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Abstract: Recently, the interest of the academic literature on sports statistics has increased enormously.
In such a framework, two of the most significant challenges are developing a model able to beat the
existing approaches and, within a betting market framework, guarantee superior returns than the set
of competing specifications considered. This contribution attempts to achieve both these results, in
the context of male tennis. In tennis, several approaches to predict the winner are available, among
which the regression-based, point-based and paired comparison of the competitors’ abilities play
a significant role. Contrary to the existing approaches, this contribution employs artificial neural
networks (ANNs) to forecast the probability of winning in tennis matches, starting from all the
variables used in a large selection of the previous methods. From an out-of-sample perspective,
the implemented ANN model outperforms four out of five competing models, independently of the
considered period. For what concerns the betting perspective, we propose four different strategies.
The resulting returns on investment obtained from the ANN appear to be more broad and robust
than those obtained from the best competing model, irrespective of the betting strategy adopted.

Keywords: forecasting; artificial neural networks; betting; tennis

1. Introduction

In sports statistics, two of the most significant challenges are developing a forecasting model able
to robustly beat the existing approaches and, within a betting market framework, guarantee returns
superior to the competing specifications. This contribution attempts to achieve both these results, in the
context of male tennis. So far, the approaches to forecasting a winning player in tennis can be divided
into three main categories: Regression-based approach, point-based procedure, and comparison of
the latent abilities of players. A comprehensive review of these methods with a related comparison is
provided by Kovalchik (2016). Contributions belonging to the regression approach usually use probit
or logit regressions, as the papers of Lisi and Zanella (2017), Del Corral and Prieto-Rodríguez (2010)
and Klaassen and Magnus (2003), Clarke and Dyte (2000) and Boulier and Stekler (1999), among others.
In point-based models the interest is in the prediction of winning a single point, as in Knottenbelt et al.
(2012), Barnett et al. (2006) and Barnett and Clarke (2005). Approaches relying on the comparison of
players’ abilities have been pioneered by the work of McHale and Morton (2011), who make use of the
Bradley-Terry (BT)-type model. All these forecasting models are difficult to compare in terms of global
results because of the different periods, matches or evaluation criteria involved. Synthesizing only
partly the high number of contributions, the model of Del Corral and Prieto-Rodríguez (2010) has a
Brier Score (Brier 1950), which is the equivalent of Mean-Squared-Error for binary outcomes, of 17.5%
for the Australian Open 2009 while that of Lisi and Zanella (2017) is of 16.5% for the four Grand Slam
Championships played in 2013. Knottenbelt et al. (2012) declare a Return–On–Investment (ROI) of 3.8%
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for 2713 male matches played in 2011 and the work of McHale and Morton (2011) leads to a ROI of
20% in 2006. Despite these promising results, building a comprehensive (and possibly adaptive to the
last recent results) forecasting model in tennis is complicated by a large number of variables that may
influence the outcome of the match. A potential solution to this problem is provided by O’Donoghue
(2008), which suggests to use the principal component analysis to reduce the number of key variables
influencing tennis matches. Another unexplored possibility in this framework is taking advantage
of all the variables at hand by machine learning algorithms to map all the relationships among these
variables and the matches’ outcomes. Therefore, this paper introduces the supervised, feed-forward
Artificial Neural Networks (ANNs) (reviewed in Suykens et al. (1996), Paliwal and Kumar (2009),
Haykin (2009), and Zhang et al. (1998), among others) trained by backpropagation, in order to forecast
the probability of winning in tennis matches. The ANNs can be seen as flexible regression models
with the advantage of handling a large number of variables (Liestbl et al. 1994) efficiently. Moreover,
when the ANNs are used, the non–linear relationships between the output of interest, that is the
probability of winning, and all the possible influential variables are taken into account. Under this
aspect, our ANN model benefits of a vast number of input variables, some deriving from a selection
of the existing approaches and some others properly created to deal with particular aspects of tennis
matches uncovered by the actual literature. In particular, we consider the following forecasting models,
both in terms of input variables and competing models: The logit regression of Lisi and Zanella (2017),
labelled as “LZR”; the logit regression of Klaassen and Magnus (2003), labelled as “KMR”; the probit
regression of Del Corral and Prieto-Rodríguez (2010), labelled as “DCPR”; the BT-type model of
McHale and Morton (2011), labelled as “BTM”; the point-based approach of Barnett and Clarke (2005),
labelled as “BCA”. Overall, our set of variables consists of more than thirty variables for each player.

The contribution of our work is twofold: (i) For the first time the ANNs are employed in tennis
literature1; (ii) four betting strategies for the favourite and the underdog player are proposed. Through
these betting strategies, we test if and how much the estimated probabilities of winning of the proposed
approach are economically profitable with respect to the best approach among those considered.
Furthermore, the proposed betting strategies constitute a help in the tough task of decision making on
which matches to bet on.

The ANNs have been recently employed in many different and heterogeneous frameworks: Wind
(Cao et al. 2012) and pollution (Zainuddin and Pauline 2011) data, hydrological time series (Jain and
Kumar 2007), tourism data (Atsalakis et al. 2018; Palmer et al. 2006), financial data for pricing the
European options (Liu et al. 2019) or to forecast the exchange rate movements (Allen et al. 2016),
betting data to promote the responsible gambling (Hassanniakalager and Newall 2019), and in many
other fields. Moreover, the use of artificial intelligence for predicting issues related to sports or directly
sports outcomes is increasing, proving that neural network modeling can be a useful approach to
handle very complex problems. For instance, Nikolopoulos et al. (2007) investigate the performances
of ANNs with respect to traditional regression models in forecasting the shares of television programs
showing sports matches. Maszczyk et al. (2014) investigate the performance of the ANNs with respect
to that of the regression models in the context of javelin throwers. Silva et al. (2007) study the 200 m
individual medley and 400 m front crawl events through ANNs to predict the competitive performance
in swimming, while Maier et al. (2000) develop a neural network model to predict the distance reached
by javelins. The work of Condon et al. (1999) predicts a country’s success at the Olympic Games,
comparing the performances of the proposed ANN with those obtained from the linear regression
models. In the context of team sports, Şahin and Erol (2017), Hucaljuk and Rakipović (2011), and
McCullagh et al. (2010) for football and Loeffelholz et al. (2009) for basketball attempt to predict

1 To the best of our knowledge, only other two contributions focus on tennis: Sipko and Knottenbelt (2015) and
Somboonphokkaphan et al. (2009). Nevertheless, the former contribution is a master’s thesis, and the latter is a
conference proceeding.
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the outcome matches. Generally, all the previously cited works employing the ANNs have better
performances than the traditional, parametric approaches.

From a statistical viewpoint, the proposed configuration of the ANN outperforms four out of five
competing approaches, independently of the period considered. The best competitor is represented by
the LZR model, which is at least as good as the proposed ANN. Economically, the ROIs of the ANN
with those of the LRZ are largely investigated according to the four betting strategies proposed. In this
respect, the ANN model robustly yields higher, sometimes much higher, ROIs than those of the LZR.

The rest of article is structured as follows. Section 2 illustrates the notation and some definitions we
adopt. Section 3 details the design of the ANN used. Section 4 is devoted to the empirical application.
Section 5 presents the betting strategies and the results of their application while Section 6 concludes.

2. Notation and Definitions

Let Yi,j = 1 be the event that a player i wins a match j defeating the opponent. Naturally, if player
i has been defeated in the match j, then Yi,j = 0. The aim of this paper is to forecast the probability
of winning of player i for the match j, that is pi,j. Being pi,j a probability, the probability for the other
player will be obtained as complement to one. Let us define two types of information sets:

Definition 1. The information set including all the information related to the match j when the match is over is
defined as Fj.

Definition 2. The information set including all the information related to the match j before the begin of the
match is defined as Fj|j−1.

It is important to underline that when Definition 2 holds, the outcome of the match is unknown.
The aim of forecasting pi,j takes advantage of a number of variables influencing the outcome of the
match. Let Xj =

{
X1,i,j, · · · , XN,i,j

}
be the N–dimensional vector of variables (potentially) influencing

the match j, according to Fj or Fj|j−1. Note that Xj may include information related to each or both
players, but, for ease of notation, we intentionally drop out the suffix i for Xj. Moreover, Xj can include
both quantitative and qualitative variables, like for instance the surface of the match or the handedness
of the players. In this latter case, the variables under consideration will be expressed by a dummy.

Definition 3. A generic nth variable Xn,i,j ∈ Xj is defined as “structural” if and only if the following expression
holds, ∀j: {

Xn,i,j|Fj
}
=
{

Xn,i,j|Fj|j−1

}
.

By Definition 3 we focus on variables whose information is known and invariant both before the
match and after its conclusion. Therefore, player characteristics (such as height, weight, ranks, and so
forth), and tournament specifications (like the level of the match, the surface, the country where the
match is played) are invariant to Fj and Fj|j−1. Hence, these types of variables are defined as structural
ones. Instead, information concerning end-of-match statistics (such as the number of aces, the number
of points won on serve, on return, and so forth) is unknown for the match j if the information set Fj|j−1
is used.

Let oi,j and oii,j be the published odds for the match j and players i and ii, with i 6= ii, respectively.
The odds oi,j and oii,j denote the amount received by a bettor after an investment of one dollar, for
instance, in case of a victory of player i or ii, respectively. Throughout all the paper, we define the two
players of a match j as favourite and underdog, synthetically denoted as “ f ” and “u”, according to the
following definition:

Definition 4. A player i in the match j becomes the favourite of that match if a given quantitative variable
included in Xj is smaller than the value observed for the opponent ii, with i 6= ii.
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Definition 4 is left intentionally general to allow different favourite identification among the
competing models. For instance, one may argue that a favourite is the player i that for the match
j has the smallest odd, that is oi,j < oii,j. Otherwise, one may claim that the favourite is the player
with the highest rank. It is important to underline that Definition 4 does not allow to have players
unequivocally defined as favourite or underdog.

3. Design of the Artificial Neural Network

The general structure of the ANN used in this work belongs to the Multilayer Perceptrons class.
In particular, the topology of the ANN model we implement, illustrated in Figure 1, consists of
an input, a hidden and an output layer. Nodes belonging to the input layer are a large selection of
variables (potentially) influencing the outcomes while the output layer consists of only one neuron
with a response of zero, representing the event “player i has lost the match”, and one, representing
the event “player i has won the match”. According to Hornik (1991), we use only one single hidden
layer. This architecture gives good forecasting performances to the model, when the number of nodes
included in the hidden layer is sufficiently adequate.

···

···

···

Input Layer
Hidden Layer

Output Layer

X1

X2

XN-1

XN

Figure 1. Artificial neural networks (ANN) structure. Note: The figure shows the ANN structure with
N input nodes, a number of nodes belonging to the hidden layer and the output node.
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More formally, the ANN structure adopted to forecast the probability of winning of player i in
the match j, that is pi,j, taking advantage of the set of variables included in Xj operates similarly to
a non–linear regression. To simplify the notation, from now on we will always refer to the favourite
player (according to Definition 4), such that the suffix identifying player i will disappear, except when
otherwise requested. A comprehensive set of notations used in this work is summarized in Table A1.
Therefore, let Xn,j ∈ Xj be the nth variable in the match j, potentially influencing the outcome of that
match. All the variables in Xj, with j = 1, · · · , J, feed the N–dimensional input nodes. Moreover, let
σ(·) be the transfer or activation function, which in this work is the sigmoid logistic. Therefore, the
ANN model with N inputs, one hidden layer having Nh < N nodes and an output layer Yj is defined
as follows:

Yj =
Nh

∑
r=1

wj,r σ

(
N

∑
n=1

vn,j,rXn,j + βr

)
, j = 1, . . . , J, (1)

where wj,r represents the weight of the rth hidden neuron, vn,j,r is the weight associated to the nth
variable, for the match j and βr is the bias vector.

The set-up of the ANN model here employed consists of two distinct steps: A learning and
a testing phase. The former uses a dataset of JL < J matches, and the latter a dataset of JTe < JL

matches, with JL + JTe = J. The learning phase, in turn, encompasses two steps: A training and
a validation procedures. In the former phase, the weights of Equation (1) are found on the training
sample whose dimension is of JTr < JL, by means of machine learning algorithms. These learning
algorithms find the optimal weights minimizing the error between the desired output provided in the
training sample and the actual output computed by the model. The error is evaluated in terms of the
Brier Score [BS]:

BS =
1
J

J

∑
j=1

(
pj −Yj

)2 . (2)

Unfortunately, the performance of such a model highly depends on: (i) The starting values given
to the weights in the first step of the estimation routine; (ii) the pre-fixed number of nodes belonging
to the hidden layer. To overcome this drawback, a subset of matches JV = JL − JTr is used to evaluate
the performance of M different models in a (pseudo) out-of-sample perspective. In other words, M
different ANN specifications are estimated, on the basis of several number of nodes belonging to the
hidden layer and to decrease the effect of the initial values of the weights. All these M different ANN
specifications are evaluated in the validation sample. Once got the optimal weights, that is the weights
minimizing Equation (2) for the JV matches of the learning phase, the resulting specification is used to
predict the probability of winning in the testing phase. In such a step, the left-hand side of Equation (1)
is replaced by p̂j. A detailed scheme of the overall procedure is presented in Figure 2.

The algorithm used to train the neural network is a feedforward procedure with batch training
through the Adam Optimization algorithm (Kingma and Ba 2014). The Adam algorithm, whose
name comes out from adaptive moment estimation, consists of an optimization method belonging to
the stochastic gradient descent class. Such an algorithm shows better performances with respect to
several competitors (as the AdaGrad and RMSprop, mainly in ANN settings with sparse gradients
and non–convex optimization, as highlighted by Ruder (2016), among others). More in detail, the
Adam algorithm computes adaptive learning rates for each model parameter and has been shown to
be efficient in different situations (for instance, when the dataset is very large or when there are many
parameters to estimate).

A typical problem affecting the ANNs is the presence of noise in the training set, which may lead
to (fragile) models too specialized on the training data. In the related literature, several procedures
have been proposed to weaken such a problem, like the dropout (Srivastava et al. 2014) and early
stopping (Caruana et al. 2001) approaches. Dropout is a regularization technique consisting of dropping
randomly out some neurons from the optimization. As consequence, when some neurons are randomly
ignored during the training phase, the remaining neurons will have more influence, giving the model
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more stability. In the training phase, a 10% dropout regularization rate is used on the hidden layer
nodes. The early stopping is a method which helps to determine when the learning phase has to be
interrupted. In particular, at the end of each epoch, the validation loss (that is, the BS) is computed.
If the loss has not improved after two epochs, the learning phase is stopped and the last model
is selected.

Start

Estimate the
mth ANN

model on the
training sample

Evaluate the
accuracy of the
mth model on
the validation

sample through
the Brier score

Iterate with
m = 1, · · · ,M

is m = M?

Find the best model
among the M

different specifications

Go out-of-sample and
generate forecasts on

the testing sample
Stop

no

yes

Figure 2. Summary diagram of the ANN estimation. Note: The figure shows the estimation, validation,
and testing procedures of the mth ANN model, with m = {1, · · · , M} denoting the number of different
ANN specifications evaluated in the validation sample.

4. Empirical Application

The software used in this work is R. The R package for the ANN estimation, validation, and testing
procedure is keras (Allaire and Chollet 2020). All the codes are available upon request. Data used in
this work come from the merge of two different datasets. The first dataset is the historical archive
of the site www.tennis-data.co.uk. This archive includes the results of all the most important tennis

www.tennis-data.co.uk
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tournaments (Masters 250, 500 and 1000, Grand Slams and ATP Finals), closing betting odds of different
professional bookmakers, ranks, ATP points, and final scores for each player, year by year. The second
set of data comes from the site https://github.com/JeffSackmann/tennis_atp. This second archive
reports approximately the same set of matches of the first dataset but with some information about the
players, such as the handedness, the height, and, more importantly, a large set of statistics in terms of
points for each match. For instance, the number of won points on serve, breakpoint saved, aces, and so
forth are stored in this dataset. As regards the period under consideration, first matches were played on
4 July 2005 while the most recent matches on 28 September 2018. After the merge of these two datasets,
the initial number of matches is 35,042. As said in the Introduction, we aim at configuring an ANN
including all the variables employed in the existing approach to estimate the probability of winning in
tennis matches. Therefore, after having removed the uncompleted matches (1493) and the matches
with missing values in variables used in at least one approach (among the competing specifications
LZR, KMR, DCPR, BTM, and BCA), the final dataset reduces to 26,880 matches. All the variables used
by each forecasting model are synthetically described in Table 1, while in the Supplementary Materials,
each of them is properly defined. It is worth noting that some variables have been configured with
the specific intent of exploring some aspects uncovered by the other approaches, so far. These brand
new variables are: X1–X12, X17, X18, and X20. For instance, X17 and X18 take into account the fatigue
accumulated by the players, in terms of the time of stay on court and number of games played in the
last matches. Moreover, the current form of the player (X20) may be a good proxy of the outcome
for the upcoming match. This variable considers the current rank of the player with respect to the
average rank of the last six months. If the actual ranking is better than the average based on the last six
months, then it means that the player is in a good period. The last column of Table 1 reports the test
statistics of the non–linearity test of Teräsvirta et al. (1993), which provides a justification for using the
ANNs. The null hypothesis of this test is the linearity in mean between the dependent variable (that is,
the outcome of the match) and the potential variable influencing this outcome (that is, the variables
illustrated in the table). The results of this test, on the basis of all the non–dummy variables included
in Xj, generally suggest rejecting the linearity hypothesis, corroborating the possibility of using the
ANNs to take trace of the emerged non–linearity.

In the learning phase (alternately named in-sample period), each model uses the variables
reported in the Table 1 according to the information set Fj. In both the learning and testing procedures,
with reference to the variables X19 and X31, we only focus on the odds provided by the professional
bookmaker Bet365. The reason for which we use the odds provided by Bet365 is that it presents the
largest betting coverage (over 98%) of the whole set of matches. The implied probabilities (X19) coming
from the Bet365 odds have been normalized according to the procedure proposed by Shin (1991, 1992,
1993). Other normalization techniques are discussed in Candila and Scognamillo (2018).

All the models are estimated using six expanding windows, each starting from 2005, and at least
composed of 8 years (until 2012). The structure of the resulting procedure is depicted in Figure 3,
where the sequence of green circles represents the learning sample and the brown circles the testing
(or out-of-sample) periods. Globally, the out-of-sample time span is the period 2013–2018, for a total of
9818 matches. It is worth noting that the final ANN models for each testing year will have a unique set
of optimal weights and may also retrieve a different number of nodes belonging to the hidden layer.
The ANN models selected by the validation procedure, as illustrated above, have a number of nodes
in the hidden layer varying from 5 to 30.

https://github.com/JeffSackmann/tennis_atp
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Table 1. Input variables.

Label Description Structural ANN LZR KMR DCPR BTM BCA Non–Lin. Test

X1 Winning frequency on the first serve
√

2365.875 ***
X2 Winning frequency on the second serve

√
1434.552 ***

X3 Won point return frequency
√

6358.604 ***
X4 Service points won frequency

√
6358.604 ***

X5 Winning frequency on break point
√

574.052 ***
X6 First serve success frequency

√
4.517

X7 Completeness of the player
√

6358.604 ***
X8 Advantage on serving

√
6358.604 ***

X9 Average number of aces per game
√

105.830 ***
X10 Minute-based fatigue

√
5.099 *

X11 Games-based fatigue
√

3.552
X12 Head-to-head

√
20.020 ***

X13 ATP Rank
√ √ √

31.793 ***
X14 ATP Points

√ √ √
113.887 ***

X15 Age
√ √ √ √

3.752
X15sq Squared age

√ √ √
3.525

X16 Height
√ √ √

1.208
X16sq Squared height

√ √ √
4.603

X17 Surface winning frequency
√

524.558 ***
X18 Overall winning frequency

√
165.618 ***

X19 Shin implied probability
√ √

0.991
X20 Current form of the players

√
4.745 *

X21 BT probability
√ √

24.084 ***
X22 ATP ranking intervals

√ √ √
X23 Home factor

√ √ √
X24 BCA winning probability

√ √
1.646

X25 Top-10 former presence
√ √ √

X26 Both players right-handed
√ √ √

X27 Both players left-handed
√ √ √

X28 Right-handed fav. and vice versa
√ √ √

X29 Left-handed fav. and vice versa
√ √ √

X30 Grand Slam match
√ √ √

X31 Bookmaker info
√ √

103.681 ***

Notes: The table shows the set of variables included in each model. The column “Structural” identifies if a variable obeys to Definition 3. ANN gives
the composition of the proposed artificial neural network, LZR that of the logit regression of Lisi and Zanella (2017); KMR that of the logit regression
of Klaassen and Magnus (2003); DCPR that of the probit regression of Del Corral and Prieto-Rodríguez (2010); BTM stands for the BT-type model of
McHale and Morton (2011) and BCA for the Barnett and Clarke (2005) point-based approach. The column “Non–lin. test” reports the Teräsvirta test
statistics, whose null hypothesis is of “linearity in mean” between Y and each continuous variable. ***, and * denote significance at the 1%, and 10%
level, respectively.

· · · · · · · · · · · · · ·

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Figure 3. Expanding windows diagram. Note: The figure shows the composition of the learning (green
circles) and testing (brown circles) samples.

The importance of each input variable, for each learning phase, is depicted in Figure 4, which
reports the summed product of the connection weights according to the procedure proposed by Olden
et al. (2004). Such a method calculates the variable importance as the product of the raw input-hidden
and hidden-output connection weights between each input and output neuron and sums the product
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across all hidden neurons. Independently of the learning window, the most important variables appear
to be X12 (Head-to-head), X3 (Won point return frequency), X7 (Completeness of the player), and X8

(Advantage on service).
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Figure 4. ANN variables’ importance across the learning phases. Note: The figure shows the
importance of the input variables (from X1 to X30) for each learning phase, according to the procedure
proposed by Olden et al. (2004).
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Out-of-Sample Forecast Evaluation

Once estimated all the models and the ANN for each learning period, the out-of-sample estimates
are obtained. When we go out-of-sample, the structural variables are invariant such that no predictions
are made for these ones. For all the other variables, instead, we need to forecast the values for each
match j using the information set Fj|j−1. For some variables, like X24, the literature proposed a method
to forecast them (Barnett and Clarke 2005). For the other variables, we consider either the historical
mean of the last year (or less, if that period is unavailable) or the value of the match before. Obviously,
a model only based on this predicted information, like the BCA, is expected to perform worse than
a model only based on structural variables. The evaluation of the performances of the proposed ANN
model with respect to each competing model is employed through the Diebold–Mariano (DM) test,
according to version, specifically indicated for binary outcomes, suggested by Gneiting and Katzfuss
(2014) (Equation (11)). The DM test statistics with relative significance are reported columns two to five
of Table 2. It results that the proposed model statistically outperforms all the competing models except
the LZR. This holds independently of the specific out-of-sample period. It is interesting to note that
the LZR is able to outperform the proposed ANN only in 2013. When the learning sample increases,
this superior significance vanishes. Given that, from a statistical point of view, only the model of Lisi
and Zanella (2017) has a similar performance to that of the proposed ANN, only the LZR will be used
for evaluation purposes in the following section dedicated to the betting strategy. Note that the ANN
model includes the same set of variables of the LZR, except for variable X31 (see Table 1). Therefore,
it would be worthy of investigation performing an additional analysis between the proposed (full)
ANN model and a restricted ANN specification, based only on the variables of the LZR. We label this
model as “LZR-ANN”. The resulting evaluation is illustrated in the last column of Table 2, where
again the DM test statistics are reported. Interestingly, the full ANN model largely outperforms the
restricted LZR-ANN, signalling the importance of including as many as possible input variables in the
ANN model.

Table 2. ANN evaluation with the Diebold–Mariano test.

# Matches LZR KMR DCPR BTM BCA LZR-ANN

2013 2128 2.02 ** −1.8 * −1.11 −0.86 −13.3 *** −3.75 ***
2014 1849 0.91 −2.49 ** −2.71 *** −1.7 * −13.52 *** −2.15 **
2015 1315 −0.48 −3.11 *** −2.91 *** −3.46 *** −9.81 *** −2.91 ***
2016 1696 0.00 −2.86 *** −1.97 ** −2.75 *** −12.39 *** −2.95 ***
2017 1572 −0.11 −1.15 −1.34 −0.88 −13.55 *** −1.1
2018 1259 0.66 −1.54 −0.18 −1.66 * −14.36 *** −1.44

2013–2018 9818 1.47 −5.24 *** −4.06 *** −4.46 *** −31.41 *** −5.96 ***

Notes: The table reports the Diebold–Mariano test statistic. Negative values mean that the ANN outperforms the model in column
and vice versa. *, ** and *** denote significance at the 10%, 5%, and 1% levels„ respectively.

5. Betting Strategies

As said before, the variables related to the bookmaker odds used in the learning and testing
phases were those provided by Bet365. However, for the same match different odds provided by other
professional bookmakers are available. Therefore, let oi,k,j be the odds provided by the bookmaker k
for the player i and the match j, with k = 1, · · · , K. Then, the definition of the best odds is provided:

Definition 5. The best odds for player i and the match j, denoted with oBest
i,j , is the maximum value among the

K available odds for the match j. Formally:

oBest
i,j = max

k=1,...,K
oi,k,j.
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Let p̂i,j be the estimated probability obtained from the proposed ANN or the LZR for the player i
and the match j, for the out-of-sample matches (the period 2013–2018). Let us focus on the probabilities
for the favourites p̂ f ,j. If these probabilities are high, the model (ANN or LZR) gives high chances to
the favourite to win the match. Otherwise, low probabilities p̂ f ,j imply that the model signals the other
player as the true favourite. From an economic point of view, it is convenient to choose a threshold
above which a bet is placed on the favourite, and below which a bet is placed on the underdog.
High thresholds will imply a smaller number of bets, but with greater chances for that player to win
the match. These thresholds are based on the sample quantiles of the estimated probabilities, according
to the following definitions:

Definition 6. Let Pf and Pu be all the estimated probabilities for a particular (out-of-sample) period, for the
favourite and underdog players, respectively.

Definition 7. Let q(α) be the sample quantile corresponding to the probability α, that is: Pr(Pf ≤ q(α)) = α

or Pr(Pu ≤ q(α)) = α.

So far, we have only identified the jth match among the total number of matches played.
However, for the setting of some betting strategies, it is useful to refer the match j to the day t,
by the following definitions:

Definition 8. Let j(t) and J(t) be, respectively, the jth and the total number of matches played in the day t.
Assuming that t = 1, · · · , T, the total number of matches played is J = ∑T

t=1 J(t).

Definition 9. Let p̂st
f ,j(t), p̂nd

f ,j(t), p̂st
u,j(t) and p̂nd

u,j(t) be the estimated top-2 probabilities (following Definition (5))
for the favourite and underdog (according to Definition 4) among all the J(t) matches played on day t, respectively.

Finally, the best odds, that is the highest odds on the basis of Definition 5, whose estimated
probabilities follow Definition 9 are defined as:

Definition 10. According to Definitions 5 and 8, let oBest,st
i,j(t) and oBest,nd

i,j(t) be the best odds for player i associated
to the matches played on day t satisfying Definition 9.

The four proposed betting strategies are synthetically denoted by S1, S2, S3 and S4. The first two
strategies produce gains (or losses) coming from single bets. In this case, an outcome for the match
j successfully predicted is completely independent of another outcome, always correctly predicted.
Therefore, from an economic viewpoint, the gains coming from two successful bets are equal to the
sum of every single bet. However, it is also possible to obtain larger gains if two events are jointly
considered in a single bet. In this circumstance, the gains will be obtained from the multiplications
(and not from the summation) of the odds. The strategies S3 and S4 take advantage of this aspect.
In particular, they allow to jointly bet on two matches for each day t, at most. Therefore, S3 and S4

may be more remunerative than betting on a single event but are much riskier, because they yield
some gains only if both the events forming the single bet are correctly predicted. All the strategies will
select the matches to bet on the basis of different sample quantiles depending on α (see Definition 7).
For example, let α be close to one. In the case of betting on the favourites, only the probabilities p̂ f ,j
with very high values will be selected. That is, only the matches in which the winning of the favourite
player is retained almost sure will be suggested. The same but with opposite meaning will hold for
those matches whose estimated probabilities p̂ f ,j are below to a sample quantile when α is close to
zero. The message here is that the model (ANN or the competing specification) signals the favourite
player (according to Definition 4) as a potential defeated player, such that it would be more convenient
to bet on the adversary.
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5.1. Strategy S1

The strategy S1 suggests to bet one dollar on the favourite, according to the Definition 4, in the
match j if and only if p̂ f ,j ≥ q(α). The returns of the strategy S1, labelled as RS1

f ,j are:

RS1
f ,j =

{
oBest

f ,j − 1 if player f wins; (3a)

−1 if player f loses. (3b)

The strategy S1 suggests to bet one dollar on the underdog, according to the Definition 4, in the
match j if and only if p̂ f ,j < q(α). In this case, the returns, labelled as RS1

u,j are:

RS1
u,j =

{
oBest

u,j − 1 if player u wins; (4a)

−1 if player u loses. (4b)

5.2. Strategy S2

The strategy S2, contrary to S1, suggests to bet the amount oBest
f ,j on the favourite (always satisfying

Definition 4) in the match j if and only if p̂ f ,j ≥ q(α). The returns of S2 for the favourite are labelled as

RS2
f ,j and are:

RS2
f ,j =


(

oBest
f ,j − 1

)
oBest

f ,j if player f wins; (5a)

−oBest
f ,j if player f loses. (5b)

The amount oBest
u,j is placed on the underdog satisfying Definition 4 in the match j if and only if

p̂ f ,j < q(α). The returns of such a strategy RS2
u,j are:

RS2
u,j =


(

oBest
u,j − 1

)
oBest

u,j if player u wins; (6a)

−oBest
u,j if player u loses. (6b)

5.3. Strategy S3

For the favourite on the basis of Definition 4, S3 suggests to bet one dollar on the top-2 matches of
day t both satisfying Definition 9 and the conditions p̂st

f ,j(t) ≥ q(α) and p̂nd
f ,j(t) ≥ q(α). The returns for

the day t, labelled as RS3
f ,t, are:

RS3
f ,t =

{
oBest,st

f ,j(t) · o
Best,nd
f ,j(t) − 1 if both players f win; (7a)

−1 if at least one player f loses. (7b)

For the underdog selected by Definition 4, S3 suggests to bet one dollar on the top-2 matches of
day t both satisfying Definition 9 and the conditions p̂st

f ,j(t) < q(α) and p̂nd
f ,j(t) < q(α). The returns for

the day t, labelled as RS3
u,t, are:

RS3
u,t =

{
oBest,st

u,j(t) · o
Best,nd
u,j(t) − 1 if both players u win; (8a)

−1 if at least one player u loses . (8b)
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5.4. Strategy S4

The strategy S4 for the favourite suggests to bet the amount
(

oBest,st
f ,j(t) · o

Best,nd
f ,j(t)

)
on the top-2 matches

of day t both satisfying Definition 9 and the conditions p̂st
f ,j(t) ≥ q(α) and p̂nd

f ,j(t) ≥ q(α). The returns

for the day t, labelled as RS4
f ,t, are:

RS4
f ,t =


(

oBest,st
f ,j(t) · o

Best,nd
f ,j(t) − 1

)
oBest,st

f ,j(t) · o
Best,nd
f ,j(t) if both players f win; (9a)

−oBest,st
f ,j(t) · o

Best,nd
f ,j(t) if at least one player f loses. (9b)

Finally, the strategy S4 for the underdog suggests to bet the amount
(

oBest,st
u,j(t) · o

Best,nd
u,j(t)

)
on the

top-2 matches of day t both satisfying Definition 9 and the conditions p̂st
f ,j(t) < q(α) and p̂nd

f ,j(t) < q(α).

The returns for the day t, labelled as RS4
u,t, are:

RS4
u,t =


(

oBest,st
u,j(t) · o

Best,nd
u,j(t) − 1

)
oBest,st

u,j(t) · o
Best,nd
u,j(t) if both players u win; (10a)

−oBest,st
u,j(t) · o

Best,nd
u,j(t) if at least one player u loses. (10b)

5.5. Return-On-Investment (ROI)

The ROI obtained from a given strategy is calculated as the ratio between the sum of the returns
as previously defined and the amount of money invested. Let BSl

i be the total number of bets placed
on player i, with i = { f , u}, according to the strategy Sl , with l = {1, 2, 3, 4}. Moreover, let EXPSl

i,j be
the amount of money invested on betting on player i, according to strategy Sl , in the match j. In other
words, EXPSl

i,j is nothing else that the summation of the quantities reported in Equations (3b), (5b), (7b)
and (9b) for the bets on the favourite and in Equations (4b), (6b), (8b) and (10b) for the bets on the
underdogs. The ROI for the player i and the strategy Sl , expressed in percentage, labelled as ROISl

i , is
given by:

ROISl
i = 100

∑
B

Sl
i

j=1 RSl
i,j

∑
B

Sl
i

j=1 |EXPSl
i,j |

, with i = { f , u} and l = {1, 2, 3, 4} . (11)

Note that when the strategies S3 and S4 are employed, the calculation of the ROI through
Equation (11) requires the substitution of j with t. The ROI can be positive or negative, depending on
the numerator of Equation (11). In the first case, it means that the strategy under investigation has
yielded positive returns. Otherwise, the strategy has lead to some losses.

The ROIs for all the strategies, according to different values of the probability α used to calculate
the quantile q(α), for the ANN and LZR methods and for the favourite and underdog players are
reported in Panels A of Tables 3 and 4, respectively. The same tables report the ROIs for a number of
subsets of matches, for robustness purposes (Panel B to Panel D). Several points can be underlined
looking at Panels A. First, note that when α = 0.5, the quantile corresponds to the median. In this
case, all the 9818 matches forming the out-of-sample datasets (from 2013 to 2018) are equally divided
in bets on the favourites and underdogs. Obviously, betting on all the matches is never a good idea:
Independently of the strategy adopted, the ROIs coming from betting on the favourites are always
negative. However, those obtained from the matches selected by the ANN model are less negative
than those obtained from the LZR. For instance, according to strategy S4, the losses for the ANN model
are equal to 10.01% of the invested capital, while for the LZR are equal to 12.84%. The occurrence of
negative returns in betting markets has been largely investigated in the literature. In terms of expected
values, there are positive and negative returns according to the type of bettors. As pointed out by
Coleman (2004), there exists a group of skilled or informed bettors, which placing low odds bets
have a positive or near zero expected returns. Then, another group of bettors, defined as risk lovers,
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being less skilled or informed compared to the first group, place bets mainly on longer odds bets.
This group of bettors has negative expected returns. Therefore, also negative returns are perfectly
consistent with betting markets. Second, the number of matches largely decreases when the probability
α increases (for Table 3) or decreases (for Table 4). When the bets are placed only on the matches with
a well-defined favourite (that is, p̂ f ,j ≥ q(α), with α = 0.95), the ROIs become positive. Considering
the last two columns of Panel A for Table 3, independently of the strategy adopted, the ROIs of the
ANN model are always positive and bigger than those of the LRZ method. Betting on the underdogs
when the estimated probability for the favourite is below the smallest quantile considered (α = 0.05)
lets again positive ROIs, but this time only for the ANN (last two columns of the Panel A for Table 4).
Summarizing the results exposed in both the top panels of Tables 3 and 4, it appears clear that among
the sixteen considered set of bets, the ANN model outperforms the competing model fifteen times
for bets on the favourites (only under S3 and α = 0.75 the losses are greater for the ANN model) and
fourteen times for bets on the underdogs (under S4 and α = 0.5 and α = 0.25 the LZR specification
reports positive ROIs while the ANN model reports negative results).

Table 3. ANN and LZR ROI (in %) for betting on favourites.

ANN LZR ANN LZR ANN LZR ANN LZR

α = 0.5 α = 0.75 α = 0.90 α = 0.95

Panel A: All matches

S1 −1.63 −2.67 −0.96 −1.13 −0.89 −1.60 0.79 −1.00
S2 −1.72 −3.52 0.60 0.50 3.69 2.83 10.41 8.57
S3 −8.29 −9.82 −5.31 −4.85 −0.94 −2.21 0.76 −1.47
S4 −10.01 −12.84 −6.26 −6.29 4.73 3.45 10.41 8.68
# Bets 4907 4907 2455 2455 984 984 493 493

Panel B: Grand Slam matches

S1 1.13 0.59 1.41 1.36 −0.15 −1.35 −0.58 −3.20
S2 1.29 0.33 1.69 1.84 0.18 −1.53 −0.60 −3.36
S3 −1.67 −2.76 −1.11 0.32 −0.36 −2.97 −0.62 −3.40
S4 −2.21 −3.22 −1.06 0.93 0.14 −3.33 −0.52 −3.46
# Bets 1064 1069 594 611 290 278 158 161

Panel C: Matches with a top-50 as favourite

S1 −1.74 −2.64 −0.95 −1.13 −0.89 −1.60 0.79 −1.00
S2 −1.90 −3.47 0.63 0.50 3.69 2.83 10.41 8.57
S3 −7.69 −9.77 −5.38 −4.85 −0.94 −2.21 0.76 −1.47
S4 −9.43 −12.81 −6.35 −6.29 4.73 3.45 10.41 8.68
# Bets 4800 4871 2453 2455 984 984 493 493

Panel D: Matches in the first six months

S1 −0.59 −2.19 −0.54 −0.29 −0.64 −1.67 −0.13 −1.63
S2 0.13 −2.62 2.07 2.40 6.34 4.99 14.20 11.84
S3 −7.78 −10.30 −4.84 −5.21 −1.37 −3.49 −0.43 −2.59
S4 −10.35 −13.80 −5.86 −7.06 7.06 4.80 13.44 11.46
# Bets 3266 3248 1653 1688 675 681 330 349

Notes: The table shows the ROI for the ANN and LZR methods, on the basis of four different
betting strategies S1, S2, S3, and S4. The bets are all placed on the favourite(s), according to
Definition 4. # Bets represents the number of bets placed. The out-of-sample period consists of all
the 9818 matches played from 2013 to 2018.
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Table 4. ANN and LZR ROI (in %) for betting on underdogs.

ANN LZR ANN LZR ANN LZR ANN LZR

α = 0.5 α = 0.25 α = 0.10 α = 0.05

Panel A: All matches

S1 −0.32 −4.47 −0.92 −5.22 0.21 −4.17 1.65 −1.75
S2 −5.50 −13.07 −5.99 −9.11 2.46 −7.14 5.16 −3.27
S3 −2.50 −4.44 −1.47 −1.93 5.09 −6.04 1.93 −3.88
S4 −2.65 0.25 −0.75 7.24 26.40 −8.00 7.68 −5.32
# Bets 4907 4907 2455 2455 984 984 493 493

Panel B: Grand Slam and Masters 1000 matches

S1 −1.10 −5.89 −0.45 −7.71 2.30 −6.48 −0.31 0.87
S2 −3.08 −9.12 −3.67 −6.64 19.55 −10.80 1.94 1.20
S3 6.93 0.05 14.94 2.91 15.59 −3.64 1.18 3.72
S4 22.89 30.78 40.28 35.23 79.51 −1.52 13.02 3.03
# Bets 1646 1677 837 856 371 353 202 170

Panel C: Matches with a top-50 as underdog

S1 2.76 −3.40 3.81 −3.26 3.16 −6.48 4.69 −12.98
S2 9.68 0.31 6.57 7.83 9.94 −9.95 17.00 −20.05
S3 3.98 −9.43 4.54 −4.18 6.49 −9.68 6.49 −13.85
S4 2.82 5.30 2.86 −2.39 10.70 −10.02 19.19 −15.52
# Bets 1633 1282 1092 733 619 291 367 136

Panel D: Matches in the first six months

S1 −2.92 −7.78 −3.55 −8.32 −0.19 −4.47 −0.64 −0.27
S2 −11.40 −21.23 −10.23 −16.90 6.57 −7.59 5.00 −0.35
S3 −13.16 −10.57 −9.26 −6.77 2.60 −7.38 0.52 −2.47
S4 −9.02 −1.88 −4.08 6.14 37.60 −9.08 12.39 −3.50
# Bets 3206 3224 1635 1636 657 677 343 356

Notes: The table shows the ROI for the ANN and LZR methods, on the basis of four different betting
strategies S1, S2, S3, and S4. The bets are all placed on the underdog(s), according to Definition 4. # Bets
represents the number of bets placed. The out-of-sample period consists of all the 9818 matches played from
2013 to 2018.

Given these prominent achievements, the robustness of these ROIs obtained using the probability
of winning estimated by the implemented ANN is extensively evaluated. This issue is addressed by
restricting the set of matches to bet on according to three different criteria, shown in Panels B to D
of Tables 3 and 4. More in detail, for bets on the favourites and underdogs only the matches played
in Grand Slams and in Grand Slams and Masters 1000 are, respectively, selected (Panels B). Panels
C depict the ROIs for the bets on matches with a top-50 as favourite (Table 3) or with a top-50 as
underdog (Table 4). Finally, Panels D show the ROIs with respect to the matches only played in the
first six months of each year. Again, the ROIs of the proposed model are generally better, sometimes
much better than the corresponding ROIs of the LZR. For instance, betting on the underdogs with the
sample quantile chosen for α = 0.10 and the strategy S4 lets a ROI of 79.51% for the ANN and losses of
1.52% of the capital invested for the LZR.

To conclude, even if from a statistical point of view the out-of-sample performance of the ANN is
not different from that of the LZR, from an economic viewpoint, the results of the proposed model are
very encouraging. Irrespective of the betting strategy adopted, the chosen quantile used to select the
matches to bet on, the subset of matches (if all the out-of-sample matches, or a smaller set on the basis
of three alternative criteria), the ROIs guaranteed by the ANN are almost always better than those
obtained from the LZR method.
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6. Conclusions

The ultimate goals of a forecasting model aiming at predicting the probability of winning of
a team/player before the beginning of the match are: Robustly beating the existing approaches from
a statistical and economic point of view. This contribution attempted to pursue both these objectives,
in the context of male tennis. So far, three main categories of forecasting models are available within
this context: Regression-based, point-based, and paired-based approaches. Each method differs from
the other not only for the different statistical methodologies applied (for instance, probit or logit for
the regression-based approach, BT-type model for the paired-based specification, and so forth) but
also for the different variables influencing the outcome of the match considered. This latter aspect
highlights that several variables can potentially influence the result of the matches, and taking all of
them into consideration may be problematic, mainly in the parametric model, such as the standard
regressions. In this framework, we investigate the possibility of using the ANNs with a variety of
input variables. More in detail, the design of the proposed ANN consists of a feed-forward rule trained
by backpropagation, with Adam algorithm incorporated in the optimization procedure. As regards
the input nodes, some variables come from a selection of the existing approaches aimed at forecasting
the winner of the match, while some other variables are intentionally created for the purpose of taking
into account some aspects uncovered by the other approaches. For instance, variables handling the
players’ fatigue both in terms of minutes and in terms of games played are configured. Five models
belonging to the previously cited approaches constitute the competing specifications. From a statistical
point of view, the proposed configuration of the ANN beats four out of five competing approaches
while it is at least as good as the regression model labelled as LZR, proposed by Lisi and Zanella
(2017). In order to provide help in the complicated issue of the matches’ choice on which placing
a bet, four betting strategies are proposed. The chosen matches derive from the overcoming of the
estimated probability sample quantiles. Higher quantiles imply fewer matches on which place a bet
and vice versa. Moreover, two of these strategies suggest to jointly bet on the two matches played in
a day whose estimated probabilities are the most confident, among all the available probabilities of
that day, towards the two players. These two strategies assure higher returns at the price of being
riskier because they depend on the outcomes of two matches. In comparing the ROIs of the ANN with
those of the LRZ obtained from the four betting strategies proposed, it results that the ANN model
implemented guarantees higher, sometimes much higher, net returns than those of the LZR. These
superior ROIs are achieved irrespectively of the choice of the player to bet on (if favourite or underdog)
and of the subset of matches selected according to three different criteria.

Further research may be related to the extension of the ANN tools to other sports. Moreover, the
four proposed betting strategies could be applied to other disciplines, taking advantage of the market
inefficiencies (see the contribution of Cortis et al. (2013) for the inefficiency in the soccer betting market,
for instance).

Supplementary Materials: The Separate Appendix explaining all the input variables is available at http://www.
mdpi.com/2227-9091/8/3/68/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
BT Bradley-Terry type model
ROI Returns–On–Investment
BS Brier Score
DM Diebold–Mariano
LZR Logit regression of Lisi and Zanella (2017)
KMR Logit regression of Klaassen and Magnus (2003)
DCPR Probit regression of Del Corral and Prieto-Rodríguez (2010)
BTM BT-type model of McHale and Morton (2011)
BCA Point-based approach of Barnett and Clarke (2005)

Appendix A

Table A1. Suffix identification.

Suffix Description Values

i Player i = { f , u}
j Match j = {1, · · · , J}
JL Number of matches in the learning sample
JTe Number of matches in the testing sample
JTr Number of matches in the training sample
JV Number of matches in the validation sample
n Variable (potentially) influencing the outcome n = {1, · · · , N}
r Node in the hidden layer r = {1, · · · , Nh}
m ANN model estimated m = {1, · · · , M}
k Professional bookmaker k = {1, · · · , K}
t Day of the match(es) t = {1, · · · , T}

References

Allaire, Joseph J., and François Chollet. 2020. Keras: R Interface to ’Keras’. (R package version 2.3.0.0).
Allen, David E, Michael McAleer, Shelton Peiris, and Abhay K. Singh. 2016. Nonlinear time series and

neural-network models of exchange rates between the US dollar and major currencies. Risks 4: 7. [CrossRef]
Atsalakis, George S., Ioanna G. Atsalaki, and Constantin Zopounidis. 2018. Forecasting the success of a new

tourism service by a neuro-fuzzy technique. European Journal of Operational Research 268: 716–27. [CrossRef]
Barnett, T., A. Brown, and S. Clarke. 2006. Developing a model that reflects outcomes of tennis matches. Paper

presented at 8th Australasian Conference on Mathematics and Computers in Sport, Coolangatta, Australia,
July 3–5; pp. 178–88.

Barnett, Tristan, and Stephen R. Clarke. 2005. Combining player statistics to predict outcomes of tennis
matches. IMA Journal of Management Mathematics 16: 113–20. [CrossRef]

Boulier, Bryan L., and Herman O. Stekler. 1999. Are sports seedings good predictors? An evaluation.
International Journal of Forecasting 15: 83–91. [CrossRef]

Brier, Glenn W. 1950. Verification of forecasts expressed in terms of probability. Monthly Weather Review 78: 1–3.
[CrossRef]

Candila, Vincenzo, and Antonio Scognamillo. 2018. Estimating the implied probabilities in the tennis betting
market: A new normalization procedure. International Journal of Sport Finance 13: 225–42.

Cao, Qing, Bradley T. Ewing, and Mark A. Thompson. 2012. Forecasting wind speed with recurrent neural
networks. European Journal of Operational Research 221: 148–54. [CrossRef]

Caruana, Rich, Steve Lawrence, and C. Lee Giles. 2001. Overfitting in neural nets: Backpropagation, conjugate
gradient, and early stopping. In Advances in Neural Information Processing Systems. Cambridge: MIT Press,
pp. 402–8.

Clarke, Stephen R., and David Dyte. 2000. Using official ratings to simulate major tennis tournaments.
International Transactions in Operational Research 7: 585–94. [CrossRef]

http://dx.doi.org/10.3390/risks4010007
http://dx.doi.org/10.1016/j.ejor.2018.01.044
http://dx.doi.org/10.1093/imaman/dpi001
http://dx.doi.org/10.1016/S0169-2070(98)00067-3
http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
http://dx.doi.org/10.1016/j.ejor.2012.02.042
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00218.x


Risks 2020, 8, 68 18 of 19

Coleman, Les. 2004. New light on the longshot bias. Applied Economics 36: 315–26. [CrossRef]
Condon, Edward M., Bruce L. Golden, and Edward A. Wasil. 1999. Predicting the success of nations at the

Summer Olympics using neural networks. Computers & Operations Research 26: 1243–65.
Cortis, Dominic, Steve Hales, and Frank Bezzina. 2013. Profiting on inefficiencies in betting derivative markets:

The case of UEFA Euro 2012. Journal of Gambling Business & Economics 7: 41–53.
Del Corral, Julio, and Juan Prieto-Rodríguez. 2010. Are differences in ranks good predictors for Grand Slam

tennis matches? International Journal of Forecasting 26: 551–63. [CrossRef]
Gneiting, Tilmann, and Matthias Katzfuss. 2014. Probabilistic forecasting. Annual Review of Statistics and Its

Application 1: 125–51. [CrossRef]
Hassanniakalager, Arman, and Philip W. S. Newall. 2019. A machine learning perspective on responsible

gambling. Behavioural Public Policy 1–24. [CrossRef]
Haykin, Simon. 2009. Neural Networks and Learning Machines, 3rd ed. Upper Saddle River: Pearson Education.
Hornik, Kurt. 1991. Approximation capabilities of multilayer feedforward networks. Neural Networks 4:

251–57. [CrossRef]
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