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Abstract: In the last two decades, both internal and external risk management of banks have
undergone significant developments. Banking supervision encourages banks to use a risk-based
approach for computing minimum regulatory capital. Accounting rules have been tightened requiring
more timely loss reserves for impaired loans. In this article, we propose a comprehensive scheme for
calculating the profitability of a loan that could be used both for setting risk-based interest rates when
originating a loan and for accurately determining the profitability of existing clients. The scheme
utilizes the credit models developed for regulatory purposes and takes the impact of regulation on
loan performance into account. We show that accounting loan loss provisions cannot be applied in a
performance measurement scheme because they do not reflect the true economic loss. In addition,
we demonstrate that it is crucial to measure loan performance over the full life cycle of a loan.
Restricting profitability measurement to a time horizon of one year as often observed in practice
could be misleading. Although our focus is on profitability measurement, the framework could
be applied in a wider context, i.e., for macroeconomic stress tests, bank balance sheet projections,
capital management, or evaluating the impact of securitizing parts of a bank’s loan portfolio.

Keywords: Basel II; IFRS 9; CECL; RAROC; performance measurement; stress testing

JEL Classification: G21

1. Introduction

The profitability of banks is currently on a decline in many countries worldwide. One reason is
the historically low-interest rates, which are even negative in many jurisdictions (Altavilla et al. 2018).
An adverse accompaniment of low interest rates is so-called zombie firms that can survive only by
receiving new credit at low rates but are not profitable enough to ever pay back these loans. Should
interest rates increase mildly, they very likely would have to declare bankruptcy (McGowan et al. 2018).
These firms are a substantial burden to the banking system and intensify the pressure on
bank profitability.

For this reason, an accurate assessment of a loan’s profitability is crucial for a bank as in the
present environment, the margin for errors is small. The profitability of a loan is influenced by a
number of factors. First, the credit quality of a borrower, which is expressed by its default probability,
is a key component. Second, the quality of the collateral, which is measured by a loss rate conditional
on borrower default is important. Third, the regulatory environment, which defines capital buffers and
the timing for building reserves has an impact on loan performance. Other factors that might apply to
specific loan segments only, like prepayment and the drawing of credit lines, are non-negligible.
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Since the 2000s, a number of initiatives have been undertaken by regulators and accounting
boards worldwide to increase the stability of the financial system. First, the Basel Committee on
Banking Supervision (BCBS) allowed banks under the Basel II accord to use internal risk parameters to
compute minimum required capital to bring capital requirements more in alignment with economic
risk (BCBS 2006). Second, Basel III improved the quality of bank capital and gave supervisors more
flexibility in setting capital levels for individual institutions (BCBS 2011). In addition, the accounting
boards IASB (International Accounting Standards Board) and FASB (Financial Accounting Standards
Board) have released new standards on building loan loss provisions (LLP) for impaired loans,
IFRS 9 (IASB 2014) and CECL (FASB 2016), respectively. These reforms have a direct impact on the
volume of loans a bank can originate and their profitability.

To comply with these new regulations, banks have undertaken substantial investments in data
collection and credit risk modeling. New risk teams have been established that utilized the data and
estimated quantitative models for measuring various aspects of credit quality, mainly the likelihood of
a borrower’s default and the loss severity in case of a default. In addition, models for the probability
of prepayment and estimated credit conversion factors for undrawn credit lines might be available.

In this article, we will show how to utilize these models to build a multi-period projection
of future capital requirements, loan loss provisions, and credit risk parameters and discuss its
application for loan profitability measurement in detail. The main ingredient for this projection
is a macroeconomic scenario, which makes the assumptions underlying the profitability projections
transparent. To measure the performance of a loan, we propose a scheme based on RAROC
(risk-adjusted return on capital). Basically, RAROC is computed as interest income minus all costs
(funding, operational, expected loss) divided by the capital that is used as a buffer against unexpected
losses. RAROC is an established measure in banking practice, which is usually applied in a one-period
framework. We will extend it to multi-period projections ensuring that the full lifetime of a loan is
considered when measuring its profitability.

The main contribution of this article is threefold. First, we will propose a comprehensive scheme
for loan performance measurement that is based on the risk parameters banks have estimated for
Basel and IFRS 9/CECL purposes. The scheme enables a credit risk manager to make decisions about
loan applications and the suitability of a bank’s interest rate-setting process taking into account all
internal and external factors affecting a bank’s business. Second, we will show that LLP under IFRS
9/CECL is not suitable for direct inclusion into a loan profitability scheme. In general, they are different
from the true economic expected loss that a bank is suffering in its lending business when all cost
components are considered appropriately. Third, we will demonstrate that an accurate picture of a
loan’s performance can only be obtained if the full lifetime of the loan is analyzed, including past
periods. Just looking at the current year might give a misleading picture, especially for loans with
collateral that changes its value over time.

Although the focus of this article is on profitability measurement, the underlying projections of
capital, loss provisions, and credit risk parameters could be utilized in a much wider context. Since the
projections are based on a macroeconomic scenario, it can be easily used for stress tests by using
stress scenarios as inputs. Furthermore, it could be used for evaluating the impact of securitization or
sales transactions of a loan portfolio on both profitability and capital requirements. This could help
banks in optimizing their balance sheets. Finally, since the scheme is comprehensive and applies both
the Basel and the IFRS 9 credit models, it ensures that a consistent modeling framework is used for
decision making.

Our proposed framework is directly implementable in banks which should make our article
particularly valuable for people working in financial risk management or regulation and for academics
interested in practical applications. Our approach is designed for banks operating in developed
countries in North America, Europe and parts of Asia (e.g., China, South Korea, Singapore). For less
developed countries the proposed framework might be too complex and has to be reduced and
simplified to be applicable.
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The structure of this article is as follows. The next section provides a literature review. Section 3
briefly reviews the latest accords developed by regulators and accounting boards as far as they are
relevant for loan performance measurement. In Section 4, the framework for loan performance
measurement is developed and its parameterization is discussed. In Section 5 a detailed example
of residential mortgages is presented using stylized but realistic credit risk models1. The final
section concludes.

2. Literature Review

Risk-adjusted performance measures (RAPM) are widely used in modern finance. Most literature
on RAPM deals with measuring the performance of stock portfolios and mutual funds. An overview
on RAPMs developed for this purpose is provided by Le Sourd (2007). The focus of this article is
risk-adjusted performance measurement of loans where the most popular performance measures are
RORAC (Return On Risk Adjusted Capital) and RAROC (Risk-Adjusted Return On Capital). RORAC
relates the loan’s interest rate to the contribution of a loan to the risk capital of a bank’s loan portfolio.
This capital is computed using a model like Gupton et al. (1997) and the contribution of a single loan
to portfolio capital is done along the lines of Tasche (2007).

RAROC was introduced in Zaik et al. (1996) and is defined as the loan’s interest rate reduced by
various cost compenents, in particular a component for loss risk, divided by capital. The definition
of RAROC is not unambiguous. The ambiguity is in the definition of capital. It could be either the
capital prescribed by regulatory rules, the regulatory capital or the contribution of a loan to portfolio
capital, the economic capital2. RAROC in the latter context is studied in Crouhy et al. (1999) where
a one-period model is used. It can be shown that capital budgeting rules based on RAROC lead
to economically desirable results (Stoughton and Zechner 2007). Compared to ROROC, RAROC is
more suitable for decision making in loan origination as pointed out by Punjabi and Dunsche (1998).
Besides that, the measure itself shows a reasonable behavior under extreme scenarios, i.e., a loan’s
RAROC as a function of its interest rate has a maximum and cannot become arbitrarily large when a
bank increases rates (Engelmann and Pham 2020).

From a practical perspective, the preference was in using economic capital when the RAROC
measure was introduced because it was considered as better reflecting true economic risk compared to
regulatory capital rules (Crouhy et al. 1999; Zaik et al. 1996). As long as economic capital is always
higher than regulatory capital, this does not pose a problem in practical applications. In recent years,
however, regulatory rules have been tightened, resulting in higher capital requirements. This leads
to situations where regulatory capital exceeds economic capital making a consistent application of
economic capital in performance measurement infeasible. The consequence is a shift in banking
practice from using regulatory instead of economic capital for performance measurement (Ita 2016;
Klaassen and Van Eeghen 2018). A similar trend can be observed in the insurance sector where
Solvency II capital is applied in performance measures (Baione et al. 2020; Braun et al. 2018).

RAROC can be considered as a bottom-up performance measure, which is computed from various
basic information on the borrower and the loan facility. Alternative approaches try to improve the
performance of a bank portfolio by using the past performance of a loan product as the input of a
statistical forecasting model, which should help to predict future performance (Andreeva et al. 2007).
Another study that is related to profitability measurement is by Stein (2005), who suggests an
improvement of the loan origination process by integrating credit scoring models with loan
performance measures. The reason why we do not follow these approaches is the limit in their

1 One weakness of this article is that we did not utilize real data. Although one of the authors has done some implementation
work of this framework in practice, both the results and the data could not be utilized for research purposes due to
confidentiality restrictions.

2 Some authors call the resulting performance measure when economic capital is used RARORAC (Risk-Adjusted Return On
Risk-Adjusted Capital) to avoid misunderstandings.
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applicability. Methods that require the performance of a loan product as input are applicable only to
short-term credit products like store cards which were analyzed in Andreeva et al. (2007). For long-term
products like 30-year mortgages, these methods are not feasible for performance measurement and
bottom-up approaches like RAROC are more suitable.

Although RAROC is studied and applied since more than three decades, most published studies
use a one-period framework and a rather simplistic parameterization. We are not aware of any
research that combines both the credit risk modeling for Basel regulation and the new accounting
standards into a multi-period loan performance measurement scheme. In this article, we apply
RAROC in a multi-period framework that explicitly takes into account changing risk parameters,
capital requirements and loan loss provisions over the lifetime of a loan.

The most important ingredients of our proposed loan performance scheme are the credit risk
parameters default probability, loss given default, and exposure at default for credit products
containing credit lines. Numerous studies address the statistical aspects of credit scoring and estimating
these parameters for Basel regulation and provisioning3. Overviews with a focus on the Basel
guidelines include Engelmann and Rauhmeier (2011) and Ong (2007). The most complex risk parameter
for IFRS 9 is the term-structure of default probabilities. It could be either estimated by techniques from
survival analysis (Banasik et al. 1999; Malik and Thomas 2010) or by translating a macroeconomic
scenario into default probabilities, which is more common in IFRS 9 models (Skoglund 2017; Xu 2016).
The estimation of LGD is covered, for instance, in Loterman et al. (2012) and Tobback et al. (2014),
while LGD and EAD specifically for IFRS 9 purposes is treated in Chawla et al. (2016a).

In addition to the statistical estimation of credit risk parameters, their impact is studied by various
authors. An evaluation of the impact of Basel regulation on loan prices is done in Repullo and Suarez
(2004). The impact of the Basel regulation on the variability of bank capital is analyzed in Gordy
and Howells (2006); Repullo and Suarez (2013); Saurina and Trucharte (2007). A similar analysis for
evaluating capital fluctuation under IFRS 9 and the likelihood for bank recapitalization is done in Abad
and Suarez (2018), while the new Basel rules for provisions are empirically studied in Krüger et al.
(2018). All these studies focus on capital levels, not on performance measurement.

Although the focus of this article is profitability measurement, the suggested multi-period
projections of risk parameters, bank capital and LLP underlying the loan performance scheme could
be applied in a wider context. It could also be used for stress testing providing a detailed loan-level
picture of the most vulnerable parts of a portfolio under stress. This is in contrast to typical stress
testing approaches that focus on the global picture only (Kapinos and Mitnik 2016; Montesi and Papiro
2018; Skoglund and Chen 2016). In addition, our framework could be used for evaluating the full bank
balance sheet, i.e., profit, capital, LLP instead of focusing on isolated aspects like capital only. This is
complementing the existing literature on balance sheet projection and stress testing (Birge and Júdice
2013; Busch et al. 2017; Hasan et al. 2011; Skoglund and Chen 2020).

3. Recent Developments in Accounting and Banking Supervision

The two major aspects of IFRS 9/CECL and the Basel regulation having an impact on loan
performance are loan loss provisioning and minimum capital requirements, respectively. Each will be
discussed in a separate subsection.

3.1. Loan Loss Provisioning under IFRS 9 and CECL

IFRS 9 prescribes a three-stage algorithm for provisioning:

• Stage 1: Normally performing loans, banks have to reserve one-year expected loss

3 A good source of the latest developments is the paper archive of the bi-annual credit scoring conference in Edinburgh:
https://crc.business-school.ed.ac.uk/category/conference-papers/

https://crc.business-school.ed.ac.uk/category/conference-papers/
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• Stage 2: Loan with substantially deteriorated credit quality, banks have to reserve lifetime
expected loss

• Stage 3: Defaulted loans, banks have to build a specific loan loss provision

IFRS 9 does not prescribe the criteria for determining when a loan’s credit quality is deteriorated
substantially. This has to be defined internally by a bank. Some suggestions are made by Chawla et al.
(2016b). CECL can be roughly considered as a special case of IFRS 9 where all loans are treated as
Stage 2 loans (European Systemic Risk Board 2019). For this reason, the focus of this article will be on
IFRS 9.

Consider a fixed-rate n-year loan with interest rate z. Denote with pi the probability that a
borrower will default between today and year i, li the loss given default associated with a default in
year i, and Ni the outstanding balance in year i. In this context, LLP for Stage 1 loans is computed as

LLP1 = p1 · l1 · N1. (1)

For Stage 2 loans, LLP is computed as lifetime expected loss. It is defined as the difference between
the present value of all future cash flows of a loan and the expected present value of future cash flows.
The calculation of the latter includes default probabilities and loss rates and leads, therefore, to a lower
result than the former. As shown in Engelmann (2020) the following expression for LLP can be derived:

LLP2 =
n

∑
i=1

1
(1 + z)i−1 · (pi − pi−1) · li · Ni, (2)

where p0 = 0. A key assumption in the derivation of (2) is that li is measured relative to outstanding
balance plus one interest amount. This means, in case of a default, a bank can expect to receive
(1− li) · Ni · (1 + z).

Banks are required to reserve LLP at the beginning of a year before any interest income is
generated. This means that LLP has to be funded by bank capital. The exact relation of provisions and
capital will be discussed in the next subsection. Over the year, expected losses should be covered by
a component of the interest rate income, the expected loss margin. When the expected loss margin
is well-designed, it should cover observed losses on average. Only in those years where something
unexpected happens, LLP and bank capital have to be utilized to preserve depositors’ funds.

3.2. Minimum Capital Requirements under Basel II/III

Minimum capital requirements have a crucial impact on loan performance. The higher the capital
required to back a loan against unexpected losses, ceteris paribus, the lower is the return on capital a
bank can generate. Basel II defines three different frameworks of increasing complexity for calculating
regulatory capital, the standardized approach, the foundation internal ratings-based (IRB) approach,
and the advanced IRB approach. Throughout this article, we assume a bank is applying the advanced
IRB approach. Its cornerstone is a formula for computing required minimum regulatory capital Kmin:

Kmin = EAD · LGD ·
(

Φ

(
Φ−1 (PD) +

√
ρ ·Φ−1 (0.999)√

1− ρ

)
− PD

)
, (3)

where EAD is the exposure at default, LGD the loss given default, PD the one-year default probability,
Φ the cumulative standard normal distribution, and ρ the asset correlation which is prescribed by
supervisors (BCBS 2006).

How is the formula parameterized? Since its parameters are similar to p1 and l1 in (1), one might
suppose PD = p1 and LGD = l1. However, this is not true. IFRS 9 requires risk parameters to
be forward-looking (IASB 2014). Such parameters are called point-in-time (PIT) estimates, i.e., best
possible predictions of their real-world realizations over the forecast horizon. Basel II, however, requires
for default probabilities "long-term averages" and for loss given default an estimate corresponding to
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an economic downturn. This means different sets of risk parameters have to be estimated for IFRS 9
and Basel II.

Long-term average default probabilities are also referenced through-the-cycle (TTC) default
probabilities, i.e., default probabilities representing the average default rate over an economic cycle.
From a statistical point of view, TTC probabilities are more complex to estimate because of the long
time horizon they refer to. In addition, a direct comparison with realized default rates is not meaningful
because by construction TTC probabilities should underestimate default rates during a recession and
overestimate default rates during a boom. An established procedure in practice is adapting (3) to
transform PIT probabilities into TTC probabilities (Aguais et al. 2007; Carlehed and Petrov 2012):

p1 = Φ

(
Φ−1 (PD) +

√
ρ · Z√

1− ρ

)
, (4)

where Z is a standard normally distributed systemic factor. While for capital calculation under Basel II
Z was set to the 99.9% quantile, for the transformation between p1 and PD the systemic factor Z has to
be estimated and represents the state of the economy.

To determine Z, one could use a time series of default rates di observed in a particular sector like
all Vietnamese corporations or all Dutch mortgages. An observed default rate can be interpreted as
the realization of an average PIT PD because, by definition, these PDs are forecasts of default rates.
Computing Φ−1(di) and estimating the parameters PD and ρ should lead to reasonable values for Zi
if PD is stable over time and the data history is sufficiently long. If predictions of Zi are needed, a time
series model could be built that links Φ−1(di) with macroeconomic factors X and predicts Zi under an
assumed macroeconomic scenario. This procedure will be illustrated in Section 5.

We conclude this section describing a recent amendment to Basel II linking capital requirements
with loss provisions. In (3) expected loss ELB = PD · LGD · EAD (Basel EL) is subtracted from the
term involving the normal distribution. Economically, this means that supervisors have assumed
that expected losses of a loan portfolio are covered by loss provisions, which should be offset by a
component of interest income, the expected loss margin. Only losses beyond expectations are backed
by capital. This rule was changed in BCBS (2019) where the Basel Committee requires banks to
provision at least ELB. If LLP is less than Basel EL on portfolio levels, additional capital is required
while if it is higher than Basel EL capital can be released up to a cap of 0.6% of risk-weighted assets
(RWA). RWA is computed as 12.5 · Kmin with Kmin from (3).4 This means that (3) has to be adjusted to
reflect this additional requirement:

K̄min = Kmin −min (LLP− ELB, 0.06 · RWA) . (5)

A further complication in the practical implementation of this rule is that if portfolio LLP is lower
than total Basel EL a bank has to build an additional capital buffer in Core Tier 1 capital. If LLP is
higher than Basel EL the difference will be added to Tier 2 capital up to a cap of 0.6% of RWA which
makes this rule asymmetric. For a discussion of the impact of this regulation on these bank capital
components see Krüger et al. (2018).

4. A Framework for Loan Performance Measurement

In this Section, the framework for loan performance measurement will be developed. We will
consider profitability on a loan-by-loan instead of a portfolio basis allowing banks to identify their

4 Using (3) for capital calculations implicitly assumes that a bank is required to have at least 8% of RWA, which might not be
true after the introduction of new capital buffers in BCBS (2011). The actual percentage, however, might differ between
banks depending on the policy of its national supervisor. Therefore, we stick to 8% for the purpose of this article.
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most valuable customers. The performance of a loan will be measured by RAROC (risk-adjusted
return on capital) which is calculated by the following scheme:

Interest Rate Income
- Funding Costs
- Expected Loss Coverage
- Operational Costs

————————————
÷ Allocated Capital Buffer

————————————
= RAROC

To get a correct picture of a loan’s performance, it is essential to take the full lifetime of a loan into
account. Risk parameters might change over time and looking into one single period only might be
misleading. The lifetime of a loan can be split into past periods, the current period and future periods.
The key difference is that in future periods the IFRS 9 stage of a loan is unknown, which makes the
calculation of expected profitability more demanding.

We start with the past periods. We denote the interest rate in period i with zi. For a fixed-rate
loan zi is always the fixed-rate z. For a floating-rate loan, zi = λi + s, where λi is the realized Libor
rate in this period and s a period-independent spread. The outstanding balance is Ni, the funding
costs fi, the operational costs ci, the coverage for expected losses ELC, and the required capital K̄min,i.
The expected loss coverage is designed to cover losses in loan balance, operational costs and funding
costs. It is computed as

ELCi =
Ni · dr,i · li · (1 + zi) + Ni · dr,i · ( fi + ci − zi)

1− dr,i
, (6)

where dr,i is the realized default rate of all borrowers in a borrower’s rating grade r. The expected
loss coverage (which is a realized quantity for past periods) is computed as the sum of realized loss
in deposits Ni · dr,i · (1 + fi) and the realized loss in operational costs Ni · dr,i · ci minus the expected
recovery from collateral liquidation of defaulted loans (1− li) · Ni · dr,i · (1 + zi). The result is divided
by 1− dr,i because only surviving borrowers can make up for the loss. Remember from Section 3.1 that
we use the convention that li measures the loss rate of the outstanding balance plus one interest rate.
Note that the estimated loss rate li could be replaced with some realization if it was known. However,
since this usually takes more time to observe than the default rate, we suggest sticking with the risk
parameters that were used in the past if no better alternative is available.

The intuition behind using the default rate of a rating grade dr,i is that within a rating grade,
all loans have similar default probabilities. The surviving loans have to cover the losses of the
defaulting loans on average. Roughly speaking, the rating grade is interpreted as an “insurance pool”
and (6) measures the realized loss per surviving borrower the pool has to cover.

If a loan was in Stage j in period i, we find for its RAROC

RAROCi =
(zi − fi − ci) · Ni − ELCi

K̄min,i + LLPj
i

, (7)

We relate the risk-adjusted return to regulatory capital (RegCap). Other research uses economic
capital (ECap) instead (Crouhy et al. 1999) which is computed from a credit portfolio model that, at least
in theory, more accurately reflects the true economic risk of a loan. There are, however, conflicts of
using a pure ECap model with regulation that are difficult to resolve. If ECap is lower than RegCap,
a bank has to allocate by law RegCap which reduces a loan’s RAROC. Only if ECap is higher than
RegCap it might be safely used to penalize loans with large contributions to portfolio risk. Over time
ECap might be fluctuating considerably if a bank’s portfolio changes, which is difficult to anticipate
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at loan origination. For these reasons, we prefer regulatory capital in our performance measurement
scheme. This is supported by the latest developments in banking practice, where a shift from economic
to regulatory capital in bank management can be observed (Ita 2016; Klaassen and Van Eeghen 2018).
Note that we implement (5) on loan level, although it is implemented on portfolio levels in the Basel
accord. The motivation is penalizing loans that contribute to high LLP, which could eventually require
a bank to build provisions so high that it will breach the 0.6% · RWA cap.

For the current period, we can use exactly the same formulas because the stage of a borrower is
known. However, the realized default rates of the portfolio are still unknown. Therefore, the PIT PD
pj

1 has to be used instead of dr,i in (6) leading to

ELCj
i =

Ni · p
j
1 · li · (1 + zi) + Ni · p

j
1 · ( fi + ci − zi)

1− pj
1

, (8)

which has to be used in (7).
To compute expected RAROC for future periods, we have to estimate a number of quantities.

First, we do not know the stage of a loan in the future. We denote by ti the probability that a loan is in
Stage 2 in period i. Depending on Stage j = 1, 2, we need parameters pj

i , the cumulative PIT default
probabilities until period i, li, the PIT loss rate in period i, expected balance N̂i, exposure at default
EADi, TTC probabilities PDj

i , downturn LGDs LGDi, expected interest rate ẑi, expected funding costs
f̂i and operational costs ci. Note, that EADi might be different from N̂i. By the expected balance N̂i the
outstanding loan amount that earns interest should be modeled while EADi refers to the outstanding
exposure in case of a default. This could include additional expected drawings from credit lines. In any
case EADi ≥ N̂i

5.
For future periods, ECL depending on stage j is computed as

ELCj
i =

Ni · pj(i|i− 1) · li · (1 + zi) + Ni · pj(i|i− 1) · ( fi + ci − zi)

1− pj(i|i− 1)
, (9)

where pj(i|i− 1) is the default probability of a borrower in period i conditional that he survived until
period i− 1. Since we design our performance measurement scheme period-by-period, a calculation
of RAROC in a future period is only meaningful conditional on the survival of a borrower. From the
term-structure of default probabilities pi the conditional probability p(i|i − 1) is computed as
p(i|i− 1) = pi−pi−1

1−pi−1
. Expected RAROC in a future period i is then calculated as

RAROCi =
(1− ti) ·

((
zi − f̂i − ci

)
· N̂i − ELC1

i

)
+ ti ·

((
zi − f̂i − ci

)
· N̂i − ELC2

i

)
(1− ti) ·

(
K̄1

min,i + LLP1
i

)
+ ti ·

(
K̄2

min,i + LLP2
i

) . (10)

Note that we have defined RAROC in future periods i as expected income minus costs divided by
expected capital. A natural alternative would have been taking expectations over RAROC conditional
on Stage j = 1, 2. We refrained from using this alternative because it could overstate RAROC.
Suppose RAROC is positive in Stage 1 and negative in Stage 2 under very high capital requirements.
This would result in a small negative RAROC conditional on Stage 2 and the RAROC conditional
on Stage 1 will dominate the calculation. The outcome would be a positive RAROC despite the fact
that expected interest income minus costs might be quite small or even negative. For this reason,
we consider (10) the economically more meaningful alternative.

5 We have assumed that aside from PDs which clearly have to be stage-dependent, all other risk parameters are
stage-independent. This might not be true in general. For instance, in loan segments where prepayments are possible
without penalty, prepayment probabilities might depend on credit quality making N̂i stage-dependent.
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To summarize all the period RAROCs RAROCi into a single performance measure, we use
capital-weighted RAROC:

RAROC =
∑n

i=1 RAROCi ·
(
(1− ti) ·

(
K̄1

min,i + LLP1
i

)
+ ti ·

(
K̄2

min,i + LLP2
i

))
∑n

i=1

(
(1− ti) ·

(
K̄1

min,i + LLP1
i

)
+ ti ·

(
K̄2

min,i + LLP2
i

)) (11)

The motivation for using a weighted average is giving those periods where more capital is
required more weight. We abstain from introducing discount factors because they dampen potentially
negative effects in the future. To ensure the stability of a bank’s business over time, there should be
no incentives created to favor higher short-term gains over lower profit or even losses in the future.
A second argument is that the use of discount factors would imply that for past periods we have to
compound interest. This would be inconsistent with reality since banks mainly distribute profit to its
shareholders instead of reinvesting it.

The profitability measure (11) has several applications. It can be used by a bank to evaluate
the profitability of its clients or to monitor existing portfolios. In addition, it can play an important
role in loan origination. For this purpose, banks define an internal profitability target RAROCtarget

they would like to achieve. Usually, this is a management decision possibly guided by an application
of the CAPM to determine the required return of a bank’s shareholders. This approach has some
shortcomings (Crouhy et al. 1999) and alternatives based on the Merton model (Merton 1974) exist,
leading to borrower-specific hurdle rates (Miu et al. 2016). However, the proposed alternatives
can be applied sensibly only in markets where borrowers have listed equity, which is true only
for a small minority. Therefore, we stick to the assumption of a borrower-independent target
profitability RAROCtarget.

In markets where a bank is a price taker, i.e., where it has very limited power to set the interest
rate z due to strong competition, it could use (11) to define an acceptance rule for loan applications.
Only those applications should be approved where RAROC ≥ RAROCtarget. When a bank is a price
setter which could be the case in more specialized markets, it could define the hurdle rate zh by solving
the optimization problem

zh = min z (12)

s.t.RAROC ≥ RAROCtarget

A bank should offer loans only at an interest rate zh or higher to ensure it fulfills its
profitability requirements.

The remainder of this Section is devoted to discussing how the parameters needed for
applying (11) are estimated. This will be done in two separate subsections, where the first one
is devoted to credit risk parameters. The second subsection deals with the internal costs for funding
and operations.

4.1. Estimation of Credit Risk Parameters

The exact design of a credit risk model depends on factors like portfolio segment, data availability,
data quality, or predictive power of risk factors. For the purpose of this article, we assume a generic
modeling framework that could be realized if data is available for more than one economic cycle and
the cyclical behavior of macroeconomic factors is well reflected in the data. This assumption reflects an
ideal world from a modeling point of view and may not be feasible in all financial institutions and
for all portfolios. How to make adjustments if these assumptions are not fulfilled cannot be stated in
general but has to be decided on a case-by-case basis.

To be more precise, we assume that a macroeconomic scenario Xk,i for future periods i = 1, . . . , n
exists where Xk, k = 1, . . . , l are l macroeconomic factors that have a strong link to the credit risk in a
particular loan segment. For instance, X could be GDP growth for a corporate portfolio, it could be the
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unemployment rate for a retail portfolio or it could be a house price index for a residential mortgage
portfolio. In addition to the future scenarios, the past realizations of Xk, Xk,−m, . . . , Xk,0 are known.
The macroeconomic scenario could be generated by an econometric model or by expert judgment.
Usually, there is some opinion over the next 1–5 years, and after that, the scenario converges to some
neutral long-term average since predicting over time horizons of 5 years or more is too unreliable.

For the calculation of TTC default probabilities, it is essential to understand in which point of the
cycle the economy is. This could be done by computing abstract systemic factors Z and applying (4).
A necessary input for this procedure is realized default rates di, i = −m, . . . , 0 that are representative
for the market the bank is operating in. For instance, for a corporate portfolio di could be country-wide
default rates obtained by some government agency. From the time-series di the parameters B and ρ of
the slightly transformed Equation (4)

Φ−1 (di) =
B +
√

ρ · Zi√
1− ρ

(13)

can be estimated using the techniques described in Carlehed and Petrov (2012) and the references
therein. Once, these parameters are known, Zi can be computed as

Zi =
Φ−1 (di) ·

√
1− ρ− B

√
ρ

. (14)

To obtain future predictions of Z, a link between the macroeconomic scenario Xk,i and Z is needed.
This could be established by estimating a time series model like

Φ−1 (di) = α0 +
l

∑
k=1

αk · Xk,i−1 + εi. (15)

Once the parameters α0, . . . , αl are estimated, (14) and (15) can be applied to translate the
macroeconomic scenario into a scenario value for the systemic factor Z.

To compute PIT credit risk parameters, we assume that at least one of the macroeconomic variables
Xk is included in the model equation. In a generic setup, a bank could have a model for the PIT default
probability in the next period, p1, the PIT loss rate l1, the PIT prepayment rate cpr1, and the PIT
credit conversion factor cc f1

6. All these parameters are estimated conditional on current (period 0)
macroeconomic data and risk factors. The estimation of these parameters is done by the equations

pj
1 = gp(X0, Yp

0 ; j), (16)

l1 = gl(X0, Yl
0), (17)

cpr1 = gcpr(X0, Ycpr
0 ), (18)

cc f1 = gcc f (X0, Ycc f
0 ). (19)

where X = (X1, . . . , Xl) is the vector of macroeconomic factors and Yp, Yl , Ycpr, and Ycc f are risk
factors related to the borrower, the loan or the collateral that is backing the loan. These risk factors can
differ from model to model. The estimation of p has to include the IFRS 9 stage j = 1, 2. A possible
solution is presented in the next Section. The functions gp, gl , gcpr, and gcc f are the link functions
between the risk parameters and the risk factors. For p, cpr and cc f logistic regression is a common
choice, while for l a linear regression or some other form of regression function could be used.

6 Whether all these parameters are necessary and meaningful depends on the particular portfolio and the legal environment
the bank is operating in. If the loans do not include credit lines, cc f is not needed and if prepayment without penalty is
prohibited, there might be no use for cpr.
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These risk models can be used to compute risk parameters in all future periods i of a loan.
This results in

pj(i|i− 1) = gp(Xi−1, Yp
i−1; j), (20)

li = gl(Xi−1, Yl
i−1), (21)

cpr(i|i− 1) = gcpr(Xi−1, Ycpr
i−1), (22)

cc fi = gcc f (Xi−1, Ycc f
i−1). (23)

Note that by pj
i we denoted the cumulative default probability until period i. The risk models

deliver PIT parameters in period i, i.e., in the case of default probabilities, the probability of default
in period i conditional on survival in period i− 1, pj(i|i− 1). Cumulative default and prepayment
probabilities are then computed as

pj
i = 1−

i

∏
k=1

(
1− pj(k|k− 1)

)
,

cpri = 1−
i

∏
k=1

(1− cpr(k|k− 1)) .

In (20)–(23) we have used Y∗i as inputs. Does that mean we need in addition to the macroeconomic
scenarios also scenarios for the risk factors Y? Remember that Y is borrower- or loan-specific, making
this a much more demanding task. There is no clear answer to this question. In most practical cases,
Y is period-independent or changes deterministically over periods. This will become clear from the
detailed example provided in Section 5. However, it cannot be ruled out that in some cases, it might be
beneficial to define some scenarios also for a particular risk factor Y.

The main purpose of all these risk models is to provide the inputs for (10). In particular,
we need the four quantities N̂i, ELCj

i , LLPj
i and K̄ j

min,i. According to the agreed amortization schedule,

the outstanding balance of a loan in period i is Ni. To compute K̄ j
min,i we need PDj

i , LGDi, EADi and

LLPj
i as inputs. The required parameters for (10) are computed as

N̂i = (1− cpri−1) · Ni, (24)

PDj
i = Φ

(
Φ−1

(
pj(i|i− 1)

)
·
√

1− ρ−√ρ · Zi

)
, (25)

LGDi = h (li) , (26)

EADi = N̂i + cc fi ·
(

L− N̂i
)

, (27)

LLP1
i = p1(i|i− 1) · li · N̂i, (28)

LLP2
i =

n

∑
k=i

1
(1 + z)k−i ·

(
p2(k|i− 1)− p2(k− 1|i− 1)

)
· lk · N̂k. (29)

ELCj
i =

N̂i · pj(i|i− 1) · li · (1 + zi) + N̂i · pj(i|i− 1) ·
(

f̂i + ci − zi

)
1− pj(i|i− 1)

(30)

where L is the credit limit of a loan facility in case, there is some credit lines included and p2(k|i− 1)
the term structure of default probabilities of a borrower conditional on survival until period i− 1 and
being in Stage 2. The function h translates PIT LGDs into regulatory downturn LGDs. This might be a
function prescribed by regulators as in the US or it might be something defined internally by a bank as
in other jurisdictions. An explanation of why (28) and (29) with N̂i instead of Ni are still correct can be
found in Engelmann (2020).
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To complete the explanation of (10), we have to know where ti, f̂i and ci come from. The parameter
ti depends on the staging rule implemented by a bank. It could either be derived from the existing
models or it could be estimated by a separate model, e.g., a logistic regression where instead of the
event “moving to default” the event “moving to Stage 2” will be modeled. The example in Section 5
will clarify how this could work. The remaining cost parameters f̂i and ci will be discussed in the
next subsection.

4.2. Determination of Cost Components

A bank’s operational costs have to be covered by fees or interest income. How to allocate costs
to a certain product is an internal procedure that might differ from bank to bank. For the purpose
of this article, we assume that operational costs are modeled as a percentage of the outstanding loan
balance. It might also be modeled as an absolute amount or a combination of both. There might also
be cases where a borrower pays some fees in addition to interest. To include all these cases in (10) is
quite straightforward.

More interesting are funding costs. This is the interest a bank has to pay to its depositors and
bond investors, which is, in general, a term-structure that is provided by the treasury department.
A stylized example is given in Table 1.

Table 1. The example term structure of funding rates.

Expiry Interest Rate

1 Year 12M Libor + s1
2 Years 12M Libor + s2
...

...
n Years 12M Libor + sn

The table means that if a bank would originate an i-year loan, it would have to pay 12M Libor + si
on the funds to its depositors every year. There might be alternative ways a treasury quotes these rates
depending on the institutional setup. We use Table 1 as an example to illustrate how to derive funding
costs for every year from the data of this table. A generalization to different market conventions is
not difficult.

The reason why a treasury quotes funding rates in this way is that swap rates in the interbank
market are much more volatile than the spread a bank has to pay over interbank market rates for its
funding. To compute future expected funding costs f̂i, swap rates Si for each expiry i = 1, . . . , n are
collected; and discount factors and forward rates are bootstrapped from them. For the purpose of this
article, we assume swaps exchange once per year a fixed rate for a 12M Libor rate; and the payment
frequencies of swaps and loans are identical.

The calculation of f̂i is a two-step procedure. First, discount factors for the interbank curve have
to be computed from the swap rates Si observed in the market. For current market quotes, the value of
the floating leg equals the value of the fixed leg resulting in

1− δM
i =

i

∑
j=1

Si · δM
j ,

where δM
j is the discount factor corresponding to year j. These discount factors can be computed

iteratively using the bootstrap algorithm

δM
1 =

1
1 + S1

,
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δM
2 =

1− S2 · δM
1

1 + S2
,

... =
...

δM
n =

1− Sn ·∑n−1
j=1 δM

j

1 + Sn
.

From δM
i , we can compute forward rates λ̂i that a bank expects to pay on its funding,

λ̂i = δM
i−1/δM

i − 1. Using the forward rates λ̂i and the spread si in Table 1 allows us to compute
f̂i using a similar bootstrap procedure.

The condition for bootstrapping the funding curve δi is that the present value of future cash flows
for depositors equals the deposited amount:

1 =
i

∑
j=1

(
λ̂j + si

)
· δj + δi,

which leads to the bootstrapping algorithm

δ1 =
1

1 + λ̂1 + s1
,

δ2 =
1−

(
λ̂1 + s2

)
· δ1

1 + λ̂2 + s2
,

... =
...

δn =
1−∑n−1

j=1

(
λ̂j + sn

)
· δj

1 + λ̂n + sn
.

Future expected funding costs are then computed as f̂i = δi−1/δi − 1. These expected funding
costs f̂i are suitable for measuring the profitability of floating-rate loans. Therefore, we denote them
by f̂ f loat,i for clarity. For fixed-rate loans, a bank commonly uses a swap to manage interest rate risk.
This results in fixed rates ĝi a bank has to pay depending on the maturity of its funds. They are
computed from the relation

i

∑
j=1

f̂ f loat,j · δj = ĝi ·
i

∑
j=1

δj ⇒ ĝi =
∑i

j=1 f̂ f loat,j · δj

∑i
j=1 δj

.

The funding costs f f ix,i a bank has to stem in each period for a fixed-rate loan can be computed
from the loan’s amortization schedule

f̂ f ix,i · Ni =
n

∑
j=i

ĝj ·
(

Nj − Nj+1
)

, (31)

where Nn+1 = 0. The intuition is to split the loan into parts with different maturities according to its
amortization schedule and charge ĝj on the part maturing in period j.

5. An Example for Residential Mortgages

We provide a fully worked-out example for residential mortgages for illustration. The data
and models we are using are not derived from real-world data. They are a bit simpler and stylized
compared to real-world models but still contain the most important features. We consider a 10-year
fixed-rate annuity loan as an example, that pays interest and amortization annually. We assume the
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loan has just been originated; and we measure its expected future performance using the scheme
described in Section 4.

We start with the funding curve and the calculation of future funding costs f̂ f ix,i for the years
i = 1, . . . , 10. The results are summarized in Table 2. Both swap rates S and funding spreads s are
increasing with expiry leading to a rather steep curve for f̂ f loat. Since we use a fixed-rate loan in our
example, the rates f̂ f ix will be used for computing funding costs later using (31). Operational costs are
assumed at c = 0.50% of the outstanding balance.

Table 2. Funding curve and calculated values for f̂ f loat and f̂ f ix.

Year S (%) s (%) δM λ̂ (%) δ f̂ f loat (%) f̂ f ix(%)

1 1.00 0.100 0.9901 1.000 0.9891 1.100 1.100
2 1.20 0.100 0.9764 1.403 0.9745 1.503 1.300
3 1.30 0.110 0.9619 1.504 0.9588 1.635 1.410
4 1.40 0.120 0.9458 1.710 0.9413 1.861 1.520
5 1.50 0.135 0.9280 1.917 0.9218 2.115 1.634
6 1.70 0.150 0.9030 2.764 0.8950 2.994 1.849
7 1.90 0.165 0.8750 3.204 0.8650 3.468 2.063
8 2.10 0.180 0.8441 3.659 0.8321 3.957 2.276
9 2.30 0.200 0.8106 4.132 0.7961 4.517 2.494
10 2.50 0.220 0.7748 4.626 0.7578 5.062 2.712

Next, we describe the stylized macroeconomic data. We assume that three macroeconomic factors
are used in modeling credit risk for residential mortgages, the unemployment rate (UR), the growth
in a house price index (HPIgr) and the mortgage rate (MR). The unemployment rate should be
an indicator for default rates since growth in unemployment should result in a higher number of
people unable to repay their loans. Changes in house prices are usually modeled by an index since
modeling prices of individual properties is, in most cases, not feasible. This variable should affect
both default rates and loss rates. The mortgage rate in a macroeconomic sense is not the interest rate
of an individual mortgage but some average rate for currently originated mortgages. Central banks
often publish such rates. If a loan market permits prepayments, this interest rate is usually a good
indicator of the prepayment likelihood. For these three macroeconomic factors, we assume the scenario
in Table 3. The value for Year 0 would be a realized value, while for Years 1 to 9 the values reflect a
scenario; in this example, the gradual return from an economic boom to a neutral state.

Table 3. Scenario for the macroeconomic factors UR, HPIgr, and MR.

Year UR (%) HPIgr (%) MR (%)

0 3.00 2.00 5.00
1 3.00 2.00 5.00
2 3.50 1.50 4.80
3 4.00 1.00 4.60
4 4.50 0.50 4.40
5 5.00 0.50 4.20
6 5.00 0.00 4.00
7 5.00 0.00 4.00
8 5.00 0.00 4.00
9 5.00 0.00 4.00

For the determination of Zi for each future year by means of (14), our stylized macroeconomic
model is

Φ−1(di) = −2.5 + 5.0 ·URi−1 − 2.0 · HPIgri−1. (32)
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Furthermore, we assume that the parameters B and ρ in (14) have been estimated as B = −2.25 and
ρ = 3%. Using the macro scenario in Table 3 allows the calculation of a scenario for Z which is
displayed in Table 4. Note, that negative Z reflect booms while positive Z signals recession.

Table 4. Probit-transformed global default rate and corresponding value of Z.

Year Φ−1(d) Z

1 −2.39 −0.60
2 −2.39 −0.60
3 −2.355 −0.40
4 −2.32 −0.20
5 −2.285 0.00
6 −2.26 0.14
7 −2.25 0.20
8 −2.25 0.20
9 −2.25 0.20

10 −2.25 0.20

To measure the profitability of a mortgage, we need additional information. We assume that the
original balance N1 = 500, 000 is equal to the house price, i.e., the loan-to-value (LTV) at origination
was 100%. The loan amortizes at 2% per year and its fixed interest rate z is 3.5%. This leads to an
annual annuity payment of A = 500, 000 · (2% + 3.5%) = 27, 500. For Basel II and IFRS 9, we assume
the bank has developed the following risk models for borrower and collateral:

logit (p(i|i− 1))) = −6.0 + 3.0 · ADi−1 + 4.0 ·URi−1 + LTVi−1 + 2.0 · DSCi−1, (33)

li = 0.01 + 0.5 ·max(LTVi−1 − 0.80, 0.0), (34)

logit (cpr(i|i− 1))) = 0.02 + 0.5 · (z−MRi−1)− 0.01 · LTVi−1, (35)

logit (ar(i|i− 1))) = −5.0 + 2.0 ·URi−1 + 2.0 · DSCi−1, (36)

logit (cr(i|i− 1))) = 1.0− 4.0 ·URi−1 − 2.0 · DSCi−1, (37)

where logit(x) = log
(

1−x
x

)
is the logistic transformation and AD an arrears dummy, i.e., AD = 1 if

the borrower’s payments are in arrears for 10 days or more and AD = 0 otherwise. The risk factor DSC
is the debt service coverage ratio and is computed as the ratio of all annual payments a borrower has
to make on all his loan products divided by his net income. To be meaningful all loans of a borrower
including those from other banks have to be included. Whether this information in easily available or
not depends on the institutional setup of a country. In some countries (e.g., Malaysia) the central bank
supports the collection of this data, while in other countries credit bureaus might be useful sources
of information.

Model Equations (33)–(35) have been expected from the discussions in Section 4. There is no model
for cc f because mortgages usually come without credit lines making EAD equal to the outstanding
balance. The other two model equations are related to the staging rule required for IFRS 9. One option
to model “deteriorated credit quality” is using “payment missing for 10 days or more” as a criterion.
The probability for being in Stage 2 is in this case equal to the probability of being in arrears but not yet
in default at the end of a year. This probability is modeled by the arrears rate ar(i|i− 1) which is the
probability that a loan is in arrears in Year i conditional on being performing in Year i− 1. Once a loan
is in arrears, it could either move into default or back to Stage 1. The cure rate cr(i|i− 1) models the
probability that a loan is in Stage 1 in Year i conditional on being in Stage 2 in Year i− 1. This allows
the calculation of cumulative probabilities psi(j) of a currently performing loan for being in Stage
j = 1, 2, 3 in Year i by the following algorithm:
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ps1(2) = ar(1|0),
ps1(3) = p(1|0),
ps1(1) = 1− ps1(2)− ps1(3),

...
...

psi(2) = psi−1(1) · ar(i|i− 1) + psi−1(2) · (1− cr(i|i− 1)− p(i|i− 1, AD = 1)) ,

psi(3) = psi−1(3) + psi−1(1) · p(i|i− 1, AD = 0) + psi−1(2) · p(i|i− 1, AD = 1),

psi(1) = 1− psi(2)− psi(3)

In Year i the Stage 2 loans consist of loans that moved from Stage 1 to Stage 2 or were in Stage 2
already at the end of Year i− 1 but did neither default nor cure. This is possible since a loan can be in
arrears, pay back the outstanding amount during the year and move into arrears again. The higher
default probability for a loan in Stage 2 is reflected by the arrears indicator AD in (33). The probability
ti is the likelihood that a loan is in Stage 2 conditional on survival in Year i. From the above, it can be
easily computed as ti =

psi(2)
1−psi(3)

.
To make the framework of Section 5 applicable, we have to explain how to project the risk factors

LTV and DSC over 10 years and how to compute downturn LGD for regulatory capital calculations.
For LTV we project the house price into the future using the house price index growth scenario
that was already used in the macroeconomic model (32). The outstanding loan balance is computed
according to the amortization schedule of the annuity. For DSC we assume that the net annual income
of the borrower is 100,000 and this value stays constant over the 10 years. We further assume that the
mortgage is the only loan of the borrower. Then, DSC is computed as the ratio of the annual interest
and amortization payments divided by net income. Finally, we have to define a rule for downturn
LGD. In some countries, like the US, this is prescribed by regulators, in other countries, this has to be
defined by the bank. We assume downturn LGD is defined by the bank and it is computed using (34)
under a worst-case scenario of a 25% decline of the house price. The resulting risk parameters in this
setup are presented in Table 5.

Finally, we have all parameters at hand that are needed to compute loan performance. We can
compute ELCj, LLP1 and LLP2 as well as required minimum capital conditional on Stage j = 1, 2.
The results are displayed in Table 6. Computing RAROC of this loan using (11) leads to 8.586%. We see
that period-by-period RAROC takes values between 7.26% and 10.24%. This means that looking into
the performance of the loan in a single period and ignoring past and future periods could be quite
misleading. Usually, credit risk parameters change with the loan balance. Loans could become less
risky over time as in the mortgage example over the first seven years but could also become riskier if
the collateral value is declining or the macroeconomic environment is expected to deteriorate.
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Table 5. Projection of house price (HP), loan balance (N), LTV (in %), DSC (in %), PIT PD conditional on AD = 0 (in %) by (33), PIT PD conditional on AD = 1
(in %) by (33), LTVdt in the 25% house price decline scenario, TTC PD conditional on AD = 0 (in %), TTC PD conditional on AD = 1 (in %), PIT loss rate l (in %),
downturn LGD (in %) by (34), prepayment probability (in %) by (35), arrears rate (in %) by (36), cure rate (in %) by (37), Stage 2 probability (in %).

Year HP N LTV DSR pAD=0 pAD=1 PDAD=0 PDAD=1 LTVdt l LGD cpr ar cr t

1 500,000 500,000 100.0 27.5 1.30 20.3 1.84 23.7 133.3 11.00 27.7 0.25 1.23 58.2 0.00
2 510,000 490,000 96.1 27.5 1.25 19.6 1.77 23.0 128.1 9.04 25.1 0.29 1.22 58.2 1.24
3 517,650 479,650 92.7 27.5 1.23 18.8 1.60 21.1 123.5 7.33 22.8 0.42 1.24 57.7 1.53
4 522,827 468,938 89.7 27.5 1.22 18.1 1.46 19.4 119.6 5.85 20.8 0.55 1.25 57.2 1.63
5 525,441 457,851 87.1 27.5 1.21 17.4 1.33 17.7 116.2 4.57 19.1 0.68 1.26 56.7 1.68
6 528,068 446,375 84.5 27.5 1.21 17.0 1.24 16.8 112.7 3.26 17.4 0.80 1.27 56.2 1.72
7 528,068 434,498 82.3 27.5 1.18 16.4 1.18 16.0 109.7 2.14 15.9 0.93 1.27 56.2 1.74
8 528,068 422,206 80.0 27.5 1.15 16.1 1.15 15.6 106.6 1.00 14.3 0.95 1.27 56.2 1.75
9 528,068 409,483 77.5 27.5 1.13 15.8 1.13 15.3 103.4 1.00 12.7 0.97 1.27 56.2 1.76
10 528,068 396,315 75.1 27.5 1.10 15.5 1.10 15.0 100.1 1.00 11.0 1.00 1.27 56.2 1.77

Table 6. Projection of expected loan balance, expected interest income, expected funding costs, expected operational costs, ECL conditional on Stag 1, LLP conditional
on Stage 1, adjusted minimum capital conditional on Stage 1, RAROC conditional on Stage 1 (in %), ECL conditional on Stage 2, LLP conditional on Stage 2, adjusted
minimum capital conditional on Stage 2, RAROC conditional on Stage 2 (in %), total expected RAROC (in %).

Year N̂ z · N̂ f̂ · N̂ c · N̂ ELC1 LLP1 K̄1
min RAROC1 ELC2 LLP2 K̄2

min RAROC2 RAROC

1 500,000 17,500 12,592 2500 718 715 22,340 7.3 13,853 26,757 69,948 −11.84 7.33
2 488,775 17,107 12,482 2444 551 552 19,368 8.18 10,640 20,265 64,309 −10.00 7.26
3 477,067 16,697 12,347 2385 427 431 16,114 9.27 7922 14,926 57,374 −8.24 8.19
4 464,438 16,255 12,196 2322 326 332 13,457 10.19 5807 10,648 51,226 −6.58 9.09
5 450,949 15,783 12,028 2255 244 250 11,287 10.84 4171 7258 45,789 −5.03 9.75
6 436,663 15,283 11,840 2183 165 172 9513 11.23 2767 4607 40,855 −3.32 10.20
7 421,624 14,757 11,621 2108 99 107 8164 11.14 1633 2720 36,451 −1.55 10.24
8 405,897 14,206 11,367 2029 40 47 7024 10.79 651 1,533 32,173 0.47 10.06
9 389,924 13,647 11,078 1950 39 44 5890 9.71 640 1085 27,383 −0.07 9.01

10 373,707 13,080 10,749 1869 38 41 4819 8.66 622 577 22,897 −0.68 7.97



Risks 2020, 8, 93 18 of 21

6. Discussion

In this article, we discussed the measurement of loan performance, taking into account the latest
Basel regulation and the recent revision of accounting standards, IFRS 9 and CECL, respectively.
We have discussed the different risk parameters that are needed for each framework, through-the-cycle,
point-in-time and downturn parameters, and shown how they can be obtained in principle. We have
proposed a framework where the performance of a loan is measured period-by-period using RAROC
as the performance measure. Taking a weighted average over all periods results in a particular
loan’s total performance. An example illustrated the application of this framework for residential
mortgage lending.

The contribution of this article has been threefold. First, we have provided a comprehensive
scheme for loan performance measurement that takes into account all relevant regulatory rules and
utilizes the credit risk parameters that have been estimated for regulatory and accounting purposes.
It allows banks to make more informed decisions about loan applications and supports them in
monitoring their existing loan portfolios. Second, we have shown that LLP computed under IFRS 9 or
CECL are not suitable as a measure for expected loss and cannot be used in the numerator of a RAROC
scheme. Instead, we have derived an expression for the expected loss coverage (ELC) which reflects
the true economic loss. Third, we have seen that for accurate measurement of the loan performance,
it is insufficient to consider the current or the next year only, but the full lifetime of a loan has to be
taken into account.

A limitation of this approach is that it strongly relies on econometric models, especially models
that relate macroeconomic factors to risk measures related to borrower and loan facility, like PD, LGD,
CPR, or CCF. If such models are unavailable or their predictive power is weak, this approach might
not be applicable or does not lead to reliable results. Furthermore, we have set the focus on residential
mortgages in this article. Extensions to more general loan structure, including credit lines, are left for
future research.

Finally, we remark that the framework we have proposed could be used for numerous risk
management applications beyond performance measurement. It could be used for balance sheet stress
testing where a macroeconomic stress scenario is provided and the evolution of provisions, capital,
and profit can be monitored under this scenario over time. In addition, the impact of the proposed
new regulation can be evaluated to see whether a bank is severely impacted or not. An example would
be BCBS (2017) where a new floor on regulatory capital is introduced and our proposed framework
could be very helpful in assessing its impact. Finally, if a bank seeks capital relief by securitizing or
selling parts of its portfolio, the multi-period projections could be valuable in deciding about portfolio
size and the optimal selection of loans.

Author Contributions: Conceptualization, B.E. and H.P.; methodology, B.E..; validation,B.E. and H.P.; writing—
original draft preparation, B.E.; writing—review and editing, H.P.; supervision, H.P.; project administration, H.P.;
funding acquisition, H.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Education and Training in Vietnam, Ho Chi Minh City
Open University and Open Source Investor Services B.V. grant number B2019-MBS-03.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:
RAROC risk-adjusted return on capital
RORAC return on risk-adjusted capital
PD default probability
LGD loss given default
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EAD exposure at default
CCF credit conversion factor
CPR conditional prepayment rate
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