈ (0, 1]. Please note that y(k) is an auxiliary variable to track the
quantity E[Q(θ(k))] which has to be plugged in `′ (other faster converging estimates have also been
developed). Of course∇Qj(θ

(k))(ωk) can also be replaced by other unbiased estimates of the gradient,
e.g., the gradient of the (mini)-batches as in (A6). For convergence results in the case when θ 7→
`(E[Qj(θ)]) is convex we refer to (Wang et al. 2017, Theorem 5). Of course, the same algorithm can be
applied when we replace Qj(θ) in (18) with Xj(θ) as defined in (20) for the variance reduced case.

Appendix C.2. Estimators Compatible with Stochastic Gradient Descent

Our goal here is to apply at least in special cases of the nonlinear function ` (variant (A6) of)
stochastic gradient descent to the calibration functional (18). This means that we must cast (18) into
expected value form. We focus on the case when `(x) is given by `(x) = x2 and write f (θ) as

f (θ) =
J

∑
j=1

wjE
[

Qj(θ)Q̃j(θ)
]

for some independent copy Q̃j(θ) of Qj(θ), which is clearly of the expected value form required in (A3).
A Monte Carlo estimator of f (θ) is then constructed by

f̂ (θ) =
1
N

N

∑
n=1

J

∑
j=1

wjQj(θ)(ωn)Q̃j(θ)(ωn).

for independent draws ω1, . . . , ωN (the same N samples can be used for each strike Kj).
Equivalently we have

f̂ (θ) =
1
N

N

∑
n=1

J

∑
j=1

wjQj(θ)(ωn)Qj(θ)(ωn+m). (A7)

for independent draws ω1, . . . , ω2N . The analog of (A6) is then given by

Q(k)(θ) =
1

Nbatch

Nbatch

∑
l=1

J

∑
j=1

wjQj(θ)(ωl+2kNbatch
)Qj(θ)(ωl+(2k+1)Nbatch

)

for k ∈ {0, 1, ..., bN/Nbatchc − 1}.
Clearly we can now modify and improve the estimator by using again hedge control variates and

replace Qj(θ) by Xj(θ) as defined in (20).

Appendix D. Algorithms

In this section, we present the calibration algorithm discussed above in form of pseudo code
given in Algorithm A1. Update rules for parameters in Algorithm A1 are provided in Algorithm A2.
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We further provide an implementation in form of a github repository, see https://github.com/wahido/
neural_locVol.

Algorithm A1: In the subsequent pseudo code, the index i stands for the maturities, N for the
number of samples used in the variance reduced Monte Carlo estimator as of (21) and k for the
updating step in the gradient descent:

1 # Initialize the network parameters
2 initialize θ1, . . . , θ4
3 # Define initial number of trajectories and initial step
4 N, k = 400, 1
5 # The time discretization for the MC simulations and the
6 # abort criterion
7 ∆t, tol = 0.01, 0.0045
8

9 for i = 1,...,4:
10 nextslice = False
11 # Compute the initial normalized vega weights for this slice:
12 wj = w̃j/ ∑20

l=1 w̃l with w̃j = 1/vij, where vij is the Black -Scholes
13 vega for strike Kij, the corresponding synthetic market implied
14 volatility and the maturity Ti.
15

16 while nextslice == False:
17 do:
18 Simulate N trajectories of the SABR -LSV process up
19 to time Ti, compute the payoffs.
20 do:
21 Compute the stochastic integral of the Black -Scholes
22 Delta hedge against these trajectories as of (9)
23 for maturity Ti
24 do:
25 Compute the calibration functional as of (21)
26 with `(x) = x2 and weights wj with the modification that we use put
27 options instead of call options for strikes larger than the spot.
28 do:

29 Make an optimization step from θ
(k−1)
i to θ

(k)
i , similarly

30 as in (22) but with the more sophisticated ADAM -
31 optimizer with learning rate 10−3.
32 do:
33 Update the parameter N, the condition nextslice and
34 compute model prices according to Algorithm A2.
35 do:
36 k = k + 1

https://github.com/wahido/neural_locVol
https://github.com/wahido/neural_locVol
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Algorithm A2: We update the parameters in Algorithm A1 according to the following rules:

1 if k == 500:
2 N = 2000
3 else if k == 1500:
4 N = 10000
5 else if k == 4000:
6 N = 50000
7

8 if k >= 5000 and k mod 1000 == 0:
9 do:

10 Compute model prices πmodel for slice i via MC simulation
11 using 107 trajectories. Apply the Black -Scholes Delta
12 hedge for variance reduction.
13 do:
14 Compute implied volatilities ivmodel from the model prices πmodel.
15 do:
16 Compute the maximum error of model implied volatilities
17 against synthetic market implied volatilities:
18 err_cali = || iv_model - iv_market ||max
19 if err_cali ≤ tol or k == 12000:
20 nextslice = True
21 else:
22 Apply the adversarial part: Adjust the weights wj

23 according to:
24

25 for j = 1,. . .,20:
26 wj = wj + | iv_model j - iv_market j |
27 This puts higher weights on the options where the fit
28 can still be improved
29 Normalize the weights:
30 for j = 1,. . .,20:
31 wj = wj / ∑20

`=1 w`
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