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Abstract: This paper studies the effect of variance swap in hedging volatility risk under the
mean-variance criterion. We consider two mean-variance portfolio selection problems under Heston’s
stochastic volatility model. In the first problem, the financial market is complete and contains three
primitive assets: A bank account, a stock and a variance swap, where the variance swap can be
used to hedge against the volatility risk. In the second problem, only the bank account and the
stock can be traded in the market, which is incomplete since the idiosyncratic volatility risk is
unhedgeable. Under an exponential integrability assumption, we use a linear-quadratic control
approach in conjunction with backward stochastic differential equations to solve the two problems.
Efficient portfolio strategies and efficient frontiers are derived in closed-form and represented in
terms of the unique solutions to backward stochastic differential equations. Numerical examples are
provided to compare the solutions to the two problems. It is found that adding the variance swap in
the portfolio can remarkably reduce the portfolio risk.

Keywords: backward stochastic differential equation; efficient frontier; heston’s model;
mean-variance portfolio selection; variance swap

1. Introduction

It is widely recognized that the volatility of stocks evolves in a stochastic fashion rather than being
constant or deterministic over time. Many empirical studies on stock options reveal that the implied
volatility in option price data exhibit the so-called volatility smile/skew, which cannot be explained by
the constant-volatility stock price models, say, the geometric Brownian motion model adopted in the
Black and Scholes (1973) formula. Tremendous effort has been made to articulate this issue, and various
stochastic volatility models have been developed to capture the volatility smile/skew as observed
in the market. See, for example, French et al. (1987), Hull and White (1987), Wiggins (1987), Stein
and Stein (1991), and Heston (1993). Among these stochastic volatility models, the most commonly
used is certainly Heston’s model (Heston 1993). Indeed, the variance process described by Heston’s
model follows a single-factor square-root process with mean-reversion, i.e., a Cox-Ingersoll-Ross (CIR)
process, which is mathematically tractable even when the instantaneous volatility/variance is assumed
to be correlated with the stock price.

The early research of Heston’s model focuses on option pricing under this model. Recently, there
has been emerging interest in portfolio selection problems under Heston’s model as well as other
stochastic volatility models. One direction of research is on maximizing the expected utility from
investment and consumption. Kraft (2005) investigates a utility maximization problem and provides
an explicit solution of the problem under specific conditions on model parameters. With the help of
a martingale criterion, Kallsen and Muhle-Karbe (2010) derive explicit solutions for a power utility
maximization problem in a number of affine-form stochastic volatility models. Zeng and Taksar (2013)
study an optimal portfolio selection problem under a general stochastic volatility model and obtain
closed-form solutions for Heston’s model under more relaxed assumptions. Other relevant works
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along this direction include, for example, Zariphopoulou (2001), Fleming and Hernández-Hernández
(2003), Liu et al. (2003), and Chacko and Viceira (2005). Another direction of research explores the
mean-variance hedging, that is, the problem of approximating a given final payoff by a self-financing
trading strategy so as to minimize the mean-squared error. Preceding works include Laurent and
Pham (1999), Biagini et al. (2000), Hobson (2004), Černý and Kallsen (2008), to name but only a few.

Although portfolio selection problems under Heston’s model have been extensively studied, most
existing works concentrate on portfolio selection under the utility-maximization or the mean-variance
hedging criteria and few attention has been paid to that under Markowitz (1952)’s mean-variance
paradigm. In fact, Markowitz (1952)’s mean-variance criterion and Merton (1969, 1971)’s
utility-maximization criterion are both considered precursors of modern portfolio optimization
theory, and, to some degree, they are of equal importance in the field. On the other hand, the
history of the mean-variance portfolio selection is much longer than that of the mean-variance
hedging. In Markowitz (1952), the mean-variance portfolio selection problem is proposed in a
single-period discrete-time setting. Using some delicate embedding techniques, Zhou and Li (2000)
apply the linear-quadratic (LQ) control theory to solve a continuous-time mean-variance portfolio
selection problem analytically. Subsequently, Lim and Zhou (2002), Lim (2004) and Lim (2005) study
mean-variance portfolio selection problems with random parameters by using the LQ control and
backward stochastic differential equations (BSDEs). At first glance, one may consider nesting the
mean-variance portfolio selection problem under Heston’s model in Lim and Zhou’s framework.
However, this is impossible since the variance process in Heston’s model is unbounded, which violates
the boundedness assumption of model parameters in Lim and Zhou’s framework. In fact, a class of
nonlinear BSDEs is used to solve mean-variance problems, and this class is termed backward stochastic
differential Riccati equations (BSREs). Because there are no general results for BSREs with unbounded
coefficients, it is challenging to use BSREs to solve mean-variance problems under Heston’s model.
This attracts recent attention to studying mean-variance portfolio selection problems with unbounded
random coefficients. See Chiu and Wong (2011, 2014), Shen et al. (2014), Shen and Zeng (2015),
Shen (2015), Li et al. (2018), etc.

The focus of the the current paper is on demonstrating that volatility derivatives (e.g., variance
swap) is effective tool to manage volatility risk when the stock price dynamics is only partially
correlated with the stochastic volatility dynamics. Particularly, the advantage of using variance swap
contracts is that there is no cost of entering into these contracts since swaps are worth zero at issuance.
Compared with other volatility derivatives, e.g., variance and volatility options, variance swaps
provide non-directional exposure to volatility risk, which then reduces the need for delta-hedging
residual volatility risk.

To investigate the effect of variance swaps in hedging volatility risk, in this paper we consider
two dynamic mean-variance portfolio selection problems under Heston’s stochastic volatility model
in a complete market and an incomplete market, respectively. More specifically, we assume that
a bank account, a stock and a variance swap are traded in the complete market and that only the
bank account and the stock are traded in the incomplete market. The variance process of the stock
is described by Heston’s model and is correlated with the stock price process. Throughout this
paper, we make a standing assumption that the variance process/the market price of risk process
is exponentially integrable. We employ a combined LQ control and BSDE approach to solve the
two problems. To address the issue in the solvability of BSREs with unbounded coefficients, we
use measure change techniques and study several transformed BSDEs under equivalent probability
measures first. Based on the exponential-integrability assumption, Girsanov’s theorem, Hölder’s
inequality and the one-to-one correspondence relationships between the solutions to the original
BSREs and the transformed BSDEs, the uniqueness and existence of solutions to the original BSREs
are proved under the real-world probability measure. Due to the Markovian structure, the unique
solutions to these BSREs can be represented by the solutions to some Riccati-type ordinary differential
equations (ODEs). With the unique solutions to related BSREs, a straightforward application of the
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LQ control theory leads to the explicit expressions of the efficient portfolio strategies and the efficient
frontiers immediately. To examine the differences of the two problems and the effect of adding the
variance swap in the portfolio, we provide numerical examples of the efficient frontiers with different
parameter values in the complete and the incomplete markets. It is shown that the variance swap can
reduce the overall risk of the terminal wealth through hedging against the volatility risk. In addition,
we verify that if the stock price and variance processes are perfectly correlated, the complete market
and the incomplete one are indistinguishable. Therefore, the variance swap is an effective tool to hedge
idiosyncratic volatility risk.

On technical side, this paper somehow extends Shen (2015) and Shen and Zeng (2015) to cater
for the current setting. Shen et al. (2014)) consider a mean-variance problem under a constant
elasticity of variance (CEV) model. The efficient strategy found in Shen et al. (2014) indeed is
in a space smaller than the square-integrable space since the BSDE therein is proved to admit a
unique solution in a space accommodating stochastic Lipschitz coefficients, which is smaller than the
usually used square-integrable solution space for BSDEs. Shen and Zeng (2015) study an optimal
investment-reinsurance problem for insurers under the mean-variance optimization criterion. They
impose an exponential integrability condition of order 2 and solve the problem for a modified
admissible control set. A similarly modified definition of the admissible set is adopted by Li et al. (2018)
to investigate a mean-variance asset-liability management under with stochastic volatility. Though
Shen and Zeng (2015) have considered Heston’s model in their framework, they only find the almost
surely square-integrable efficient strategy. We should note that in most preceding works as well
as the current one, admissible strategies are required to be square-integrable (in an expected sense).
By extending some techniques in Shen (2015) developed exclusively for a complete market environment
and increasing the order of exponential integrability of the market price of risk, in this paper we manage
to find square-integrable efficient portfolio strategies under Heston’s model, where the market may
be incomplete.

The rest of this paper is structured as follows. Section 2 introduces the basic notation, model
dynamics and standing assumption. In Section 3, we formulate two mean-variance portfolio selection
problems, one in the complete market with the variance swap and the other in the incomplete market
without the variance swap. Using the combined LQ control and BSDE approach, we derive the
explicit expressions of the efficient portfolio strategies and the efficient frontiers of the two problems in
Sections 4 and 5, respectively. Section 6 provides numerical examples to illustrate the differences of the
two problems and the effectiveness of the variance swap in hedging volatility risk. Finally, Section 7
concludes the paper. The Appendix contains proofs that can be adapted from the literature.

2. Model Dynamics

This section introduces the complete market and the incomplete market, and sets up the model
dynamics of primitive assets, including a bank account, a stock and a variance swap. To begin with,
we fix a complete probability space (Ω,F ,P), carrying two one-dimensional, independent standard
Brownian motions {W1(t)}t≥0 and {W2(t)}t≥0. We further equip (Ω,F ,P) with a right-continuous,
P-complete filtration F := {F (t)}t≥0 generated by W1(·) and W2(·). Here P is a real-world probability
measure. We denote by E[·] the expectation taken under P, Et[·] the conditional expectation under P
given F (t), | · | the Euclidean norm of Rn, and A> the transpose of any vector or matrix A. Let [0, T]
be a finite horizon, where T < ∞.

For later use, we introduce several spaces of random variables and stochastic processes on
(Ω,F ,P). For any p ∈ [1, ∞), we define

• Lp
F (T),P(Ω;Rn): the space of Rn-valued, F (T)-measurable random variables ξ such that

‖ξ‖Lp
F (T),P(Ω;Rn) := {E[|ξ|p]}

1
p < ∞;
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• Lp
F,P(0, T;Rn): the space of Rn-valued, F-adapted processes f (·) := { f (t)}t∈[0,T] such that

‖ f (·)‖Lp
F,P(0,T;Rn) := {E[(

∫ T
0 | f (t)|

2dt)
p
2 ]}

1
p < ∞;

• S p
F,P(0, T;Rn): the space of Rn-valued, F-adapted, càdlàg processes f (·) such that

‖ f (·)‖S p
F,P(0,T;Rn) := {E[ sup

t∈[0,T]
| f (t)|p]}

1
p < ∞;

• S∞
F,P(0, T;Rn): the space of Rn-valued, F-adapted, essentially bounded, càdlàg processes f (·) over

[0, T] under P;
• EF,P(0, T;Rn): the space of Rn-valued, F-adapted, càdlàg processes f (·) such that the random

variable f ∗ := sup
t∈[0,T]

| f (t)| has exponential moments of all orders.

Replacing the expectation E[·] by EQ[·], where EQ[·] is the expectation under some probability
measure Q equivalent to P, we can define similar spaces of random variables and stochastic processes
on (Ω,F ,Q), i.e., Lp

F,Q(0, T;Rn), S p
F,Q(0, T;Rn), Lp

F (T),Q(Ω;Rn), L∞
F,Q(0, T;Rn) and EF,Q(0, T;Rn).

Furthermore, we define the following two spaces of deterministic functions:

• C(0, T;Rn): the space of continuous functions φ : [0, T]→ Rn;
• Cb(0, T;Rn): the space of continuous, uniformly bounded functions φ : [0, T]→ Rn.

Throughout this paper, we will take Rn to be either R or R2 in different circumstances.
We let P̃ be the risk-neutral probability measure, which will be specified after we introduce our

standing assumption. Suppose that the market prices of risks of W1(·) and W2(·) are given by two
F-adapted processes {ξ1(t)}t≥0 and {ξ2(t)}t≥0. We denote by {ξ(t)}t≥0 the vector process of the
market prices of risks, where ξ(t) := (ξ1(t), ξ2(t))>. We will specify the structure of the market prices
of risks later. Indeed, P̃ is a probability measure equivalent to P and the processes {W̃1(t)}t≥0 and
{W̃2(t)}t≥0 defined by

W̃1(t) := W1(t) +
∫ t

0
ξ1(u)du,

and

W̃2(t) := W2(t) +
∫ t

0
ξ2(u)du,

are two one-dimensional, (F, P̃)-standard Brownian motions. We denote by Ẽ[·] the expectation taken
under P̃, and Ẽt[·] the conditional expectation under P̃ given F (t).

The price process of the bank account {P(t)}t≥0 is given by

dP(t) = rP(t)dt, P(0) = 1, (1)

where r > 0 represents the risk-free, instantaneous interest rate. In what follows, we introduce the
dynamics of the stock and variance processes under the risk-neutral measure P̃ and the real-world
measure P sequentially. Under P̃, the stock price process {S(t)}t≥0 is governed by

dS(t) = S(t)
[
rdt +

√
v(t)dW̃1(t)

]
, S(0) = s > 0, (2)

where
√

v(t) is the instantaneous volatility of the stock at time t; the variance process {v(t)}t≥0 evolves
according to Heston’s model

dv(t) = κ̃
[
θ̃ − v(t)

]
dt + σ

√
v(t)

[
ρdW̃1(t) +

√
1− ρ2dW̃2(t)

]
, v(0) = v > 0. (3)
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Here κ̃ > 0 and θ̃ > 0 are the speed of mean-reversion and the long-run average of v(t) under P̃;
σ > 0 is the volatility of volatility; the correlation coefficient satisfies ρ ∈ [−1, 1]. We require that
the Feller condition is satisfied, i.e., 2κ̃θ̃ > σ2, so that v(·) is positive, P̃-a.s. (refer to Chapter 9 in
Elliott and Kopp 2005). Though the Feller condition may not be satisfied in practice, market volatility
seldom becomes zero. Hence, having the Feller condition in place is meaningful in our model, which
guarantees a strictly positive volatility.

As in other literature on Heston’s model (see, for example, Zeng and Taksar 2013), we assume
that the market prices of risks at time t are given by

ξ1(t) := ξ1

√
v(t), ξ1 ∈ R,

and

ξ2(t) := ξ2

√
v(t), ξ2 ∈ R.

The above specification of the market prices of risks ensures that the evolution of the variance process
under the real-world probability measure P has a similar structure of affine drift and square-root
volatility of volatility as that under the risk-neutral probability measure P̃ (see Equation (5)). Indeed,
this specification is closely related to the completely affine and the essentially affine specifications
proposed by Duffee (2002). Furthermore, we require ξ2

1 + ξ2
2 6= 0, which rules out the case that the

real-world probability measure P coincides with the risk-neutral probability measure P̃. Otherwise,
the portfolio selection problems do not have non-trivial solutions.

Under P, the stock price process {S(t)}t≥0 follows

dS(t) = S(t)
{[

r + ξ1v(t)
]
dt +

√
v(t)dW1(t)

}
, S(0) = s > 0. (4)

Here r + ξ1v(t) can be considered as the appreciation rate of the stock at time t. The variance process
{v(t)}t≥0 under P satisfies

dv(t) = κ
[
θ − v(t)

]
dt + σ

√
v(t)

[
ρdW1(t) +

√
1− ρ2dW2(t)

]
, v(0) = v > 0, (5)

where

κ := κ̃ − σξρ, θ :=
κ̃θ̃

κ̃ − σξρ
, ξρ := ρξ1 +

√
1− ρ2ξ2.

Even when κ̃ − σξρ = 0, we still have κθ = κ̃θ̃ in view of the convention κ̃−σξρ

κ̃−σξρ
= 0

0 = 1. Then
Equation (5) is well-defined even if κ̃ − σξρ = 0. Hence, we do not require that κ̃ − σξρ 6= 0 in
this paper. The equivalence between P̃ and P implies that v(·) is also positive, P-a.s.. In fact, this is
guaranteed by the Feller condition under P, i.e., 2κθ = 2κ̃θ̃ > σ2. In Heston’s model (5), W1(·) can be
considered as the common shock of the stock price and the variance, while W2(·) as the idiosyncratic
shock of the variance. Therefore, ξ1(·) and ξ2(·) represent the market price of the common risk of the
stock and the variance and that of the idiosyncratic risk of the variance, respectively.

We now introduce our assumption:
Standing Assumption. For any p ∈ [1, ∞),

E
[
Zp(T)

]
< ∞,

where

Z(T) := exp
{ ∫ T

0
|ξ(u)|2du

}
= exp

{
(ξ2

1 + ξ2
2)
∫ T

0
v(u)du

}
.
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The Standing Assumption states that the variance process/the market price of risk is exponentially
integrable of all orders under P. This assumption allows us to define a family of probability measures
equivalent to P through a family of Radon-Nikodým derivatives. Indeed, under the Standing
Assumption, it holds that

E
[

e−
m2

1ξ2
1+m2

2ξ2
2

2
∫ T

0 v(u)du−
∫ T

0

√
v(u)[m1ξ1dW1(u)+m2ξ2dW2(u)]

]
= 1, ∀m1, m2 ∈ R. (6)

The above equation will be used frequently throughout this paper. Particularly, if we take m1 = m2 = 1
in (6) or p = 1

2 in the Standing Assumption, then we can specify the risk-neutral probability measure P̃
as follows

dP̃
dP

∣∣∣∣
F (T)

= Γ(T) := exp
{
− 1

2

∫ T

0
|ξ(u)|2du−

∫ T

0
ξ(u)>dW(u)

}
. (7)

Moreover, it will turn out that the Standing Assumption ensures that a set of BSDEs admits unique
solutions in proper spaces and mean-variance portfolio selection problems have optimal solutions.

We now introduce the dynamics of a variance swap under Heston’s model. The research on pricing
variance swaps can be dated back to the early works of Neuberger (1990, 1994) and Dupire (1992,1993).
Simply speaking, a variance swap contract is a financial contract with two legs on the future realized
variance of the price changes of the underlying asset. One leg of the variance swap is floating and
pays a variable amount based upon the annualized realized variance over a specified period, while
the other leg is fixed and pays a fixed amount. This fixed amount is called the strike, which is usually
chosen such that there is no cost of entering the contract at the issue time. The terminal payoff of
the variance swap is equal to the realized variance minus the strike multiplying a notational amount.
Under the continuous sampling scheme, we consider a variance swap written on the realized variance
of the stock S over [0, TV ] with a one-unit notational amount. Mathematically, the time-t value of this
variance swap is given by

V(t) = e−r(TV−t)Ẽt

[
1

TV

∫ TV

0
v(u)du− KV

]
, (8)

where the strike KV is

KV := Ẽ
[

1
TV

∫ TV

0
v(u)du

]
.

From (3), we have

v(u) = v(0)e−κ̃u + θ̃(1− e−κ̃u) + e−κ̃u
∫ u

0
eκ̃µσ

√
v(µ)

[
ρdW̃1(µ) +

√
1− ρ2dW̃2(µ)

]
. (9)

Substituting (9) into (8) gives

V(t) = e−r(TV−t)Ẽt

[
1

TV

∫ TV

0

(
e−κ̃u

∫ u

0
eκ̃µσ

√
v(µ)

[
ρdW̃1(µ) +

√
1− ρ2dW̃2(µ)

])
du
]

= e−r(TV−t)Ẽt

[
1

TV

∫ TV

0

∫ TV

µ
e−κ̃udu

(
eκ̃µσ

√
v(µ)

[
ρdW̃1(µ) +

√
1− ρ2dW̃2(µ)

])]
(10)

= e−r(TV−t)
∫ t

0

σ

κ̃TV

[
1− e−κ̃(TV−µ)

]√
v(µ)

[
ρdW̃1(µ) +

√
1− ρ2dW̃2(µ)

]
.

Here the first equality is obtained via canceling out the first two deterministic terms on the right hand
side of (9) and noting that the third term on the right hand side of (9) is a P̃-martingale and hence has a
zero expectation under P̃; the second equality comes from interchanging the order of integration; the



Risks 2020, 8, 70 7 of 34

third equality is due to the martingale property of the Itô integral inside the conditional expectation
Ẽt[·].

Therefore, differentiating both sides of (10) with respect to t, we obtain the dynamics of the
variance swap

dV(t) = rV(t)dt + φ(t)
√

v(t)
[
ρdW̃1(t) +

√
1− ρ2dW̃2(t)

]
=

[
rV(t) + ξρφ(t)v(t)

]
dt + φ(t)

√
v(t)

[
ρdW1(t) +

√
1− ρ2dW2(t)

]
, (11)

where

φ(t) :=
σ

κ̃TV

[
e−r(TV−t) − e−(r+κ̃)(TV−t)].

3. Problem Formulation

In this section, we formulate two mean-variance portfolio selection problems for an economic
agent. In the first problem, the agent can invest in the bank account, the stock and the variance swap;
in the second problem, the agent can only invest in the bank account and the stock. Since the variance
process is driven by the common shock W1(·) and the idiosyncratic shock W2(·), the market in the
first problem is complete, while that in the second problem is incomplete in general. Note when
ρ = −1 or ρ = 1, the idiosyncratic shock W2(·) disappears in the dynamics of the variance process
and the variance swap. The randomness of the financial market is entirely driven by the common
shock W1(·). In this case, the variance swap becomes a redundant asset, and the market in the second
problem becomes complete. The special case of ρ = −1 or ρ = 1 will be discussed in detail in the rest
of the paper.

In what follows, we introduce the mean-variance portfolio selection problem in the complete
market. In this circumstance, the agent can allocate his wealth to the bank account, the stock and
the variance swap over the finite-horizon [0, T]. Here we assume that the investment horizon is not
longer than the term of the variance swap, i.e., 0 < T ≤ TV . Let πS(t) denote the amount of the
agent’s wealth invested in the stock at time t, and πV(t) the notational amount invested in the variance
swap at time t. We call π(·) := {π(t)}t∈[0,T] = {(πS(t), πV(t))>}t∈[0,T] a portfolio strategy of the
agent. Let X(t) := Xπ(t) be the total wealth of the agent at time t when the portfolio strategy π(·) is
adopted. Suppose that the market is frictionless, short-selling is allowed and the portfolio strategy is
self-financing. Then the amount of the agent’s wealth invested in the bank account at time t is equal
to X(t)− πS(t)− πV(t)V(t). Thus, the agent’s wealth process {X(t)}t∈[0,T] satisfies the following
stochastic differential equation (SDE):

dX(t) = r[X(t)− πS(t)− πV(t)V(t)]dt + πS(t)
dS(t)
S(t)

+ πV(t)dV(t)

=
[
rX(t) + π(t)>B(t)

]
dt + π(t)>σ(t)dW(t), X(0) = x > 0, (12)

where

B(t) :=
(
ξ1v(t), ξρφ(t)v(t)

)> ∈ R2, (13)

and

σ(t) :=

( √
v(t) 0

ρφ(t)
√

v(t)
√

1− ρ2φ(t)
√

v(t)

)
∈ R2×2, (14)
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represent the risk premium vector and the volatility matrix of the risky assets (i.e., the stock and the
variance swap), respectively. Denote by

Σ(t) := σ(t)σ(t)> ∈ R2×2, (15)

the variance-covariance matrix of the risky assets. If ρ 6= ±1, the market price of risk (vector) and its
squared-norm satisfy

B(t)>(σ(t)>)−1 = ξ(t)> = (ξ1

√
v(t), ξ2

√
v(t)),

and

B(t)>Σ(t)−1B(t) = |ξ(t)|2 = (ξ2
1 + ξ2

2)v(t), ∀t ∈ [0, T].

However, if ρ = −1 or ρ = 1, the volatility matrix and the variance-covariance matrix are singular.
To integrate this singular case into a unified framework, we define an auxiliary market price of risk
(vector) and its squared-norm as

ϑ(t) := (ξ1

√
v(t), 1{ρ 6=±1}ξ2

√
v(t))>, (16)

and

|ϑ(t)|2 := (ξ2
1 + 1{ρ 6=±1}ξ

2
2)v(t), ∀t ∈ [0, T]. (17)

It should be noted that the following equality holds

B(t) = σ(t)ϑ(t), ∀t ∈ [0, T],

for any ρ ∈ [−1, 1].

Definition 1. In the complete market, a portfolio strategy π(·) is said to be admissible if (1) π(·) is F-adapted;
(2) π(·)>B(·) ∈ L2

F,P(0, T;R) and π(·)>σ(·) ∈ L2
F,P(0, T;R2). The set of admissible portfolio strategies is

denoted by AC.

From the standard theory of SDEs (refer to Chapter 1 in Yong and Zhou 1999), we know that
for any π(·) ∈ AC, the SDE (12) has a unique strong solution X(·) such that X(·) ∈ S p

F,P(0, T;R), for
any p ∈ [1, ∞). The agent’s objective is to find a portfolio π(·) ∈ AC, such that the expected terminal
wealth satisfies E[X(T)] = d for a given d ∈ R, while the variance of the terminal wealth

Var[X(T)] = E
[
(X(T)−E[X(T)])2] = E

[
(X(T)− d)2]

is minimized. We specify the mean-variance problem in the complete market as follows:

Definition 2. In the complete market, the mean-variance portfolio selection is the following stochastic control
problem with a terminal state constraint, parameterized by d ∈ R:

min
π(·)∈AC

J(x, v; π(·)) := E
[
(X(T)− d)2],

subject to

{
E[X(T)] = d,

(X(·), v(·); π(·)) satisfy (5) and (12).

(18)

Here π∗(·) denotes an optimal portfolio strategy of the above problem, and X∗(·) denotes the
wealth process associated with π∗(·). The optimal portfolio strategy is called an efficient portfolio
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strategy, the pair (
√

Var[X∗(T)], d) is called an efficient point, and the set of all efficient points is called
an efficient frontier.

The Lagrangian duality theorem (refer to Luenberger 1968) is a useful tool to deal with the state
constraint E[X(T)] = d. We consider the following min-max stochastic control problem:max

λ∈R
min

π(·)∈AC
J(x, v; π(·), λ) := E

[
(X(T)− d)2]+ 2λE[X(T)− d],

(X(·), v(·); π(·)) satisfy (12) and (5),
(19)

By the end of this section, we will show that the mean-variance portfolio selection problem (18) is
feasible under a mild condition. Then solving the mean-variance problem (18) is equivalent to finding
an optimal control π(·) over AC in the inner minimization problem first and then finding an optimal
value λ over R in the outer maximization problem in the min-max problem (19). Note that

J(x, v; π(·), λ) = E
[
(X(T)− (d− λ))2]− λ2, λ ∈ R.

Denote by c := d− λ. Therefore, the solution of the inner minimization problem is the same as that of
the following problem  min

π(·)∈AC
J0(x, v; π(·)) := E

[
(X(T)− c)2],

(X(·), v(·); π(·)) satisfy (12) and (5).
(20)

This problem is called a quadratic-loss minimization problem.
Next we formulate the mean-variance portfolio selection problem in the incomplete market.

Note that the agent can only invest in the bank account and the stock in the incomplete market.
Now the portfolio strategy is πS(·) := {πS(t)}t∈[0,T] and the associated wealth process is denoted by
Y(·) := {Y(t)}t∈[0,T], which evolves as follows

dY(t) =
[
rY(t) + ξ1πS(t)v(t)

]
dt + πS(t)

√
v(t)dW1(t), Y(0) = y > 0. (21)

Definition 3. In the incomplete market, a portfolio strategy πS(·) is said to be admissible if (1) πS(·) is
F-adapted; (2) ξ1πS(·)v(·) ∈ L2

F,P(0, T;R) and πS(·)
√

v(·) ∈ L2
F,P(0, T;R). The set of admissible portfolio

strategies is denoted by AIC.

Again, by the standard theory of SDEs, for any πS(·) ∈ AIC, the SDE (21) has a unique strong
solution Y(·) such that Y(·) ∈ S p

F,P(0, T;R), for any p ∈ [1, ∞). The mean-variance portfolio selection
problem in the incomplete market is specified as follows:

Definition 4. In the incomplete market, the mean-variance portfolio selection is the following stochastic control
problem with a terminal state constraint, parameterized by d ∈ R:

min
π(·)∈AIC

J(y, v; πS(·)) := E
[
(Y(T)− d)2],

subject to

{
E[Y(T)] = d,

(Y(·), v(·); πS(·)) satisfy (21) and (5).

(22)

Here π∗S(·) denotes an optimal portfolio strategy of the above problem, and Y∗(·) denotes the
wealth process associated with π∗S(·). The optimal portfolio strategy is called an efficient portfolio
strategy, the pair (

√
Var[Y∗(T)], d) is called an efficient point, and the set of all efficient points is called

an efficient frontier.
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Similarly, the related min-max problem and quadratic-loss minimization problem are defined,
respectively, as followsmax

β∈R
min

πS(·)∈AIC
J(y, v; πS(·), β) := E

[
(Y(T)− (d− β))2]− β2,

(Y(·), v(·); πS(·)) satisfy (21) and (5),
(23)

and  min
πS(·)∈AIC

J0(y, v; πS(·)) := E
[
(Y(T)− b)2],

(Y(·), v(·); πS(·)) satisfy (21) and (5),
(24)

where b := d− β.
The mean-variance problem (18) is said to be feasible for every d ∈ R if there always exists a

portfolio π(·) ∈ AC such that E[X(T)] = d. The feasibility of the mean-variance problem (22) can be
defined similarly. It can be shown as in previous works (see, for example, Lim (2004)) that the two
mean-variance problems (18) and (22) are feasible if and only if

E
[ ∫ T

0
(ξ2

1 + ξ2
ρφ2(u))v2(u)du

]
> 0, (25)

and

E
[ ∫ T

0
ξ2

1v2(u)du
]
> 0, (26)

respectively. In the rest of the paper, we assume that ξ1 6= 0, which ensures that both problems
are feasible.

Moreover, we restrict d ≥ xerT and d ≥ yerT in Problems (18) and (22), respectively, in the
remainder of the paper. This is reasonable and in line with the existing literature. Otherwise, if
d < xerT and d < yerT , Problems (18) and (22) have trivial solutions: the agent can achieve not only
the terminal state constraint but also a zero variance by investing only part of his wealth, i.e., de−rT , in
the risk-free bank account during the entire investment horizon.

Remark 1. Whether the variance swap is traded in the market makes the two problems fundamentally different.
Although the more complicated derivative, i.e., the variance swap, is introduced in the first problem, its market is
complete and hence the problem is easier. On the contrary, the second problem with less and simpler assets is
more complicated due to market incompleteness.

4. Solutions to the Complete Market Case

In this section, we derive the explicit expressions of the efficient portfolio strategy and the efficient
frontier of the mean-variance problem (18). Our derivation relies on the LQ control and BSDE approach.

First of all, we consider a pair of processes h(·) := {h(t)}t∈[0,T] and η(·) :=
{η(t)}t∈[0,T] = {(η1(t), η2(t))>}t∈[0,T] satisfying the following backward stochastic differential Riccati
equation (BSRE):

dh(t) =
{[
− 2r + |ϑ(t)|2

]
h(t) + 2ϑ(t)>η(t) +

η(t)>η(t)
h(t)

}
dt + η(t)>dW(t), h(T) = 1. (27)

Lim (2004) discussed the solvability of a class of BSREs with bounded coefficients. However, the
method in Lim (2004) cannot be applied to study the solvability of (27), since its coefficients are random
and unbounded. We instead use a transformation method to prove the existence and uniqueness of a
solution to (27).
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Under the Standing Assumption, the following Novikov condition holds:

E
[

exp
{

2
∫ T

0
|ϑ(u)|2du

}]
≤ E

[
Z2(T)

]
< ∞.

Thus, we can define a new probability measure P̄ equivalent to P as follows

dP̄
dP

∣∣∣∣
F (T)

= Λ(T) := exp
{
− 2

∫ T

0
|ϑ(u)|2du− 2

∫ T

0
ϑ(u)>dW(u)

}
.

Hence by Girsanov’s theorem, the process W̄(·) := (W̄1(·), W̄2(·))> defined by

W̄(t) := W(t) + 2
∫ t

0
ϑ(u)du,

is a two-dimensional, (F, P̄)-standard Brownian motion. We denote by Ē[·] the expectation taken
under P̄, and Ēt[·] the conditional expectation under P̄ given F (t).

Lemma 1. Suppose that the Standing Assumption holds. The BSRE (27) admits a unique solution
(h(·), η(·)) ∈ L∞

F,P(0, T;R)×L2
F,P(0, T;R2), where the first component of the solution satisfies

0 ≤ h(t) =
e2r(T−t)

Ēt
[
e
∫ T

t |ϑ(u)|2du] < e2rT , a.e. t ∈ [0, T], P-a.s.. (28)

Proof. Let us consider a pair of processes h̄(·) := {h̄(t)}t∈[0,T] and η̄(·) := {η̄(t)}t∈[0,T] =

{(η̄1(t), η̄2(t))>}t∈[0,T], which is governed by the following linear BSDE under P̄:

dh̄(t) = 2rh̄(t)dt + η̄(t)>dW̄(t), h̄(T) = e
∫ T

0 |ϑ(u)|
2du. (29)

Evidently, the driver of (29) is Lipschitz continuous. In addition, by Hölder’s inequality and the
Standing Assumption, we can show

Ē
[
h̄p(T)

]
= E

[
e(p−2)

∫ T
0 |ϑ(u)|

2du−2
∫ T

0 ϑ(u)>dW(u)
]

≤
{
E
[
Z2(p+2)(T)

]} 1
2 < ∞.

That is, h̄(T) ∈ Lp
F (T),P̄(Ω;R), for any p > 1. Thus, Equation (29) is a BSDE with p-standard data (see

Theorem 5.1 in El Karoui et al. (1997)), which admits a unique solution (h̄(·), η̄(·)) ∈ S p
F,P̄(0, T;R)×

Lp
F,P̄(0, T;R2), for any p > 1. Furthermore, using Proposition 2.2 in El Karoui et al. (1997), we obtain

h̄(t) = e−2r(T−t)Ēt
[
e
∫ T

0 |ϑ(u)|
2du]. (30)

Since |ϑ(t)|2 = (ξ2
1 + 1{ρ 6=±1}ξ

2
2)v(t) > 0, we must have h̄(t) > 0, a.e. t ∈ [0, T], P̄-a.s..

Consider a pair of transformed processes h(·) and η(·) defined by

h(t) :=
e
∫ t

0 |ϑ(u)|
2du

h̄(t)
, (31)

and

η(t) := −h(t)η̄(t)
h̄(t)

. (32)
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An application of Itô’s differentiation rule to h(·) gives

dh(t) =

{[
− 2r + |ϑ(t)|2

] e
∫ t

0 |ϑ(u)|
2du

h̄(t)
+

e
∫ t

0 |ϑ(u)|
2duη̄(t)>η̄(t)
h̄3(t)

}
dt− e

∫ t
0 |ϑ(u)|

2duη̄(t)>

h̄2(t)
dW̄(t)

=

{[
− 2r + |ϑ(t)|2

]
h(t) + 2ϑ(t)>η(t) +

η(t)>η(t)
h(t)

}
dt + η(t)>dW(t),

which is exactly the BSRE (27). Observing (31) and (32), we can see that (h(·), η(·)) has a one-to-one
correspondence relationship with (h̄(·), η̄(·)). Therefore, (h(·), η(·)) is the unique solution to the
BSRE (27).

Combining (30)–(32) gives

0 ≤ h(t) =
e2r(T−t)

Ēt
[
e
∫ T

t |ϑ(u)|2du] < e2r(T−t) ≤ e2rT , (33)

a.e. t ∈ [0, T], P̄-a.s.. Since P and P̄ are equivalent, we have that h(·) ∈ L∞
F,P(0, T;R) and the above

inequalities also hold P-a.s.. Furthermore, using Hölder’s inequality, the Standing Assumption and
Equation (6) and taking p = 4 in the above p-standard data, we obtain

E
[ ∫ T

0
|η(u)|2du

]
= Ē

[
Λ−1(T)

∫ T

0
|η̄(u)|2e−2

∫ u
0 |ϑ(µ)|

2dµh4(u)du
]

≤ C
{
Ē
[
Λ−2(T)

]} 1
2

{
Ē
[( ∫ T

0
|η̄(u)|2du

)2]} 1
2

≤ C
{
E
[

e−8
∫ T

0 |ϑ(u)|
2du+4

∫ T
0 ϑ(u)>dW(u)

]} 1
4

(34)

×
{
E
[
Z12(T)

]} 1
4 ||η̄(·)||2L4

F,P̄(0,T;R2)

= C
{
E
[
Z12(T)

]} 1
4 ||η̄(·)||2L4

F,P̄(0,T;R2)
< ∞,

where C is a positive constant. Therefore, (h(·), η(·)) ∈ L∞
F,P(0, T;R)×L2

F,P(0, T;R2).

Remark 2. The basic idea in the above proof is to relate the BSRE (27) to a linear BSDE (29) that satisfies the
Lipschitz continuity condition. By doing this, we can use theLp-solution theory of BSDEs and the transformation
method to prove the uniqueness and existence of the original BSRE in appropriate spaces. Furthermore, from
the linear BSDE and the reciprocal transformation, we can represent the first component h(t) in terms of an
expectation, which will be used to derive explicit expressions of the solution to the BSRE (27).

Remark 3. The derivations of (34) is based on the following reasoning: under the Standing Assumption, an
adapted stochastic process, which is dominated by another adapted, L4-integrable process under an equivalent
probability measure, is L2-integrable under the original probability measure. Similar derivations can be also
conducted for processes in S2

F,P(0, T;R). We will refer to (34) and this remark whenever similar derivations are
needed in the sequel.

Since the (auxiliary) market prices of risk vector ϑ(·) are deterministic functions of the variance
v(·), it is Markovian with respect to F. Therefore, we can derive the explicit expressions of the unique
solution to (27) via partial differential equations (PDEs).
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Lemma 2. Suppose that the Standing Assumption holds. The unique solution pair (h(·), η(·)) of the BSRE
(27) is given by

h(t) = exp
{

2r(T − t)− K(t)v(t)− L(t)
}

, (35)

and

η1(t) = −σρ
√

v(t)K(t)h(t), (36)

η2(t) = −σ
√

1− ρ2
√

v(t)K(t)h(t). (37)

Here K(·) ∈ C(0, T;R) and L(·) ∈ C(0, T;R) are the solutions of the following Riccati and linear ODEs:

dK(t)
dt
− (κ + 2σξρ)K(t) +

1
2

σ2K2(t) + (ξ2
1 + 1{ρ 6=±1}ξ

2
2) = 0, (38)

and

dL(t)
dt

+ κθK(t) = 0, L(T) = 0. (39)

Proof. Refer to the Appendix A.

Remark 4. In Lemma 2, deriving the solution to the BSRE (27) is reduced to calculating an expectation. Due
to the Markovian and square-root structure of Heston’s model, we use the Feynman-Kac formula and obtain the
exponential affine-form expression for the first component of the solution. Indeed, the Feynman-Kac formula
relates the solutions of Markovian BSDEs to those of PDEs. Similar calculations are frequently conducted in
zero-coupon bond pricing under affine-form term-structure models.

Lemma 3. The explicit solutions to (38) and (39) are given by

K(t) =



(ξ2
1 + 1{ρ 6=±1}ξ

2
2)

sin(δCτ)
δC

cos(δCτ) +
κ+2σξρ

2
sin(δCτ)

δC

, ∆C < 0,

(ξ2
1 + 1{ρ 6=±1}ξ

2
2)τ

1 + κ+2σξρ

2 τ
, ∆C = 0,

(ξ2
1 + 1{ρ 6=±1}ξ

2
2)

sinh(δCτ)
δC

cosh(δCτ) +
κ+2σξρ

2
sinh(δCτ)

δC

, ∆C > 0,

(40)

and

L(t) =



− 2κθ

σ2 log
∣∣∣∣ cos(δCτ) +

κ + 2σξρ

2
sin(δCτ)

δC

∣∣∣∣+ κθ(κ + 2σξρ)

σ2 τ, ∆C < 0,

− 2κθ

σ2 log
∣∣∣∣1 + κ + 2σξρ

2
τ

∣∣∣∣+ κθ(κ + 2σξρ)

σ2 τ, ∆C = 0,

− 2κθ

σ2 log
∣∣∣∣ cosh(δCτ) +

κ + 2σξρ

2
sinh(δCτ)

δC

∣∣∣∣+ κθ(κ + 2σξρ)

σ2 τ, ∆C > 0,

(41)

where ∆C := (κ + 2σξρ)2 − 2σ2(ξ2
1 + 1{ρ 6=±1}ξ

2
2), δC := 1

2

√
|∆C| and τ := T − t.

Proof. Refer to the Appendix A.
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Define a stochastic exponential {Π(t)}t∈[0,T] by

Π(t) := exp
{
− 1

2

∫ t

0
|ϑ(u)|2du−

∫ t

0
ϑ(u)>dW(u)

}
. (42)

Before we derive the efficient strategy and the efficient frontier, we study the integrability of Π(·).
This integrability result will be used in the proof of Theorem 1.

Lemma 4. Under the Standing Assumption, the stochastic exponential Π(·) belongs to S p
F,P(0, T;R), for any

p > 1.

Proof. It can be easily verified that for any given p > 1, the following equation

p =
k

2
√

k− 1

has two positive roots

k1 = p(2p− 1) + 2p
√

p(p− 1), k2 = p(2p− 1)− 2p
√

p(p− 1),

with the first root satisfying k1 > 1. From the Standing Assumption, we know

E
[

e
k1
2
∫ T

0 |ϑ(u)|
2du
]
< ∞.

By Case (ii) of Theorem 15.4.6 in Cohen and Elliott (2015), we have

E
[

sup
t∈[0,T]

|Π(t)|p
]
≤ p

p− 1

{
E
[

e
k1
2
∫ T

0 |ϑ(u)|
2du
]}√k1−1

k1
< ∞.

This completes the proof.

Theorem 1. Suppose that the Standing Assumption holds. The efficient portfolio strategy of the mean-variance
portfolio selection problem (18) is given by

π∗(t) = −Σ(t)−1
[

B(t) +
σ(t)η(t)

h(t)

][
X∗(t)− (d− λ∗)e−r(T−t)], if ρ 6= ±1, (43)

or

π∗S(t) + ρφ(t)π∗V(t) = −
[
ξ1 − ρσK(t)

][
X(t)− (d− λ∗)e−r(T−t)], if ρ = −1 or 1, (44)

where

λ∗ = −h(0)e−rT(x− de−rT)

h(0)e−2rT − 1
, (45)

and the efficient frontier is given by

Var[X∗(T)] =
h(0)e−2rT

1− h(0)e−2rT [d− xerT ]2, (46)
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which can be also written as

E[X∗(T)] = d =

√
1− h(0)e−2rT

h(0)e−2rT

√
Var[X∗(T)] + xerT . (47)

Proof. Denote by

X̂(t) := X(t)− ce−r(T−t), (48)

which solves the same SDE as X(t) in Equation (12) but has a different initial value X̂(0) = x− ce−rT .
Hence for any π(·) ∈ AC, we know X̂(·) ∈ Sp

F,P(0, T;R), for p ≥ 1. By Itô’s differentiation rule,
we have

dh(t)X̂2(t) = h(t)
{

σ(t)>π(t) +
[

ϑ(t) + η(t)
h(t)

]
X̂(t)

}>{
σ(t)>π(t) +

[
ϑ(t) + η(t)

h(t)

]
X̂(t)

}
dt

+

{
2h(t)X̂(t)π(t)>σ(t) + X̂2(t)η(t)>

}
dW(t).

(49)

We employ a localization technique and define a sequence of stopping times as follows

τn := inf
{

t ≥ 0 :
∫ t

0

∣∣2h(u)X̂(u)π(u)>σ(u) + X̂2(u)η(u)>
∣∣2du ≥ n

}
, for n ≥ 1.

Here we adopt the convention inf ∅ := +∞. Since X̂(·) ∈ S2
F,P(0, T;R) and π(·)>σ(·) ∈ L2

F,P(0, T;R2),
for any π(·) ∈ AC, and (h(·), η(·)) ∈ L∞

F,P(0, T;R)×L2
F,P(0, T;R2), the sequence of the stopping times

τn is increasing and converges to +∞, P-a.s., when n approaches +∞. Moreover, we note

h(T ∧ τn)X̂2(T ∧ τn) ≤ e2rT
(

sup
t∈[0,T]

X̂2(t)
)

,

where the right hand side is a P-integrable random variable.
Integrating from 0 to T ∧ τn and taking expectations on both sides of (49) yield

E[h(T ∧ τn)X̂2(T ∧ τn)]− h(0)X̂2(0) = E
[ ∫ T∧τn

0 h(u)
{

σ(u)>π(u) +
[

ϑ(u) + η(u)
h(u)

]
X̂(u)

}>
×
{

σ(u)>π(u) +
[

ϑ(u) + η(u)
h(u)

]
X̂(u)

}
du
]

.
(50)

Sending n → ∞ in the above equation and using the dominated convergence theorem and the
monotone convergence theorem, we obtain

E[X̂2(T)]− h(0)X̂2(0) = E
[ ∫ T

0
h(u)

{
σ(u)>π(u) +

[
ϑ(u) +

η(u)
h(u)

]
X̂(u)

}>
×
{

σ(t)>π(u) +
[

ϑ(u) +
η(u)
h(u)

]
X̂(u)

}
du
]

. (51)

Depending on the value of correlation coefficient, the optimal strategy of the quadratic-loss
minimization problem (20) is given by the following two cases

π(t) = −Σ(t)−1
[

B(t) +
σ(t)η(t)

h(t)

][
X(t)− ce−r(T−t)], if ρ 6= ±1, (52)

or

πS(t) + ρφ(t)πV(t) = −
[
ξ1 − ρσK(t)

][
X(t)− ce−r(T−t)], if ρ = −1 or 1. (53)
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The optimal cost functional is given by

J0(x, v; π(·)) = h(0)[x− ce−rT ]2. (54)

From the Lagrangian duality theorem, solving the original problem (18) is reduced to maximizing the
following cost functional

J(x, v; π(·), λ) = J0(x, v; π(·))− λ2

= h(0)
[
x− (d− λ)e−rT]2 − λ2, (55)

over λ ∈ R. From Lemma 1, we know

∂2 J
∂λ2 (x, v; π(·), λ) = 2e−2rTh(0)− 2 < 0.

Using the first-order condition to (55) with respect to λ, we obtain the following optimal value of λ:

λ∗ = −h(0)e−rT(x− de−rT)

h(0)e−2rT − 1
.

Substituting λ∗ into (52) or (53) and (54) leads to the efficient portfolio strategy (43) or (44) and the
efficient frontier (46) and (47).

Next we claim that the efficient portfolio strategy (43) or (44) is admissible. Evidently, π∗(·) is
F-adapted, i.e., Condition (1) in Definition 1 is satisfied. For both (43) and (44), we can see

π∗(t)>σ(t) = −
[

ϑ(t) +
η(t)
h(t)

]>[
X∗(t)− (d− λ∗)e−r(T−t)].

Then substituting π∗(t)σ(t) into (12) gives

dX∗(t) =
[
a1(t)X∗(t) + a2(t)

]
dt +

[
a3(t)>X∗(t) + a4(t)>

]
dW(t), (56)

where

a1(t) := r−
[
|ϑ(t)|2 + ϑ(t)>η(t)

h(t)

]
∈ R,

a2(t) := (d− λ∗)e−r(T−t)
[
|ϑ(t)|2 + ϑ(t)>η(t)

h(t)

]
∈ R,

and

a3(t) := −
[

ϑ(t) +
η(t)
h(t)

]
∈ R2,

a4(t) := (d− λ∗)e−r(T−t)
[

ϑ(t) +
η(t)
h(t)

]
∈ R2.

By Itô’s differentiation rule, we can verify

X∗(t) = (d− λ∗)e−r(T−t) − H(t)h̄(t)e−
∫ t

0 |ϑ(u)|
2du, (57)

where h̄(·) is the unique solution of the BSRE (29) and H(·) is defined by

H(t) = h(0)
[
(d− λ∗)e−rT − x0

]
e−rtΠ(t), ∀t ∈ [0, T].
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Using Lemmas 1 and 4, we deduce that

E
[

sup
u∈[0,T]

|X∗(u)|4
]
≤ K

{
1 +E

[
sup

u∈[0,T]

(
Π(u)h̄(u)

)4
]}

≤ K
{

1 +E
[

sup
u∈[0,T]

|Π(u)|8
]
+E

[
sup

u∈[0,T]
|h̄(u)|8

]}
< ∞.

Furthermore, we derive that

E
[ ∫ T

0

∣∣π∗(u)>B(u)
∣∣2du

]
≤ C

{
E
[ ∫ T

0

∣∣v(u)X∗(u)
∣∣2du

]
+ 1
}

≤ C
{
E
[

sup
u∈[0,T]

|X∗(u)|4
]
+E

[
e
∫ T

0 |v(u)|
2du
]
+ 1
}

< ∞.

Hence, π∗(·)>B(·) ∈ L2
F,P(0, T;R). In the same vein, we can show π∗(·)>σ(·) ∈ L2

F,P(0, T;R2).
This implies that Condition (2) in Definition 1 is satisfied. Therefore, we can conclude π∗(·) ∈ AC.
This completes the proof.

Remark 5. Although the efficient strategy has the same parametric form as that in the market with bounded
coefficients, the admissibility of the efficient strategy needs to be carefully discussed. Simply speaking, this is
because the product of two square-integrable variables is not necessarily square-integrable unless additional
conditions (refer to Remark 3), i.e., Standing Assumption, are imposed.

Remark 6. From Lemmas 2 and 3, we can see that h(0) is independent of the term of the variance swap, i.e., TV .
Therefore, the efficient frontier (45) or (46) in the complete market does not depend on TV . This is interesting
since investing in the variance swaps with different maturities does not make any difference to the efficient
frontier.

Remark 7. Depending on the correlation coefficient, the efficient portfolio strategies have different
representations. Particularly, if ρ = −1 or 1, the optimal (notational) amounts allocated to the stock and
the variance swap cannot be disentangled, since the volatility matrix now is singular and hence not invertible.
Indeed, when ρ = −1 or 1, the stock and the variance swap play essentially the same role in the market and the
existence of any one of them makes the market complete and the other a redundant asset.

5. Solution to the Incomplete Market Case

In this section, we consider the mean-variance portfolio selection problem (22), where the variance
swap is absent. Although the market with only the bank account and the stock in this section seems
simpler than the market in the previous section, the derivations of the efficient portfolio strategy and
the efficient frontier are more complicated due to market incompleteness. The derivations in this
section also rely on the LQ control and BSDE approach.

Consider a pair of processes g(·) := {g(t)}t∈[0,T] and ζ(·) := {ζ(t)}t∈[0,T] =

{(ζ1(t), ζ2(t))>}t∈[0,T] satisfying the following BSDEdg(t) =
{[
− 2r + ξ2

1v(t)
]
g(t) + 2ξ1

√
v(t)ζ1(t) +

ζ2
1(t)

g(t)

}
dt + ζ(t)>dW(t),

g(T) = 1.
(58)

As in the previous section, Equation (58) is a BSRE with random and unbounded coefficients, thereby
the existing theory of BSREs cannot be used directly. Similarly, we apply a transformation method to
prove the existence and uniqueness of a solution to BSRE (58). Indeed, in Section 4 we use a reciprocal
transformation to relate the BSRE (27) to the linear BSDE (29). Since the market is incomplete in this
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section, the structure of BSRE (58) is different from that of (27). We cannot use the same reciprocal
transformation in this section. Instead, we use a logarithmic transformation to relate BSRE (58) to a
quadratic BSDE. In that sense, this section is not a trivial repetition of the previous section.

Under the Standing Assumption, we can define a new probability measure P̆ equivalent to P
as follows

dP̆
dP

∣∣∣∣
F (T)

= Γ(T) := exp
{
− 2

∫ T

0
ξ2

1v(u)du− 2
∫ T

0
ξ1

√
v(u)dW1(u)

}
.

By Girsanov’s theorem, the process W̆(·) := (W̆1(·), W̆2(·))> defined by

W̆1(t) := W1(t) + 2
∫ t

0
ξ1

√
v(u)du,

and

W̆2(t) := W2(t),

is a two-dimensional, (F, P̆)-standard Brownian motion. We denote by Ĕ[·] the expectation taken
under P̆, and Ĕt[·] the conditional expectation under P̆ given F (t).

Lemma 5. Suppose that the Standing Assumption holds. The BSRE (58) admits at least one solution
(g(·), ζ(·)) ∈ S2

F,P(0, T;R)×L2
F,P(0, T;R2).

Proof. We consider a pair of processes ğ(·) := {ğ(t)}t∈[0,T] and ζ̆(·) := {ζ̆(t)}t∈[0,T] =

{(ζ̆1(t), ζ̆2(t))>}t∈[0,T] following a quadratic BSDE under P̆:

dğ(t) =
{
[−2r + ξ2

1v(t)] +
1
2
[ζ̆2

1(t)− ζ̆2
2(t)]

}
dt + ζ̆(t)>dW̆(t), ğ(T) = 0. (59)

From the Standing Assumption, we can see that the BSDE (59) belongs to a class of quadratic BSDEs
satisfying the exponential integrability condition, as considered by Briand and Hu (2008). Therefore,
under the Standing Assumption, there exists at least one solution (ğ(·), ζ̆(·)) ∈ EF,P̆(0, T;R) ×
Lp
F,P̆(0, T;R2), for any p ≥ 1 (see Corollary 4 in Briand and Hu 2008).

We consider a pair of transformed processes g(·) and ζ(·) defined by

g(t) := eğ(t), (60)

and

ζ(t) := ζ̆(t)eğ(t). (61)

Applying Itô’s differentiation rule to g(t) gives

dg(t) =

{
[−2r + ξ2

1v(t)]eğ(t) + ζ̆2
1(t)e

ğ(t)
}

dt + eğ(t) ζ̆(t)>dW̆(t)

=

{[
− 2r + ξ2

1v(t)
]
g(t) + 2ξ1

√
v(t)ζ1(t) +

ζ2
1(t)

g(t)

}
dt + ζ(t)>dW(t),
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which is exactly the BSRE (58). Therefore, by relationships (60) and (61), there also exists at least
one solution (g(·), ζ(·)) to the BSRE (58). By (ğ(·), ζ̆(·)) ∈ EF,P̆(0, T;R)×Lp

F,P̆(0, T;R2), where p = 4,
Hölder’s inequality and the Standing Assumption (see also Remark 3), we derive

E
[

sup
u∈[0,T]

|g(u)|2
]

= Ĕ
[

Γ−1(T) sup
u∈[0,T]

e2ğ(u)
]

≤
{
E
[
Γ−1(T)

]} 1
2

{
Ĕ
[

e4 supu∈[0,T] |ğ(u)|
]} 1

2

≤
{
E
[

e−8ξ2
1
∫ T

0 v(u)du+4ξ1
∫ T

0

√
v(u)dW1(u)

]} 1
4

×
{
E
[

e12ξ2
1
∫ T

0 v(u)du
]} 1

4
{
Ĕ
[

e4 supu∈[0,T] |ğ(u)|
]} 1

2

≤
{
E
[
Z12(T)

]} 1
4

{
Ĕ
[

e4 supu∈[0,T] |ğ(u)|
]} 1

2

< ∞,

and

E
[ ∫ T

0
|ζ(t)|2dt

]
= Ĕ

[
Γ−1(T)

∫ T

0
e2ğ(t)|ζ̆(t)|2dt

]

≤ C
{
Ĕ
[

Γ−2(T)e4 supt∈[0,T] |ğ(t)|
]} 1

2
{
Ĕ
[( ∫ T

0
|ζ̆(t)|2dt

)2]} 1
2

≤ C
{
E
[
Γ−3(T)

]} 1
4

{
Ĕ
[

e8 supt∈[0,T] |ğ(t)|
]} 1

4

||ζ̆(·)||2L4
F,P̆(0,T;R2)

≤ C
{
E
[
Z30(T)

]} 1
8

{
Ĕ
[

e8 supt∈[0,T] |ğ(t)|
]} 1

4

||ζ̆(·)||2L4
F,P̆(0,T;R2)

< ∞.

Therefore, (g(·), ζ(·)) ∈ S2
F,P(0, T;R)×L2

F,P(0, T;R2).

Remark 8. As −2r + ξ2
1v(t) is not uniformly bounded in t, the classical theory of quadratic BSDEs established

by Kobylanski (2000) is not working for (59). Furthermore, since the driver of (59) is neither convex nor
concave in the second (control) component of the solution, the uniqueness result for quadratic BSDEs in
Briand and Hu (2008) cannot be applied. Therefore, the BSDE (59) does not necessarily have a unique solution,
and neither does the BSRE (58). Fortunately, we can find an explicit solution to the BRSE (58), thanks to its
Markovian structure, and verify that this solution is exactly the unique solution.

Lemma 6. Suppose that the Standing Assumption holds. A solution pair (g(·), ζ(·)) to the BSRE (58) is
given by

g(t) = exp
{

2r(T − t)−M(t)v(t)− N(t)
}

, (62)

and

ζ1(t) = −σρ
√

v(t)M(t)g(t), (63)

ζ2(t) = −σ
√

1− ρ2
√

v(t)M(t)g(t). (64)
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Here M ∈ C(0, T;R) and N ∈ C(0, T;R) are the solutions of the following Riccati and linear ODEs:

dM(t)
dt

− (κ + 2σξ1ρ)M(t) +
(

ρ2 − 1
2

)
σ2M2(t) + ξ2

1 = 0, M(T) = 0, (65)

and

dN(t)
dt

+ κθM(t) = 0, N(T) = 0. (66)

Proof. Refer to the Appendix A.

Remark 9. Unlike the proof of Lemma 2, the solution of the BSRE (58) is found by trial and error in Lemma 6.
This is because we cannot find a linear BSDE related to BSRE (58). In fact, it seems very difficult, if not
impossible, to represent the solution in terms of an expectation expression. The difficulty is caused by market
incompleteness.

Lemma 7. The first component of the solution to the BSRE (58), i.e., g(t) given by (62), is in L∞
F,P(0, T;R).

More specifically, 0 ≤ g(t) < e2rT , a.e. t ∈ [0, T], P-a.s..

Proof. From the second line of Equation (A11), we see

d
[
g(t)e2rt−

∫ t
0 [ξ1−ρσM(u)]2v(u)du] = e2rt−

∫ t
0 [ξ1−ρσM(u)]2v(u)du[ζ1(t)dW1(t) + ζ2(t)dW2(t)

]
.

Since e2rt−
∫ t

0 [ξ1−ρσM(u)]2v(u)du is bounded, a.e. t ∈ [0, T], P-a.s. and ζ(·) ∈ L2
F,P(0, T;R2), we have that

the process {
g(t)e2rt−

∫ t
0 [ξ1−ρσM(u)]2v(u)du

}
t∈[0,T]

is a square-integrable (F,P)-martingale. Then taking expectations gives

0 ≤ g(t) = Et

[
exp

(
2r(T − t)−

∫ T

t
[ξ1 − ρσM(u)]2v(u)du

)]
≤ e2r(T−t) ≤ e2rT ,

a.e. t ∈ [0, T], P-a.s.. Furthermore, since v(t) > 0, a.e. t ∈ [0, T], P-a.s., and M(t) = ξ1
ρσ is not the

solution of (65), the upper bound is strict, for any t ∈ [0, T].

Remark 10. Although we have already obtained the solution space of g(·) in Lemma 5, that space is not delicate
enough to be used in our following applications. Lemma 7 gives a more accurate estimate for the first component
of the solution g(·). The upper bound of g(·) guarantees that the first-order condition is satisfied in Theorem 2
for the outer maximization problem.

As in the previous section, we provide the explicit representations of the solutions to (65) and (66).
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Lemma 8. The explicit solutions to (65) and (66) are given by

M(t) =



ξ2
1

sin(δI τ)
δI

cos(δIτ) +
κ+2σξ1ρ

2
sin(δI τ)

δI

, ∆I < 0,

ξ2
1τ

1 + κ+2σξ1ρ
2 τ

, ∆I = 0,

ξ2
1

sinh(δI τ)
δI

cosh(δIτ) +
κ+2σξ1ρ

2
sinh(δI τ)

δI

, ∆I > 0,

(67)

and

(i) if ρ2 6= 1
2 , then

N(t) =



− 2κθ

(2ρ2 − 1)σ2 log
∣∣∣∣ cos(δIτ) +

κ + 2σξ1ρ

2
sin(δIτ)

δI

∣∣∣∣+ κθ(κ + 2σξ1ρ)

(2ρ2 − 1)σ2 τ, ∆I < 0,

− 2κθ

(2ρ2 − 1)σ2 log
∣∣∣∣1 + κ + 2σξ1ρ

2
τ

∣∣∣∣+ κθ(κ + 2σξ1ρ)

(2ρ2 − 1)σ2 τ, ∆I = 0,

− 2κθ

(2ρ2 − 1)σ2 log
∣∣∣∣ cosh(δIτ) +

κ + 2σξ1ρ

2
sinh(δIτ)

δI

∣∣∣∣+ κθ(κ + 2σξ1ρ)

(2ρ2 − 1)σ2 τ, ∆I > 0;

(68)

(ii) if ρ2 = 1
2 and κ 6= −2σξ1ρ, then

N(t) = −
κθξ2

1
κ + 2σξ1ρ

[
sinh(δIτ)

δI
e−

(κ+2σξ1ρ)τ
2 − τ

]
; (69)

(iii) if ρ2 = 1
2 and κ = −2σξ1ρ, then

N(t) =
1
2

κθξ2
1τ2. (70)

where ∆I := (κ + 2σξ1ρ)2 − 2ξ2
1σ2(2ρ2 − 1), δI := 1

2

√
|∆I | and τ := T − t.

Proof. The proof is similar to that of Lemma 3. We omit it here.

Lemma 9. Suppose that the Standing Assumption holds. The solution M(·) given by (67) is non-negative and
non-explosive over [0, T].

Proof. Consider the following Riccati equation for M1(·) ∈ C(0, T;R):

dM1(t)
dt

− (κ + 2σξ1ρ)M1(t) +
(

ρ2 − 1
2

)
σ2M2

1(t) = 0, M1(T) = 0. (71)

Obviously, M1(t) ≡ 0 is the solution to (71). Observe M1(T) = M(T) and(
0 −(κ + 2σξ1ρ)

0 (ρ2 − 1
2 )σ

2

)
≤
(

ξ2
1 −(κ + 2σξ1ρ)

0 (ρ2 − 1
2 )σ

2

)
.

Thus, using the comparison theorem for Riccati equations (see Theorem 2.1 in Freiling et al. 1996) gives

0 ≡ M1(t) ≤ M(t), ∀t ∈ [0, T].
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Since v(·) is Markovian with respect to F, we can derive as in Lemma 2 that there exists M2(·) ∈
C(0, T;R) and N2(·) ∈ C(0, T;R) such that

Ĕt

[
exp

{
ξ2

1

∫ T

t
v(u)du

}]
= exp

{
M2(t)v(t) + N2(t)

}
.

The dynamics of v(·) under P̆ is given by

dv(t) =
[
κθ − (κ + 2σξ1ρ)v(t)

]
dt + σ

√
v(t)

[
ρdW̆1(t) +

√
1− ρ2dW̆2(t)

]
, v(0) = v > 0.

As in Lemmas 2 and 6, we have

dM2(t)
dt

− (κ + 2σξ1ρ)M2(t) + σ2M2
2(t) + ξ2

1 = 0, M2(T) = 0,

and

dN2(t)
dt

+ κθM2(t) = 0, N2(T) = 0.

Observe that M(T) = M2(T) = 0 and(
ξ2

1 −(κ + 2σξ1ρ)

0 (ρ2 − 1
2 )σ

2

)
≤
(

ξ2
1 −(κ + 2σξ1ρ)

0 σ2

)
.

Again, using the comparison theorem for Riccati equations gives

0 ≤ M(t) ≤ M2(t), ∀t ∈ [0, T].

It follows from Jensen’s inequality, the tower property, Hölder’s inequality and the Standing
Assumption that

exp
{

M2(t)Ĕ[v(t)] + N2(t)
}
≤ Ĕ

[
exp

{
M2(t)v(t) + N2(t)

}]
= Ĕ

[
exp

{
ξ2

1

∫ T

t
v(u)du

}]
≤ E

[
Γ(T) exp

{
ξ2

1

∫ T

0
v(u)du

}]

≤
{
E
[

e−8ξ2
1
∫ T

0 v(u)du−4ξ1
∫ T

0

√
v(u)dW(u)

]} 1
2
{
E
[

e6ξ2
1
∫ T

0 v(u)du
]} 1

2

≤
{
E
[
Z6(T)

]} 1
2 < ∞.

Note that

M2(t) ≥ 0, N2(t) ≥ 0, ∀t ∈ [0, T],

and

Ĕ[v(t)] = e−(κ+2σξ1ρ)t
[

v + κθ
∫ t

0
e(κ+2σξ1ρ)udu

]
∈ Cb(0, T;R).
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Therefore, M2(·) does not explode over [0, T], i.e., the investment horizon T is shorter than the first
explosion time of M2(·), and

0 = M1(t) ≤ M(t) ≤ M2(t) < ∞, ∀t ∈ [0, T].

This completes the proof.

The next lemma states that (g(·), ζ(·)) given in Lemma 6 is, in fact, the unique solution to the
BSRE (58).

Lemma 10. Suppose that the Standing Assumption holds. The BSRE (58) admits a unique solution
(g(·), ζ(·)) ∈ L∞

F,P(0, T;R)×L2
F,P(0, T;R2), which is given by (62)–(64).

Proof. From relationships (60) and (61), we have

ğ(t) = 2r(T − t)−M(t)v(t)− N(t), (72)

and

ζ̆(t) = (ζ̆1(t), ζ̆2(t))>

= (−σρ
√

v(t)M(t),−σ
√

1− ρ2
√

v(t)M(t))>, (73)

is a solution pair of the quadratic BSDE (59). Suppose that ( ˘̆g(·), ˘̆ζ(·)), where ˘̆ζ(·) := ( ˘̆ζ1(·), ˘̆ζ2(·))>,
is another solution pair to the BSDE (59), i.e.,

d ˘̆g(t) =
{
[−2r + ξ2

1v(t)] +
1
2
[ ˘̆ζ

2
1(t)− ˘̆ζ

2
2(t)]

}
dt + ˘̆ζ(t)>dW̆(t), ˘̆g(T) = 0. (74)

By the Standing Assumption and Lemma 9, the following Novikov condition holds:

Ĕ
[

exp
{

1
2

∫ T
0 |ζ̆(u)|

2du
}]

≤ E
[

Γ(T) exp
{

σ2 supu∈[0,T] M2(u)
2

∫ T
0 v(u)du

}]
≤

{
E
[

e−8ξ2
1
∫ T

0 v(u)du−4ξ1
∫ T

0

√
v(u)dW(u)

]} 1
2
{
E
[
(Z(T))

4+
σ2 supu∈[0,T] M2(u)

ξ2
1+ξ2

2

]} 1
2

=

{
E
[
(Z(T))

4+
σ2 supu∈[0,T] M2(u)

ξ2
1+ξ2

2

]} 1
2

< ∞.

Thus, we can define a new probability measure P̂ equivalent to P̆ as follows

dP̂
dP̆

∣∣∣∣
F (T)

= Θ(T) := exp
{
− 1

2

∫ T

0
|ζ̆(u)|2du−

∫ T

0
ζ̆1(u)dW̆1(u) +

∫ T

0
ζ̆2(u)dW̆2(u)

}
. (75)

By Girsanov’s theorem, the process Ŵ(·) := (Ŵ1(·), Ŵ2(·))> defined by

Ŵ1(t) := W̆1(t) +
∫ t

0
ζ̆1(u)du,

and

Ŵ2(t) := W̆2(t)−
∫ t

0
ζ̆2(u)du,
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is a two-dimensional, (F, P̂)-standard Brownian motion. Under P̂, (ğ(·), ζ̆(·)) and ( ˘̆g(·), ˘̆ζ(·)) satisfy
the following two equationsdğ(t) =

{
[−2r + ξ2

1v(t)]− 1
2
[ζ̆2

1(t)− ζ̆2
2(t)]

}
dt + ζ̆(t)>dŴ(t),

ğ(T) = 0,
(76)

andd ˘̆g(t) =
{
[−2r + ξ2

1v(t)] +
1
2
[ ˘̆ζ

2
1(t)− ˘̆ζ

2
2(t)]− [ζ̆1(t)

˘̆ζ1(t)− ζ̆2(t) ˘̆ζ2(t)]
}

dt + ˘̆ζ(t)>dŴ(t),

˘̆g(T) = 0.
(77)

Denote by (ĝ(·), ζ̂(·)) := (ğ(·), ζ̆(·))− ( ˘̆g(·), ˘̆ζ(·)). Then subtracting (76) by (77) givesdĝ(t) = −1
2
[ζ̂2

1(t)− ζ̂2
2(t)]dt + ζ̂(t)>dŴ(t),

ĝ(T) = 0.
(78)

Indeed, Equation (78) is a BSDE with quadratic growth and bounded terminal value considered
by Kobylanski (2000), hence admits a unique solution. Clearly, ĝ(·) ≡ 0 and ζ̂(·) ≡ (0, 0)> form
the unique solution pair to (78). Therefore, (ğ(·), ζ̆(·)) is the unique solution to the quadratic BSDE
(59). By definition, (g(·), ζ(·)) ∈ S2

F,P(0, T;R)×L2
F,P(0, T;R2) is the unique solution to the BSRE (58).

Furthermore, by Lemmas 5 and 7, we conclude that (g(·), ζ(·)) ∈ L∞
F,P(0, T;R)×L2

F,P(0, T;R2).

Next we derive the closed-form expressions of the efficient portfolio strategy and the efficient
frontier of the mean-variance portfolio selection problem (22).

Theorem 2. The efficient portfolio strategy of the mean-variance portfolio selection problem (22) is given by

π∗S(t) = −
[
ξ1 − ρσM(t)

][
Y(t)− (d− β∗)e−r(T−t)], (79)

where

β∗ = − g(0)e−rT(y− de−rT)

g(0)e−2rT − 1
, (80)

and the efficient frontier is given by

Var[Y∗(T)] =
g(0)e−2rT

1− g(0)e−2rT

[
d− yerT]2, (81)

which can be also written as

E[Y∗(T)] = d =

√
1− g(0)e−2rT

g(0)e−2rT

√
Var[Y∗(T)] + yerT . (82)

Proof. As in Section 4, a two-step procedure is employed to derive the efficient portfolio strategy and
the efficient frontier. Since the derivations are similar to those of Theorem 1, we only present key
steps here.
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We first consider the quadratic-loss minimization problem (24). Applying Itô’s differentiation
rule to g(t)Ŷ2(t), where Ŷ(t) := Y(t) − be−r(T−t), using the technique of localization, and taking
integrations and expectations, we obtain

E[Ŷ2(T)]− g(0)
[
y− be−r(T−t)]2 = E

[ ∫ T

0
g(t)

{
πS(t)

√
v(t) +

[
ξ1

√
v(t) +

ζ1(t)
g(t)

]
Ŷ(t)

}2

dt
]

.

Therefore, the optimal control and the associated cost functional of the quadratic-loss minimization
problem (24) are given by

πS(t) = −
[

ξ1 +
1√
v(t)

ζ1(t)
g(t)

][
Y(t)− be−r(T−t)],

and

J0(y, v; πS(·)) = g(0)
[
y− be−rT]2.

Then we consider the following cost functional

J(y, v; πS(·), β) = J0(y, v; πS(·))− β2

= g(0)
[
y− (d− β)e−rT]2 − β2.

Since g(0) < e2rT , using the Lagrangian method, we can achieve the desired results (79)–(82).
The admissibility of the efficient portfolio strategy (79) can be verified as in the proof of Theorem 1,
and is omitted here.

Remark 11. From Theorems 1 and 2, the efficient portfolio strategies in the complete and the incomplete markets
can be, respectively, decomposed into two components:

π∗(t) = −Σ(t)−1B(t)
[
X∗(t)− (d− λ∗)e−r(T−t)]− (σ(t)>)−1η(t)

h(t)

[
X∗(t)− (d− λ∗)e−r(T−t)], if ρ 6= ±1,

π∗S(t) + ρφ(t)π∗V(t) = −ξ1
[
X(t)− (d− λ∗)e−r(T−t)]+ ρσK(t)

[
X(t)− (d− λ∗)e−r(T−t)], if ρ = −1 or 1,

and

π∗S(t) = −ξ1
[
Y(t)− (d− β∗)e−r(T−t)]+ ρσM(t)

[
Y(t)− (d− β∗)e−r(T−t)].

The first terms capture the market prices of risks of the stock and the variance swap, while the second terms
quantify the dollar amounts that should be reserved to hedge the volatility risk arising in Heston’s model.

Remark 12. From the explicit solution of g(·), the efficient frontier is independent of ξ2, i.e., the market price
of the idiosyncratic risk, in the incomplete market. As seen in the above remark, although the agent allocates
part of his wealth to hedge against the volatility risk, only the common risk can be hedged in the incomplete
market. The idiosyncratic risk is still unhedgable unless volatility derivatives (e.g., variance swaps) can be
traded as in the complete market case. From this observation, we conjecture that the residual risk on the efficient
frontier of the complete market should be smaller than that of the incomplete market unless these two markets are
indistinguishable, i.e., when ρ = −1 or 1.

6. Numerical Examples

In this section, we provide numerical examples to illustrate the differences between the complete
and the incomplete market scenarios discussed in Sections 4 and 5, respectively. We are particularly
interested in when the two markets are indistinguishable and whether the variance swap is an effective
tool to reduce the volatility risk in the portfolio.
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Intuitively speaking, the variance swap can hedge against the volatility risk and hence adding the
variance swap into the portfolio should reduce the overall risk, as measured by the variance of the
terminal wealth. Indeed, in the complete market, the agent would walk away from the variance swap,
invest only in the bank account and the stock, and achieve at least the same level of the variance as in
the incomplete market if there were any possibility that the variance swap would increase the overall
risk of the agent’s terminal wealth. When ξ2 ≤ 0, we have(

ξ2
1 −(κ + 2σξ1ρ)

0 (ρ2 − 1
2 )σ

2

)
≤
(

ξ2
1 + 1{ρ 6=±1}ξ

2
2 −(κ + 2σξρ)

0 1
2 σ2

)
. (83)

Then using the comparison theorem for Riccati equations (see Theorem 2.1 in Freiling et al. 1996),
we know that M(t) ≤ K(t), for all t ∈ [0, T]. By Lemmas 1, 6 and 7, we further have N(t) ≤ L(t)
and hence 0 ≤ g(t) ≤ h(t) < e2rT , for all t ∈ [0, T]. Therefore, given that x = y and with all
other parameters being identical in the two markets, we can confirm Var(X∗(T)) ≤ Var(Y∗(T))
analytically. However, when ξ2 > 0, the comparison theorem cannot be applied and this case needs to
be analyzed numerically.

Before proceeding to numerical results, we briefly explain our principle of selecting parameter
values. Clearly, it is financially reasonable that v, κ, θ and σ take positive values. In addition to
that, we require that the Feller condition holds, i.e., 2κθ > σ2. The values of ρ, ξ1 and ξ2 should be
discussed carefully.

From the empirical evidence, the correlation coefficient should take negative values due to the
leverage effect, i.e., the instantaneous volatility decreases as the stock price increases. Typically, the
appreciation rate is greater than the risk-free interest rate. So it is not unreasonable to assume that
ξ1 > 0 and ξ2 > 0. Therefore, the situation with ξ2 > 0 is extremely important and practically
meaningful. In what follows, we will verify the impact of the variance swap on the overall risk in
the case of ξ2 ≤ 0 and investigate that in the case of ξ2 > 0. Table 1 presents a set of parameter
values adopted as our benchmark. We will vary the value of one parameter each time when others are
fixed, and provide sensitivity analysis of the efficient frontier with respect to model parameters ξ1, ξ2

and ρ. These parameters determine the differences between the complete and the incomplete market
examples. Recall the restrictions d ≥ xerT and d ≥ yerT in the complete and the incomplete markets,
respectively. The benchmark values of model parameters allow us to consider the efficient frontiers for
d ≥ 1 in both markets.

Table 1. Benchmark values of model parameters.

Model Parameters x y T r v κ θ σ ρ ξ1 ξ2

Benchmark values e−0.03 e−0.03 1 0.03 0.06 1 0.05 0.10 −0.50 1 1

Figures 1–4 show the efficient frontiers (standard deviation v.s. mean) with different values
of ξ1 and ξ2. From Figures 1–4, the efficient frontiers in the complete market is always on the left
hand side of those in the incomplete market when all parameter values are identical. Note that the
efficient frontier on the left hand side has a greater slope and a greater slope indicates a lower overall
portfolio risk. This shows that introducing the variance swap to the financial market is an effective
way to hedge the volatility risk, thereby reducing the overall risk of the agent’s terminal wealth. From
Figures 1 and 2, we can see that the overall risk of the agent’s terminal wealth decreases with ξ1. On
the one hand, observing two matrices in Equation (83) and using the comparison theorem for Riccati
equations, we know that both h(0) and g(0) are increasing functions of ξ1 when the values of other
model parameters are specified in Table 1. In addition, the greater is h(0) or g(0), the greater is the
slope in (47) or (82). Thus, the efficient frontiers with greater ξ1 are on the left hand side of those with
smaller ξ1. If the market price of the common risk ξ1 is higher, the excessive returns on both the stock
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and the variance are greater. Therefore, the agent can achieve a same level of expected terminal wealth
by holding less risky assets and hence bearing less risk.
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Figure 1. The efficient frontier in the complete market with different ξ1 (In this figure, the values of
√

Var(X∗(T))

corresponding to E[X∗(T)] = i are reported for ξ1 = i, i = 1, 2, 3, 4, 5, and the values of
√

Var(X∗(T)) corresponding

to E[X∗(T)] = 6 are reported for ξ1 = 1, 2, 3, 4, 5).

0 5 10 15
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 

 

Std: 14.23

Mean: 6

√

V ar(Y ∗(T ))

Std: 6.655

Mean: 6

Std: 3.9

Mean: 6

Std: 2.4

Mean: 6

E
[Y

∗

(T
)]

Std: 1.457

Mean: 6

Std: 0

Mean: 1

Std: 1.331

Mean: 2

Std: 1.56

Mean: 3

Std: 1.44

Mean: 4

Std: 1.166

Mean: 5

ξ1 = 1
ξ1 = 2
ξ1 = 3
ξ1 = 4
ξ1 = 5

Figure 2. The efficient frontier in the incomplete market with different ξ1 (In this figure, the values of
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Var(Y∗(T))

corresponding to E[Y∗(T)] = i are reported for ξ1 = i, i = 1, 2, 3, 4, 5, and the values of
√

Var(Y∗(T)) corresponding

to E[Y∗(T)] = 6 are reported for ξ1 = 1, 2, 3, 4, 5).



Risks 2020, 8, 70 28 of 34

In Figure 4, it is shown that ξ2 has no impact on the efficient frontiers in the incomplete market. In
the incomplete market, the agent cannot invest in the variance swap and does not bear the idiosyncratic
risk of the variance process in his wealth. So the efficient frontiers in the incomplete market are
independent of ξ2. On the other hand, Figure 3 shows that the efficient frontiers in the complete market
with the variance swap do vary with ξ2. Regardless of whether ξ2 is negative or positive, the variance
of the terminal wealth in the complete market is smaller than that in the incomplete market for any
given level of expected terminal wealth. Moreover, the higher is the absolute value of ξ2, the smaller
variance of the terminal wealth can be achieved in the complete market. Note that ξ2 is proportional to
the market price of the idiosyncratic risk of the variance process. This implies that the higher is the
market price of the idiosyncratic risk, the more volatility risk can be hedged by the variance swap. We
note that even if ξ2 is zero, the variance is also slightly smaller in Figure 3 than in Figure 4 (refer to
the green lines in both figures). This implies that even when the idiosyncratic risk is not priced, the
volatility risk still amplifies the variance of the terminal wealth and the variance swap can be still used
to hedge the volatility risk in the complete market.

Tables 2 and 31 report the efficient frontiers with different ρ in the complete and the incomplete
markets, respectively. Though ρ < 0 is a condition to incorporate the leverage effect in our modeling
framework, we also show the efficient frontiers with ρ = 1, as this case corresponds to a degenerate
incomplete market, which is in fact complete as discussed throughout this paper. We observe that
as the correlation increases from −1 to 0, the variance of the terminal wealth is decreasing in both
markets. This is because that the increase of ρ reduces the leverage effect, which makes the stock price
risk and volatility risk less interactive. Thus, the diminished interaction decreases the overall risk of
the terminal wealth.
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Figure 3. The efficient frontier in the complete market with different ξ2 (In this figure, the values of
√

Var(X∗(T))

corresponding to E[X∗(T)] = i are reported for ξ2 = 0, i = 1, 2, 3, 4, 5, 6).

1 As shown in Tables 2 and 3, for a given expected value of the terminal wealth, the differences of standard deviations with
different ρ are very small in the same market. To avoid the possible overlap in graphs, we use tables rather than figures to
show the efficient frontiers with different ρ.



Risks 2020, 8, 70 29 of 34

0 5 10 15
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 

 
Std: 14.26

Mean: 6

√

V ar(Y ∗(T ))

E
[Y

∗

(T
)]

Std: 11.41

Mean: 5

Std: 8.555

Mean: 4

Std: 5.703

Mean: 3

Std: 2.852

Mean: 2

Std: 0

Mean: 1

ξ2 = −5,−1, 0, 1, 5

Figure 4. The efficient frontier in the incomplete market with different ξ2 (In this figure, the values of
√

Var(Y∗(T))

corresponding to E[Y∗(T)] = i are reported, i = 1, 2, 3, 4, 5, 6).

Table 2. The efficient frontier in the complete market with different ρ.

E[X∗(T)] 1.0 2.0 3.0 4.0 5.0 6.0

Parameter Values
√

Var[X∗(T)]

ρ

−1.0 0 2.916508 5.833017 8.749525 11.666033 14.582542
−0.9 0 1.956137 3.912274 5.868411 7.824548 9.780685
−0.8 0 1.930803 3.861606 5.792409 7.723212 9.654014
−0.7 0 1.910073 3.820146 5.730219 7.640291 9.550364
−0.6 0 1.891954 3.783907 5.675861 7.567814 9.459768
−0.5 0 1.875674 3.751348 5.627022 7.502696 9.378370
−0.4 0 1.860846 3.721692 5.582538 7.443384 9.304230
−0.3 0 1.847249 3.694498 5.541748 7.388997 9.236246
−0.2 0 1.834752 3.669504 5.504257 7.339009 9.173761
−0.1 0 1.823279 3.646558 5.469836 7.293115 9.116394
0.0 0 1.812791 3.625582 5.438374 7.251165 9.063956
1.0 0 2.650105 5.300211 7.950316 10.600422 13.250527

It is particularly interesting, as shown in the first and the last rows of Tables 2 and 3, that the
efficient frontiers are exactly the same in the complete and the incomplete markets when ρ = ±1. This
verifies our conjecture, that is, ρ = ±1 is a condition that the complete and the incomplete markets are
indistinguishable. The equivalence of two markets can be also confirmed by the comparison theorem
of Riccati equations. More precisely, the following equality holds(

ξ2
1 −(κ + 2σξ1ρ)

0 (ρ2 − 1
2 )σ

2

)
=

(
ξ2

1 + 1{ρ2 6=±1}ξ
2
2 −(κ + 2σξρ)

0 1
2 σ2

)
. (84)

if and only if ρ = ±1. Once Equation (84) is satisfied, the slopes in (47) and (82) are identical
and so are the efficient frontiers. If the variance process and the stock price process are perfectly
positive/negative-correlated (i.e., ρ = ±1), the variance swap becomes a redundant asset. Note that
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even if the idiosyncratic risk is not priced, i.e., ξ2 = 0, the two matrices in (84) may be still different
due to their last entries (see Figures 3 and 4). This reflects that the differences of the complete market
and the incomplete market are primarily determined by ρ rather than ξ2.

Table 3. The efficient frontier in the incomplete market with different ρ.

E[Y∗(T)] 1.0 2.0 3.0 4.0 5.0 6.0

Parameter Values
√

Var[Y*(T)]

ρ

−1.0 0 2.916508 5.833017 8.749525 11.666033 14.582542
−0.9 0 2.902382 5.804764 8.707145 11.609527 14.511909
−0.8 0 2.888341 5.776681 8.665022 11.553363 14.441704
−0.7 0 2.874385 5.748770 8.623155 11.497540 14.371926
−0.6 0 2.860515 5.721030 8.581545 11.442060 14.302575
−0.5 0 2.846731 5.693461 8.540192 11.386922 14.233653
−0.4 0 2.833031 5.666063 8.499094 11.332126 14.165157
−0.3 0 2.819418 5.638835 8.458253 11.277671 14.097089
−0.2 0 2.805889 5.611778 8.417668 11.223557 14.029446
−0.1 0 2.792446 5.584892 8.377337 11.169783 13.962229
0.0 0 2.779087 5.558174 8.337261 11.116349 13.895436
1.0 0 2.650105 5.300211 7.950316 10.600422 13.250527

7. Conclusions

In this paper, we investigate the effect of the variance swap in hedging volatility risk by solving
two mean-variance portfolio selection problems under Heston’s model. The LQ control and BSDE
approach is used to tackle the problems. We obtain explicit expressions of the efficient portfolio
strategies and the efficient frontiers in the complete and the incomplete markets. Numerical examples
demonstrate that investing in the complete market with the variance swap can achieve a smaller
variance (i.e., risk) of the terminal wealth than in the incomplete market without the variance swap.

The paper only considers a single-factor stochastic volatility model, namely Heston’s model.
In future research, it is interesting to use more realistic stochastic volatility models, e.g., multivariate
Heston model (refer to Asai et al. (2006)). Another potential direction is to include other
variance/volatility derivatives into the investment portfolio, such as volatility swaps, VIX futures,
and VIX options.
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Appendix A

Proof of Lemma 2. Denote by

F(t, v(t)) := Ēt
[
e
∫ T

t |ϑ(u)|
2du].

Then,

h̄(t) = e−2r(T−t)+
∫ t

0 |ϑ(u)|
2duF(t, v(t)).

Under P̄, the dynamics of the variance process is

dv(t) =
[
κθ − (κ + 2σξρ)v(t)

]
dt + σ

√
v(t)

[
ρdW̄1(t) +

√
1− ρ2dW̄2(t)

]
.



Risks 2020, 8, 70 31 of 34

Using the Feynman-Kac formula gives

∂F
∂t

+ [κθ − (κ + 2σξρ)v]
∂F
∂v

+
1
2

σ2v
∂2F
∂v2 + (ξ2

1 + 1{ρ 6=±1}ξ
2
2)vF = 0, (A1)

and

η̄1(t) = e−2r(T−t)+
∫ t

0 |ϑ(u)|
2du ∂F

∂v
(t, v(t))σ

√
v(t)ρ, (A2)

η̄2(t) = e−2r(T−t)+
∫ t

0 |ϑ(u)|
2du ∂F

∂v
(t, v(t))σ

√
v(t)

√
1− ρ2. (A3)

Note that Equation (A1) is a PDE related to a square-root model. Then the solution of (A1) has an
exponential affine-form (see Chapter 9 in Elliott and Kopp 2005). We try the following exponential
affine-form solution for F

F(t, v) = eK(t)v+L(t), (A4)

where

K(T) = 0, L(T) = 0.

Substituting (A4) into (A1)–(A3) gives (38) and (39) and

η̄1(t) = h̄(t)K(t)σ
√

v(t)ρ ,

η̄2(t) = h̄(t)K(t)σ
√

v(t)
√

1− ρ2 .

Furthermore, from the relationships (31) and (32) between (h̄(·), η̄(·)) and (h(·), η(·)), we obtain
(35)–(37).

Proof of Lemma 3. We try

K(t) =
Q2(τ)

Q1(τ)
, (A5)

where Q1(τ), Q2(τ) ∈ C(0, T;R) satisfy the initial conditions Q1(0) = 1 and Q2(0) = 0. Then using
the product rule and Equation (38), we obtain

d
dτ

Q2(τ) =
d

dτ
[K(t)Q1(τ)]

= −(κ + 2σξρ)Q2(τ) +
1
2

σ2K(t)Q2(τ) + (ξ2
1 + 1{ρ 6=±1}ξ

2
2)Q1(τ) + K(t)

d
dτ

Q1(τ).

Comparing the coefficients of K(t) on both sides results in a system of two-coupled ODEs:

d
dτ

Q1(τ) = −
1
2

σ2Q2(τ), (A6)

and

d
dτ

Q2(τ) = (ξ2
1 + 1{ρ 6=±1}ξ

2
2)Q1(τ)− (κ + 2σξρ)Q2(τ). (A7)
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The solution of this system is given by

Q(τ) = exp

[(
0 − 1

2 σ2

ξ2
1 + 1{ρ 6=±1}ξ

2
2 −(κ + 2σξρ)

)
τ

](
1
0

)
. (A8)

Furthermore, substituting (A5) and (A6) into (39) and integrating both sides, we obtain

L(t) = −2κθ

σ2 log |Q1(τ)|. (A9)

The matrix exponential in (A8) can be calculated as follows

exp

[(
0 − 1

2 σ2

ξ2
1 + 1{ρ 6=±1}ξ

2
2 −(κ + 2σξρ)

)
τ

]

=



e−
(κ+2σξρ)τ

2

(
cos(δCτ) +

κ+2σξρ

2
sin(δCτ)

δC
− 1

2 σ2 sin(δCτ)
δC

(ξ2
1 + 1{ρ 6=±1}ξ

2
2)

sin(δCτ)
δC

cos(δCτ)− κ+2σξρ

2
sin(δCτ)

δC

)
, ∆C < 0,

e−
(κ+2σξρ)τ

2

(
1 + κ+2σξρ

2 τ − 1
2 σ2τ

(ξ2
1 + 1{ρ 6=±1}ξ

2
2)τ 1− κ+2σξρ

2 τ

)
, ∆C = 0,

e−
(κ+2σξρ)τ

2

(
cosh(δCτ) +

κ+2σξρ

2
sinh(δCτ)

δC
− 1

2 σ2 sinh(δCτ)
δC

(ξ2
1 + 1{ρ 6=±1}ξ

2
2)

sinh(δCτ)
δC

cosh(δCτ)− κ+2σξρ

2
sinh(δCτ)

δC

)
, ∆C > 0.

(A10)

Combining (A10) with (A5) and (A9) gives the closed-form solutions (40) and (41).

Proof of Lemma 6. Applying Itô’s differentiation rule to (62) and substituting (63)–(66) yield

dg(t) =

{
∂g
∂t + κ[θ − v(t)] ∂g

∂v + 1
2 σ2v(t) ∂2g

∂v2

}
dt + ∂g

∂v σ
√

v(t)
[
ρdW1(t) +

√
1− ρ2dW2(t)

]
=

{[
− 2r + ξ2

1v(t)
]
g(t)− 2σξ1ρv(t)M(t)g(t) + σ2ρ2v(t)M2(t)g(t)

}
dt + ζ(t)>dW(t)

=

{[
− 2r + ξ2

1v(t)
]
g(t) + 2ξ1

√
v(t)ζ1(t) +

ζ2
1(t)

g(t)

}
dt + ζ(t)>dW(t).

(A11)

This coincides with the BSRE (58). Therefore, (g(·), ζ(·)) defined by (62)–(64) is a solution to the
BSRE (58).
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