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Abstract: Using telematics data, we study the relationship between claim frequency and distance
driven through different models by observing smooth functions. We used Generalized Additive
Models (GAM) for a Poisson distribution, and Generalized Additive Models for Location,
Scale, and Shape (GAMLSS) that we generalize for panel count data. To correctly observe the
relationship between distance driven and claim frequency, we show that a Poisson distribution
with fixed effects should be used because it removes residual heterogeneity that was incorrectly
captured by previous models based on GAM and GAMLSS theory. We show that an approximately
linear relationship between distance driven and claim frequency can be derived. We argue that this
approach can be used to compute the premium surcharge for additional kilometers the insured wants
to drive, or as the basis to construct Pay-as-you-drive (PAYD) insurance for self-service vehicles.
All models are illustrated using data from a major Canadian insurance company.

Keywords: telematics; generalized additive models; generalized additive models for location;
scale and shape; panel count data; random effects; fixed effects; distance driven

1. Introduction

In the past decade, new technologies such as GPS-collected data have emerged, which offer new
ways to approach car insurance pricing. Processing these data provides reliable information about
drivers’ behavior. Before GPS and telematics devices, the insurance industry had to rely on proxy
variables such as territory, gender and age of the drivers to measure risk. However, such covariates
only describe the general behavior of insured in those groups. For example, Ayuso et al. (2016b) shows
that the differences observed in claims frequency between men and women are largely attributable
to vehicle use; Verbelen et al. (2018) reached a similar conclusion. In a social-political context where
the use of gender in ratemaking is restricted or criticize, calculating premiums on more objective
information is of interest.

One piece of GPS-collected information that is directly related to the risk insured is distance
driven. The relevance of including this variable in ratemaking has been studied by Ayuso et al. (2014),
Ayuso et al. (2016a), Boucher et al. (2013) and Lemaire et al. (2016) among others. Boucher et al. (2017)
studied the effect of distance driven and policy duration time on claim frequency and challenged the
usual ratemaking practice of using contract duration as the risk exposure measure. Mileage-based
pricing can generate several benefits, notably on the environment, because it encourages policyholders
to reduce their annual mileage. Establishing premiums on the basis of variables that the insured can
control has the significant advantage of encouraging a positive change of habit in policyholders (see for
example Bolderdijk et al. (2011) and Tselentis et al. (2016)). One can argue that distance driven is
correlated with other driving habits resulting from driving experience, (Ferreira and Minikel (2010)).
Hence, if the model does not take this correlation into account, the resulting relationship between
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claim frequency and the distance driven would not give an appropriate representation of how the
claim frequency could change when insureds change their driving habits. This is precisely what is
tackled in this paper: we indeed focus on the “marginal” effect of distance driven. The objective of
our paper is not to compute a premium, but mainly to understand how the distance impacts the claim
frequency when all individual characteristics of policyholders have been considered.

We focus our analysis on the distance driven, yet other telematics variables could be of interest.
In the study by Verbelen et al. (2018), driving time (daytime vs. nighttime) is studied along with
the type of roads, while Ma et al. (2018) find that speed and acceleration affect the expected claim
frequency. Ayuso et al. (2014) analyze the effect of various covariates for the time before the first crash,
and compare novice and experienced drivers. More recently, Ayuso et al. (2019) propose to improve
the traditional ratemaking methods by including information related to risk exposure and driving
behavior of insured. Denuit et al. (2019) use predictive rating with past telematics information in a
credibility model. Weidner et al. (2016) study driving behavior and vehicle use on different scales
of analysis (maneuver, trip or insurance period) by means of form recognition and Fourier analysis
methods. Wüthrich (2017) proposes to use speed and acceleration heat-maps to classify drivers into
groups using K-means clustering. Each group is associated within a driving style and included as a
categorical variable in a regression analysis. Gao and Wüthrich (2018) performed principal component
analysis using singular value decomposition and bottleneck neural networks. The authors argue that a
representation in two dimensions is sufficient to preserve most of the driving information, meaning that
it is possible to obtain continuous representations with small-dimensional data. This representation
could then be included in a Generalized Additive Model (GAM), as in the study by Gao et al. (2019).
Verbelen et al. (2018) evaluate the predictive power and interpretability of telematics variables on claim
frequency by comparing various types of models that include or exclude those telematics variables.
The authors find that the best ratemaking structure includes both telematics and traditional covariates,
while considering duration and mileage as exposure measures.

In Section 2, we present the dataset used for the numerical applications throughout this work and we
compare different exposure measures. In Section 3, we used a GAM Poisson, as did Boucher et al. (2017),
to link the distance driven with the number of claims. We observe the same relationship between
distance and claims frequency; however we reject the “learning effect” explanation proposed by
previous authors to explain the relationship, which we posit can be explained by the residual
heterogeneity incorrectly captured by the underlying GAM model. Section 4 presents panel count
data models that are better suited to explain individual heterogeneity. In Section 5, using Generalized
Additive Models for Location, Scale and Shape (GAMLSS, see Rigby and Stasinopoulos (2005)) theory
that generalizes GAM, a multivariate count distribution for all the contracts of the same insured is
developed, and a penalized log-likelihood is used to estimate the parameters. In Section 6, we use
another approach based on a Poisson distribution with fixed effects to account for all individual
characteristics, and show that an approximately linear relationship between the distance driven and
claim frequency can be found. Section 7 concludes.

2. Summary of the Database

The dataset that has been used for our numerical analysis comes from an important Canadian P&C
insurance company. We focus our analysis on personal car insurance from the province of Ontario.

In analyzing telematics data, we must be careful before jumping to general conclusions about
driving behavior of the whole portfolio. Indeed, policyholders who decided to place a telematics
device on their car, or to download an application on their phone that tracks all their car trips, do not
correspond to the general driver population. In our case, approximately 10% to 15% of the insurance
company’s portfolio chose to use the telematics option for their car insurance. Typically, these insureds
correspond to one of the two following profiles:
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1. Policyholders who are technophiles: they love new telematics technology, and want detailed
information about their driving habits. Summary driving data is indeed continuously available to
policyholders via a website.

2. Young and/or bad drivers. To motive policyholders to buy the telematics option, insurance
companies often offer an initial discount, and the renewal discounts range from 0% to 25%
depending on driving experience.1 Because auto insurance in Ontario is very expensive and often
unaffordable for some drivers, all discounts are welcome for policyholders with high insurance
premiums. As a result, an unusually high proportion of risky insureds uses telematics devices or
telematics app.

In the dataset used, we observed the insureds for up to six insurance periods, with an average
of 1.77 contracts per policyholder (see Table 1 for details). Only policyholders that have been
observed at least 100 days were retained for the analysis. Since this is real data, it may contain
some minor irregularities. The same table shows statistics for the number of claims, where we only
kept claims related to road accidents. Indeed, we wanted to study accidents related to car usage and
not, for example, those caused by floods, hail, theft or vandalism. The table shows statistics for a single
insured period. We note that most policyholders do not claim, that the average claim frequency for the
portfolio is 6.0%, and that the maximum number of claims observed is 3.

Risk Exposure Measures

Table 2 summarizes the statistics of various risk exposure definitions:

1. Exposure time (the time between the start and the end of the insurance contract)
2. Distance driven
3. Number of trips
4. Hours driven.

Another candidate for risk exposure might be the self-reported approximation of the distance
driven by the insured. However, as shown by many authors, such as Lemaire et al. (2016),
the self-reported distance driven is not reliable and is often very different from the exact distance driven.

Exposure time, traditionally used by insurers, would be an appropriate measure of risk exposure
if every driver had about the same car usage, which is not the case. Indeed, Table 2 shows that for
an insured period, insureds drove between 7.1 and 76,272 km, with an average of 10,398 km. More
specifically, the database also informed us about various types of car use by the insureds:

1. The maximum number of trips observed is 3317 while another one only used his car 15 times for
a single insured period.

2. A policyholder drove the car for only for one hour for the whole insured period, while another
driver used the car for more than 3000 h.

Consequently, there are important differences between driving uses and driving habits,
which justifies consideration of other measures than exposure time in the modeling.

Table 1. Distribution of the number of insurance periods for the database.

Number of Insurance Periods 1 2 3 4 5 6

Number of policyholders 12,562 9746 3420 844 415 11
Proportion (%) 46.5 36.1 12.7 3.1 1.5 0.0

1 Please note that it is not legally possible for an Ontario insurance company to increase the insurance premium based on the
telematics information collected.
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Table 2. Descriptive statistics for a single insured period.

Average Variance Min. Max. 25th pct 50th pct 75th pct

Exp. Time (in years) 0.645 0.060 0.277 1.079 0.463 0.540 0.912
Dist. Driven (in km) 10,398 55,138,376 7.1 76,272 5026 8561 13,836
Nb. of Trips 1083 383,165 15 3317 621 946 1434
Time Driven (in hours) 380 34,740 1 2159 248 356 483
Nb. of claims 0.060 0.061 0.000 3 0 0 0

Figures 1–4 shows histograms of different risk exposure measures under study. Except for
exposure time, every other risk exposure distribution is right-skewed. Table 2 foreshadowed this result
as the average was greater than the median for those risk exposures. This is another indication that
some insureds make full use of their insurance time by making greater use of their car.

Figures 5–8 illustrate the links between claim frequency and risk exposure. A fairly clear
linear trend seems to be emerging for the three non-traditional exposure measures for the first
part of their respective curve, which contains most of the observations. However, we observe a
strange relationship between the claims frequency and the risk exposures for higher quantiles of the
distributions. We specify that each point on these graphs does not represents the same number of
policyholders. Darker dots represent a larger number of policyholders.

Between the three usage-based exposure measures, our choice for a more detailed analysis is
distance driven. First, it seems to be the objective measure of risk of the three. Indeed, the definition of
a “trip” is not clear. For example, if the driver makes a quick stop to buy gas, does it count for one or
two trips because the engine stopped? For hours driven, does the time spent stopped at red lights and
stuck in traffic count similarly to when the vehicle is moving? Second, it would be hard to measure
exposure only according to the number of trips from a marketing point of view because those who use
their vehicle only to drive short distances would probably find it unfair.
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Figure 1. Histogram of risk exposure (in years) Each band has a length of 0.02 year.
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Figure 2. Histogram of distance driven (in km) Each band has a length of 500 km.

0

1000

2000

3000

4000

0 1000 2000 3000 4000
Number of trips

N
um

be
r 

of
 in

su
re

d 
dr

iv
er

s

Figure 3. Histogram of the number of trips Each band has a length of 100 trips.
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Figure 4. Histogram of hours driven Each band has a length of 2000 h.
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Figure 5. Claims Frequency vs. Exposure Time.
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Figure 6. Claims Frequency vs. Distance Driven.
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3. Preliminary Risk Exposure Analysis

Traditionally, the starting point for the modeling of the number of claims Ni from a policyholder i
exposed to the risk of a term t is modeled by a Poisson distribution of average tλi, where λi includes
classic covariates used in pricing. For a Poisson regression, t is often referred to as an offset variable.
Similarly, for an insured driving a car over a distance of d km, we are seeking a model with this
form of proportionality between distance driven and the expected claim frequency. Also, it could be
interesting to combine t and d in the same model. To do this, one avenue is to use generalized additive
models (GAM).

GAMs, introduced by Hastie and Tibshirani (1986), are an extension of the generalized linear
models (GLM) theory. Consequently, as for the GLM, only distributions belonging to the linear
exponential family could be used as the distribution of the response variable of a GAM. In a GLM,
the linear predictor for an individual i is given by g(µi) = X ′

i β, where X ′
i = [x1,i, x2,i, x3,i, ...] is a

vector of covariates and β is a coefficient vector. For a GLM, the mean is given by a linear expression
through a link function: GAMs relax the hypothesis of linearity, and smoothing functions s of the
covariates could be included in the predictor. For example, the mean for an individual i could be given
by g(µi) = s0 + s1(x1,i) + s2(x2,i) + s3(x3,i), where s0 is an intercept, sk are smoothing functions and
xk,i are covariates for k ∈ {1, 2, 3}.

Boucher et al. (2017), by using a GAM Poisson model, analyzed the influence of duration
and distance driven on the number of claims with independent cubic splines and splines with a
tensor product to introduce a dependence between those two risk exposure measures (see Green and
Silverman (1993) for additional details on these smoothing functions). The model with independent
cubic splines is the starting point of our analysis, and we evaluate the performance of this model
on our data. The model log(µi) = β0 + s1(kmi) + s2(di) yields similar results to those obtained by
Boucher et al. (2017), as it can be seen in Figure 9. Indeed, we observe a strongly increasing function
for the first kilometers, then it stabilizes around 40,000 km. For the higher quantile of the distribution,
there are very few observations, and the confidence interval is too wide to draw conclusions. As for
s2(di), we observe a positive effect for the duration time, but no linear relationship because the function
tends to stabilize. For the sake of completeness, the model with a tensor product has been fitted on our
data. The tensor product includes dependency between the two exposure measures, and the fitted
surface had a shape similar to that of Boucher et al. (2017). Considering the important differences
between the European dataset used in Boucher et al. (2017) and our North American data, the similarity
of the results is fairly interesting. First, climatic conditions are not the same given the significant
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accumulations of snow on the ground during Canadian winters. Second, the profile of policyholders
between the two databases is not the same. The Spanish data focused exclusively on young drivers
while Canadian data’s profiles are more diverse as explained in Section 2. It can also be noted that
the data are collected over different years for the two databases and the regulations differ from one
country to another.

We investigate the smoothing functions on the scale of the response level (exp(s1(km)) and
exp(s2(d))) to expose the multiplicative effect on λi,t, as illustrated in Figure 9. Specifically, with a log
link function, we have

µi,t = exp(Xi,t β + s1(km) + s2(d))

= exp(s1(km)) exp(s2(d)) exp(Xi,t β)

= exp(s1(km)) exp(s2(d))λi,t, (1)

In the study by Boucher et al. (2017), a “learning effect” is advanced to justify the look of ŝ1(km)

(and exp(ŝ1(km))), where the expected number of claims seems to decrease as kilometers driven
increases. We think that this effect cannot be used as an explanation. Indeed, most drivers in the
insurance portfolio already have many years of driving experience. We do not think that the extra
10,000–20,000 km adds enough experience to observe a learning effect.

Instead, we think that the shape of the smoothing function comes from the driver profiles:
the lower quantiles of the distribution of the distance driven does not come from the same (type
of) drivers as the higher quantiles. This means that models based on Figure 9 cannot be used to
understand the relationship between the distance driven and the number of claims, and might not be
used to set the premium for insured that suddenly change their driving habits, because it does not
nearly tell us how their risk is changing.

As an example to illustrate the situation, we can suppose an insured who suddenly decides to
drive 50,000 km instead of 40,000 km. Based on Figure 9, we would expect a decrease in the expected
claims frequency. This is however impossible: the number of claims in the first 40,000 km cannot
change, and the extra 10,000 km can only add other claims. In other words, if insureds choose to drive
their cars rather than leaving it at home, the risk should always be greater. The slope could change as
distance increases, but it should always be strictly positive since the risk is greater, meaning that the
smoothing function (as the one observed in Figure 9) should always be increasing.

Our results, and those of Boucher et al. (2017), do not show a strictly positive relationship
between claim number and distance driven. We think that this can be explained by the residual
individual heterogeneity of the model, which the basic Poisson GAM does not seem to capture correctly.
One explanation comes from the fact that GAM supposes independence between all contracts of the
same insured. We think that a more general model that relaxes this assumption should be used to
correctly measure the impact of the distance driven on the risk of accidents.
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Figure 9. exp(ŝ1(km)) and exp(ŝ2(year)) from the Poisson GAM estimated with Canadian data.
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4. Panel Data Modeling

When all observations are considered independent, we usually refer to it as cross-sectional
data. Basic GLM and GAM are constructed under such an assumption. In non-life insurance,
however, we can observe the same insured over many contracts. Consequently, we can generalize the
approach by supposing a dependence between all those contracts. This dependence is usually justified
by the fact that many important factors cannot be used as covariates in ratemaking.

Formally, suppose that we observe an insured i for over T contracts. Instead of modeling the
marginal distribution of each Ni,t for t = 1, . . . , T, we are now looking for the joint distribution
(subscript i is removed for convenience):

Pr(N1 = n1, N2 = n2, ..., NT = nT)

= Pr(N1 = n1)× Pr(N2 = n2|N1 = n1)× . . .× Pr(NT = nT |N1 = n1, ..., NT−1 = nT−1),

where Nt, t = 1, . . . , T, is the number of reported accidents for insured period t. There are many ways
to construct multivariate count models (see Inouye et al. (2017) or Molenberghs and Verbeke (2006) for
example). One popular way, which draws a parallel with the explanation of the unused covariates in
the modeling, is to include an individual parameter α in the mean parameter of the count distribution
of each contract t, which means that we have:

Ni,t ∼ Poisson(µi,t = αiλi,t), (2)

where λi,t = exp(x′i,tβ) for i ∈ {1, ..., n} and t ∈ {1, ..., Ti}. For an insured i, the key to the dependence
then lies in the parameter αi which affects all the random variables Ni,t for t = 1, . . . , T. We can
consider two different situations regarding this parameter:

1. All αi, i = 1, . . . , n are i.i.d. random variables that come from a selected prior distribution (we call
this the random effects model , studied in detail in Section 5);

2. All αi, i = 1, . . . , n are unknown parameters that need to be estimated (we call this the fixed effects
model, studied in detail in Section 6).

In both cases, random and fixed effects models give us the flexibility to create a joint distribution
that allows for time dependence. However, even if they share some similarities, random and fixed
effects models are different, and the differences between them are highlighted when we consider
telematics data and the distance driven.

5. Random Effects

5.1. Model Specification

In random effects models, we suppose that αi, i = 1, . . . , n, are random variables, with prior
density f (·). Conditionally on the random effects αRE

i , all numbers of claims Ni,1, Ni,2, . . . , Ni,T from
insured i are independent. As shown in Denuit et al. (2007), the joint distribution of Ni,1, ..., Ni,T can be
expressed as:

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ] =

ˆ ∞

0

(
T

∏
t=1

exp(−αRE
i λRE

i,t )
(αRE

i λRE
i,t )

ni,t

ni,t!

)
f (αRE

i )dαRE
i . (3)
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Many distributions can be used for αRE
i , such as the gamma or the inverse Gaussian. If we

suppose that αRE
i follows a gamma distribution of mean 1 and variance 1

ν , the joint distribution can be
expressed as:

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ] =

(
T

∏
t=1

(λRE
i,t )

ni,t

ni,t!

)
Γ(ni,• + ν)

Γ(ν)

(
ν

λRE
i,• + ν

)ν (
λRE

i,• + ν
)−ni,•

,

where ni,• = ∑T
t=1 ni,t and λRE

i,• = ∑T
t=1 λRE

i,t . This well-known distribution is the multivariate negative
binomial distribution, or simply MVNB. This distribution is a generalization of the negative binomial
distribution. It is a basic distribution for panel count data modeling with overdispersion (E[Ni,t] =

λRE
i,t < V[Ni,t] = λRE

i,t + (λRE
i,t )

2/ν).
It can be shown that the first-order condition to obtain β̂MLE is:

n

∑
i=1

T

∑
t=1

xi,t

(
ni,t − λRE

i,t
ni,• + ν

λRE
i,• + ν

)
= 0. (4)

This model is based on a distribution which is not a member of the linear exponential family. That
means that GAM theory cannot be used to include smoothing functions. Instead, we use Generalized
Additive Models for Location, Scale and Shape (GAMLSS) (see Rigby and Stasinopoulos (2005)) theory,
that can be used for other distributions than the members of the linear exponential family of distribution.
Moreover, a GAMLSS is more flexible because it can model a location parameter µi, a variance
parameter σi (scale), a skewness parameter νi and a kurtosis parameter τi as additive functions of the
covariates. The general form is given by

gk(θk) = Xkβk +
Jk

∑
j=1

Zj,kγj,k (5)

where θ = {µ, σ, ν, τ}. µ, σ, ν and τ are vectors with n elements. For each gk(θk), it is possible to add
the desired number Jk of additive terms. These terms could be, for example, smoothing functions or
random effects.

A model does not need to specify each of the components of θ. For example, it is possible to use
a GAMLSS that specify only the location parameter. In this case, θ would simply become θ = {µ}.
For our telematics data, we choose to model the parameter λi,t with smoothing function by Equation (5),
and ν is kept constant for all individuals.

Please note that in Equation (5), Xkβk represents the parametric part that is present in GLMs and
∑Jk

j=1 Zj,kγj,k is the non-parametric part. Xk is a known design matrix of dimensions n× J′k and βk is a
vector of parameters of length J′k, which corresponds to the number of covariates in the parametric part
of the model. As for Zk and γk , they are respectively a known design matrix of dimensions n× qj,k
and a vector of random variables of length qj,k. The shapes of Zk and γk depend on the additive
functions used. If a smooth function can be expressed in linear form, Equation (5) can be rewritten as

gk(θk) = Xkβk +
Jk

∑
j=1

hj,k(xj,k),

where hj,k is a smooth non-parametric function.

5.2. Numerical Illustration

To use GAMLSS, many distributions are available in the R package gamlss. Unfortunately, the MVNB
distribution is not one of them (the distribution is however implemented by itself in the package
multinbmod). Consequently, we have to write our own code for convenience. As shown in Equation (6),
to fit the model, we maximize a penalized log-likelihood function lp, integrating a quadratic penalty
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γT Gγ, where G is a penalty matrix for the vector of random effects parameters γ. The penalty matrix
G is very often define as ΛDT

r Dr, where different formulations are possible for Dr. In our work,
Dr is a (qj,k − r) × qj,k difference matrix of order r as defined in Rigby and Stasinopoulos (2005),
taking r = 2 (default). r corresponds to the argument “order” in R function pb.control for
P-splines. A hyper-parameter, noted here Λ ∈ R+, controls the weight given to the penalty and,
thus, the smoothness of the smoothing function. The greater its value, the smoother the resulting
estimated function. K = 2 penalties are added in the log-likelihood, one for each smoothing function
included in the model. l stands for the log-likelihood of the joint distribution associated with
Equation (3).

lp = l − 0.5
2

∑
k=1

Jk

∑
j=1

γT
j,kG(Λ)j,kγj,k (6)

The model is constructed as follows. As in Section 3, the mean parameter is represented by (1).
On the other hand, unlike Section 3, we now work with cubic P-splines as our smoothing functions.
Choosing the optimal number of nodes in a regression spline is not an obvious task. In Section 3,
the number of nodes was determined by trial and error with different combinations for the two smooth
functions. The number of nodes was chosen graphically using the representation of the smoothing
function (Figure 9) to compromise between the accuracy of the data and smoothness. We now try a
different approach that does not require us to select several nodes.

In a P-spline, we choose a relatively large number of knots, and wiggliness is controlled by
a penalty parameter for each smoothing function. For instance, we used 20 knots for each spline,
but "a relatively large number of knots" depends on your context and data. P-splines are smoothers
based on B-splines with a difference penalty on coefficients of adjacent B-splines, which are strictly
local polynomial functions (of a degree three, for our use). For further information on B-splines and
P-splines, refer to Eilers and Marx (1996) and Wood (2017). P-splines have the advantage of offering
flexibility without being cumbersome to implement.

To select the penalty parameters in G(Λ) associated with both p-splines of the contract duration
and the distance traveled, we test out multiple combinations of values of Λ = {Λ1, Λ2}. We proceed
in two steps: we first adjust the model for all the couples of a grid of parameters. Large steps are used
to cover an interval ranging from small values to very large values for Λ1 and Λ2. Then, we examine
the regions in which the parameter value models with the best AIC are obtained, and we restart a
more specific search in these regions with smaller steps. Following multiple estimations of models,
the best model was selected based on the AIC criteria that consider the number of effective degrees of
freedom and the interpretability of the results.

Please note that this model was also fitted with a few covariates: gender (female or other),
marital status (married or other) and vehicle usage (commute, pleasure or other). As shown in
Equation (1), covariates can be added in the λi,t parameter. Adding covariates does not change the
shape of the splines, but it does tend to increase the value of ν as more heterogeneity is explained.

The fitted smooth functions are illustrated at Figure 10. We can see that the functions are very
different from Figure 9. Indeed, even if we observed a similar decrease for the upper quantile of the
distribution for the distance traveled, the highest point before the decrease is at a later point where
the data are very scarce. This can be seen as an improvement over the previous model: we obtain a
strictly positive relationship between claim number and distance driven until 60,000 km driven. For the
contract duration, Figure 11 shows a nearly proportional relationship between the time exposure and
the claims frequency, hence similarities with Figure 9.
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Figure 10. exp(ŝ1(km)) and exp(ŝ2(year)) from the GAMLSS with random effects model estimated
with Canadian data.
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Figure 11. ŝ2(year) from the GAMLSS with random effects model estimated with Canadian data.

As mentioned, the MVNB distribution is not available in the gamlss package and the confidence
bands displayed in Figure 10 were generated by bootstrap. We turn to this alternative, because the
penalty in P-splines does not allow calculating confidence intervals as easily as in the case of B-splines.
Bootstrap is a common approach to deal with this problem. We resampled with replacement a sample
of size n. Given the estimated parameters from the maximum penalized log-likelihood procedure,
except for the parameters of the spline for which we wish to construct the confidence bands, we estimate
the parameters of the spline with this re-sample. We repeat these steps many times to construct an
empirical distribution for each parameter of the spline. We construct the lower (upper) band of
the spline by taking the 5th (95th) percentile of each parameter distribution. Each repetition of this
procedure could take some computational time, but it converges with a relatively small number of
iterations. As is usually recommended, we used 1000 repetitions to find those values. We found that
the values of the 5th and 95th percentile of a 100-repetition-bootstrap are very similar to the percentiles
of a 1000-repetitions-bootstrap. Considering the calculation time required for this procedure, this is an
advantage that the bootstrap stabilizes quickly.

To conclude the MVNB, note that this distribution and other panel distribution for claim counts
can be used for predictive rating, where it can be shown that the predictive distribution of Ni,T depends
on past values of λi,t and ni,t, for t = 1, . . . , T − 1. To illustrate the situation, we obtained a value of
ν̂ = 6.57 for an MVNB with contract duration as an offset, but without driven distance, while the final
GAMLSS model with 2 splines based on the MVNB generates ν̂ = 8.25. Without going into details,
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given that our objective for this paper is to measure the impact of distance driven, it means that a
rating structure based on MVNB with telematics information reduces the unexplained variance of
the model, while offering smaller penalties/discounts for drivers who claim/do not claim. We refer
to Denuit et al. (2019) for predictive rating models with telematics information.

6. Fixed Effects

6.1. Model Specification

In the fixed effects model, we consider each αi, i ∈ {1, ..., n} as an unknown parameter.
One approach would then be to estimate all those parameters, as well as the p parameters associated
with the covariates, by maximum likelihood. That means that at least n + p + 1 parameters should
be estimated, which is quite a high number of parameters given that Ti is usually small for insurance
datasets. The problem with this ML estimation is that it does not necessarily generate convergent
estimates in the classical case of a T fixed and n → ∞. Moreover, the large number of parameters
in the model causes what is called incidental problem, which means that an incorrect estimation of
the fixed effects α generates incorrect estimates of β associated with covariates in the mean. In the
case of a logistic regression, for example, it has been shown that the β̂MLE were indeed biased.
However, hopefully, it has been shown that a fixed effects model based on a Poisson distribution does
not have this problem (see Cameron and Trivedi (2013) for a detailed explanation).

Consequently, for a fixed-effect Poisson regression model of mean αFE
i λFE

i,t , it can be shown that
the first-order condition to obtain each αi is simply

α̂i =
ni,•
λi,•

, (7)

where αi for each insured i was directly estimated using MLE. For the β parameters, the first condition
by MLE can be shown to be equal to:

n

∑
i=1

Ti

∑
t=1

xi,t

(
ni,t − λFE

i,t
ni,•
λFE

i,•

)
= 0. (8)

When looking closely at this equation, some details about β estimation for fixed effects can
be deduced.

1. When we compare Equations (4) (first-order condition equation of the random effects model) and
(8), we see that when T is large, or when ν→ 0, random and fixed effects models are equivalent.
However, in our data, the number of contracts Ti observed for each insured i is small, while ν̂

is significantly greater than zero. This results in different estimation equations between the
two models.

2. Individuals observed for a single insured period, i.e., with Ti = 1, are not considered in the
estimation of the β parameters;

3. Individuals who have not filed claims with the insurer do not contribute to the estimation either.

Indeed, for an individual i that does not have a claim, we have ∑T
t=1 xi,t

(
0− λFE

i,t
t×0
λFE

i,•

)
= 0 which

is constant, whatever the value of β.
4. It is necessary to restrict the covariates xi,t included in λFE

i,t to those that change over time.
Consequently, this also rules out the inclusion of an intercept in the model.

5. If λFE
i,t does not change over t = 1, . . . , Ti for an individual i, this policyholder does not contribute

to the estimation (even if they claimed). The ratio
λFE

i,t
λFE

i,•
is the key element in the estimation of

β, where it is used to find the best “weight” to apply at each ni,t to approximate ni,•. In other
words, to measure the specific effect of a covariate x, the driving experience of an insured must be
measured with and without the effect of x. For the distance driven, this seems to be exactly what
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we are looking for. Indeed, as mentioned in Section 3, we are looking for the marginal impact of
each extra kilometer driven when insureds decide to use their car rather than leaving it at home.

6.2. Poisson Fixed Effects and Smoothing Functions

We show that fixed effects modeling with smoothing functions is possible using the GAM theory.
Indeed, as mentioned Cameron and Trivedi (2013), each αi can be seen as a simple covariate identifying
the insured i. Consequently, by

• removing insureds without claim,
• removing insured observed for only one insured period Ti,
• adding a factor covariate x for insured identification,

the Poisson fixed effects model can be seen as a basic Poisson regression model without an intercept.
Being part of the linear exponential family of distribution, GAM theory can then be used when
smoothing functions are added to the mean parameter of the distribution.

6.3. Numerical Illustration

In practice, as mentioned, it is relatively easy to implement the fixed effects model with R;
we simply used the gam function from the package mgcv. To include fixed effects in the model the
intercept of the model is dropped. We include a unique identifier variable for each policyholder as a
factor variable and we include the distance driven in the model using a cubic spline s. As for the GAM
of Section 3, we used a cubic spline for the modeling. The cubic spline yields to very similar results
to those for a penalized spline, but for a fraction of the computation time. Unlike the two previous
approaches, we decided to illustrate the usage of the Poisson fixed effects by not including a smoothing
function for the duration because our objective in this research is to measure the marginal effect of
the distance on the claim frequency. If we want to measure the risk of each additional kilometer the
insured decides to drive, the duration of the contract is not important. Put another way, we want to
construct a rating structure based solely on the distance driven as a risk measure. Figure 12 shows the
results for the relationship between exp(s(km)) and claim frequency.
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Figure 12. GAM with fixed effects estimated with Canadian data.

For the fixed effects model, we see that the relationship between the distance traveled on the
claim frequency is always increasing, and is even almost linear. To highlight this linear effect, a line
had been added to the graph to show how close the relationship is to a linear relationship. Toward the
end, there is a noticeable deviation from the linear relationship, but only 0.3% of the observations are
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beyond this point, which is not very significant. What has been called the “learning effect”, observed in
Section 3, has disappeared and we observe a much more logical and coherent relationship between
distance traveled and frequency than before. The relationship between claim frequency and the
distance driven should be understood as the marginal impact of each additional kilometer driven or
not-driven. Explicitly, as we approximated exp(s(km)) by 0.25 + 1

15,000 kmi,t (the red line in Figure 12),
we then have

Nit ∼ Poisson (exp(αi) exp(s(km)))

∼ Poisson (exp(αi)(a + b kmi,t))

∼ Poisson
(

0.25 exp(αi) +
1

15,000
exp(αi) kmi,t

)
.

We see that the slope, i.e., the marginal impact of each additional kilometer driven or not-driven,
is not the same for each insured because it depends on αi. To illustrate this difference, we use the
estimated values of αi for several insureds. Figure 13 shows the relationship between claim frequency
and distance driven for different individuals (the policyholder with the minimum, maximum, median,
25th and 75th percentile individual parameter value). With this model, we then reconcile the intuition
that each kilometer should increase the risk for an individual, but that this increase could be different
for each driver.

In summary, instead of referring to the “learning effect” to understand the left-hand graph of
Figure 9, we should understand instead that typical insureds who drive more than 60,000 km per year
are better risks per kilometer than insureds who drive approximately 40,000 km per year. That obviously
does not mean that insureds that drive 40,000 km per year should drive 60,000 km to reduce their
risk. The difference between insureds related to their risk per kilometer can be explained by many
factors: more frequent use of the highway, higher proportion of driving outside rush hours, etc.
However, for each driver, independently of their driving risk per kilometer, the risk of an accident will
always increase for each additional kilometer driven (by approximately 1

15,000 ).
To conclude about the fixed effects model, note that the risk is still present even when the driving

distance is zero. This is counter-intuitive because we can presume that someone who does not drive
at all should have an expected claim frequency of zero. We agree. However, the real risk exposure is
never completely null and the intercept could represent situations where an accident is possible even
without driving a lot (e.g., it may occur very close to the insured’s home). Moreover, even if the car
would never actually be used, hit and run situations are also possible.
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Figure 13. Exposure measure for different individual parameters.
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6.4. Which Effect Should Be Used in Practice?

Random and fixed effects seem to generate contradictory results, and we may wonder which
model we should then use in practice, particularly for ratemaking. This has already been discussed in
the actuarial literature by Boucher and Denuit (2006), but it is worth reexamining it in the context of
telematics data, for distance driven in our case.

First, the fixed effects model is more general than the random effects model, which means that in
case of contradictory results, fixed effects should always be preferred. Equation (3) can be derived as:

Pr[Ni,1 = ni,1, ..., Ni,T = ni,T ]

=

ˆ ∞

0
Pr[Ni,1 = ni,1, ..., Ni,T = ni,T |xi,1, ..., xi,T , αRE

i ] f (αRE
i |xi,1, ..., xi,T)dαRE

i

=

ˆ ∞

0

(
T

∏
t=1

Pr[Ni,t = ni,t|xi,1, ..., xi,T , αRE
i ]

)
f (αRE

i )dαRE
i

=

ˆ ∞

0

(
T

∏
t=1

exp(−αRE
i λRE

i,t )
(αRE

i λRE
i,t )

ni,t

ni,t!

)
f (αRE

i )dαRE
i

We can see that we have to suppose an additional assumption: from the first to the second line
of development, f (αRE

i |xi,1, ..., xi,T) becomes f (αRE
i ). That means that we must suppose that random

effects are independent of observed covariates. Empirical analyses have shown that this is not the case.
Indeed, as shown by Boucher and Denuit (2006), random effects do not have the same distribution
for young drivers as for older ones, and depends on gender, for example. However, this is a typical
assumption made in actuarial science, and Boucher and Denuit (2006) discusses the consequences of
not satisfying this assumption. The authors concluded that the interpretation of random effects results
are tricky.

On the other hand, fixed effects modeling, even if theoretically better, is not amenable
to ratemaking:

• The model requires evaluating an individual parameter αi for each insured i in the portfolio.
This raises a problem for new policyholders.

• For a small value of Ti, α̂i may be incorrectly estimated.
• As the model estimates each individual αi as ni,•

λi,•
, policyholders without claims will have an

expected number of claims of 0, meaning that the premium of these insureds should be zero.

As Boucher and Denuit (2006) conclude for basic ratemaking purposes, even if theoretically
problematic, the random effects model should be preferred over a fixed effects model: random effects
are flexible enough to compute premiums for new insureds, and do not generate a premium of 0
for insureds without claims. However, actuaries must understand that the parameters obtained by
random effects models only indicate the apparent effect of the covariates, and not a causal effect
(or what might be call the real impact).

To compare the fixed effects results with those of the random effects model, the approximate
relationship for the median value of the individual parameter α̂i has been plotted over the smoothed
function of distance traveled of the random effect approach (see Figure 14). Interestingly, the two
curves are similar.

Regarding the use of the results of a fixed effects model, fixed effects should be used to understand
the “true” relationship between covariates and claims experience. For ratemaking, fixed effects should
be used to compute the premium surcharge for each additional kilometer the insureds drive. In our
case, it represents an increase of α̂i

1
15,000 per km, for claim frequency. Using this approach, insurers will

avoid the situation where an insured could see a premium reduction if, for example, he decides to
drive 50,000 km instead of 40,000 km, as we saw with a basic GAM approach. Fixed effects can be used
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to construct PAYD insurance solely based on kilometers driven for self-service vehicles, where drivers’
profile cannot be directly used for ratemaking. Research is required in this area.
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Figure 14. Comparison between the random effect approach and the fixed-effect approach for the
median value of the individual parameter.

7. Conclusions

We have studied the relationship between claim frequency and the distance driven through
different models by observing smooth functions. We first reproduced with our data the model
proposed by Boucher et al. (2017) and observed what the authors called the “learning effect,” where the
expected number of claims seems to decrease as kilometers driven increase. Given that most drivers in
the insurance portfolio already has many years of driving experience, we rejected the conclusion that an
additional 10,000–20,000 km adds enough experience to observe a learning effect. Instead, we supposed
that the residual heterogeneity was incorrectly captured by the underlying GAM model.

We then evaluated panel data models with fixed and random effects. Using GAMLSS theory,
which generalizes GAM, a multivariate count distribution for all the contracts of the same insured
was developed. Smoothing functions were added in the mean parameter of the multivariate
distribution, and a penalized log-likelihood was used to estimate the parameters. A grid of penalties,
generating more than 1000 MVNB, was used to find the best distribution. However, again, the fitted
smoothed function for the distance driven by the Poisson distribution with random effects did not
seem to correctly describe the relationship between distance and claim frequency. Indeed, the expected
number of claims still decreases disproportionately with kilometers driven.

We then used the Poisson with fixed effects to account for all individual characteristics.
Because Poisson with fixed effects can be estimated by using covariates that identify each insured,
we show that a simple GAM model without intercept can be used to include a smoothed function in the
mean parameter. We then observed an approximately linear relationship between the distance driven
and claim frequency when all individual characteristics have been accounted for in an individual
parameter. This unravels the potential for the distance traveled as an exposure variable, even though
this variable could not serve as a rating model. However, we think that the model proposed can be
used to compute the premium surcharge for additional kilometers the insured wants to drive, or as the
basis to construct PAYD insurance for self-service vehicle.

The new telematics data available in automobile insurance offers several new challenges.
These data increase the possibility of identifying factors that make accidents more probable. Models like
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the fixed effects models proposed in the paper, make it possible to better capture the real effect of
a covariate on risk. By using various models that do more than predict or calculate the insurance
premium, research by insurers could shed light on risk in auto insurance. We therefore believe that
many statistics compiled by telematics devices could be studied from such an angle in the future.
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