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Abstract: In a thorough study of binomial trees, Joshi introduced the split tree as a two-phase binomial
tree designed to minimize oscillations, and demonstrated empirically its outstanding performance
when applied to pricing American put options. Here we introduce a “flexible” version of Joshi’s
tree, and develop the corresponding convergence theory in the European case: we find a closed form
formula for the coefficients of 1/n and 1/n3/2 in the expansion of the error. Then we define several
optimized versions of the tree, and find closed form formulae for the parameters of these optimal
variants. In a numerical study, we found that in the American case, an optimized variant of the tree
significantly improved the performance of Joshi’s original split tree.

Keywords: binomial option pricing; error analysis for non-self-similar binomial trees; American
options; Black–Scholes

1. Motivation and Outline

There is a vast collection of literature describing numerical methods for evaluating options.
Among the most popular ones is the binomial tree method which is broadly used because of its
simplicity and flexibility. In most binomial models, the price Cn of a call/put option is connected to
the price CBS of the same call/put option in the Black–Scholes model via an equation of the form

Cn = CBS +
cn

n
+ O

(
n−3/2

)
, (1)

where cn is bounded but usually not constant, as it depends on n. When cn is constant, one can use
Richardson extrapolation to achieve convergence at a speed of order n−3/2. For European options,
models have been found Joshi (2009b); Leduc (2016a) for which the error has the form

Cn = CBS + O
(

n−i0/2
)

,

for an arbitrary value of i0. Obviously, there is a well-known closed form formula for the price
of European put/call options in the Black–Scholes model. However, this is not the case for the
American put. Yet techniques developed for path-independent European options proved to extend
to the study of path-dependent options—for instance, in Bock and Korn (2016); Carbone (2004);
Grosse-Erdmann and Heuwelyckx (2016); Heuwelyckx (2014); Leduc and Palmer (2019); Lin and
Palmer (2013). Note that the behavior of American options is also connected to the behavior of
European options: the American put can be expressed as the sum of a European put and an integral of
digital options Carr, Jarrow and Myneni (1992).

Many binomial trees have been suggested in the literature for computing option
prices—among others, Chance (2008); Chang and Palmer (2007); Chriss (1996); Cox, Ross and
Rubinstein (1979); Diener and Diener (2004); Jarrow and Rudd (1983); Jarrow and Turnbull (2000);
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Joshi (2009a, 2010); Korn and Müller (2013); Lamberton (1998); Leduc (2016b); Leisen and Reimer
(1996); Tian (1993, 1999); Trigeorgis (1991); Van Den Berg and Koudjeti (2000); Walsh (2003); Wilmott
(1998). In addition to the intellectual curiosity of understanding how tree models converge to their
limits (which is part of the important study of random sums of random variables), the interest in tree
methods for pricing security derivatives is motivated by those cases where no simple closed form
formula exists. This is the case for American options, for which explicit values for the coefficients ci(n)
in the expansion of the error

Cn = CBS +
c1 (n)

n
+

c2 (n)
n3/2 + · · ·+ O

(
n−(i0+1)/2

)
, (2)

are unknown, and finding them is a challenging and interesting problem. Even the speed of
convergence of binomial trees to its Black–Scholes limit remains a long lasting and difficult problem
Lamberton (1998, 2002, 2018). Thus far, only convergence has been established Amin and Khanna
(1994); Jiang and Dai (2004); Lamberton (1993). However, Joshi (2009b) pointed out that trading houses
need to efficiently price thousands of American options, and that understanding which tree is the best
at doing so is an important problem. Because of the lack of theoretical results, such questions and a lot
of the insight about the behavior of the convergence of tree methods for American put options have
been assessed through empirical studies, such as Broadie and Detemple (1996); Chan et al. (2009); Chen
and Joshi (2012); Hull and White (1988); Joshi (2009b, 2012); Staunton (2005); Tian (1999). Joshi (2009b)
studied a broad collection of trees for pricing American options, and found that the most effective ones
are the one from Tian (1993) and the split tree which was specifically designed by Joshi to minimize
the oscillations of the error. However, the convergence theory for the split tree has never been done.
The goal of this paper is to describe and generalize the split tree, analyze and optimize its convergence
in the European case, and numerically verify that variants of the split tree introduced in this paper
significantly improve the convergence of Joshi’s original split tree in the American case.

First we introduce a “flexible” version of Joshi’s original split tree. In Joshi’s original split tree,
a drift parameter λ is used in the binomial model up to a split time τ, after which the tree becomes a
Cox Ross Rubinstein (CRR) tree. Moreover, Joshi sets the split time to be the first time step τ greater
than or equal to half of the maturity, and he sets the drift parameter λ in such a way that after the
split, half the nodes of the tree are located on each side of the strike K. We relax these constraints on λ

and τ for the flexible split tree, and we only require that the strike be exactly halfway between two
nodes in the log-space, in order to maintain smoothness of the convergence. Joshi’s original split tree is
illustrated in Figure 1 where, for simplicity, the log-transformed values of the tree are displayed.

Next we analyze the convergence of the split tree in the European case. For self-similar binomial
trees (those for which the up and down mechanism is identical at every time step) the coefficients cn in
the expansion of the error (1) can be calculated with great generality using Diener and Diener (2004)
or Chang and Palmer (2007). However, the split tree is not self-similar because it is the mixture of
two trees: a flexible binomial tree as in Chang and Palmer (2007), and the Cox Ross Rubinstein (CRR)
tree. Hence Diener and Diener (2004) or Chang and Palmer (2007) cannot be used to calculate cn.
The calculation of cn is the first result of this paper. To the best of our knowledge, it is the first time
that an explicit error formula has been found for non-self-similar trees.



Risks 2020, 8, 81 3 of 26

Figure 1. Values of the split tree in the log-space for Joshi’s original split tree. Here n = 11, and from
time step k = ceil(n/2) onward, the tree is centered around the strike K.

Then we define optimal versions of the split tree. When fixing all the parameters of a split tree
except its split time τ, we say that a split time τ∗ is the optimal split time if the magnitude of the
coefficient cn in (1) is minimized when the split time is τ∗. When τ is the optimal split time, we say that
the tree is an optimal split tree. First we prove a general result which provides a close form formula
for the optimal split time τ∗. However, there are many optimal split trees, even when the parameters
S0, K, r, σ, and T are fixed. We consider optimal split trees under three natural constraints. The first
constraint is to have all the nodes in the final layer of the tree centered around the strike K, as in Joshi’s
original split tree. Joshi’s arbitrarily fast converging tree for European vanilla options Joshi (2010)
is also centered around the strike. This motivates studying the optimal split tree under this natural
constraint, and we call it the optimal centered split tree. However, the “centered” constraint sometimes
prevents us from getting cn = 0. This is our motivation for the maximal range optimal split tree, which
is the optimal split tree under the constraint that the range of values of the spot S0 for which cn = 0
at the optimal split time τ∗ is maximized. Now, the maximal range optimal split tree may result in a
very small optimal split time τ∗ and a large drift λ∗. If τ∗ is very small and the number of time steps
n is not large, there can be very few time steps prior to the split time, which may result in increased
oscillations of the error. This is the motivation for our last optimal split tree. In the optimal split tree
near τ, we seek to choose the drift λ in such a way that cn = 0 occurs at a split time which is as close as
possible to some target τ.

Finally, we test our split trees in the American case. Our numerical results suggest that one of
our optimal split trees is capable of significantly improving the accuracy of the convergence of Joshi’s
original split tree for the American put. We explain how this increased accuracy translates in a measure
of increased speed. In this measure, our numerical result suggests that one of our optimal split trees
could be significantly faster than Joshi’s original tree.

2. The Split Tree

In the setting of put or call options in the Black–Scholes model with spot price S0, strike K,
risk free rate r, volatility σ, and maturity T, the binomial tree method with n time steps, is equivalent to
replacing the Black–Scholes geometric Brownian motion with a process Sn

t such that at every positive
time t which is a multiple T/n, the process jumps from its current position Sn

t− to Sn
t−u with probability

p, and jumps to Sn
t−d with probability 1− p. Such trees are called self-similar because the jumping

mechanism is identical at every time step.



Risks 2020, 8, 81 4 of 26

Binomial trees typically exhibit an oscillatory convergence, and numerous choices of u, d, and p
have been proposed to smooth and accelerate this convergence. In the Cox Ross Rubinstein (CRR)
model Cox, Ross and Rubinstein (1979), the choices are

u = eσ
√

T/n, d = 1/u, p =
(

erT/n − d
)

/ (u− d) . (3)

In the flexible binomial trees, Chang and Palmer (2007); Tian (1999), the values of u, d, and p are
given by

u = eλσ2T/n+σ
√

T/n, d = eλσ2T/n−σ
√

T/n, p =
(

erT/n − d
)

/ (u− d) , (4)

where the additional drift parameter λ may depend on n but must remain bounded.
Let tk := kT/n. In the split tree with split time 0 < τ ≤ T and drift parameter λ, the process Sn

t
follows a flexible binomial tree with parameter λ on the interval 0 ≤ tk ≤ τ, and it follows the CRR
model thereafter. This means that the values of u, d and p used to calculate

Sn
tk
=

{
Sn

tk−1
u with probability p

Sn
tk−1

d with probability 1− p

at time tk are constant for 0 < tk ≤ τ and τ < tk ≤ T. In fact, the split tree uses u, d, and p from (4) for
0 < tk ≤ τ, and it uses (3) for τ < tk ≤ T. Seeking good convergence properties, the split tree requires
that log K falls exactly halfway between two nodes in the log-space. Here τ := τ (n) is any number in
the interval (0, T]. However, given a split time 0 < τ < T, the actual time at which the values of u and
d switch from (4) to (3) can only be a multiple of T/n. When τ is not a multiple of T/n, we round it to
the nearest multiple of T/n. In this manner, we can assume that τ is a multiple of T/n. Note that the
cases where τ = T and τ = 0 correspond to no splitting, which is treated in Chang and Palmer (2007).
Thus, in order to simplify the exposition, when calculating the coefficient of the error cn in

Cn = CBS +
cn

n
+ O

(
n−3/2

)
, (5)

we make the assumption that
0 < limn→∞τ ≤ limn→∞τ < T. (6)

As for λ, we can express it in the form

λ =
ln
(

K̂/S0

)
τσ2 (7)

where, for some integer ` = 0,±1,±2, . . . depending on n,

K̂ =

{
K exp

(
2`σ
√

T/n
)

exp
(
σ
√

T/n
)

if n is even
K exp

(
2`σ
√

T/n
)

if n is odd
(8)

or equivalently
K̂ = K exp

(
((n + 1)mod 2) σ

√
T/n

)
exp

(
(2`) σ

√
T/n

)
.

The parameter K̂ is actually a practical way of determining λ because one of the defining properties
of the split tree is that log K falls exactly halfway between two nodes in the log-space and this is
guaranteed by (7) and (8). To see this, consider first the special case where n is even, and where
τ = mT/n with m even. Then an even number of time steps, n−m, is left until maturity T. At time τ,
the tree is centered around

S0eλσ2mT/n = K̂ = K exp
(

2`σ
√

T/n
)

exp
(

σ
√

T/n
)

.
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This means that, if at time τ the total number of up movements is equal to the total number of
down movements in the tree, then the value of Sτ is K̂. As an even number of time steps is left until
maturity, it follows that in the CRR model (and therefore in the split tree) K̂ is a terminal node. Hence,
in the log space, the terminal nodes of the tree have the form

log K + (2`+ 2j + 1) σ
√

T/n, for j = 0,±1,±2, . . . .

The cases j = −` and j = −`− 1 give the two neighbors of log K. Thus, log K falls exactly halfway
between two nodes in the log-space, as claimed. The other cases (n even and m odd, n odd and m
odd, and n odd and m even) can be treated in a similar manner. Throughout this paper we make the
assumption that λ := λ (n) satisfies

limn→∞ |λ| < ∞, (9)

or equivalently
0 < limn→∞K̂ ≤ limn→∞K̂ < ∞. (10)

The simplest way to specify a split tree is via the split time τ and the implicit parameter `. Here is
a formal definition.

Definition 1 (Split tree with parameters τ and `). Consider a spot price S0, a strike K, a risk free rate r,
a volatility σ, a maturity T, and a number of time steps n ≥ 2. Given a split time 0 < τ ∈ (T/n)N, and some
integer `, define K̂ by (8), and define λ by (7). Define also u (t), d (t), and p (t) by

u (t) = eλσ2T/n+σ
√

T/n if 0 < t ≤ τ, u (t) = eσ
√

T/n if t > τ,

d (t) = eλσ2T/n−σ
√

T/n if 0 < t ≤ τ, d (t) = e−σ
√

T/n if t > τ

p (t) =
(

erT/n − d (t)
)

/ (u (t)− d (t)) .

Finally, define the time steps tk, for k = 0, 1, . . . , by tk = kT/n. The split tree Sn
t with parameter τ and `

is the stochastic process which is constant on each interval [tk, tk+1), such that Sn
0 = S0, and which at every

time step 0 < t ∈ (T/n)N, jumps from its current position Sn
t− to Sn

t−u (t) with probability p (t), and jumps
to Sn

t−d (t) with probability 1− p (t).

Definition 2. We say that a split tree is centered if ` = 0.

Definition 3. Joshi’s original split tree is the special case where ` = 0, and τ is the smallest time step greater
than or equal to T/2.

3. Rate of Convergence of the Split Tree

In this section, we provide two expressions for the coefficient of 1/n in the expansion in powers
of 1/

√
n of the error for the split tree value of a call option Cn, against the Black–Scholes price CBS.

We also show that the coefficient of 1/n1.5 is null. Given splitting parameters τ and λ, we find an
explicit formula for the value of c := c (λ, τ) in Cn = CBS + c/n+O

(
n−2). Here c is a smooth function

of λ and τ. In Section 3.1 we provide a generic expression for c, and in Section 3.2 we transform this
generic expression into an explicit closed-form formula.

3.1. Generic Expressions for the Coefficients of 1/n in the Error

We use the semigroup notation introduced by Leduc in Leduc (2013). Consider any Markov
process, for instance, a discrete Markov process St, t = 0, ∆t, 2∆t, . . . with St = S0eWt for some process
Wt with independent increments. Consider now Ex, the conditional expectation given that S0 = x.
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Then for any non-negative measurable function f , any 0 ≤ t ≤ T, and any x > 0, the Markov property
gives that

Ex ( f (ST)) = Ex (ESt ( f (ST−t))) .

Obviously, with
Et f (x) := e−rtEx ( f (St))

we obtain the discounted expectation semigroup operator. It satisfies

Et+s f (x) = EtEs f (x) = e−rtEx (Es f (St)) .

In other words, Et f (x) is the price of an option with maturity t and payoff function f , when S0 = x.
As always, the strike K, spot price S0, maturity T, risk free rate r, and volatility σ are fixed.

We denote by Sλ,n
t the flexible binomial model of Chang and Palmer (2007) with parameter λ and n

time-steps until maturity. Hence Sλ,n
t is the stochastic process associated with u, d, and p given by (4).

We denote by Eλ,n
t its semigroup operator. Note that the CRR model corresponds to a flexible binomial

model where λ = 0. Given a split time τ ∈ (T/n)N and drift parameter λ, we denote by Sn
t and En

t
the stochastic process and semigroup operator associated with the corresponding split tree. Finally,
Et denotes the semigroup operator associated with the geometric Brownian motion.

To shorten expressions we set

g (x) = max (x− K, 0) .

Then

En
t =


Eλ,n

t for 0 ≤ t ≤ τ

Eλ,n
τ E0,n

t−τ for τ ≤ t,
(11)

and the price Cn
T (S0) of a call option with maturity T in the split tree model can be written as

Cn
T (S0) = En

T g (S0) = Eλ,n
τ E0,n

T−τ g (S0) = e−rτES0

(
E0,n

T−τ g (Sn
τ)
)

.

Motivated by our extension of the results in Leduc (2013), Theorem A2 in Appendix C,
we introduce another abbreviation: given a non negative measurable bounded function h, we write:

Flexλ
τ h (S0) := −∑4

k=2
∆k (τ, λ)

k!
xk ∂k

∂xk Eτh (S0) , (12)

where

∆2 (τ, λ) := τ2
(

σ4λ2 + (−σ4 − 2rσ2)λ + (r2 + rσ2 +
5
12

σ4)

)
,

∆3 (τ, λ) := 2τ2σ2
(

σ2 + r− σ2λ
)

,

∆4 (τ, λ) := 2τ2σ4.

If h is smooth enough then Theorem A2 says that Flexλ
τ h (x) is the coefficient of 1/n in the

expansion of the error for an option with payoff h evaluated in the flexible model with parameter λ

when S0 = x.
Moreover, for every 0 ≤ t ≤ T and x > 0, we also use the notation

CRRt (x) := e−
1
2 d2

1,t(x)A0
t (x) , (13)
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where d1,t (x) and Aλ
t (x) are as in Chang and Palmer’s Theorem A1 given in Appendix B; that is,

Aλ
t (x) = −σ2t

(
6 + d2

1,t (x) + d2
2,t (x)

)
+ 4t

(
d2

1,t (x)− d2
2,t (x)

) (
r− λσ2

)
− 12t2

(
r− λσ2

)2
+ 12tσ2,

d1,t (x) =
ln( x

K )+(r+ 1
2 σ2)t

σ
√

t
, d2,t (x) = d1,t (x)− σ

√
t.

Note that CRRt (x) is the coefficient of 1/n in the expansion of the error of a call option in the
CRR model when S0 = x.

Let CBS
t (x) be the price of a call option in the Black–Scholes model of the option, when the

maturity is t, the strike is K, the risk free rate is r, the volatility is σ, and the spot price is x. The next
proposition provides a generic expression that connects the option’s price Cn

T (S0) in the split model to
the price CBS

T (S0) in the Black–Scholes model.

Proposition 1. Consider a European call option with strike K, spot price S0, maturity T, risk free rate r, and
volatility σ. Let the split time τ := τ (n), 0 < τ < T, be bounded away from 0 and T. Moreover, let the drift
λ := λ (n) be bounded and of the form λ = ln

(
K̂/S0

)
/
(
τσ2) for some K̂ := K̂ (n) of the form (8). Then the

price CBS
T (S0) in the Black–Scholes model is related to the price Cn

T (S0) in the split tree model by the equation

Cn
T (S0) = CBS

T (S0) + Splitτ (S0)
1
n
+ O

(
n−2

)
, (14)

where

Splitτ (S0) :=
(

T
τ

)
Flexλ

τ CBS
T−τ (S0) +

(
T

T − τ

)
EτCRRT−τ (S0) . (15)

3.2. Explicit Expressions for the Coefficients of 1/n in the Error

In this section we give an explicit closed form formula for Splitτ (S0) of (15). First note that

CBS
T−τ (x) = ET−τ g (x) with g (x) = max (x− K, 0) .

and
EτET−τ g (S0) = ET g (S0) = CBS

T (S0) .

It follows from (12) that

Flexλ
τ CBS

T−τ (S0) = −∑4
k=2

1
k!

∆k (τ, λ) Sk
0

∂k

∂xk CBS
T (S0) . (16)

The derivatives with respect to the spot price S0 of a call option in the Black–Scholes model are
well known, and from there we see that for 0 ≤ τ < T,

Flexλ
τ CBS

T−τ (S0) =
S0e−

1
2 d2

1
√

2π

(
−∆2 (τ, λ)

2
1

σ
√

T
+

∆3 (τ, λ)

6
d1 +

√
Tσ

Tσ2 (17)

−∆4 (τ, λ)

24
2Tσ2 + d2

1 + 3d1
√

Tσ− 1

T
3
2 σ3

)
,

where ∆k := ∆k (τ, λ) is as in Section 3.1, and

d1 := d1,T (S0) =
ln
(

S0
K

)
+
(

r + 1
2 σ2
)

T

σ
√

T
, d2 := d1 − σ

√
T.
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With simple algebraic manipulation we re-write (17) as

Flexλ
τ CBS

T−τ (S0) =
τ2

T2
S0e−

1
2 d2

1

24σ3T
√

2πT
∆ +

τ2

T2
S0e−

1
2 d2

1

24σ
√

2πT
P (λ) (18)

where
P (λ) := 4T

3
2 σ2

(√
Tσ2 + 6

√
Tr− 2σd1

)
λ− 12T2σ4λ2, (19)

and

∆ := −12Tσ2∆2 + 4
√

Tσ
(

d1 +
√

Tσ
)

∆3 +
(

1− 2Tσ2 − 3
√

Tσd1 − d2
1

)
∆4, (20)

∆k := ∆k (T, 0) .

The following theorem, proved in Appendix A, provides an explicit closed form formula for the
coefficient Splitτ (S0) of 1/n in the expansion of the error of a call option evaluated with the split tree.

Theorem 1. Consider a European call option with strike K, spot price S0, maturity T, risk free rate r, and
volatility σ. Let the split time τ := τ (n), 0 < τ < T, be bounded away from 0 and T. Moreover, let the drift
λ := λ (n) be bounded and of the form λ = ln

(
K̂/S0

)
/
(
τσ2) for some K̂ := K̂ (n) of the form (8). Then the

price CBS
T (S0) in the Black–Scholes model is related to the price Cn

T (S0) in the split tree model by the equation

Cn
T (S0) = CBS

T (S0) + Splitτ (S0)
1
n
+ O

(
n−2

)
, (21)

where

Splitτ (S0) =
S0e−

1
2 d2

1

24σ3T
√

2πT
∆ +

τ

T
S0e−

1
2 d2

1

24σ
√

2πT
P (λ) +

S0e−
1
2 d2

1

24σ
√

2πT

(
4Tσ2

)
, (22)

with

P (λ) := 4T
3
2 σ2

(√
Tσ2 + 6

√
Tr− 2σd1

)
λ− 12T2σ4λ2,

d1 :=
ln
(

S0
K

)
+
(

r + 1
2 σ2
)

T

σ
√

T
.

Note that when S0 = K and n is odd, λ = 0, and regardless of the value of τ, there is no splitting
since the process is CRR throughout. Our error formula therefore coincides with the formula in
Chang and Palmer (2007); that is,

SplitT (S0) =
S0e−

1
2 d2

1

24σ3T
√

2πT
∆ +

S0e−
1
2 d2

1

24σ
√

2πT

(
4Tσ2

)
=

S0e−
1
2 d2

1

24σ
√

2πT
A0

T (S0) . (23)

Note also that the case τ = T does not fall under the assumption of Theorem 1 above. However,
when τ = T there is actually no splitting and because K is exactly halfway between two nodes;
the oscillating term ∆n in the formula of Chang and Palmer (2007) vanishes. Simple algebraic
manipulations show again that our formula coincides with the formula in Chang and Palmer (2007)
(see Theorem A1 in Appendix B); that is

SplitT (S0) =
S0e−

1
2 d2

1

24σ3T
√

2πT
∆ +

S0e−
1
2 d2

1

24σ
√

2πT
P (λ) +

S0e−
1
2 d2

1

24σ
√

2πT

(
4Tσ2

)
=

S0e−
1
2 d2

1

24σ
√

2πT
Aλ

T (S0) .

(24)
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The following provides another expression for Splitτ (S0) which we will use for defining optimal
split trees.

Lemma 1. For 0 < τ ≤ T, the term Splitτ (S0) can be rewritten as

Splitτ (S0) = F (a− b/τ) . (25)

where

F =
S0e−

1
2 d2

1

24σ3T
√

2πT

a :=
(

∆ + 4T2σ4
)
+ ln

(
K̂/S0

) (
T
(

σ2 + 6r
)
− 2σ

√
Td1

)
4Tσ2,

b := 12T2σ2 ln2
(

K̂/S0

)
.

(26)

Proof. This follows from minor algebraic manipulation of (22) after replacing λ by ln
(

K̂/S0

)
/
(
τσ2).

4. Optimal Split Trees

It is natural to optimize the splitting parameters τ and λ (or equivalently τ and `) for performance:
we want to minimize the value of

∣∣Splitτ (S0)
∣∣ in

Cn = CBS + Splitτ (S0) /n + O
(

n−2
)

. (27)

In fact, we will show in this section that unless S0 is deeply in or out of the money, the splitting
parameters can always be chosen in such a way that Splitτ (S0) = 0.

All parameters being fixed except the split time τ, we say that a split time τ∗ is the optimal split
time if the magnitude of Splitτ (S0) is minimized when τ is equal to τ∗. When the split time is equal to
the optimal split time, we say that the tree is an optimal split tree.

In this section we study optimal split trees under three constraints, and under these constraints
we find closed form formulae for the optimal split time τ∗ and the optimal drift parameter λ∗.

1. For centered trees, where ` = 0, we find the optimal split time τ∗, which minimizes
∣∣Splitτ (S0)

∣∣.
2. We find τ∗ and λ∗, which maximize the range of values of S0 for which Splitτ (S0) = 0.
3. We find τ∗ and λ∗, which minimize the magnitude of Splitτ (S0) under the constraint that τ∗ is

as close as possible to some specific value τ.

4.1. The Optimal Split Time τ∗ Given `

Before defining our optimal split trees, we a need a general result which is the topic of this section.
Recall that

K̂ = K exp
(
((n + 1)mod 2) σ

√
T/n

)
exp

(
(2`) σ

√
T/n

)
,

and that, given a split time τ,
λ = ln

(
K̂/S0

)
/
(

τσ2
)

.

Proposition 2 (Minimum of
∣∣Splitτ (S0)

∣∣ given `). Consider a European call option with strike K, spot price
S0, maturity T, risk free rate r, and volatility σ. Let

a :=
(

∆ + 4T2σ4
)
+ ln

(
K̂/S0

) (
T
(

σ2 + 6r
)
− 2σ

√
Td1

)
4Tσ2,

b := 12T2σ2 ln2
(

K̂/S0

)
.
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Assume that n ≥ 2, and consider integers ` := ` (n) such that K̂ is bounded and bounded away from
0. Then the magnitude of the function τ 7→ Splitτ (S0) defined by (25) is minimized when τ takes the value
τ̂ := τ̂ (n) given by

τ̂ =


b
a if SplitT (S0) > 0 and K̂ 6= S0

T if SplitT (S0) ≤ 0 or K̂ = S0

(28)

Proof. We use Lemma 1 to write
Splitτ (S0) = F (a− b/τ) .

If b = 0 (or equivalently K̂ = S0) then the value of Splitτ (S0) does not depend on τ. Hence
τ = T minimizes

∣∣Splitτ (S0)
∣∣. Note that b ≥ 0. Hence it is clear that Splitτ (S0) ≤ SplitT (S0) for

every 0 < τ ≤ T. Thus, if SplitT (S0) ≤ 0, then the magnitude of Splitτ (S0) is minimized when
τ = T. It remains to consider the case where b 6= 0 and SplitT (S0) > 0. Then a > 0 because
SplitT (S0) = a − b/T > 0 and b > 0. Moreover, Splitτ (S0) = 0 when τ takes the value b/a.
Since a > 0 and b > 0, it is clear that b/a is always strictly positive. It remains to show that
b/a ≤ T. In fact, b/a < T because Splitτ (S0) is a strictly increasing function of τ, Splitb/a (S0) = 0,
and SplitT (S0) > 0.

Theorem 2 (Optimal splitting time τ∗ given `). Consider a European call option with strike K, spot price
S0, maturity T, risk free rate r, and volatility σ. Let an, bn, cn be defined by

an :=
(

∆ + 4T2σ4
)
+ ln

(
K̂/S0

) (
T
(

σ2 + 6r
)
− 2σ

√
Td1

)
4Tσ2,

bn := 12T2σ2 ln2
(

K̂/S0

)
, cn := SplitT (S0) = an − bn/T.

Assume that n ≥ 2, and consider integers ` := ` (n) such that K̂ is bounded, bounded away from 0,
and K̂ := K̂ (n) converges to K̂∞ as n → ∞. Let a∞, b∞, and c∞ be the limits of respectively an, bn, and cn.
When c∞ > 0, assume additionally that n is large enough so that an, bn, cn > 0. Let τ̂ := τ̂ (n) given by

τ̂ =


bn
an

if c∞ > 0 and b∞ > 0

T otherwise.
(29)

Round τ̂ into τ∗ := τ∗ (n), the nearest multiple of T/n in the interval (0, T], and consider the value Cn of
a call option evaluated in the split tree with parameters ` and τ∗. If c∞ > 0 and b∞ > 0, then Cn converges to
its Black–Scholes limit CBS at a speed of order 1/n2. Otherwise, the convergence occurs at a speed of order 1/n.

Proof. When τ̂ = T, the tree is not a split tree but rather a flexible binomial tree with parameter
λ = ln

(
K̂/S0

)
/
(
Tσ2) and the rate of convergence is 1/n, as shown in Chang and Palmer (2007).

We just need to consider the case where c∞ > 0 and b∞ > 0. In this case we assume that n is big
enough so that bn > 0 is bounded away from 0, and an > 0. Note that an is bounded. Thus τ̂ = bn/an

is bounded away from 0. It follows that τ∗ is also bounded away from 0. From Lemma 1

cn = SplitT (S0) = an − bn/T > 0 and Splitτ (S0) = an − bn/τ.

Because Splitτ̂ (S0) = 0 we see that τ̂ < T. Note, furthermore, that it is not possible that τ̂ → T
when n→ ∞, because otherwise

0 = lim
n→∞

(
an −

bn

τ̂

)
= a∞ −

b∞

T
= c∞ > 0.

Thus τ∗ is also bounded away from T. We have shown that τ∗ is bounded away from 0 and from T.
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Finally, the rounding of τ̂ into its nearest strictly positive time step, τ∗, affects the value of

Splitτ̂ (S0) = F (an − bn/τ̂) = 0

by an amount of order 1/n, since τ → Splitτ (S0) is continuously differentiable for τ > 0 and its first
derivative, bn/τ2, is bounded. Thus

Splitτ̂ (S0) = 0 implies that Splitτ∗ (S0) = O (1/n) .

Theorem 1 then yields that

Cn = CBS
T (S0) + Splitτ∗ (S0)

1
n
+ O

(
n−2

)
= CBS

T (S0) + O
(

n−2
)

,

as wanted

Remark 1. When considering optimal split tree with maturity T, the case where τ = T can be seen as a
degenerate case of the split tree. Trees of this family, introduced by Chang and Palmer (2007), are called flexible
trees. We set τ = T when the magnitude of the coefficient an of 1/n in the expansion of the error (5) is not
minimized by any split tree but is rather minimized by a flexible tree.

4.2. The Optimal Centered Split Tree

Joshi’s original split tree is a centered split tree because ` = 0. However, in general, Joshi’s tree
is not the optimal centered split tree because it does not minimize the magnitude of the coefficient
of 1/n in the expansion of the error. This is because τ = 0.5 is not, in general, the optimal split time.
The optimal split time is given by Theorem 2. Note that, obviously, when ` = 0,

lim
n→∞

K̂ = lim
n→∞

K exp
(
((n + 1)mod 2) σ

√
T/n

)
= K.

When noting that an, bn, and cn converge to a∞, b∞, c∞ where

an :=
(

∆ + 4T2σ4
)
+ ln

(
K̂/S0

) (
T
(

σ2 + 6r
)
− 2σ

√
Td1

)
4Tσ2,

bn := 12T2σ2 ln2
(

K̂/S0

)
, cn := an − bn/T,

a∞ :=
(

∆ + 4T2σ4
)
+ ln (K/S0)

(
T
(

σ2 + 6r
)
− 2σ

√
Td1

)
4Tσ2,

b∞ := 12T2σ2 ln2 (K/S0) , c∞ := a∞ − b∞/T,

it is easy to apply Theorem 2 in order to find the optimal split time.

Definition 4 (Optimal centered split tree). Consider a European call option with strike K, spot price S0,
maturity T, risk free rate r, and volatility σ. Let n ≥ 2, assume that ` = 0 for every n, and let τ∗ be as in
Theorem 2. The optimal centered split tree is defined to be the split tree with parameters ` and τ∗.

4.3. The Maximal Range Optimal Split Tree

Recall that if Cn
T (S0) is the price of a call option in a split tree model, and CBS

T (S0) is the
corresponding Black–Scholes price, then

Cn
T (S0) = CBS

T (S0) + Splitτ (S0)
1
n
+ O

(
n−2

)
.
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In the optimal centered split tree, Splitτ (S0) = 0 unless S0 is too deep in or out of money.
Otherwise, the value of |Splitτ (S0) | is minimized. This occurs under the constraint that ` = 0. Here we
want to lift that constraint in order to maximize the range of values of S0 for which Splitτ (S0) = 0 can
be achieved.

Recall that for split trees

λ = ln
(

K̂/S0

)
/
(

τσ2
)

, (30)

K̂ = K exp
(
((n + 1)mod 2) σ

√
T/n

)
e2`σ

√
T/n for some ` ∈ Z. (31)

Assume that K̂ := K̂ (n) is bounded, bounded away from zero, and converges to K̂∞ as n →
∞. Recall an and bn from Theorem 2. Then the optimal time τ∗ takes the form τ∗ = bn/an and
Splitτ∗ (S0) = 0 when

c∞ = lim
n→∞

cn = lim
n→∞

(
an −

bn

T

)
= lim

n→∞
SplitT (S0) > 0.

A glance at (25) reveals that SplitT (S0) is a polynomial of degree 2 in ln
(

K̂/S0

)
, and the coefficient

of ln2
(

K̂/S0

)
is negative. Alternatively, SplitT (S0) can also be seen as a polynomial of degree 2 in λ,

λ = ln
(

K̂/S0

)
/
(

Tσ2
)

,

and again the coefficient of λ2 is negative. We want to find the value of ` := ` (n) (or the corresponding
value of λ) which maximizes SplitT (S0). This maximizes the range of values of S0 for which c∞ > 0
and Splitτ∗ (S0) = 0 are guaranteed.

As a function of λ, SplitT (S0) achieves its maximum whenever TP (λ) reaches its maximum.
Now TP (λ) is just a polynomial of degree two in λ,

TP (λ) = αλ2 + βλ, α = −12T2σ4, β = 4T
3
2 σ2

(√
Tσ2 + 6

√
Tr− 2σd1

)
.

Hence it reaches its maximum at

λ̂ = −
4T

3
2 σ2

(√
Tσ2 + 6

√
Tr− 2σd1

)
2 (−12T2σ4)

=
2Tr− ln (S0/K)

3Tσ2 . (32)

Through the formula (30) and (31), the optimal drift λ̂ translates into an optimal choice ˆ̀ of ` given by

ˆ̀ =


Tσ2λ̂− ln(Keσ

√
T/n/S0)

2σ
√

T/n
if n is even

Tσ2λ̂− ln (K/S0)

2σ
√

T/n
if n is odd,

or equivalently

ˆ̀ =
Tσ2λ̂− ln(K exp

(
((n + 1)mod 2) σ

√
T/n

)
/S0)

2σ
√

T/n
.

We can also write ˆ̀ as
ˆ̀ =

D
2σ
√

T/n
− 1

2
((n + 1)mod 2) , (33)

where
D = Tσ2λ̂− ln(K/S0).
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However, ˆ̀ may not be integer, so we round it to the nearest integer `∗. This is essential to
preserve the structure of a split tree. Let us write κ̄n := ˆ̀ − `∗. Obviously −0.5 ≤ κ̄n < 0.5. It is easy to
verify that

K̂ = K exp
(
((n + 1)mod 2) σ

√
T/n

)
exp

(
D− κ̄n2σ

√
T/n

)
.

Hence
lim

n→∞
K̂ = KeD.

In this manner we can define the maximal range optimal split tree in a similar manner as we
defined the optimal centered split tree.

Definition 5 (Maximal range optimal split tree). Consider a European call option with strike K, spot price
S0, maturity T, risk free rate r, and volatility σ. Let n ≥ 2, let ˆ̀ be as in (33), let `∗ be the nearest integer to ˆ̀,
and set ` = `∗ for every n. Let τ∗ be as in Theorem 2. The maximal range optimal split tree is defined to be the
split tree with parameters `∗ and τ∗.

4.4. The Optimal Split Tree Near τ

Suppose that a constant 0 < τ < T is given. Recall ∆ defined in (20), and note that Splitτ (S0) can
be written as

Splitτ (S0) =
S0e−

1
2 d2

1

24σ3T
√

2πT
Pτ (λ) ,

where

Pτ (λ) = aτλ2 + bτλ + c,

aτ = −12T2σ6τ, bτ = 4T
3
2 σ4τ

(√
Tσ2 + 6

√
Tr− 2σd1

)
, c =

(
4T2σ4 + ∆

)
.

Here our goal is to choose τ̂ as close as possible to τ in such a way that Splitτ̂ (S0) = 0, or if this
cannot be achieved, we want to choose τ̂ in a way that minimizes |Splitτ̂ (S0) |.

Let Dτ := b2
τ − 4aτc. Then Dτ = ατ2 + βτ, where

α = 16T3σ8
(√

Tσ2 + 6
√

Tr− 2σd1

)2
, β = 48T2σ6

(
4T2σ4 + ∆

)
.

We need to consider three cases. Case (1) Dτ ≥ 0. Then it is possible to choose a real value λ̂ of λ

such that Pτ

(
λ̂
)
= 0. There are two choices for λ̂ which are given by

λ̂ =
−bτ ±

√
b2

τ − 4aτc
2aτ

.

Case (2) Dτ < 0 and α > 0. This implies that β < 0. Now if we replace τ by 0 < τ̂ = −β/α then
Dτ̂ = 0. Note that

− β

α
= − 12T2σ4 + 3∆

4σ2 (2Tr− ln (S0/K))2 . (34)

Note also that the roots of x 7−→ Dx are 0 and τ̂. Since α > 0, this means that Dx < 0 if and only
if 0 < x < τ̂. Thus 0 < τ < τ̂. Now there are two possibilities: either τ < τ̂ < T or τ < T ≤ τ̂. In the
first case the value of λ that we want is given by

λ̂ = − bτ̂

2aτ̂
=

2Tr− ln (S0/K)
3Tσ2 ,
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since it gives Pτ̂

(
λ̂
)
= 0. In the second case, We understand that PT (λ) < 0 for every value of λ.

Hence we want to maximize PT (λ). This means choosing

λ̂ = − bT
2aT

=
2Tr− ln (S0/K)

3Tσ2 .

Case (3) Dτ < 0 and α = 0. This implies that β < 0. In this case, Dx < 0 for every x, and thus
Pτ̂

(
λ̂
)
< 0 for every value of τ̂ and λ̂. However, we know from Lemma 1 that regardless of the value

of the parameter `, if Splitτ (S0) < 0 for every τ then Splitτ (S0) is maximized when τ = T. Hence we
select τ̂ = T, and we want to maximize PT

(
λ̂
)
. The maximum occurs at

λ̂ = − bT
2aT

=
2Tr− ln (S0/K)

3Tσ2 .

The three cases can be summed up in the following definitions:

τ̂ =


τ if D ≥ 0
(−β/α) ∧ T if D < 0 and α > 0
T if D < 0 and α = 0.

(35)

and

λ̂ =


−bτ̂±
√

b2
τ̂−4aτ̂c

2aτ̂
if τ̂ = τ

− bτ̂
2aτ̂

= 2Tr−ln(S0/K)
3Tσ2 if τ̂ 6= τ.

(36)

Using the (30) and (31), with `∗, τ∗, λ∗ replaced by their approximations ˆ̀, τ̂, λ̂ we obtain

ˆ̀ =
τ̂σ2λ̂− ln(K exp

(
((n + 1)mod 2) σ

√
T/n

)
/S0)

2σ
√

T/n
,

which can be re-written as
ˆ̀ =

D
2σ
√

T/n
− 1

2
((n + 1)mod 2) , (37)

where
D = τ̂σ2λ̂− ln(K/S0). (38)

In order to preserve the structure of a split tree, ˆ̀ is rounded to the nearest integer `∗. From `∗,
we obtain K̂ as

K̂ = K exp
(
((n + 1)mod 2) σ

√
T/n

)
e2`∗σ

√
T/n.

We define κ̄n := ˆ̀ − `∗. Obviously −0.5 ≤ κ̄n < 0.5. Then

K̂ = K exp
(
((n + 1)mod 2) σ

√
T/n

)
exp

(
D− κ̄n2σ

√
T/n

)
,

and
lim

n→∞
K̂ = KeD.

The rounded value of τ̂ appears to be a good estimate of τ∗, but nothing guarantees that it is
accurate. We need to apply Theorem 2 in order to find τ∗ from `∗. However, there can be two values of
`∗ (corresponding to the possible two different values for ˆ̀). It turns out that we can carefully choose
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ˆ̀ in order to further smooth out the convergence. Note that the choice of ˆ̀ exists only when τ∗ < T.
In this case, Theorem 2 says that

τ∗ =
bn

an
=

12T2σ2 ln2 (K exp
(

D̂
)

/S0
)

(∆ + 4T2σ4) + ln
(
K exp

(
D̂
)

/S0
) (

T (σ2 + 6r)− 2σ
√

Td1

)
4Tσ2

,

where
D̂ := D− κ̄n2σ

√
T/n.

Because D̂ has oscillations of order
√

1/n, so does τ∗. The best choice of D is the one for which
these oscillations are minimized. Hence we determine the value of D (and therefore the values of λ̂, ˆ̀,
`∗, and τ∗) by choosing the value of D for which the magnitude of ∂τ∗/∂D is minimized. Now

∣∣∣∣ ∂

∂D
τ∗
∣∣∣∣ =

∣∣∣∣∣∣ ∂

∂D
12T2σ2 ln2 (K exp (D) /S0)

(∆ + 4T2σ4) + ln (K exp (D) /S0)
(

T (σ2 + 6r)− 2σ
√

Td1

)
4Tσ2

∣∣∣∣∣∣ .

By simplifying, we obtain∣∣∣∣ ∂

∂D
τ∗
∣∣∣∣ =

∣∣∣∣∣12T2σ2 (D + ln (K/S0))
((

∆ + 4T2σ4)+ θ
)

θ2

∣∣∣∣∣ , (39)

where
θ :=

(
∆ + 4T2σ4

)
+ (D + ln (K/S0))

(
T
(

σ2 + 6r
)
− 2σ

√
Td1

)
4Tσ2.

(Note that the case where θ = 0 is irrelevant since it corresponds to a situation in Theorem 2
where τ∗ = T. In this case we can arbitrarily choose the largest value of D.) The following sums up
the definition of the optimal split tree near τ.

Definition 6 (Optimal split tree near τ). Consider a European call option with strike K, spot price S0,
maturity T, risk free rate r, and volatility σ. Let n ≥ 2, Let ˆ̀ be as in (37). In the case where (37) gives two
definitions of ˆ̀, choose the one corresponding to the smallest value of (39). Should θ = 0 in (39), choose the
largest value of D. Next, let `∗ be the nearest integer to ˆ̀, and set ` = `∗ for every n. Finally, let τ∗ be as in
Theorem 2. The optimal split tree near τ is defined to be the split tree with parameters `∗ and τ∗.

5. American Put

5.1. Measuring the Magnitude of the Oscillations of the Error

The split tree was invented by Joshi with the aim Joshi (2009b) of minimizing the oscillations in
the convergence of the American put. If Pn is the price of a put option in a tree method and PBS is the
price in the Black–Scholes model, then we say that the convergence is smooth if

Pn = PBS +
A
n
+O

(
n−1.5

)
, (40)

for some constant A. It has been observed—although not proven yet—that models with smooth
convergence in the European case also display smooth convergence in the American case. When the
convergence is smooth we can use Richardson extrapolation to obtain a value P̃n satisfying

P̃n = PBS +
Bn

n1.5 , (41)

where Bn is bounded. Define
B := lim

k→∞
sup
n>k

(
n1.5

∣∣∣P̃n − PBS
∣∣∣) .
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The optimal model among a collection of models to be compared is the one for which the quantity
B is minimized. This is analogous to Korn and M‘̀uller’s optimal drift Korn and Müller (2013) which
minimizes |A| in (40), where A can be written as

A = lim
n→∞

sup
m>n

(
m
∣∣∣Pm − PBS

∣∣∣) ,

and the optimal drift model is the model which minimizes the value of |A| among all those flexible
models with smooth convergence. Here PBS is estimated using PBS = P̃250,000, with P̃250,000 calculated
with Joshi’s original split tree. We estimate B using

B ≈ sup
10,000≤20n≤15,000

(
(20n)1.5

∣∣∣P̃20n − PBS
∣∣∣) . (42)

We will compare the value of B calculated using Joshi’s original split tree to the the value of B
calculated with our optimal split trees.

The following lemma provides a connection between the magnitude of the oscillations, B, and the
computational effort required to estimate the price of an option. We define the computational effort
needed to calculate the price of a put option in a binomial tree model with n time-steps to be equal to
the number of nodes in the tree, which is n(n + 1)/2.

Lemma 2. For i = 1, 2, let Bi > 0 be the value of B in model 1 and model 2, respectively. Assume that
B1 > B2. Suppose also that, given ε > 0, the number of time-steps n in model i is chosen in such a way that in
the worst case scenario the error is less than ε, that is, in such a way that Bi/n1.5 < ε. Then, asymptotically as
ε→ 0, the quotient of the computational effort required with model 1 over the computational effort required in
model 2 is (B1/B2)

4/3. That is, model 2 is (B1/B2)
4/3 times as fast as model 1, or said in other words, model 2

is (B1/B2)
4/3 − 1 faster than model 1.

5.2. Numerical Results

We now illustrate numerically our findings for American put options. We consider the optimal
centered split tree, the maximal range optimal split tree, and the optimal split tree near τ = 0.5T.
Calculations were perform using the classical Richardson extrapolation; that is, we calculated P̃n using

P̃n =
nPn − (n/2) Pn/2

n− n/2
= 2Pn − Pn/2,

for n even. With K = 100, r = 0.1, σ = 0.25, T = 1, we calculated the values of B, estimated by (42),
for all integer values of S0 such that 0.5 ≤ PBS, that is, for S0 = 86, 87, . . . , 140, where PBS is the
price of the option in the Black–Scholes model estimated using Joshi’s original split tree with classical
Richardson extrapolation and n = 250, 000 time steps. The results are shown in Figures 2 and 3.

In Figure 2, we see that the value of B for the maximal range optimal split tree spikes at 450 when
S0 = 122. The value of B in Joshi’s original split tree, traced in a bold font, reaches a maximum of 53.6
when S0 = 97. Next, the value of B peeks at 38.2 when S0 = 101, for the optimal centered split tree.
At the very bottom, the curve S0 7−→ B (S0) for the optimal split tree near τ is hard to spot. That makes
it the best amongst all the models.

In Figure 3, we zoom in and display only the curves S0 7−→ B (S0) for Joshi’s original split tree
(in bold) and the optimal split tree near τ. We note that, except in a very small interval around the
strike, the values of B for Joshi’s original split tree are larger than those in the optimal split tree near
τ. On average the value of B in Joshi’s original split tree is 3.3 times the value of B in the optimal split
tree near τ. Given S0, Lemma 2 can be used to translate the quotient of the values of B (S0) in the two
models into a measure of the relative computational effort required by both models. In this measure we
obtain that, on average, over the values of S0 = 86, 87, . . . , 140, the computational effort used for Joshi’s
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original split tree is 5.4 times as much as the computational effort used for the optimal split tree near τ.
Said another way, the optimal split tree near τ is on average 440% faster than Joshi’s original tree.

Figure 2. The value of B as a function of S0, for all the optimal models.

Figure 3. The value of B as a function of S0, for Joshi’s original split tree (bold) and the the optimal
split tree near τ.

More strikingly, unlike Joshi’s original tree, the optimal split tree near τ does not exhibit a huge
spike in the value of B (S0) for some unfavorable spot prices S0. If we define

‖B‖ := max {B (S0) : S0 = 86, 87, . . . , 140}

then the value of ‖B‖ in Joshi’s original split tree is 53.6, and it is 3.59 in the optimal split tree near τ.
This gives a quotient of 14.9. Hence if for every ε, n is chosen in such a way that ‖B‖ /n1.5 < ε, in order
to guarantee that, uniformly in S0, n is large enough to insure an error smaller than ε, then Lemma 2
says that the optimal split tree near τ results in calculations which are (14.9)4/3 − 1 = 35.7 times faster
than in Joshi’s original split tree.
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6. Conclusions

In this paper we introduced a flexible version of Joshi’s original split tree and we developed the
corresponding convergence theory in the European case. Our flexible split trees are characterized by
two additional parameters: the drift and the split time. This allowed us to define optimal values of
these parameters under different constraints. For European options, we found an explicit formula for
the coefficients of 1/n and 1/n3/2 in the expansion of the error, and we found closed form formulae
for the parameters of our optimal split trees. Numerical results suggest that the optimal split tree near
τ can significantly improve the convergence of Joshi’s original split tree.

Because stock options prices are quoted in the Black–Scholes model, binomial tree methods
apply naturally to them, as a numerical method to price them when a closed form formula is not
available. However, for real options requiring the modeling for several uncertainty sources, the Monte
Carlo approach introduced in Longstaff and Schwartz (2001) can be the best choice (see, for instance,
Lomoro et al. (2020), Pellegrino et al. (2019), or Sun et al. (2019)). The finite difference method (see,
for instance, Wilmott (1998)) is another broadly used numerical tool to price options. An empirical
study in the style of Joshi (2009b) that could compare, analyze, quantify, and contextualize the
respective advantages of the Monte Carlo approach, the finite difference method, and the tree method,
would be an broad and interesting project.
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Appendix A. A1 Proofs

Appendix A.1. Proof of Proposition 1

First we recall some notation from Section 3.1, and to shorten expressions we set Υ := T − τ.
We denote by Sλ,n

t the stochastic process corresponding to a flexible binomial model with drift
parameter λ (see Appendix B), and by Eλ,n

t is its discounted expectation semigroup operator. Note
that λ = 0 corresponds to the CRR case. We denote by Sn

t the stochastic process corresponding to a
split tree model with split time τ and drift λ, and by En

t its discounted expectation semigroup operator,
which is given by (11). We denote by Et the discounted expectation semigroup operator of a geometric
Brownian motion. Cn

T (S0) denotes the price of a call option in a split model with split time τ and
drift λ, and Cn

T (S0) denotes the price of the same option in the geometric Brownian motion. Finally,
g(x) = max(x− K, 0) denotes the payoff function of a call option with strike K. Recall that

Cn
T (S0) = En

t g (S0) = Eλ,n
τ E0,n

Υ g (S0) = e−rτES0

(
E0,n

Υ g
(

Sλ,n
τ

))
.

Let kτ be the number of time steps until the split. Then kτ = (τ/T) n, and the number of time
steps remaining until maturity is n− kτ = (Υ/T) n. Recall Chang and Palmer’s ∆n (x) from (A4) in
Appendix B. Now suppose that both kτ and n− kτ are even. All the nodes of Sλ,n

τ have the form

K̂e−kτσ
√

T/ne2jσ
√

T/n = Ke−kτσ
√

T/neσ
√

T/ne2(j+`)σ
√

T/n
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for some integers j, ` ∈ Z. This yields

∆n

(
Sλ,n

τ

)
= 1− 2

{
j + `− 1

2
kτ +

1
2

}
= 0.

It is not difficult to see that, regardless of the parity of kτ and n− kτ , we always have ∆n

(
Sλ,n

τ

)
= 0

for every possible value of Sλ,n
τ . Recall CRRt (x) from (13). With Chang and Palmer’s Theorem A1 and

Lemma A2 in Appendix B we obtain that

E0,n
Υ g

(
Sλ,n

τ

)
= CBS

Υ

(
Sλ,n

τ

)
+ CRRΥ

(
Sλ,n

τ

) T/ (Υ)
n

+ O
(

n−2
)

,

where

CRRΥ

(
Sλ,n

τ

)
= e−

1
2 d2

1,Υ

(
Sλ,n

τ

)
A0

Υ

(
Sλ,n

τ

)
,

and the term O
(
n−2) is uniform in Sλ,n

τ . Since,

e−rτES0

(
CRRΥ

(
Sλ,n

τ

))
= Eλ,n

τ CRRΥ (S0) , e−rτES0

(
CBS

Υ

(
Sλ,n

τ

))
= Eλ,n

τ CBS
Υ (S0) ,

we get

Cn
T (S0) = Eλ,n

τ CBS
Υ (S0) +

T/ (Υ)
n
Eλ,n

τ CRRΥ (S0) + O
(

n−2
)

.

Note that 0 < Υ < T is bounded away from 0 and that both functions x → CBS
Υ (x) and

x → CRRΥ (x) are infinitely differentiable and when multiplied by xj, for j = 0, . . . , 9, their kth

derivatives evaluated at x are also uniformly bounded, for k = 0, . . . , 9. We obtain from Theorem A2
in Appendix C that

Eλ,n
τ CBS

Υ (S0) = −
T/τ

n ∑4
k=2

∆k (τ, λ)

k!
xk ∂k

∂xk EτCBS
Υ (S0) +O

(
n−2

)
=

(T/τ)

n
Flexλ

τ CBS
Υ (S0) +O

(
n−2

)
.

Hence

Cn
T (S0) = CBS

T (S0) +
(T/τ)

n
Flexλ

τ CBS
Υ (S0) +

(T/Υ)
n
Eλ,n

τ CRRΥ (S0) + O
(

n−2
)

.

It follows from Theorem A2 in Appendix C that

Eλ,n
τ CRRΥ (S0) = EτCRRΥ (S0) + O

(
n−1

)
.

Therefore

Cn
T (S0) = CBS

T (S0) +
(T/τ)

n
Flexλ

τ CBS
Υ (S0) +

(T/Υ)
n
EτCRRΥ (S0) + O

(
n−2

)
, (A1)

which is exactly what we wanted to prove.

Appendix A.2. Proof of Theorem 1

Recall that Sτ denotes geometric Brownian motion and that Et is its discounted expectation
semigroup operator. To shorten the expressions, set Υ := T − τ. We already have a closed form
formula for the term Flexλ

τ CBS
Υ (S0) in (18). We need an explicit expression for

EτCRRΥ (S0) = e−rτES0 (CRRΥ (Sτ)) = Eτ

(
e−

1
2 d2

1,Υ A0
Υ

)
(S0) ,
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where

A0
Υ (Sτ) = −σ2Υ

(
6 + d2

1,Υ (Sτ) + d2
2,Υ (Sτ)

)
+ 4Υr

(
d2

1,Υ (Sτ)− d2
2,Υ (Sτ)

)
+ 12Υ

(
σ2 − Υr2

)
,

d1,Υ (Sτ) =
ln( Sτ

K )+(r+ 1
2 σ2)Υ

σ
√

Υ
, d2,Υ (Sτ) = d1,Υ (Sτ)− σ

√
T,

d1 = d1,T (S0) , d2 = d1 − σ
√

T.

Recall that,

Sτ = S0 exp
(

σ
√

τZ +

(
r− 1

2
σ2
)

τ

)
,

where Z =
(

ln (Sτ/S0)−
(

r− 1
2 σ2
)

τ
)

/(σ
√

τ) is a standard normal random variable. Note that

d1,Υ (Sτ) =

√
τ

Υ
Z + d̂1, d2,Υ (Sτ) =

√
τ

Υ
Z + d̂2,

where

d̂1 =

√
T
Υ

d1 − σ

√
τ2

Υ
, d̂2 =

√
T
Υ

d2 = d̂1 − σ
√

Υ.

We write A0
Υ (Sτ) in the form

A0
Υ (Sτ) = Â + B̂Z + ĈZ2,

with

Â = 4Υr
(

d̂2
1 − d̂2

2

)
+ 12Υ

(
σ2 − Υr2

)
− σ2Υ

(
d̂2

1 + d̂2
2 + 6

)
,

B̂ = 2
√

τΥ
(

4r
(

d̂1 − d̂2

)
− σ2

(
d̂1 + d̂2

))
,

Ĉ = −2τσ2.

On the other hand, with

a =

(
r− 1

2
σ2
)

τ − 1
2

d̂2
1, b =

√
τσ−

√
τ

Υ
d̂1, c = −1

2

( τ

Υ

)
,

we get

Sτ exp
(
−1

2
d2

1,Υ (Sτ)

)
= S0 exp

(
a + bZ + cZ2

)
.

In this notation,

EτCRRΥ (S0) =
e−rτS0

24σ
√

2πΥ
E
((

Â + B̂Z + ĈZ2
)

exp
(

a + bZ + cZ2
))

.

With Gaussian integrals we obtain

EτCRRΥ (S0) =
S0

24σ
√

2πΥ
e−rτeae−

b2
4c−2

√
1− 2c

(
Â + B̂

b
(1− 2c)

+ Ĉ
b2 + (1− 2c)

(1− 2c)2

)
.

Tedious but otherwise trivial algebraic manipulations yield

EτCRRΥ (S0) =
Υ2

T2
S0e−

1
2 d2

1

24σ3T
√

2πT
∆ +

Υ
T

S0e−
1
2 d2

1

24σ
√

2πT

(
4Tσ2

)
. (A2)
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We combine (18) and (A2) to obtain (22).

Appendix A.3. Proof of Lemma 2

Fix ε > 0. Under our assumption on the choice of n, we need n = B2/3
i /ε2/3 in model i, with n

rounded up. However, the total number of fundamental steps in calculating a tree is equal to the
total number of nodes in the tree which is polynomial of degree 2. Let Q (n) = αn2 + βn + c be this
polynomial. Then the quotient of the required effort in model 1 over the effort in model 2 is

Q
(
B2/3

1 /ε2/3
)

Q
(
B2/3

2 /ε2/3
) =

(
B1

B2

)4/3
+ o

(
ε2/3

)
.

Appendix B. Flexible Binomial Tree

Let {x} = x− floor (x) be the fractional part of x, and define d1,t (x) and d2,t (x) as

d1,t (x) =
ln( x

K )+(r+ 1
2 σ2)t

σ
√

t
, d2,t (x) = d1,t (x)− σ

√
t.

Moreover, set

Aλ
t (x) = −σ2t

(
6 + d2

1,t (x) + d2
2,t (x)

)
+ 4t

(
d2

1,t (x)− d2
2,t (x)

) (
r− λσ2

)
− 12t2

(
r− λσ2

)2
+ 12tσ2

(A3)

and

∆n (x) = 1− 2
{

ln (x/K) + n ln (d)
ln (u/d)

}
. (A4)

Recall that in the flexible binomial model with drift parameter λ,

u = eλσ2T/n+σ
√

T/n, d = eλσ2T/n−σ
√

T/n, p =
(

erT/n − d
)

/ (u− d) . (A5)

Theorem A1 (Chang and Palmer (2007)). In the flexible model with bounded drift parameter λ := λ (n),
the value Cn of a call option with spot price S0, strike price K, risk free rate r, volatility σ, and maturity T satisfies

Cn = CBS +
S0e−

1
2 d2

1

24σ
√

2πT
A− 12σ2T∆2

n
n

+ O
(

n−3/2
)

, (A6)

where CBS is the value of the same option in the Black–Scholes model and

d1 = d1,T (S0) , d2 = d1 − σ
√

T, A = Aλ
T (S0) , ∆n = ∆n (S0) ,

where

Aλ
T (S0) = −σ2T

(
6 + d2

1 + d2
2

)
+ 4T

(
d2

1 − d2
2

) (
r− λσ2

)
− 12T2

(
r− λσ2

)2
+ 12Tσ2.

Now let

κ̄n =

{
ln (K/S0)− n ln (d)

ln (u/d)

}
. (A7)
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The quantities κ̄n and ∆n are connected through the relation

∆n =

{
1 if κ̄n = 0
2κ̄n − 1 if κ̄n 6= 0

The quantity ∆n is what drives the oscillations in the coefficients of the expansion of the error in
Chang and Palmer’s formula (A6). The quantity κ̄n serves the same purpose in the equivalent formula
in Diener and Diener (2004). Leduc (2016b) provides and explicit expressions for the coefficient of
1/n1.5 in the expansion of the error of the call options in a binomial model where u, d, and p are
given by

u = exp

σ

√
T
n
+ λ2 σ2 T

n
+

i0

∑
`=3

λ`
2 σ

T

√
T
n

`
 ,

d = exp

−σ

√
T
n
+ λ2 σ2 T

n
+

i0

∑
`=3

λ`
2 σ

T

√
T
n

`
 ,

p =
(

erT − d
)

/ (u− d) .

The special case of the CRR model corresponds to λ = 0 in the flexible model and to λ2 = · · · =
λi0 = 0 in Leduc (2016b). Both Chang and Palmer (2007) and Leduc (2016b) are special cases of Diener
and Diener (2004), and thus, although expressed in different notation, the formulae in all three papers
coincide in the CRR case. We also refer to Huang (2011) where an explicit formula for the coefficient of
n−1.5 is found.

Lemma A1. In the CRR case, if κ̄n = 0 or κ̄n = 0.5, or equivalently ∆n = 1 or ∆n = 0, then the term
O
(
n−1.5) in (A6) can be replaced by O

(
n−2).

Proof. This follows trivially by replacing κ by 0 or 0.5 in the formula for the third coefficient
of the expansion of the error provided in (Leduc 2016b, p. 1332), together with λ2 = λ3 = 0,
which corresponds to the CRR case.

Assume that κ̄n = 0 or κ̄n = 0.5. If θ > 0 is a parameter of the CRR model, that is, if θ is
S0, K, r, σ, T, n or any combination of them, then we say that the term O

(
n−2) in (A6), which depends

on θ, is ”uniform in θ“ if

lim
m→∞

sup
n>m

(
sup
0<θ

n2
∣∣∣O (n−2

)∣∣∣) < ∞. (A8)

Lemma A2. In the CRR case, if κ̄n = 0 or κ̄n = 0.5, or equivalently ∆n = 1 or ∆n = 0, the term O
(
n−1.5)

in (A6) can be replaced by O
(
n−2), and moreover, it is uniform in S0.

Proof. It was already pointed out in Leduc (2016b) that the O-terms in the asymptotic expansion
of the error in powers of 1/

√
n are uniform in most parameters, providing that these parameters

stay in a closed bounded interval and that σ−1 also remains bounded. Following the argument in
Diener and Diener (2004), the proof of uniformity in S0 > 0 is similar to the proof of uniformity in
0 ≤ κ̄n ≤ 1. Only trivial modifications are required. The key here is that, as noted in (Leduc 2016b,
p. 1342), all terms of the expansion of the error are factored by exp

(
−2k2

−1
)

where k−1 is defined by
Diener and Diener as the coefficient of

√
n in the expansion of

ln (K/S0)− nln (d(n))
ln (u(n))− ln (d(n))

+ 1− κ
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in powers of
√

n. In the CRR case, this gives k−1 = ln (K/S0) /(2σ
√

T). The term

exp
(
−2k2

−1

)
= exp

(
−2
(

ln (K/S0) /(2σ
√

T)
)2
)

guarantees in a straightforward manner that, in the argument in Diener and Diener (2004), one can
take the supremum over all values of S0 > 0.

Appendix C. Error Expansion for Very Smooth Payoff Functions

Here again the risk free rate r, the volatility σ, the spot price S0, and the maturity T are fixed.
Recall the flexible models from Appendix B. We denote by Sλ,n

t the stochastic process corresponding to
a flexible binomial model with drift parameter λ, and by Eλ,n

t its discounted expectation semigroup
operator. St denotes geometric Brownian motions, and Et denotes the corresponding discounted
expectation semigroup operator. We consider European options with maturity T and payoff functions
gn depending on the number of time-steps n. For every time step tm = mT/n, we define1 Errn

tm gn (x),
the error at maturity tm given that the spot price is x, as

Errn
tm gn (x) = Eλ,n

tm
gn (x)− Etm gn (x) .

As pointed out in Leduc (2013), the operator E and Err commute:

Etj Errn
tm gn (x) = Errn

tm Etj gn (x) .

We also define the identity function I (x) = x, and we set Ik (x) = xk. From Leduc (2013), and in
a more general setting in Leduc (2016a) where the proof is detailed, we have

∆(n)
k := Errn

T
n

(
(I − 1)k

)
(1) = −∆k (T, λ)

n2 +O(n−
5
2 ), for k = 2, 3, 4

where

∆2 (T, λ) = T2(σ4λ2 + (−σ4 − 2rσ2)λ + (r2 + rσ2 +
5

12
σ4)),

∆3 (T, λ) = 2σ2T2
(

σ2 + r− σ2λ
)

,

∆4 (T, λ) = 2σ4T2.

The following is an extension of Theorem 3.1 in Leduc (2013). It shows that when the payoff
functions are uniformly very smooth, the O-term in the expansion of the error is O

(
n−2) rather

than O
(

n−3/2
)

.

Theorem A2. Suppose that payoff functions gn (x), n = 1, 2, . . . , are 9 times continuously differentiable
and such that, for j, k = 0, . . . , 9,

∣∣∣xjg(k)n (x)
∣∣∣ is uniformly bounded. Let τ := τ (n) be a multiple of T/n,

and assume that 0 < τ ≤ T. Then

Errn
τ gn (x) = −T/τ

n

4

∑
k=2

∆k (τ, λ)

k!
xkE (k)τ gn (x) +O

(
n−2

)
, (A9)

where E (k)τ gn (x) =
(

∂k/∂xk
)
Eτ gn (x).

1 Note that Err is the additive inverse of the same operator in Leduc (2013). However, the definition provided here is
more conventional.
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Proof. This is an adaptation of a reasoning in Leduc (2013). Here the payoff functions gn are very
smooth, and the maturity, τ, is allowed to float within the interval 0 < τ ≤ T. Note that we can
write τ = κτT/n, for some integer 1 ≤ κτ ≤ n. Then each time step until maturity τ has the form
iτ/κτ = iT/n = ti. It follows from Theorem 2.1 in Leduc (2013) and the commutativity and semigroup
properties of E , that for every integers n, m ≥ 1, the error at any time step tm ≤ τ can be localized into
single time-step errors:

Errn
tm gn = mEtm−1

(
Errn

T
n

gn

)
−

m−1

∑
j=0
Etj Errn

tm−tj+1

(
Errn

T
n

gn

)
. (A10)

From Lemma 2.2 and Remark 2.3 in Leduc (2013), the local errors Errn
T/n gn can be expanded as:

Errn
T
n

gn (x) = − 1
n2

4

∑
k=2

∆k (T, λ)

k!
xkg(k)n (x) +O

(
n−

5
2

)
.

Additionally, since ∆k (T, λ) /n2 = ∆k (τ, λ) /κ2
τ , this is the same as

Errn
T
n

gn (x) = − 1
κ2

τ

4

∑
k=2

∆k (τ, λ)

k!
xkg(k)n (x) +O

(
n−

5
2

)
. (A11)

Putting (A11) and (A10) together we get that

Errn
tm gn = − m

κ2
τ

4

∑
k=2

∆k (τ, λ)

k!
Etm−1

(
Ikg(k)n

)
+

4

∑
k=2

1
κ2

τ

∆k (τ, λ)

k!

m−1

∑
j=0
Etj Errn

tm−tj+1

(
Ikg(k)n

)
+O

(
n−

5
2

)
.

(A12)

Using the assumption that
∣∣∣Ikg(k)n

∣∣∣ is uniformly bounded, and the fact that ∆k (τ, λ) = τ2∆k (1, λ)

we obtain that

Errn
tm gn =

τ2m
κ2

τ
O (1) +O

(
n−

5
2

)
= mO

(
n−2

)
.

Note that this equation is trivial when m = 0, since Errn
0 gn = 0. Specializing with ϕn = Ikg(k)n

and tm = τ − tj+1, for j = 0, . . . , κτ − 1, we see that

Errn
τ−tj+1

(ϕn) = (κτ − 1− j)O
(

n−2
)

.

Putting this back into (A12) and using ∆k (τ, λ) /κ2
τ = ∆k (T, λ) /n2 we get

Errn
τ gn = − 1

κτ

4

∑
k=2

∆k (τ, λ)

k!
Etm−1

(
Ikg(k)n

)
+

4

∑
k=2

1
n2

∆k (T, λ)

k!

κτ−1

∑
j=0

(κτ − 1− j)O
(

n−2
)
+O

(
n−

5
2

)
.

Using the well known formula for the sum of the first κτ − 1 integers, κτ ≤ n, yields

Errn
τ gn = − 1

κτ

4

∑
k=2

∆k (τ, λ)

k!
Etκτ−1

(
Ikg(k)n

)
+O

(
n−2

)
.
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Since Ikg(k)n is uniformly very smooth, it is easy to see that

Etκτ−1

(
Ikg(k)n

)
= Eτ

(
Ikg(k)n

)
+O

(
n−1

)
.

Because ∆k (τ, λ) /κτ = τ∆k (1, λ) /κτ = O
(
n−1), this gives

Errn
τ gn = − 1

κτ

4

∑
k=2

∆k (τ, λ)

k!
Eτ

(
Ikg(k)n

)
+O

(
n−2

)
.

Finally, according to Lemma 6.3 in Leduc (2013), Es

(
Ikg(k)n

)
(x) = xkE (k)s gn (x) for every s > 0,

which yields (A9).
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