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Abstract: We study a discrete time hedging and pricing problem in a market with the liquidity risk.
We consider a discrete version of the constant elasticity of variance (CEV) model by applying Leland’s
discrete time replication scheme. The pricing equation becomes a nonlinear partial differential
equation, and we solve it by a multi scale perturbation method. A numerical example is provided.

Keywords: discrete time hedging; liquidity risk; asymptotic expansion; CEV diffusion

1. Introduction

Liquidity risk is the risk caused by the adverse movement of a price which corresponds to
a trading size. A large buy order drives the price up and a large sale order drives it down.
Therefore, a large trader is always exposed to this hidden possible loss. Although the idea that
the evolution of the stock price depends on the trading volume has existed for several decades,
it was not widely studied until only about a decade ago. In the past decade, the literature on
the liquidity risk has been growing rapidly; for example, Jarrow (1992, 1994, 2001); Back (1993);
Frey (1998, 2000); Frey and Stremme (1997); Cvitanic and Ma (1996); Subramanian and Jarrow (2001);
Duffie and Ziegler (2001); Bank and Baum (2004); Cetin et al. (2004); Jarrow (1992, 1994) proposed a
discrete-time framework where prices depend on the large trader’s activities via a reaction function of
his/her instantaneous holdings. He found conditions for the existence of arbitrage opportunities for a
large trader. Cvitanic and Ma (1996) studied a diffusion model for the price dynamics where the drift
and volatility coefficients depend on the large investor’s trading strategy. Frey and Stremme (1997)
developed a continuous-time analogue to Jarrow’s discrete-time framework. They derived an explicit
expression for the transformation of market volatility with a large trader.

Although the cost caused by the liquidity risk have been studied widely both theoretically and
empirically, most models in mathematical finance did not include it. Cetin et al. (2004, 2006) introduced
a rigorous mathematical model of the liquidity cost and showed modified fundamental theorems of
the asset pricing. Bank and Baum (2004) introduced a general continuous-time model for an illiquid
financial market with a single large trader. They proved the absence of arbitrage for a large trader,
characterized the set of approximately attainable claims and showed how to compute superreplication
prices. Studies related to this topic extend to Cetin et al. (2010); Rogers and Singh (2010).

Ku et al. (2012) studied a discrete time hedging strategy with liquidity risk under the Black-Scholes
model Black and Scholes (1973). They used the Leland discretization scheme to find the optimal discrete
time hedging strategy under the Black-Scholes model. As an extension of it, we study in this paper
a more general underlying model which is called the constant elasticity of variance (CEV) model.
The CEV model generalizes the Black-Scholes model so that it can capture volatility smile effect.
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The model is widely used by practitioners in the financial industry, especially to model equities and
commodities. The CEV model, introduced by Cox (1975); Cox and Ross (1976) is the following,

dSt = µStdt + σS
θ̃
2
t dWt, 0 ≤ t ≤ T, . (1)

Here, θ̃ (elasticity), µ (mean return rate) and σ (volatility) are given constants. Note that the particular
case θ̃ = 2 corresponds to the well-known Black-Scholes model Black and Scholes (1973).

On the other hand, many underlying assets are still approximately close to a log-normal
distribution. This suggests that the elasticity constant θ̃ is not exactly 2, but is close to 2. In this
sence, we set θ̃ := 2− θ to apply the asymptotic analysais where 0 ≤ θ < 1.

In Cetin et al. (2004, 2006), the stock price S(t, x) depends on the time t and trading volume x.
They assume the multiplicative model S(t, x) = f (x)S(t, 0), where f is smooth and increasing function
with f (0) = 1. S(t, 0) becomes a marginal stock price. Empirical studies suggest that the liquidity cost
is relatively small compared to the stock price, as in Cetin et al. (2006). In other words, f ′(0) is a small
positive number. We refer to Cetin et al. (2006) for details.

These two observations motivate us to use the perturbation theory Hinch (2003) for partial
differential equations (PDEs) in the liquidity risk problem. The perturbation method is a mathematical
method for obtaining an approximate solution to a given problem which cannot be solved exactly, by
starting from the exact solution of a related problem. Perturbation theory is used when the problem is
formulated by a small term to a mathematical description of the exactly solvable problem. For example,
see Park and Kim (2011). Perturbation theory is a useful tool to deal with liquidity risk under the
CEV diffusion model based on some small parameters. It gives us a practical advantage in pricing of
financial derivatives with the liquidity risk.

The CEV diffusion model is the easiest model to explain the volatility smile phenomenon. It has
the disadvantage that the implied volatility estimated by the deep OTM(Out of The Money) option
does not match the actual data, but it is easy to apply and the accuracy is guaranteed near the ATM(At
The Money). Therefore, when reflecting the skewed phenomenon and hedge the options near ATM,
it has a practical advantage compared to the stochastic volatility model. However, it is inadequate
to deal with the hedge of a complex structured derivatives, which is inadequate compared to the
stochastic volatility model, and subsequent studies need to address the liquidity model under the
stochastic volatility model.

We study the liquidity risk under the CEV diffusion model. We apply the Leland approximation
scheme (Leland 1985) to obtain a nonlinear partial differential equation for the option pricing. We find
an approximation solution of this problem using the perturbation method.

The rest of this paper is organized as follows. Section 2 introduces the Cetin et al. model and the
CEV diffusion. Section 3 gives us a nonlinear partial differential equation for the option pricing with
the liquidity cost. Section 4 discusses an analytic solution for the PDE given in Section 3.

2. Model

2.1. Background on Liquidity Risk

First, we recall concepts introduced by Cetin et al. (2004). We consider a probability space
(Ω,F , (Ft)0≤t≤T , P) where P is an empirical probability measure, and filtration, (Ft)0≤t≤T , satisfies
the usual conditions. We consider a market which consists of a risky asset (stock) and a money market
account. There is no dividend and the spot rate of interest is zero without loss of generality. S(t, x, ω)

is the stock price per share at time t that the trader pays/receives for an order of size x ∈ R. Here,
positive x > 0 means a buy-initiated order and negative x < 0 means a sale-initiated one. A zeroth
order x = 0 means a marginal trade. We refer to Cetin et al. (2004) for detailed discussions.

A portfolio ((Xt, Yt : t ∈ [0, T]), τ) is a triplet, where Xt is the trader’s aggregate stock holding
at t, Yt is the money market account position, and τ represents the liquidation time of the stock
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position. Also, we assume that Xt and Yt are predictable and optional processes, respectively,
and X0− = Y0− = 0.

A self-financing strategy is a trading strategy ((Xt, Yt : t ∈ [0, T]), τ) where

Yt =Y0 + X0S(0, X0) +
∫ t

0
Xu−dS(u, 0)− XtS(t, 0)

− ∑
0≤u≤t

∆Xu[S(u, ∆Xu)− S(u, 0)]−
∫ t

0

∂S(t, 0)
∂x

d[X, X]cu.
(2)

The second line of (2) represents the loss due to the liquidity cost. Therefore, it is natural to define
the liquidity cost by

Lt = ∑
0≤u≤t

∆Xu[S(u, ∆Xu)− S(u, 0)] +
∫ t

0

∂S(t, 0)
∂x

d[X, X]cu. (3)

Note that Lt is always non-negative.

2.2. Model: CEV Diffusion

Let S(t, 0) = St be the marginal price of the supply curve. We assume that St follows the next
stochastic differential equation (SDE)

dSt = µStdt + σS
2−θ

2
t dWt, 0 < t ≤ T,

S0 = s.
(4)

Here, θ, µ and σ are given positive constants. A particular case θ = 0 corresponds to the
Black-Scholes model.

Cox (1975); Cox and Ross (1976) introduced the constant elasticity of variance (CEV) model as
an extension of the Black-Scholes model Black and Scholes (1973). CEV model explains a non-flat
geometry of the implied volatility, while the Black-Scholes model does not. In this sense, the CEV
model is a good generalization of the Black-Scholes model.

Let us consider the partition of time 0 = t0 < t1 < · · · , tn = T with ∆ti := ti − ti−1 for
i = 1, · · · , n. We set the partition ∆ti = ∆tj := ∆t for all i, j = 1, · · · , n for simplicity. Then, we consider
the following discrete version of (4)

∆Sti+1 =µSti ∆t + σS
θ
2
ti

∆Wt

=µSti ∆t + σS
θ
2
ti

Z
√

∆t,
(5)

where Z is a standard normal random variable. We assume that a multiplicative supply curve

S(t, x) = f (x)St, (6)

where f is a smooth and increasing function with f (0) = 1. f (x) represents a change of stock price
caused by the liquidity. Since we observe that rate of change at x = 0 is positive and relatively small,
f ′(0) is positive and close to 0. Therefore, we assume that 0 < f ′(0) = ε < 1 for a constant ε. (We refer
to Cetin et al. (2006) for details)

In a discrete time trading, the liquidity cost becomes

Lt =
n

∑
i=1

∆Xi[S(ti, ∆Xi)− S(ti, 0)], (7)
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where ∆Xi = Xti − Xti−1 .
Let Ct denote the value of the contingent claim. Then, the hedging error becomes

n−1

∑
i=0

Xi(Sti+1 − Sti )− CT + C0 − LT . (8)

3. The Pricing Equation

We consider a European put option P(T, s) = (K− s)+ with the expiration date T with the strike
price K, and let P(t, St) be the price of it at time t. (We can similarly deal with call options and other
European options, however, we only deal with a put option here.) We consider the delta hedging Xt

defined by

Xti =
∂P
∂s
|s=Sti

for a price function P. Although the market is still complete, since we deal with a discrete time trading
with the liquidity cost, a perfect hedging is not possible. Therefore, we cannot make the hedging error
0. However, we can provide a sufficient pricing equation whose expected hedging error approaches
zero as ∆t→ 0. We assume that P(t, St) is a class of C1,3([0, T)× R).

The next theorem gives us a hedging strategy which makes the expected hedging error go to 0 as
the size of the time step gets smaller. Recall that f ′(0) = ε.

Theorem 1. Let P(t, s) be the solution of the nonlinear partial differential equation

∂P
∂t

+
1
2

σ2s2−θ ∂2P
∂ss

(1 + 2εs
∂2P
∂ss

) = 0, (9)

with the terminal condition P(T, s) = (K− s)+. Then the expected hedging error of the corresponding delta
hedging strategy approaches 0 as ∆t→ 0.

Proof. First, we consider Taylor expansion formulas of P, X.

P(t + ∆t, S + ∆S)− P(t, S) =
∂P
∂t

∆t +
∂P
∂s

∆S +
1
2

∂2P
∂ss

(∆S)2 +O(∆t3/2), (10)

X(t + ∆t, S + ∆S)− X(t, S) =
∂2P
∂ts

∆t +
∂2P
∂ss

∆S +
1
2

∂3P
∂sss

(∆S)2 +O(∆t3/2). (11)

From (7) and S(t, x) = f (x)S(t, 0), we have

∆X(S(t, ∆x)− S(t, 0)) = ∆X( f (∆X)− 1)St. (12)

On the other hands, by the Taylor expansion formula, we also have

f (x)− 1 = f (x)− f (0) = f ′(0)x +
1
2

f ′′(0)x2 +O(x3). (13)

Moreover, from (5),

(∆S)2 = σ2S2−θ
t Z2∆t +O(∆t3/2) (14)

(∆S)k = O(∆t3/2), k = 3, 4, · · · . (15)
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Therefore, (12) becomes

∆X(S(t, ∆x)− S(t, 0)) = ∆X
(

f ′(0)∆X +
1
2

f ′′(0)(∆X)2
)

St +O(∆t3/2)

= f ′(0)σ2Z2(St)
3−θ ∂2P

∂ss
∆t +O(∆t3/2)

= εσ2Z2(St)
3−θ ∂2P

∂ss
∆t +O(∆t3/2).

(16)

Now, the hedging error is

∆H = X∆S− ∆P− ∆X(S(t, ∆X)− S(t, 0))

= −∂P
∂t

∆t− 1
2

σ2Z2(S)2−θ ∂2P
∂ss

(1 + 2εS
∂2P
∂ss

)∆t +O(∆t3/2).
(17)

Since Z is a standard normal, we have

E[∆H] = E[−∂P
∂t

∆t− 1
2

σ2Z2(S)2−θ ∂2P
∂ss

(1 + 2εS
∂2P
∂ss

)∆t +O(∆t3/2)]

= −E[
∂P
∂t

+
1
2

σ2Z2(S)2−θ ∂2P
∂ss

(1 + 2εS
∂2P
∂ss

)]∆t +O(∆t3/2).
(18)

Therefore, E[∑ ∆H] = O(∆t1/2) if P satisfies

∂P
∂t

+
1
2

σ2(S)2−θ ∂2P
∂ss

(1 + 2εS
∂2P
∂ss

) = 0. (19)

Finally, the terminal condition follows from the definition of the put option.

We notice that the the effect of the liquidity cost appear through the first derivative f ′(0) = ε.
We now study the convergence of the discrete hedging strategy to the payoff of the option. Let ∆Hi be
the hedging error over [ti−1, ti], i = 1, · · · , n.

Theorem 2. Consider the discrete hedging strategy (X = ∂P
∂s , Y = P− X) where P(t, s) is a solution of the

Equation (9). Its value at the terminal time T converges almost surely to the payoff of the option as ∆t→ 0.

Proof. Since P(t, s) is smooth, we can check that

E[(∆Hi)
2] ≤ M(∆t)2 (20)

where M is a constant which does not depend on t ∈ [0, T]. Therefore, we have

E[
∆Hi
∆t
|Fti−1 ] = 0 , for all i. (21)

Moreover, we have

lim
n→∞

n

∑
i=1

1
i2

E[(
∆Hi
∆t

)2] ≤ M lim
n→∞

n

∑
i=1

1
i2

< ∞. (22)

Therefore, by the Law of Large Numbers for Martingales (refer to Feller 1970), we obtain

lim
n→∞

1
T

n

∑
i=1

∆Hi = lim
n→∞

1
n

n

∑
i=1

∆Hi
∆t

= 0 a.s.. (23)

This implies that the total error ∑ ∆Hi → 0 as ∆t→ 0 a.s..
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The above theorem tells us that the delta hedging strategy in Equation (9) asymptotically replicates
the contingent claim as the time interval gets smaller. So, the next step is to calculate P(t, s) so that we
can calculate the corresponding hedging strategy. We study this in the following section.

4. Asymptotic Expansion of the Solution

In this section, we discuss an analytic solution of the Equation (9). Since P(t, s) satisfies the
nonlinear partial differential equation (NPDE) (9), it is hard to find a closed form solution. However,
as we already discussed before for the expansion of f , we can apply the asymptotic expansion to (9).
We first assume that there exists a series

P0,0(t, s) + εP0,1(t, s) + θP1,0(t, s) + εθP1,1(t, s) + · · ·

such that P(t, s) = ∑∞
l,m=0 θlεmPl,m(t, s). Now, we reformulate the NPDE (Nonlinear Partial Differential

Equations) (9),

∂P
∂t

+
1
2

σ2s2−θ ∂2P
∂ss

(1 + 2εs
∂2P
∂ss

)

=
∂P
∂t

+
1
2

σ2e−θ ln ss2 ∂2P
∂ss

(1 + 2εs
∂2P
∂ss

)

=
∂P
∂t

+
1
2

σ2
( ∞

∑
k=0

(− ln s)k

k!
θk
)

s2 ∂2P
∂ss

(1 + 2εs
∂2P
∂ss

)

=
∂P
∂t

+
∞

∑
k=0

θk 1
2

σ2 (− ln s)k

k!
s2 ∂2P

∂ss
+

∞

∑
k=0

εθkσ2 (− ln s)k

k!
s3(

∂2P
∂ss

)2

= 0.

(24)

Note that the first term is an ε0θ0 order term, the second is an ε0θk order one, and the third term is
an ε1θk term. Inserting these series form into (24), we obtain following equations for each coefficient
Pl,m(t, s) for l, m = 0, 1, · · · ,

∂P0,0

∂t
+

1
2

σ2s2 ∂2P0,0

∂ss
= 0 (25)

∂P0,1

∂t
+

1
2

σ2s2 ∂2P0,1

∂ss
= −σ2s3(

∂2P0,0

∂ss
)2 (26)

∂P1,0

∂t
+

1
2

σ2s2 ∂2P1,0

∂ss
= −1

2
σ2s2 ∂2P0,0

∂ss
(27)

· · · ,

where terminal conditions are given by P0,0(T, s) = (K − s)+ and P0,1(T, s) = P1,0(T, s) = · · · = 0.
In general, we obtain the partial differential equation for Pl,m(t, s),

∂Pl,m

∂t
+

1
2

σ2s2 ∂2Pl,m

∂ss
= Gl,m(t, s)

Gl,m(t, s) := −
l

∑
k=1

1
2

σ2 (− ln s)k

k!
s2 ∂2Pl−k,m

∂ss
−

l

∑
k=0

∑
i1+i2=l−k,
j1+j2=m−1

σ2 (− ln s)k

k!
s3 ∂2Pi1,j1

∂ss
∂2Pi2,j2

∂ss
(28)

where P−1,· = P·,−1 := 0.
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4.1. A Solution of Each Coefficient

To find Pl,m for l, m = 0, 1, 2, · · · , we need a lemma about the Feynman-Kac formula for our
nonhomogeneous PDE. First, we define a geometric Brownian motion S̃t by

dS̃t = σS̃tdWt, 0 ≤ t ≤ T, (29)

and a differential operator

L0 :=
∂

∂t
+

1
2

σ2s2 ∂2

∂ss
. (30)

Then, we have the following.

Lemma 1. If the solution u(t, s) of the PDE problem

L0u(t, s) = f (t, s), 0 ≤ t < T, (31)

u(T, s) = h(s) (32)

satisfies the condition u(t, s) ∈ C1,2([0, T]× R) and f , h ∈ L∞, then u(t, s) is given by

u(t, s) = Es[h(S̃T)−
∫ T

t
f (s, S̃s)ds]. (33)

Es[·] := EP[·|S̃t = s].

Proof. This is the well-known Feynman-Kac formula for the Black-Scholes model. It provides a
stochastic representation of the solution of PDEs. We refer to the chapter 8 of Oksendal (2003)
for details.

The next theorem give us P0,0, which is the first term of the expansion.

Theorem 3. The leading order solution P0,0(t, s) is given by

P0,0(t, s) = −sN(−d1) + KN(−d2),

d1,2 :=
ln s

K ±
1
2 σ2(T − t)

σ
√

T − t
,

N(x) :=
1√
2π

∫ x

−∞
e−

z2
2 dz.

Proof. By Lemma 1, we have

P0,0(t, s) = E[(K− S̃T)
+|S̃t = s].

This is the well-known Black-Scholes put option price. We refer to Shreve (2000) for details.

Next, we find a solution of remaining terms Pl,m for general l and m.

Theorem 4. For l, m ≥ 0, the solution Pl,m(t, s) is recursively given by

Pl,m(t, s) = −
∫ ∞

−∞

∫ T

t

Gl,m(τ, se
1
2 σ2(τ−t)+σx)√

2π(τ − t)
e
−x2

2(τ−t) dτdx. (34)

Proof. First, we consider the case l = 0, m = 1. In this case, Gl,m(t, s) = −σ2s3(
∂2P0,0

∂ss )2. Since P0,0(t, s)
is smooth on only t ∈ [0, T) and continuous at t = T, we have to deal with it carefully. First, note that
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there exist a smooth function fn(t, s) on [0, T]× R such that limn→∞ fn = P0,0(t, s). Now we consider
the PDE

∂Fn

∂t
+

1
2

σ2s2 ∂2Fn

∂ss
= −σ2s3(

∂2 fn

∂ss
)2, (35)

where Fn(T, s) = 0. By Lemma 1, we have

Fn(t, s) = Es[
∫ T

t
σ2(S̃τ)

3(
∂2 fn

∂ss
)(τ, S̃τ))

2dτ]. (36)

It is well-known that the solution of PDE ∂u
∂t +

1
2 σ2s2 ∂2u

∂ss = 0 and u(T, s) = 0 is u = 0 (the uniqueness
of a solution). Therefore, Fn → P0,0 as n→ ∞. By the dominated convergence theorem, we have

P0,1 = lim
n→∞

Es[
∫ T

t
σ2(S̃τ)

3(
∂2 fn

∂ss
(τ, S̃τ))

2dτ]

= Es[
∫ T

t
σ2(S̃τ)

3(
∂2P0,0

∂ss
(τ, S̃τ))

2dτ].
(37)

On the other hand, S̃τ = se
1
2 σ2(τ−t)+σWτ−t leads to

P0,1 = Es[
∫ T

t
σ2(S̃τ)

3(
∂2P0,0

∂ss
(τ, S̃τ))

2dτ]

= Es[
∫ T

t
σ2(S̃τ)

3e
3
2 σ2(τ−t)+3σWτ−t(

∂2P0,0

∂ss
(τ, se

1
2 σ2(τ−t)+σWτ−t))2dτ]

=
∫ ∞

−∞

∫ T

t
σ2s3e

3
2 σ2(τ−t)+3σx(

∂2P0,0

∂ss
(τ, se

1
2 σ2(τ−t)+σx))2 1√

2π(τ − t)
e
−x2

2(τ−t) dτdx.

(38)

Moreover, P0,1(t, s) is twice continuously differentiable with respect to s. On the other hand, we can
obtain the similar result for P1,0 using the same argument. Now, we use the induction argument.
Suppose that Gl,m satisfies the assumption of Lemma 1. Then we have

Pl,m = Es[−
∫ T

t
Gl,m(τ, S̃τ)dτ]

= Es[−
∫ T

t
Gl,m(τ, se

1
2 σ2(τ−t)+σWτ−t)dτ]

= −
∫ ∞

−∞

∫ T

t

Gl,m(τ, se
1
2 σ2(τ−t)+σx)√

2π(τ − t)
e
−x2

2(τ−t) dτdx.

(39)

Using the above theorem, we can calculate P(t, s) and the corresponding hedging strategy Xt.
While it is hard to calculate these quantities analytically, we can calculate these relatively easily
numerically. Table 1 shows the European put option price with the liquidity cost computed by our
approximation formula. We present an approximate option price, P(t, s) ∼ P0,0(t, s) + εP0,1(t, s) +
θP1,0(t, s). Option prices are obtained by solving the formula given in Theorem 4. Parameters that
we use here are K = 100, σ = 0.2, r = 0 and T − t = 1 year. Table 1 presents numerical results for
several cases. We use the formula (31) and numerical integration for the first order (l = 1 or m = 1)
calculation. The first example, f ′(0) = 0 is the case without the liquidity cost. In this case, we can
buy and sell the underlying asset at the spot price. However, in reality, the liquidity provider quotes
different prices for buying and selling, and the liquidity cost does exist. So we can only buy or sell the
underlying asset after adding the bid and ask spread. The second and the third cases are when the
regular bid and ask spread rates are 0.000001 and 0.00001 percent of spot, respectively. The second
case, f ′(0) = 0.0001, considers 0.000001 percent spread of the spot price. For example, if the spot price
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is 10000 dollars, then the spread is one cent. This means that liquidity risk causes an additional hedge
cost for the dynamic hedging that is, we need more asset and funding money. This comparison result
is reasonable in the sense that a higher liquidity cost produces a bigger option premium for the same
spot price. Since the liquidity cost makes the hedging cost higher, an option price should be higher for
a bigger liquidity cost. In addition, the CEV parameter provides a non-flat volatility risk. Therefore,
the CEV option price should be higher than the Black-Scholes price. We observe this from the fact that
the second column is larger than the first column.

Table 1. Put option price with liquidity costs (K = 100, T − t = 1(year), r = 0, σ = 0.2).

Initial Spot
f ′(0) = 0 f ′(0) = 0.0001 f ′(0) = 0.001

B.S. CEV B.S. CEV B.S. CEV
(θ = 0) (θ = 0.01) (θ = 0) (θ = 0.01) (θ = 0) (θ = 0.01)

90 13.5891 13.6174 13.5892 13.6175 13.5987 13.6269
95 10.5195 10.5508 10.5206 10.5519 10.5306 10.5619

100 7.9656 7.9984 7.9667 7.9995 7.9771 8.0099
105 5.9056 5.9386 5.9067 5.9397 5.9168 5.9498
110 4.2920 4.3238 4.2930 4.3248 4.3024 4.3342

Remark 1. For a practical application, we can apply our method as follows. From real market data, we observe
two small parameters ε and θ. Then, we can apply the perturbation method for this problem. By applying the
perturbation method, we can derive an approximation solution of option price with liquidity costs.

4.2. Convergence of the Series

In this subsection, we study the convergence of

∞

∑
l,m=0

θlεmPl,m(t, s) = P(t, s). (40)

Previously, we assumed that the existence of the series. However, to guarantee the existence of the
series, we need to prove it. In this case, the existence of the series is equivalent to convergence of
the series. Therefore, we show the convergence. Let ‖Pl,m(t, s)‖ := supt,s |Pl,m(t, s)|, then we have
the following.

Theorem 5. For all l, m = 0, 1, · · · , we have

‖Pl,m(t, z)‖ < ∞. (41)

Proof. First, we show ‖P0,1(t, s)‖ < ∞. Note that |P0,0(t, s)| ≤ K where K is the exercise price.

Moreover, s ∂2P0,0(t,s)
∂ss = e

−(d1)
2

2

σ
√

2π(T−t)
and s2 ∂2P0,0(t,s)

∂ss = eln s+
−(d1)

2
2

σ
√

2π(T−t)
are o(e−s2

) as s→ ∞ and bounded by

1
2σ
√

T
, since ln s + −(d1)

2

2 < 0 for all s > 0. By the probabilistic representation of P0,1, we have

P0,1(t, s) = Es[
∫ T

t
σ2(S̃τ)

3(
∂2P0,0

∂ss
(τ, S̃τ))

2dτ]

≤ Es[
∫ T

t
σ2 1

2σ
√

T
1

2σ
√

T
dτ]

≤ 1
4

.

(42)

On the other hand, the integration formula of P0,1(t, s) implies that P0,1(t, s) and sk ∂2P0,1(t,s)
∂ss , k = 1, 2

are also o(e−s2
) as s → ∞. Therefore, all of them are bounded and infinitely differentiable. By the
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same argument, we have the same result for P1,0(t, s). Now, we apply the induction. Suppose that

Pi,j(t, s) for i = 0, 1, · · · , l − 1,j = 0, 1, · · · , m and Pi,j(t, s) and s
∂2Pi,j(t,s)

∂ss are smooth and bounded.
Then, we have

|Pl,m(t, s)| = |Es[−
∫ T

t
Gl,m(τ, S̃τ)dτ]|

≤ Es[
∫ T

t
|

l

∑
k=1

1
2

σ2 (− ln S̃τ)k

k!
S̃τ(S̃τ

∂2Pl−k,m

∂ss
(τ, S̃τ))|dτ]

+ Es[
∫ T

t
|

l

∑
k=0

∑
i1+i2=l−k,
j1+j2=m−1

σ2 (− ln S̃τ)k

k!
S̃3

τ

∂2Pi1,j1
∂ss

∂2Pi2,j2
∂ss

(τ, S̃τ)|dτ]

≤ c0Es[
∫ T

t
|

l

∑
k=0

3
2

σ2 (− ln S̃τ)k

k!
S̃τ |dτ],

(43)

where c0 is a positive constant determined by ‖s ∂2Pi1,j1
∂ss ‖. Then,

Es[
∫ T

t
|

l

∑
k=0

3
2

σ2 (− ln S̃τ)k

k!
S̃τ |dτ] = Es[

∫ T

t
|

l

∑
k=0

3
2

σ2 (− ln S̃τ)k

k!
S̃τ |dτ]

≤
∫ T

t
Es[

l

∑
k=0

3
2

σ2 (ln S̃τ)k

k!
S̃τ ]dτ

≤ 3
2

σ2
∫ T

t
Es[(S̃τ)

2]dτ.

(44)

On the other hand, e−µtS̃t is a martingale under P. Let S̃?
T := maxt∈[0,T] S̃t. Then, by the Doob’s

maximal inequality, we have

∫ T

t
Es[(S̃τ)

2]dτ ≤
∫ T

t
Es[(S̃?

τ)
2]dτ ≤ TEP[(S̃?

T)
2] ≤ 4TEP[(S̃T)

2] < ∞. (45)

This implies that ‖Pl,m‖ < ∞. Moreover, the integration formula of Pl,m(t, s) implies that Pl,m(t, s) and

s ∂2Pl,m(t,s)
∂ss are also o(e−s2

) as s→ ∞. Therefore, by the induction argument, we have ‖Pl,m‖ < ∞ for all
l, m = 0, 1, · · · .

By the above theorem, the series satisfies

∞

∑
l,m=0

θlεmPl,m(t, s) ≤
∞

∑
l,m=0

θlεm‖Pl,m(t, s)‖ < ∞ (46)

for given 0 < θ, ε << 1. We now define Φ(t, s) := ∑∞
l,m=0 θlεmPl,m(t, s). Clearly, Φ(T, s) = (K − s)+

and Φ(t, s) satisfies NPDE (24) by (28). Therefore, we can conclude that

∞

∑
l,m=0

θlεmPl,m(t, s) = P(t, s) (47)

and

|P(t, s)−
l=i,m=j

∑
l,m=0

θlεmPl,m(t, s)| = o(θiεj). (48)
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5. Conclusions

We studied a delta hedging method with the liquidity risk under the CEV diffusion model.
We used the approximation method to find the price and the hedging strategy. Our method is simple
but still quite accurate. A simulation study shows that high liquidity cost drove the option price higher,
which is intuitively expected.
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