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Abstract: The present paper is devoted to the study of a bank salvage model with a finite time horizon
that is subjected to stochastic impulse controls. In our model, the bank’s default time is a completely
inaccessible random quantity generating its own filtration, then reflecting the unpredictability of the
event itself. In this framework the main goal is to minimize the total cost of the central controller,
which can inject capitals to save the bank from default. We address the latter task, showing that the
corresponding quasi-variational inequality (QVI) admits a unique viscosity solution—Lipschitz continuous
in space and Hölder continuous in time. Furthermore, under mild assumptions on the dynamics the
smooth-fit W(1,2),p

loc property is achieved for any 1 < p < +∞.

Keywords: bank salvage model; stochastic impulse control; viscosity solution; inaccessible bankruptcy
time; smooth-fit property

1. Introduction

Mainly motivated by the financial credit crisis that happened over the last decades, starting from the
2008–2009 credit crunch, the financial and mathematical community started investigating and generalizing
existing models. In fact, previous events have shown that financial models used prior to the crisis where
inadequate to describe and capture main features of financial markets. Therefore the mathematical and
financial communities have focused on developing general and robust models that are able to properly
describe financial markets and their main peculiarities.

From a purely mathematical perspective, the above-mentioned attention led, among many other
research topics, into the study of general stochastic optimal control problems, where instead of classical
type of controls, more realistic controls have been considered. Impulse-type controls have to be mentioned
among the most studied. Such a type of controls regained attention in the last decades also due to its many
applications in finance and economics. In this setting, the controller can intervene on the system at some
random time with a discrete type control, where in this case the control solution is represented by the
couple u = (τn, Kn)n, where τn is the decision time at which the controller intervenes and Kn denotes the
action taken by the controller. The above type of control implies that at the intervention time τn, the system
jumps from the state X(τ−n ) to the new state X(τn) = Γ(X(τn), Kn), for a suitable function Γ. Therefore,
as is standard in optimal control theory, using the dynamic programming principle, it can be shown that
stochastic impulse control problems can be associated with a quasi-variational Hamilton–Jacobi–Bellman
equation (HJB) of the form

min
[
− ∂

∂t
V −L V − f , V −H V

]
(1)
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where f is the running cost, L is the infinitesimal generator for the process X and V is the value function
solution to the above HJB equation. Further, H is the nonlocal impulse operator that characterizes the HJB
equation for impulse type of control. The particular form for the HJB implies that two regions can be
obtained, the continuation region, where V > H V and therefore no impulse control is used, and the impulse
region, where on the contrary V = H V and the controller intervenes. The solution to Equation (1) can be
formally defined so that the value function is in fact a viscosity solution, in a sense to be properly defined
later on, in Equation (1). It is clear that, following the above characterization of the domains for the HJB
equation, particular attention must be given to the intervention boundary. In fact, particular attention is
usually given in this field to proving that the boundary is regular enough; this regularity is referred to in
the literature as the smooth-fit principle. Several results exist in the smooth-fit principle where the terminal
horizon for the control problem, whereas instead finite horizon problem, and in particular the terminal
condition of the problem, makes less straightforward the derivation of the smooth-fit principle.

It is worth stressing that impulse-type stochastic control is strictly connected to optimal stopping
problems and optimal switching. The literature on the topic is wide, and several issues has been addressed
in the literature. For instance, in Belak et al. (2017); Cosso (2013); Egami (2008); Guo and Wu (2009); Guo and
Chen (2013); Pham (2007); Tang and Yong (1993) general results related to the existence as well as regularity
of an optimal control have been proven under different assumptions of regularity; in Øksendal and Sulem
(2008) an impulse-type optimal control was considered subject to a delayed reaction. A stochastic impulse
control problem for a system perturbed by general jump noise was considered in Bayraktar et al. (2013).
Finally, impulse optimal controls have been used in concrete financial applications, see Aïd et al. (2019);
Chevalier et al. 2013, 2016; Federico et al. (2019); Vath et al. (2007).

A second crucial financial aspect that emerged to be fundamental in a general financial formulation is
that any financial entities may fail. In fact, one of the major lacks of classical financial models is that no risk
of failure is considered in the general setting. Recent financial events have shown that no financial operator
can be considered immune from bankruptcy. Therefore an extensive body of literature has emerged that
focusses on credit risk modeling, assessing the risk as the main object that financial entities have to face
when borrowing or lending money to other players that might fail; see, e.g., Brigo et al. (2013); Crépey
2015a, 2015b.

Along aforementioned lines, two main approaches have been developed in the literature: the structural
approach and the intensity-based approach; see, e.g., Bielecki et al. (2009). Mathematically speaking, the
first scenario consists of considering some default event that can be triggered by the underlying process.
A typical example is default triggered by some stopping time defined as a hitting time. Such an approach
has been for instance considered in Cordoni and Di Persio (2020); Cordoni et al. (2019); Lipton (2016).
The latter instead considers a default event that is completely inaccessible for the probabilistic reference
filtration, so that in order to solve the problem the typical approach is to rely on filtration enlargement
techniques; see, e.g., Bielecki and Rutkowski (2013); Pham (2009).

It is worth to stress further that the obtained results, which are related to a stochastic optimal control
problem when impulses have to be taken into account, play a relevant role within current financial practice.
In particular, the work can be concretely used to derive effective strategies by financial supervisors aiming
at controlling financial networks characterized by cash flows under constraints imposed by over-national
organizations. The latter is, e.g., the case of the rules of (supervisor) intervention regarding the Basel (now
at its third generation) regulatory framework on bank capital requirements, stress tests and market liquidity
risk and related bounds. Analogously, with respect to the European insurance market, where the solvency
(now at its second generation) set of rules aims at organized insurance and re-insurance institutions in order
to obtain a financially solid ecosystem, particularly aiming at reducing insolvency risk so as to maximize
customers’ safety.
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Along the aforementioned lines, our techniques allow the controller to prevent failures of the whole
system acting with capital injections so as to save the supervised financial entities from possible failure.

It is worth mentioning that the economic literature as well as financial practice have not expressed a
uniquely determined statement concerning intervention criteria with respect to the idea of intervention
itself either. Without entering into details, we refer the interested reader to Hetzel (2009), where the authors
make a comparison concerning possible reforms about existing bank regulations and related systems of
surveillance; to Calderon and Schaeck (2016) where the authors analyze supervisors’ interventions, such as,
e.g., recapitalizations and liquidity injections, with respect to the effect they have caused to the overall
(system of) banks’ level of competitiveness; and to Aikins (2009), which critically studies the free-market
efficiency and possible supervisor intervention within a broad theoretical perspective, also with specific
links highlighting the stability-oriented relevance of governance rules acting on a rather heterogeneous
type of financial institutions.

The present paper is devoted to study a stochastic optimal control problem of the impulse type,
where a financial supervisor controls a system, such as financial operators or some banks. The final goal
of the controller is to prevent failures, injecting capital into the system according to a given criterion
to be maximized. The controller has no perfect information regarding the failure of the bank, so that
mathematically speaking the failure cannot be foreseen by the controller. The supervisor, which can be
though of for instance as a central bank, can intervene with some impulse-type controls over a finite
horizon, so that the optimal solution is represented by both the intervention time and the quantity injected
into the system.

Our approach will be an intensity-based approach, so that we will assume the default event to be totally
inaccessible from the reference filtration, assuming only a typical density assumption. This assumption
will allows us to rewrite the system as a finite horizon impulse problem, using the density distribution of
the default event, via enlargement of filtrations techniques. We stress that, due to the terminal condition to
be imposed, typically a finite horizon stochastic impulse control problem is more difficult to solve than
infinite horizon impulse control problems. In fact, an exhaustive literature on stochastic impulse control on
an infinite time horizon exists—see, e.g., Bayraktar et al. (2013); Belak et al. (2017); Chevalier et al. (2013);
Egami (2008); Guo and Wu (2009); Øksendal and Sulem (2008); Pham (2007); Vath et al. (2007); whereas
very few results exist for the finite dimensional case—see, e.g., Chevalier et al. (2016); Guo and Chen (2013);
Tang and Yong (1993).

A more financially oriented motivation of the control problem considered in the present work has
often arisen in the last decade, mostly as a consequence of the 2007–2008 credit crunch. This has been,
for instance, the case of the Lehman Brothers failure, which has shown the cascade effect triggered by the
default of a sufficiently large and interconnected financial institution; see, e.g., Ivashina and Scharfstein
(2010); Kahle and Stulz (2013) and references therein. We stress that particular attention has to be given not
only towards the magnitude of the stressed bank’s financial assets, but also to its interconnection grade.
Indeed, while the exposure with a few financial institutions, provided its magnitude is reasonable, can be
managed by ad hoc politics established on a one-to-one relationship basis, the situation could be simply
ungovernable in the case of a high number of connections, hidden links and over-structured contracts.

Since the above mentioned financial crisis, it has became typical within the financial oriented stochastic
optimal control theory to model a given problem up to a random terminal time instead of considering a
fixed, even infinite, horizon. From a modeling point of view, the aforementioned scenario has led to the
consideration of the stochastic optimal control approach so as to model such situations by considering
random terminal times instead of considering a fixed, or infinite, horizon. Analogously, data analysts as
well as mathematicians have started to consider problems of bank bailouts, where a bank’s default and the
consequent contagion spreading inside the network may induce serious consequences for decades; see,
e.g., Eichengreen et al. (2012).
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From a government perspective, such a type of a likely high financial fallout has pushed several
central banks to establish specific economic actions to help those parts of the banking sector of (at least)
national interest that are under concrete failure risks. As an example, the latter has been the case of the pro
bail-in procedures followed in agreement with the Directive 2014/59/UE (approved on 1 January 2016 by
the European Union Parliament), and then applied, e.g., in Italy and the Ukraine; see, e.g., Kuznetsova
et al. (2017); Sakuramoto and Urbani (2018). It is relevant to underline that such actions also rely on the
following grades of freedom: the possibility, as an alternative to internal rescue, to relocate goods as well
as legal links to a third party, often called a bridge-bank, or to a bad bank that will collect only a part of
the assets while aiming at maximizing its long-term value; the hierarchical order of those who are called
to bear the bail-in, which means that the government can decide to put small creditors on the safe side;
and the principle that no shareholder, or creditor, has to bear greater losses than would be expected if there
was an administrative liquidation, namely the no worse-off creditor idea.

Similar situations have been recently taken into consideration by a series the Central European Bank
procedures, with particular reference to the well known quantitative easing, as well as in agreement to
the creation of injected currency; see, e.g., Altavilla et al. (2015); Andrade et al. (2016); Blattner and Joyce
(2016); De Santis (2020). We would like to underline that quantitative easing type procedures have been
experienced also outside the European Union, as in the case of the actions undertaken by the Japanese
Central Bank, whose intervention has lasted years—see, e.g., Bowman et al. (2011); Miyao (2000); Voutsinas
and Werner (2011); or how it has been done by the US Federal Reserve, not only starting from 2008, but
also during the Great Depression of the 1930s—see, e.g., Blinder (2010); Bordo and Sinha (2016); Edward
(2016); Fawley and Neely (2013); Hoover Institution (2014).

The main contribution of the present paper is to develop a concrete financial setting that models
the evolution of a financial entity, controlled by an external supervisor who is willing to lend money
in order to maximize a given utility function; see also Capponi and Chen (2015); Cordoni et al. (2019);
Eisenberg and Noe (2001); Lipton (2016); Rogers and Veraart (2013) for a setting in which a financial
supervisor aims at controlling a system of banks of general financial entities. In complete generality,
we will assume that the financial entity may fail at some random time that is inaccessible to the reference
filtration, which represents the controller knowledge. Additionally, we consider a controller that can act
on a system with an impulse-type control, so that the optimal solution consists of both a random time
at which money is injected into the system and the precise amount of money to inject. We characterize
the value function of the above problem, showing that it must solve in a given viscosity sense a certain
quasi-variational inequality (QVI). Finally we prove that the above QVI admits a unique solution in
a viscosity sense, and we also provide regularity results for the intervention boundary, known in the
literature as the smooth fit principle.

The paper is organized as follows, Section 2 introduces the general financial and mathematical setting;
then Section 3 proves some regularity results for the value function and Section 4 addresses the problem of
existence and uniqueness of a solution. Finally, Section 5 is devoted to the smooth fit principle.

2. The General Setting

We will, in what follows, consider a complete filtered probability space
(

Ω, F , (Ft)t∈[0,T] ,P
)

,
(Ft)t∈[0,T] being a filtration satisfying the usual assumptions, namely right-continuity and saturation by
P-null sets. Let T < ∞ be a fixed terminal time, and let x, resp. y, denote the total value of the investments



Risks 2020, 8, 60 5 of 31

of a given bank resp. the total amount of deposit of the same bank. We assume that x and y evolve
according to the following system of SDEs:dx(t) = c1ẏ(t)dt + µ̃(t)x(t)dt + σ(t, x(t))dW(t)

ẏ(t) = λ
(

x(t)
y(t)

)
y(t)

(2)

where W(t) is assumed to be a d-dimensional Brownian motion adapted to the aforementioned filtration.
Specification regarding driving coefficients will be made later in the paper. In particular, the first term in
Equation (2) accounts for the increase in X due to the fact that new deposits are made, where c1 ∈ [0, 1]
denotes the fractions of deposits that are actually invested in more or less risky financial operations.
We stress that it can be assumed using a rescaling argument, with a generality no smaller than c1 = 1.
Moreover, we define the value over liability ratio X(t) := x(t)

y(t) . Then, according to Equation (2) and exploiting
the Itô–Döblin formula, we have:{

dX(t) = ((c1 − X(t))λ(X(t)) + µ̃(t)X(t)) dt + σ(t, X(t))dW(t)

x(0) = x0
(3)

We assume the process X to be stopped at completely inaccessible random time τ, which is not adapted
to the reference filtration (Ft)t∈[0,T]. From a financial point of view, assuming that X represents the
financial value of an agent, the above assumption reflects the fact that a bank’s failure cannot be predicted.
In particular, let us introduce the filtration (Ht)t∈[0,T] generated by the stopping time τ, namely Ht :=
1{τ≤t}. Then we define the augmented filtration (Gt)t∈[0,T], where Gt := Ft ∨Ht.

Within this setting it is interesting to consider an external controller, e.g., a central bank, or an equivalent
financial agent acting as a governance institution with suitable surveillance rights. Such a controller
can inject capital into the bank at random times τn. Then, at time τn, the state process X(t) jumps,
and in particular we have:

X(τ−n ) 6= X(τn) = X(τ−n ) + Kn

therefore X(t) evolves according to{
dX(t) = ((c1 − X(t))λ(X(t)) + µ̃(t)X(t)) dt + σ(t, X(t))dW(t) + ∑n:τn≤t Kn

X(0) = x0
(4)

The solution to the aforementioned system is represented by a couple u = (τn, Kn)n≥1, where (τn)n≥1

is a non-decreasing sequence of stopping times representing the intervention times, while (Kn)n≥0 is a
sequence of (Gt)-adapted random variables taking values in A ⊂ [0, ∞). In particular the sequence
(Kn)n≥0 indicates the financial actions taken at time τn. The following is the definition of admissible impulse
strategy u.

Definition 1 (Admissible impulse strategy). The admissible control set U consists of all the impulse controls
u = (τn, Kn)n≥0, such that

{τi}i≥1 are Gt adapted stopping times and increasing, i.e., τ1 < τ2 < · · · < τi < · · · ,

Ki ∈ A and Ki ∈ Gτi , ∀ i ≥ 1.
(5)
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Remark 1. Equivalently, we will use a different notation, ξt(·) to express the same space, i.e., for all 0 ≤ t ≤ s ≤ T,

ξt(s) = ∑
t≤τi<s

Ki

where τi, Ki satisfies (8) and the corresponding admissible control set U [t, T] consists of all ξt(·).

In what follows we will denote for short

µ(t, Xt) := ((c1 − X(t))λ(X(t)) + µ̃(t)X(t))

We will assume the following assumptions to hold.

Hypothesis 1. The functions µ : [0, T] × R → R and σ : [0, T] × R → Rd are bounded on [0, T] × R and
Lipschitz continuous w.r.t. for the second variable and uniformly w.r.t. for the first variable.

In the following, for any admissible control u ∈ U [t, T], define Xu
t,x(s) as:

Xu
t,x(s) = x +

∫ s

t
µ(r, Xu

t,x(r)) dr +
∫ s

t
σ(r, Xu

t,x(r))dW(r) + ξt(s) s ≥ t .

Under assumption 1 there exists a unique strong solution Xu
t,x(s) of dynamics (4), for any (t, t) ∈

[0, T]×Rn, with initial condition Xu
t,x(t) = x.

We aim at solving the following stochastic control problem, whose value function is defined as:

V(t, x) .
= sup

u∈U [t,T]
Ju(t, x) (6)

where Ju(t, x) is the expected cost of the form

Ju(t, x) .
= E

[ ∫ τ∧T

t
f (Xu

t,x(s))ds + g1(Xu
t,x(T))1{τ≥T} − g2(Xu

t,x(τ))1{τ<T} − ∑
t≤τn≤τ∧T

(Kn + κ)

]
(7)

where f resp. g, represents the running cost resp. the terminal cost, while K + κ, κ > 0 is a suitable constant
defining the cost required by the capital injection. Above, we have denoted by τ the bank default time
with respect to the process X(t). We assume, as specified above, that τ is a completely inaccessible random
time, and it is not adapted to the reference filtration (Ft)t∈[0,T]. Additionally, recall that (Ht)t∈[0,T] is the
filtration generated by the stopping time τ, namely Ht := 1{τ≤t}, whilst (Gt)t∈[0,T] is the filtration, namely
Gt := Ft ∨Ht.

Following the standard literature (see, e.g., Karatzas (1989)) both the running and terminal costs are
usually given in terms of suitable utility functions representing the utility gains from the bank’s value.
A typical example is f (x) = xp

p , p ∈ (0, 1). As regards the cost K + κ, it reflects the fact that injecting an
amount K of capital to increase the bank’s liquidity level implies a non-negligible cost; otherwise such a
financial help would be always profitable.

Throughout the work we will make the following assumptions:

Hypothesis 2. (i) the functions f , g1, g2 : R→ R are Lipschitz continuous and bounded;
(ii) the following holds:

g1(x) ≥ sup
K>0

g1(x + K)− K− κ
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The boundedness properties for the running and terminal cost can be interpreted in the following
sense: since we are seeking the optimal capital injection strategy for the government over a finite time
horizon, we may think that there is a healthy level U > 0 such that when the bank’s capital is growing to
infinity, then the utility remains flat, so that the government will have no interest in injecting more capital.
To make an example, we can take

U(x) = U − e−x

Definition 2 (Admissible impulse control). An admissible control impulse is an impulse control on [0, T] with a
finite average number of impulse, that is,

Eξt(s) < ∞

It is worth stressing that under Hypotheses 1 and 2 the optimization functional Ju(t, x) is well-defined for
every (t, x) ∈ [0, T]×R and every u ∈ U .

The admissible control set U consists of all the impulse controls u = (τn, Kn)n≥0 such that

{τi}i≥1 are Gt adapted stopping times and increasing, i.e., τ1 < τ2 < · · · < τi < · · · ,

Ki ∈ A and Ki ∈ Gτi , ∀ i ≥ 1.
(8)

Remark 2. A further generalization of the above optimal control problem consists in considering a controller having
two different ways to influence the evolution of the state process x, namely:

(1) An impulse type control (τn, Kn)n, hence as in Equation (4) by injecting capital at random times τn;
(2) A continuous type control α(t), by choosing at any time t the rate at which x is growing.

In particular, an action of type 2 implies that Equation (4) can be reformulated as follows:{
dX(t) = ((c1 − X(t))λ(X(t)) + (µ(t)− α(t))X(t)) dt + σ(t)X(t)dW(t) + ∑n:τn≤t Kn

X(0) = x0

where α represents the continuous control variable α(t) ∈ [0, r̄] for a suitable constant r̄, where α = 0 stands for
higher returns and α = r̄ denotes lower returns. This reflects the financial assumption that the controller, e.g., a
central bank, can change the interest rate according to macroeconomic variables, such as the country inflation level,
the forecast of supranational interest rates, the the markets’ belief about the health of the financial sector under the
central bank control, etc. In fact, choosing α = 0, the bank value grows at the rate µ(t), which is strictly greater than
µ(t)− α(t) for a given control 0 < α(t) ≤ r̄. We refer to the above discussion; see also, e.g., Altavilla et al. (2015);
Andrade et al. (2016); Blattner and Joyce (2016); Bowman et al. (2011); De Santis (2020); Miyao (2000); Voutsinas
and Werner (2011), for more financially-oriented ideas supporting the latter setting. Accordingly, we can assume
that the controller aims at maximizing a functional of the following type:

Ju,a(t, x) = Et

[ ∫ τ∧T

t
f (Xu,a

t,x (s), α(s))ds + g1(Xu,a
t,x (T))1{τ≥T}+

− g2(Xu,a
t,x (τ))1{τ<T} − ∑

t≤τn≤τ∧T
(Kn + κ)

]
(9)

In what follows we assume the following density hypothesis on the random time to hold, hence
requiring that the distribution of τ is absolutely continuous with respect to the Lebesgue measure:
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Hypothesis 3. For any t ∈ [0, T], there exists a process (ρt(s))t∈[0,T], such that

P (τ ≤ s|Ft) = 1− ρt(s) (10)

The main idea of the following procedure is to switch from the reference filtration Ft to the default
free filtration Gt by means of the following lemma (Bielecki et al. 2009, Lemma 4.1.1).

Lemma 1. For any FT-measurable random variable X, it holds that

E [X1T≤τ |Gt] = 1{τ>t}
E [X1τ>T |Ft]

E [1τ>t|Ft]
= 1{τ>t}e

ΓtE
[

Xe−ΓT
∣∣∣Ft

]
, (11)

with
Γt := − ln (1− P (τ ≤ t|Ft)) .

A typical example, which will be used in what follows, consists in considering a Cox process, hence
taking ρ to be an exponential function of the form

ρt(s) := e−
∫ s

t β(r)dr

for a suitable function β. In this particular case we have that

Γs := − ln
(

e−
∫ s

t β(r)dr
)
=
∫ s

t
β(r)dr ,

so that the Equation (11) reads:

E [X1T≤τ |Gs] = 1{τ>s}e
∫ s

t β(r)drE
[

Xe−
∫ T

t β(r)dr
∣∣∣Fs

]
.

We can thus prove the following result.

Hypothesis 4. Let us assume that τ is a Cox process, namely it is of the form

ρt(s) := e−
∫ s

t β(r)dr (12)

with intensity given by β.

Remark 3. Notice that we could have assumed a more general assumption, often denoted in the literature as density
hypothesis, requiring that there exists a process β such that

P (τ ∈ ds|Ft) = β(s) ;

see, e.g., Bielecki et al. (2009).

Theorem 1. Let F be a G -adapted process and let us assume τ to be a Cox process defined as in Equation (12), then
it holds that

E
[∫ τ∧T

t
Frdr

∣∣∣∣Gt

]
= 1{τ>t}

∫ T

t
E
[

e−
∫ r

t β(s)dsFr

∣∣∣Ft

]
dr
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Proof. Exploiting (1) together with (12), we have that:

E
[∫ τ∧T

t
Frdr

∣∣∣∣Gt

]
=
∫ T

t
E
[
1{τ>r}1{τ>t}Fr

∣∣∣Gt

]
dr =

= 1{τ>t}

∫ T

t
E
[
1{τ>r}Fre

∫ t
0 β(s)ds

∣∣∣Ft

]
dr =

= 1{τ>t}

∫ T

t
e
∫ t

0 β(s)dsE
[
E
[
1{τ>r}

∣∣∣Fr

]
Fr

∣∣∣Ft

]
dr =

= 1{τ>t}

∫ T

t
e
∫ t

0 β(s)dsE
[

e−
∫ r

0 β(s)dsFr

∣∣∣Ft

]
dr =

= 1{τ>t}

∫ T

t
E
[

e−
∫ r

t β(s)dsFr

∣∣∣Ft

]
dr ,

and this completes the proof.

Let us then denote the impulse control for this system by

u = (τ1, τ2, ..., τj, ...; K1, K2, ..., Kj, ...) ∈ U ,

where 0 ≤ τ1 ≤ τ2 ≤ ... are Gt stopping times and Kj ∈ A is Gτj - measurable for all j, and for any u ∈ U ;
then, using (4) together with (1), the corresponding functional in Equation (7) can be rewritten as

Ju(t, x) = Et

[ ∫ T

t
ρt(s)

(
f (X(s))− β(s)g2(X(s))

)
ds + ρt(T)g1(X(T))+ (13)

− ∑
t≤τn≤T

ρt(τn) (Kn + κ)

]
so that the original stochastic control problem, with random terminal time, turns out to be a stochastic
control problem with deterministic terminal time.

Remark 4. A different approach would be to consider τ to be Ft-adapted, for instance of the form

τ = inf{t : x(t) ≤ 0} ,

which implies that the hypothesis (10) is no longer satisfied and, consequently, the above-mentioned techniques cannot
be exploited any longer. Nevertheless, under this setting it is possible to recover an HJB equation endowed with
suitable boundary conditions. We refer to Fleming and Soner (2006); Øksendal and Sulem (2005) for a mathematical
treatment of this type of stochastic control problems, while in Lipton (2016); Merton (1974) one can find applications
to the mathematical finance scenario.

For simplicity, we define the following functions:

c(t, s, x) = ρt(s)( f (x)− β(s)g2(x)) with s ≥ t,

g(t, x) = ρt(T)g1(x),
(14)

which will be used throughout the paper.
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3. On the Regularity of the Value Function

The present section is devoted to proving regularity properties of the value function. In particular,
the next two Lemmas prove respectively that the value function is a bounded, Lipschitz continuity in
space, and a 1

2 -Hölder continuity in time of the value function V.

Lemma 2. Assume that Hypotheses 1, 2 and 4 hold, then there exist constants C0, C1 such that

C1 ≥ V(t, x) ≥ −C0(1 + |x|).

Proof. For simplicity, in what follows, for any fixed (t, x) ∈ [0, T]×R and u ∈ U [t, T], we will denote for
short Xu

t,x(s), resp. ξt(s) by X(s), resp. ξ(s). Then by Gronwall’s inequality we have:

1 + |X(s)| ≤ 1 + |x|+ |ξ(s)|+
∣∣∣∣∫ s

t
σ(r, X(r))dWr

∣∣∣∣+ C
∫ s

t
(1 + |X(r)|) dr

≤ 1 + |x|+ |ξ(s)|+
∣∣∣∣∫ s

t
σ(r, X(r))dWr

∣∣∣∣+
+C

∫ s
t eC(s−r) (1 + |x|+ |ξ(r)|+ ∣∣∫ r

t σ(r, X(r))dWr
∣∣) dr

≤ C
[

1 + |x|+ |ξ(s)|+
∫ s

t
|ξ(r)|dr+

+
∣∣∫ s

t σ(r, X(r))dWr
∣∣+ ∫ s

t

∣∣∫ r
t σ(r, X(r))dWr

∣∣ dr
]

,

thus

E|X(s)| ≤ C
{

1 +E|x|+E|ξ(s)|+E
∫ s

t
|ξ(r)|dr+

+E
∣∣∣∣∫ s

t
σ(r, X(r))dWr

∣∣∣∣+E
∫ s

t

∣∣∣∣∫ r

t
σ(r, X(r))dWr

∣∣∣∣ dr
]

. (15)

On the other hand, under (1), we have:

E
∣∣∣∣∫ s

t
σ(r, X(r))dWr

∣∣∣∣+E
[∫ s

t

∣∣∣∣∫ r

t
σ(r, X(r))dWr

∣∣∣∣ dr
]

≤
(
E
∣∣∣∣∫ s

t
σ(r, X(r)) dWr

∣∣∣∣2
)1/2

+ (s− t)1/2

(∫ s

t
E
∣∣∣∣∫ r

t
σ(r, X(r))dWr

∣∣∣∣2 dr

)1/2

=

(∫ s

t
E|σ(r, X(r))|2 dr

)1/2
+ (s− t)1/2

(∫ s

t

∫ r

t
E|σ(r, X(r))|2drdr

)1/2

≤ [1 + (s− t)]
(∫ s

t
E|σ(r, X(r))|2 dr

)1/2

≤ C

{
(s− t)1/2 +

(∫ s

t
E|X(r)|2dr

)1/2
}
≤ C

{
1 +

∫ s

t
E|X(r)|dr

}
,

(16)
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where we have exploited both the Jensen’s and Hölder’s inequalities several times. Hence it follows that

E|X(s)| ≤ C
{

1 +E|x|+E|ξ(s)|+E
∫ s

t
|ξ(r)|dr +

∫ s

t
E|X(r)|dr

}
≤ C

{
1 +E|x|+E|ξ(s)|+E

∫ s

t
|ξ(r)|dr

}
.

.

Again under (1)–Hypothesis 2, we achieve that

|Ju(t, x)| ≤
∫ T

t
C(1 +E|X(s)|) ds + C(1 +E|X(T)|)− ∑

t≤rn≤T
ρt(rn) (Kn + κ)

≤ C
(

1 + |x|+E|ξ(T)|+E
∫ T

t
|ξ(r)|dr

)
.

For the trivial control u0 = ξt(.) ≡ 0, one has that

V(t, x) ≥ Ju0 ≥ −C0(1 + |x|) for all(t, x) ∈ [0, T]× R, (17)

which proves the lower bound of the value function.
The boundedness of c(t, s, x), g(t, x), immediately gives us that the value function is bounded,

i.e., there exists C1 > 0 such that
V(t, x) ≤ C1. (18)

Lemma 3. Assume Hypotheses 1, 2 and 4 hold, the value function V(t, x) is Lipschitz continuous in x, and
1
2 -Hölder continuous in t, namely there exists a constant C > 0 such that ∀ t1 , t2 ∈ [0, T), x1 , x2 ∈ R,

|V(t1, x1)−V(t2, x2)| ≤ C
(
|x1 − x2|+ (1 + |x1|+ |x2|)|t1 − t2|

1
2

)
,

Proof. Again, for simplicity, for any admissible control u ∈ U [t, T], we denote for short Xu
t,x1

, resp Xu
t,x2

by Xt,x1 , resp Xt,x2 dropping the explicit dependence on the control u. Notice that applying the Itô–Döblin
formula to |Xt,x1(s)− Xt,x2(s)|2, and using Gronwall’s lemma, we can infer that

E|Xt,x1(s)− Xt,x2(s)| ≤ C|x1 − x2| , ∀ s ∈ [t, T] , x1 , x2 ∈ R .

Therefore, by (1)–Hypothesis 2, for any fixed t ∈ [0, T) and all x1, x2 ∈ R and u ∈ U [t, T],

|Ju(t, x1)− Ju(t, x2)| ≤ E
∫ T

t
|c(t, s, Xt,x1(s))− c(t, s, Xt,x2(s))|ds+ (19)

+ |g(t, Xt,x1(T))− g(t, Xt,x2(T))| (20)

≤ LE
∫ T

t
|Xt,x1(s)− Xt,x2(s)|ds + C|Xt,x1(T)− Xt,x2(T)| (21)

≤ C|x1 − x2| ,

which implies that
V(t, x1) ≤ Ju(t, x1) ≤ Ju(t, x2) + C|x1 − x2|,

and thus
V(t, x1) ≤ V(t, x2) + C|x1 − x2|.
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By interchanging x1 and x2, we get

|V(t, x1)−V(t, x2)| ≤ C|x1 − x2|.

For the time regularity, first we show that

E |Xt,x(s)− x− ξt(s)| ≤ C
(
(1 + |x|)(s− t)

1
2 +E

(∫ s

t
|ξt(s) ds|

))
. (22)

For notation simplicity, we suppress the subscripts t,x for Xt,x, ξt and define

z(s) = X(s)− x− ξ(s).

Then by (1)–Hypothesis 2, we have

|z(s)| ≤ C
∫ s

t
(1 + |X(r)|) dr +

∣∣∣∣∫ s

t
σ(r, X(r))

∣∣∣∣ ≤
≤ C

∫ s

t
(1 + |x|+ |z(r)|+ |ξ(r)|) dr +

∣∣∣∣∫ s

t
σ(r, X(r))dWr

∣∣∣∣ .

By Gronwall’s inequality, we achieve

|z(s)| ≤ C
[
(1 + |x|)(s− t) +

∫ t

s
|ξ(r)|dr+

+

∣∣∣∣∫ s

t
σ(r, X(r)) dWr

∣∣∣∣+ ∫ s

t

∣∣∣∣∫ r

t
σ(r, X(r))dWr

∣∣∣∣ dr
]

Using (16) and again Gronwall’s inequality, we further get

E|z(s)| ≤ C
[
(1 + |x|)(s− t) +

∫ t

s
E|ξ(r)|dr + (s− t)

1
2 +

∫ s

t
E|X(r)| dr

]
≤ C

[
(1 + |x|)(s− t) +

∫ t

s
E|ξ(r)|dr + (s− t)

1
2 +

+
∫ s

t
E(1 + |x|+ |ξ(r)|+ |z(r)|) dr

]
≤ C

[
(1 + |x|)(s− t)

1
2 +

∫ t

s
E|ξ(r)|dr

]
,

which proves (22).
For all p ∈ [0, ∞), define the control space

Up[t, T] =

{
u ∈ U [t, T]

∣∣∣∣∣E ∑
t≤ri<T

(ρt(ri)Ki + κ) ≤ 2C0(1 + p) + C1

}
,

where C0 and C1 are the constants in (18) and (17). Notice that another important corollary of (22) is that
for all u ∈ U|x|[t, T],

E |Xt,x(s)− x− ξt(s)| ≤ C
(
(1 + |x|)(s− t)

1
2

)
∀ t ≤ s ≤ T. (23)
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We claim that for all |x| ≤ p, the value function V(t, x) satisfies

V(t, x) = inf
u∈Up [t,T]

Ju(t, x).

This is due to the fact that for any u ∈ U [t, T]\Up[t, T],

Ju(t, x) ≤ C1 −E ∑
t≤ri<T

(ρt(ri)Ki + κ) ≤ C1 − 2C0(1 + p)− C1 < V(t, x)− C0(1 + p).

Fix x ∈ R and 0 ≤ t1 < t2 < T. For any u2 ∈ U|x|[t2, T), extend the control to [t1, T) by setting{
ξ̃t1(s) = 0 ∀ s ∈ [t1, t2),

ξ̃t1(s) = ξt2(s) ∀ s ∈ [t2, T).

and call ũ1
.
= ξ̃t1(·) ∈ U [t1, T]. Then we have:

V(t1, x) ≤ Jũ1(t1, x)

= Ju2(t2, x) +E
∫ t2

t1

c(t1, s, Xt1,x(s)) ds

+ E
∫ T

t2

[c(t1, s, Xt1,x(s))− c(t2, s, Xt2,x(s))] ds+

+ E [g(t1, Xt1,x(T))− g(t2, Xt2,x(T))]

≤ Ju2(t2, x) + C(1 + |x|)|t1 − t2|+ C(1 + |x|)(|t1 − t2|
1
2 )

≤ Ju2(t2, x) + C(1 + |x|)(|t1 − t2|
1
2 ),

(24)

where Xt1,x(s), resp. Xt2,x(s) represents Xũ1
t1,x, resp Xu2

t2,x and the second-to-last row in (24) is achieved by
exploiting (22). Thus we obtain that

V(t1, x) ≤ V(t2, x) + C(1 + |x|)|t1 − t2|
1
2 .

On the other hand, for any ε > 0, there exists u1 ∈ U|x|[t1, T), such that

ε + V(t1, x) ≥ Ju1(t1, x).

Then we define the impulse controls û2, ū2 ∈ U [t2, T) by

ξ̂t2(s) = ξt1(s) ∀ s ≥ t2,

ξ̄t2(s) = ξt1(s)− ξt1(t2) ∀ s ≥ t2.

Notice that û2 is the impulse control such that at the initial time t2, there is a impulse of size ξt1(t2) and ū2

is the impulse control mimicking all the impulses in ξt1(·) on [t2, T). By denoting x̄ = x + ξt1(t2), which is
Ft2 adapted, we have that

Jû2(t2, x) = Jū2(t2, x̄)− (ξt1(t2) + κ),
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and thus

ε + V(t1, x) ≥ Jû2(t2, x) +E
∫ T

t2

(c(t1, s, Xt1,x(s))− c(t2, s, Xt2,x̄(s)))

+E[g(t1, Xt1,x(T))− g(t2, Xt2,x̄(T))] ds

+ ∑
t1≤ri<t2

(1− ρt1(ri))(Ki + κ)

+∑ri≥t2
(ρt2(ri)− ρt1(ri))(Ki + κ)

≥ V(t2, x)− C(1 + |x|)(t2 − t1)+

−CE|Xt1,x(T)− Xt2,x̄(T)| − C
∫ T

t2
E|Xt1,x(s)− Xt2,x̄(s)| ds

≥ V(t2, x)− C(1 + |x|)(t2 − t1)
1
2 ,

(25)

where Xt1,x, resp. Xt2,x represents Xu1
t1,x, resp. Xū2

t2,x. Notice that in (25), we extensively use the following
inequality:

E|Xt1,x(s)− Xt2,x̄(s)| ≤ CE|Xt1,x(t2)− Xt2,x̄(t2)|

= CE|Xt1,x(t2)− x− ξt1(t2)|

≤ C(1 + |x|)(t2 − t1)
1
2

for all s ≥ t2 and u1 ∈ U|x|[t1, T), where the last row is achieved by (23).
Since (25) holds for all ε > 0, we obtain

V(t1, x) ≥ V(t2, x)− C(1 + |x|)(t2 − t1)
1
2 .

Adding (24), we finally get the 1
2 -Hölder continuity in time, i.e.,

|V(t1, x)−V(t2, x)| ≤ C(1 + |x|)|t1 − t2|
1
2 .

In order to make the treatment as self-contained as possible, we end the current section proving the
following dynamic programming principle (DPP).

Theorem 2 (Dynamic programming principle). Under Hypotheses 1, 2 and 4, for any (t, x) ∈ [0, T] × R,
the following holds:

V(t, x) = sup
u∈U [t,T]

E
[ ∫ θ

t
ρt(s)

(
f (X(s))− β(s)g2(X(s))

)
ds+

− ∑
t≤τn≤θ

ρt(τn) (Kn + κ) + ρt(θ)V(θ, Xu
t,x(θ))

]
,

for any stopping time θ valued in [t, T].
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Proof. For any ε > 0, ū ∈ U [t, T] exists, so that

sup
u∈U [t,T]

E
[ ∫ θ

t
cu(t, s, x)ds− ∑

t≤τn≤θ

ρt(τn) (Kn + κ) + ρt(θ)V(θ, Xu
t,x(θ))

]
≥

≥E
[ ∫ θ

t
cū(t, s, x)ds− ∑

t≤τn≤θ

ρt(τn) (K̄n + κ) + ρt(θ)V(θ, Xū
t,x(θ))

]
− ε .

Using the regularity for the value function proven above, and in particular Lemma 3 it follows that another
strategy ũ ∈ U [t, T] exists, such that

E
[
V(θ, Xū

t,x(θ))
]
≥ E

[
J(θ, Xũ

t,x(θ)
]
− ε . (26)

Therefore from Equation (26) we obtain

E
[∫ θ

t
c(s, Xū

t,x(s))ds− ∑
t≤τn≤θ

ρt(τn) (Kn + κ) + ρt(θ)V(θ, Xū
t,x(θ))

]
− ε ≥

≥E
[∫ θ

t
c(s, Xū

t,x(s))ds− ∑
t≤τn≤θ

ρt(τn) (Kn + κ) + ρt(θ)Jũ(θ, Xū
t,x(θ)

]
− 2ε =

=Juε
(t, x)− 2ε .

We thus have the following inequality:

V(t, x) ≤ sup
u∈U [t,T]

E
[ ∫ θ

t
ρt(s)

(
f (X(s))− β(s)g2(X(s))

)
ds+

− ∑
t≤τn≤θ

ρt(τn) (Kn + κ) + ρt(θ)V(θ, Xu
t,x(θ))

]
.

A completely analogous argument shows the reverse inequality, hence proving the claim.

Remark 5. It must be stressed how Hypothesis 4 on τ being a Cox process is essential, since without it the problem
might be time-inconsistent.

4. Viscosity Solution to the Hamilton–Jacobi–Bellman Equation

An application of an ad hoc dynamic programming principle (2) (see, e.g., Øksendal and Sulem
(2005); Pham (2009)) leads to the following quasi-variational inequality (QVI).min

[
− ∂

∂t V(t, x)−L V(t, x)− f (x) + β(t)(V(t, x) + g2(x)) , V(t, x)−I V(t, x)
]
= 0 , on [0, T)×R,

V(T, x) = g1(x) , on {T} ×R ,
(27)

with I being the non-local impulse operator defined as

I V(t, x) := sup
K∈A (t,x)

[V(t, x + K)− (K + κ))] .

We underline that the problem (27) identifies two distinct regions: the continuation region

C = {(t, x) ∈ [0, T)×R : V(t, x) > I V(t, x)} ,
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and the impulse region or action region

A = {(t, x) ∈ [0, T)×R : V(t, x) = I V(t, x)} .

The following is the definition of the viscosity solution to the QVI (see Equation (27)) within the
general setting (possibly not continuous).

Definition 3. A function V : [0, T]×R→ R is said to be a viscosity solution to the QVI (27) if the following two
properties hold:

(i) viscosity supersolution a function V : [0, T]×R→ R is said to be a viscosity supersolution to the QVI (27)
if ∀ (t̂, x̂) ∈ [0, T]×R and φ ∈ C1,2([0, T]×R) with

0 = (V∗ − φ) (t̂, x̂) = min
(t,x)∈[0,T)×R

(V∗ − φ) ,

it holds that


min

[
− ∂

∂t φ(t, x)−L φ(t, x)− f (x) + β(t)(φ(t, x) + g2(x)) , V∗(t, x)−I V∗(t, x)
]
≥ 0 , on [0, T)×R

min [V∗(T, x)− g1(x), V∗(T, x)−I V∗(T, x)] ≥ 0 , on {T} ×R ,
;

(ii) viscosity subsolution a function V : [0, T]×R→ R is said to be a viscosity subsolution to the QVI (27) if ∀
(t̂, x̂) ∈ [0, T]×R and φ ∈ C1,2([0, T]×R) with

0 = (V∗ − φ) (t̂, x̂) = max
(t,x)∈[0,T)×R

(V∗ − φ) ,

it holds


min

[
− ∂

∂t φ(t, x)−L φ(t, x)− f (x) + β(t)(φ(t, x) + g2(x)) , V∗(t, x)−I V∗(t, x)
]
≤ 0 , on [0, T)×R

min [V∗(T, x)− g1(x), V∗(T, x)−I V∗(T, x)] ≤ 0 , on {T} ×R ,
;

(iii) viscosity solution a function V : [0, T]×R → R is said to be a viscosity solution to the QVI (27) if it is
both a viscosity supersolution and a viscosity subsolution.

In order to prove that the value function V is the viscosity solution to Equation (27), we first need
the following.

Lemma 4. Assume that (1)–Hypotheses 2–4 hold, then we have

V(t, x) ≥ I V(t, x) ,

for all t ∈ [0, T), x ∈ R.

Proof. Reasoning by contradiction, we first suppose that there exists (t, x) ∈ S := [0, T) × [0,+∞),
such that

V(t, x) < I V(t, x),

i.e.,
V(t, x) < sup

K∈A
V(t, x + K)− (K + k) ,
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then there exists also ε > 0 and K̂ ∈ A , such that

V(t, x) < V(t, x + K̂)− (K̂ + k)− 2ε .

On the other hand, according to Equation (6), there exists u ∈ U [t, T] such that

Ju(t, x + K̂) > V(t, x + K̂)− ε .

Defining now û = ξ̂t(·)
.
= K̂ + ξt(·), we have

V(t, x) ≥ Jû(t, x) = Ju(t, x + K̂)− (K̂ + k) .

Combining all of the estimates above, we have

V(t, x + K̂)− (K̂ + k)− 2ε > V(t, x) > V(t, x + K̂)− (K̂ + k)− ε ,

from which we have the desired contradiction.

Remark 6. (4) implies that we are considering I V(t, x) as a lower obstacle, which is given in implicit form, since it
depends on the value function V itself.

Theorem 3. The value function V(t, x) is a viscosity solution to the QVI (27) on [0, T]×R, in the sense of (3).

Proof. (3) implies that the value function is continuous. Therefore the lower-semicontinuous, resp.
upper-semicontinuous, envelop of V in (3) does in fact coincide with V.

Let us prove that V(t, x) is a viscosity sub-solution of (13). By (4), we know that V(t, x) ≥ I V(t, x),
so that in what follows we only need to show that given (t0, x0) ∈ [0, T)×R such that

V(t0, x0) > I V(t0, x0) , (28)

for every φ(t, x) ∈ C 1,2([0, T] × [0,+∞)) and every t0, x0 ∈ [0,+∞), such that φ ≥ V for all (t, x) ∈
S ∩ Br((t0, x0)) and V(t0, x0) = φ(t0, x0), we want to show that

− ∂

∂t
φ(t0, x0)−L φ(t0, x0)− f (x0) + β(t0)

(
φ(x0) + g2(x0)

)
≤ 0 . (29)

In fact, if V(t0, x0) ≤ I V(t0, x0), then (29) immediately follows.
Choose ε > 0 and let u = (τ1, τ2, ...; K1, K2, ...) ∈ U [t0, T] be a ε- optimal control, i.e.,

V(t0, x0) < Ju(t0, x0) + ε.

Since τ1 is a stopping time, {ω, τ1(ω) = t0} is Ft0 - measurable, and thus

τ1(ω) = t0 a.s. or τ1(ω) > t0 a.s.

If τ1 = t0 a.s., Xu
t0,x0

takes a immediate jump from x0 to the point x0 + K1 we have Ju(t0, x0) = Ju′(t0, x0 +

K1)− (K1 + k) where u′ = (τ2, τ3, ...; K2, K3, ...) ∈ U [t0, T]. This implies that

V(t0, x0) ≤ Ju′(t0, x0 + K1)− (K1 + k) + ε < V(t0, x0 + K1)− (K1 + k) ≤ I V(t0, x0) + ε,
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which is a contradiction for ε < V(t0, x0)−I V(t0, x0). Thus (28) implies that τ1 > t0 a.s for all ε- optimal
controls such that ε < V(t0, x0)−I V(t0, x0). For any impulse control u = (τ1, τ2, ...; K1, K2, ...) ∈ U [t0, T],
define

τ̂
.
= τ1 ∧ (t0 + r) ∧ inf

{
t
∣∣∣t > t0, |x(t)− x0| ≥ r

}
.

By the dynamic programming principle, for any ε > 0, there exists a control u such that

V(t0, x0) ≤ Et0,x0

[∫ τ̂

t0

{
ρt0(s)

(
f (X(s)) + β(s)g2(x(s))

)}
ds + e−

∫ τ̂
t0

β(s) dsV(τ̂, X(τ̂)))

]
+ ε. (30)

By (30) and the Dynkin formula we have that

V(t0, x0) ≤

≤ Et0,x0

[∫ τ̂
t0

{
ρt0(s)

(
f (X(s)) + β(s)g2(X(s))

)}
ds + e−

∫ τ̂
t0

β(s) ds
φ(τ̂, X(τ̂)))

]
+ ε

= Et0,x0

[∫ τ̂

t0

{
ρt0(s)

(
f (X(s)) + β(s)

(
g2(X(s))− φ(s, X(s))

)
+
)}

ds

]
+

Et0,x0

[∫ τ̂

t0

{
ρt0(s)

( ∂

∂t
φ(s, X(s)) +L φ(s, X(s))

)}
ds

]
+ φ(t0, x0) + ε.

(31)

Using V(t0, x0) = φ(t0, x0), we further obtain

Et0,x0

[ ∫ τ̂

t0

{
ρt0(s)

(
f (X(s)) + β(s)

(
g2(X(s))− φ(s, X(s))

)
+ (32)

+
∂

∂t
φ(s, X(s)) +L φ(s, X(s))

)}
ds
]
+ φ(t0, x0) ≥ −ε.

Dividing both sides of (32) by E(τ̂ − t0) and letting r → 0, we further get that

f (x0) + β(t0)
(

g(x0)− φ(t0, x0)
)
+

∂

∂t
φ(t0, x0) +L φ(t0, x0) ≥ −ε.

Since ε > 0 is arbitrary, we finally get the desired inequality

− f (x0) + β(t0)
(
φ(t0, x0) + g2(x0)

)
− ∂

∂t
φ(t0, x0)−L φ(t0, x0) ≤ 0 , (33)

then V(t, x) is a viscosity sub-solution.
To prove that V(t, x) is also a viscosity super-solution of (13), let us consider φ ∈ C 1,2(S ), and any

(t0, x0) ∈ S such that φ ≤ V on Br(t0, x0) and φ(t0, x0) = V(t0, x0). Taking the trivial control u0 = 0
(no interventions), calling the corresponding trajectory X(t) = Xu0(t) with x(t0) = x0, and defining

τ̂ = (t0 + r)∧ inf
{

t
∣∣∣t > t0, |x(t)− x0| > r

}
, then, by the dynamic programming principle and the Dynkin

formula, we have:
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V(t0, x0) ≥ Et0,x0

[∫ τ̂

t0

{
ρt0(s)

(
f (X(s)) + β(s)g2(X(s))

)}
ds + e−

∫ τ̂
t0

β(s) ds
φ(τ̂, X(τ̂)))

]
= Et0,x0

[∫ τ̂

t0

{
ρt0(s)

(
f (x(s)) + β(s)

(
g2(X(s))− φ(s, X(s))

))}
ds

]
+

Et0,x0

[∫ τ̂

t0

{
ρt0(s)

( ∂

∂t
φ(s, X(s)) +L φ(s, X(s))

)}
ds

]
+ φ(t0, x0) + ε.

Using V(t0, x0) = φ(t0, x0), we obtain that

Et0,x0

[ ∫ τ̂

t0

{
ρt0(s)

(
f (X(s)) + β(s)

(
g2(X(s))− φ(s, X(s))

)
+ (34)

∂

∂t
φ(s, X(s)) +L φ(s, X(s))

)}
ds
]
≤ −ε.

Dividing both sides of (34) by E[τ̂ − t0] and letting r → 0, we obtain

− f (x0) + β(t0)
(
φ(t0, x0) + g2(x0)

)
− ∂

∂t
φ(t0, x0)−L φ(t0, x0) ≥ 0 . (35)

Since we have already proven that V(t, x) ≥ I V(t, x), we finally conclude that

min
[
− ∂

∂t
φ(t0, x0)−L φ(t0, x0)− f (x0) + β(t0)

(
φ(x0) + g2(x0)

)
, (36)

, V(t0, x0)−I V(t0, x0)

]
≥ 0 . (37)

Combining (29) and (36), we have that v(t, x) is a viscosity solution of (13). It is worth mentioning that the
terminal condition is non trivial. In fact, it has to take into account that right before the horizon time T,
the controller might act by an impulse control. To this extent we have to specify that the terminal condition
in Equation (27) is to be intended as

V(T, x) := lim
(t,x′)→(T− ,x))

V(t, x′) .

Since (4) implies that V(t, x) ≥ I V(t, x) for all (t, x) ∈ [0, T)×R, in the limit one has V(T, x) ≥ I V(T, x)
for all x ∈ R. To show the boundary condition

min
{

V(T, x)− g1(x), V(T, x)−I V(T, x)
}
= 0, (38)

one first considers all the x ∈ R such that V(T, x) > I V(T, x). For any sequence (tn, xn) → (T, x) with
(tn, xn) ∈ [0, T)×R, by continuity one has V(tn, xn) > I V(tn, xn) for all n large enough. Then for each
sufficiently small ε > 0, consider the controls un ∈ U [tn, T] such that

V(tn, xn) ≤ Jun(tn, xn) + ε.
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It then suffices to show that

E
[∫ T

tn
ρtn(s)

(
f (Xun

tn ,xn
(s))− β(s)g2(Xun

tn ,xn
(s))

)
ds
]
+ (39)

+E

ρtn(T)g1(Xun
tn ,xn

(T))− ∑
tn≤τj≤T

ρtn(τj)
(
Kj + κ

)→ g1(x)

as n→ +∞. Notice that since V(t, x′) > I V(t, x′) for all (t, x′) in a neighborhood of (T, x), for all δ > 0
small enough one has

P
(

sup
s∈[tn ,T]

|Xun
tn ,xn

(s)− xn| < δ
)
→ 1 as n→ ∞.

Suppose that there exists F ∈ L1(P;R) such that

∫ T

tn
ρtn(s)

(
| f (Xun

tn ,xn
(s))|+ β(s)|g2(Xun

tn ,xn
(s))|

)
ds+

ρtn(T)|g1(Xun
tn ,xn

(T))|+ | ∑
tn≤τj≤T

ρtn(τj)
(
Kj + κ

)
| ≤ F

For all n large enough, an application of dominant convergence theorem proves (39). Thus we
conclude that for any (T, x) such that V(T, x) > I V(T, x), one has

V(T, x) ≤ g1(x) + ε, ∀ε > 0 =⇒ V(T, x) ≤ g1(x).

By a similar approach, one can show that V(T, x) ≥ g1(x) for all x ∈ R. This completes the proof
of (38).

On the Uniqueness of the Viscosity Solution

We will now show that the value function is the unique viscosity solution to Equation (27) based on a
comparison principle. In order to do that, let us introduce a different definition of viscosity solution (see,
e.g., Ishi (1990)) based on the notion of jets.

Definition 4. Let V : [0, T]×R→ R be a upper-semicontinuous function, then we define

P2,+V(s, x) =
{
(p, q, M) ∈ R×R×R :

V(s, y) ≤ V(t, x) + p(t− s) + q(x− y) +
1
2

M(x− y)2 + o(|t− s|+ |x− y|2)
}

P̄2,+V(s, x) = {(p, q, M) ∈ R×R×R : ∃(tn, xn) ∈ [0, T]×R : (pn, qn, Mn) ∈P2,+V(tn, xn)

, (tn, xn, V(tn, xn), pn, qn, Mn)→ (t, x, V(t, x), p, q, M)} .

For a lower-semicontinuous function V, we define

P2,−V(s, x) := −P2,+ −V(s, x) , P̄2,−V(s, x) := −P̄2,+ −V(s, x) .

We can therefore state the equivalence between the two notions of viscosity solution stated before.
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Proposition 1. A function V : [0, T]×R→ R is a viscosity sub, resp. super, solution to Equation (27) if and only
if ∀ (p, q, M) ∈ P̄2,+V(s, x), resp. P̄2,−V(s, x),

min
[
− p− µ(t, x)q− 1

2
σ2(t, x)M− f (x) + β(t)(V(t, x) + g2(x)) , (40)

, V(t, x)−I V(t, x)
]
≤ 0 (≥ 0) . (41)

Before proving the main result of the present section, i.e., the comparison principle, we need two
technical lemmas.

Lemma 5. Assume that (1)–Hypotheses 2–4 are satisfied and that U and V are, respectively, a viscosity
super-solution and viscosity sub-solution to Equation (27). Then, assume that for (t̂, x0) ∈ [0, T]×R it holds that

V(t̂, x0) ≤ I V(t̂, x0) , U(t̂, x0) ≥ I U(t̂, x0) . (42)

Then, for every ε > 0 x̂ exists, such that

V(t̂, x0)−U(t̂, x0) ≤ V(t̂, x̂)−U(t̂, x̂) + ε ,

V(t̂, x̂) ≤ I V(t̂, x̂) , UE(t̂, x̂) ≥ I U(t̂, x̂) .

Proof. Assume that Equation (42) holds, then for λ ∈ (0, 1), there exists y0 such that

I V(t̂, x0) ≤ V(t̂, x0 + y0)− (y0 + κ) + λε .

It therefore holds that

V(t̂, x0)−U(t̂, x0) ≤ V(t̂, x0 + y0)−U(t̂, x0 + y0) + λε .

Choosing a sufficiently small λ, it follows that

V(t̂, x0 + y0) > I V(t̂, x0 + y0) .

An analogous argument shows that the converse inequality holds true for U and the claim follows.

Lemma 6. Assume that (1)–Hypotheses 2–4 are satisfied and that U and V are uniformly continuous on [0, T)×R.
Then, if (t̂, x̂) ∈ [0, T)×R is so that

V(t̂, x̂) < I V(t̂, x̂) , U(t̂, x̂) > I U(t̂, x̂) , (43)

then δ > 0 exists, so that for (t, x) ∈ [t̂− δ, t̂ + δ]× [x̂− δ, x̂ + δ], with t̂ + δ < T and t̂− δ > 0, it holds that

V(t, x) < I V(t, x) , U(t, x) > I U(t, x) .

Proof. Since V(t̂, x̂) < I V(t̂, x̂), then λ ∈ (0, 1) exists, and there exists ŷ such that

V(t̂, x̂) > V(t̂, x̂ + ŷ)− (ŷ + κ) + λ .



Risks 2020, 8, 60 22 of 31

From the assumption on the uniform continuity of of V δ ∈ (0, ε), ε > 0 exists, such that, for |t1− t2| ≤
δ and |x1 − x2| ≤ δ, it holds that

|V(t1, x1)−V(t2, x2)| ≤ ε .

Therefore, for (t, x) ∈ [t̂− δ, t̂ + δ]× [x̂− δ, x̂ + δ], it holds that

V(t, x) > V(t, x + y)− (y + κ)− 2ε + λ ,

so that for sufficiently small ε it holds that

V(t, x) < I V(t, x) , (t, x) ∈ [t̂− δ, t̂ + δ]× [x̂− δ, x̂ + δ] .

An analogous argument proves the converse results for U and the claim follows.

Next is the main Theorem of the current section.

Theorem 4 (Comparison principle). Assume that (1)–Hypotheses 2–4 are satisfied and that U and V are,
respectively, a viscosity super solution and viscosity sub solution to the Equation (27). Assume also that U and V
are uniformly continuous, then V ≤ U on [0, T]×R.

Proof. Let us prove the result by contradiction, assuming that

sup
[0,T]×R

(V −U) = η > 0 .

For r > 0 let us define

Ṽ(t, x) := ertV(x, t) , Ũ(t, x) := ertU(t, x) .

Using the theorem hypotheses, that U and V are viscosity super and sub solution to Equation (27),
we immediately have that Ṽ and Ũ are viscosity super and sub solution to

min
[

ru(t, x)− ∂
∂t u(t, x)−L u(t, x)− ert f (x) + ertβ(t)(V(t, x) + g2(x)) ,

, u(t, x)− Ĩ u(t, x)
]
= 0 , on [0, T)×R

u(T, x) = ertg1(x) , on {T} ×R ,

,

Ĩ being the non-local impulse operator defined as

Ĩ u(t, x) := sup
K∈A (t,x)

[
u(t, x + K)− ert(K + κ))

]
.

Assume that x0 ∈ R exists so that we have

Ṽ(T, x0)− Ũ(T, x0) > 0 .

Then, from the fact that Ũ is a viscosity super-solution, resp. Ṽ is a viscosity sub-solution, using
Lemma 5 we have that x̄ ∈ R exists such that

Ṽ(T, x̄)− Ũ(T, x̄) > 0 , (44)
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and
Ũ(T, x̄) < Ĩ Ũ(T, x̄) , resp. Ṽ(T, x̄) > Ĩ Ṽ(T, x̄) .

Since we also have that Ṽ(T, x̄) ≤ ertg1(x̄) and Ũ(T, x̄) ≥ ertg1(x̄), we conclude that

Ṽ(T, x̄)− Ũ(T, x̄) ≤ 0 ,

which contradicts Equation (44).
Then, suppose there exists (t̄, x̄) ∈ [0, T)×R, such that

Ṽ(t̄, x̄)− Ũ(t̄, x̄) > 0 ,

then, again using Lemmas 5 and 6, for all t ∈ Iδ := [t̄− δ, t̄ + δ] and x ∈ Bδ := [x̄− δ, x̄ + δ] it holds that

Ũ(t, x) < Ĩ Ũ(t, x) , resp. Ṽ(t, x) > Ĩ Ṽ(t, x) .

It further holds that (t̃, x̃) ∈ [0, T)×R exists, such that

sup
Iδ×Bδ

Ṽ − Ũ ≥ (Ṽ − Ũ)(t̃, x̃) > 0 .

Consider thus (t0, x0) ∈ [0, T)×R, so that

sup
Iδ×Bδ

Ṽ − Ũ = (Ṽ − Ũ)(t0, x0) > 0 ,

and, for any n ∈ N, define
ϕn(t, x, y) := Ṽ(t, x)− Ũ(t, x)− $n(t, x, y) ,

with
$n(t, x, y) = n|x− y|2 + |x− x0|4 + |t− t0|2 .

For any n ∈ N there exists a point (tn, xn, yn) ∈ Iδ × Bδ × Bδ attaining the maximum of ϕ in Iδ × Bδ × Bδ;
therefore, up to a subsequence that for the sake of brevity we will still denote (tn, xn, yn), we have that

(tn, xn, yn)→ (t0, x0, y0) , n|xn − yn|2 → 0 , (45)

as n→ ∞. It also holds that

Ṽ(tn, xn)− Ũ(tn, xn)→ Ṽ(t0, x0)− Ũ(t0, x0) , as n→ ∞ . (46)

In fact, since
Ṽ(t0, x0)− Ũ(t0, x0) = ϕn(t0, x0, x0) ≤ ϕn(tn, xn, xn) ,

then

Ṽ(t0, x0)− Ũ(t0, x0) ≤ lim inf
n→∞

ϕn(t0, x0, y0) ≤ lim sup
n→∞

ϕn(t0, x0, y0) ≤

≤ Ṽ(t̄, x̄)− Ũ(t̄, x̄)− lim inf
n→∞

n|x− y|2 + |x− x0|4 + |t− t0|2 .
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Therefore, using the optimality of (x0, t0), we obtain that, considering up to a subsequence, that what
is claimed Equations (45) and (46) holds true.

Finally, from the fact that x0 ∈ Bδ, it follows that (tn, xn, yn) ∈ I × Bδ × Bδ.
Applying the Ishii lemma, we have that there exists (pn

V , qn
V , Mn

V) ∈ P̄2,+Ṽ(tn, xn) and
(pn

U , qn
U , Mn

U) ∈ P̄2,−Ũ(tn, xn), such that

pn
V − pn

V = 2(tnt0) ,

qn
V = ∂x$n , qn

U = −∂y$n ,

and (
Mn 0
0 −Nm

)
≤ An +

1
2n

An
n ,

with An = ∂xy$n. Therefore from the viscosity sub-solution property of Ṽ, resp. the viscosity super-solution
property of Ũ, by the Lipschitz continuity of µ and σ in x and (4) we have that

r
(
Ṽ(t0, x0)− Ũ(t0, x0)

)
≤ 0 ,

which gives the desired contradiction.

We are now able to state the uniqueness result for the viscosity solution.

Corollary 1. Assume that (1)–Hypotheses 2–4 hold true, then there exists a unique viscosity solution to
Equation (27).

Proof. Let V1 and V2 be two viscosity solutions to Equation (27); then since V1 is a subsolution and V2 is a
supersolution, by comparison with principle (4) we obtain that V2 ≤ V1. Since the opposite must also hold
we obtain the claim.

5. Smooth Fit Principle on the Value Function

Under further regularity assumptions on the coefficients, to be further specified below, one can
prove the regularity property of the value function, with particular reference to the smooth-fit property
through the switching boundaries between action and continuation regions. These results, known as the
smooth-fit principle (see, e.g, Egami and Yamazaki (2014); Guo and Wu (2009); Hernández-Hernández and
Yamazaki (2015)) have already been proven to hold in the infinite horizon case. Additionally, we will
prove W(1,2),p

loc regularity for the value function V(t, x) on any fixed parabolic domain QT
.
= (δ, T]× BR(0)

for any constants 0 < δ < T, R > 0.
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In what follows we introduce the definition of the function spaces we are going to use throughout the
section, Ω being a bounded open set:

W(0,1),p(Ω) = {u ∈ Lp(Ω) : uxi ∈ Lp(Ω)},

W(1,2),p(Ω) = {u ∈W(0,1),p(Ω) : uxixj ∈ Lp(Ω)},

C0+ α
2 ,0+α(Ω̄) =

{
u ∈ C(Ω̄) : sup(x,t),(y,s)∈Ω,(x,t) 6=(y,s)

|u(t,x)−u(s,y)|
(|t−s|+|x−y|2)α/2 < +∞

}
,

C1+ α
2 ,2+α(Ω̄) =

{
u ∈ C(Ω̄) : ut, uxixj ∈ C0+ α

2 ,0+α
}

,

W(1,2),p
loc (Ω) =

{
u ∈ Lp

loc(Ω) : u ∈W(1,2),p(U) ∀ open U with Ū ⊂ Ω̄\∂PΩ
}

.

(47)

The above notations are similar to the notations used in Guo and Chen (2013).
Recall that β(t) is the hazard rate function defined in (12), and we make the following assumption:

Hypothesis 5. Let α ∈ (0, 1], we assume that the intensity function β(t) ∈ Cα/2([0, T]) and σ(s, x) ∈
C 0+α,0+ α

2 (Q̄T) satisfying the uniform elliptic condition, i.e.,

σ(s, x) ≥ δ1 > 0

for some constant δ1 > 0 depending on the domain QT .

Before proceeding to the smooth fit principle, recall that we divide the region [0, T] × R into the
following regions:

C
.
= {(t, x) : V(t, x) > I V(t, x)} ,

A
.
= {(t, x) : V(t, x) = I V(t, x)}

and for any open set Ω ∈ R2, the parabolic boundary ∂PΩ is defined as

∂PΩ .
=
{
(t, x) ∈ Ω̄| ∀ε > 0, Q((t, x), ε) contains points not in Ω

}
,

where Q((t0, x0), r) .
= {(t, x); |x − x0| < r, t < t0} for all (t0, x0, r) ∈ R2 × R+. For any (t, x) ∈ A ,

define the set
Θ(t, x) = {ξ0 | I V(t, x) = V(t, x + ξ0)− ξ0 − κ} .

Notice that in the regularity analysis in Section 2, we already show that V(T − t, x) ∈ C 0+1/2,0+1(Ω),
so we immediately have the following lemma.

Lemma 7 (Theorems 4.9, 5.9, 5.10, and 6.33 in Lieberman (1996)). Under (2) and (5), for any open set Ω ⊆ C ,
the linear parabolic PDE  ut −L u(t, x) + β̃(t)u(t, x) = f̃ (t, x) in Ω,

u(t, x) = V(T − t, x), on ∂PΩ.
(48)

admits a unique solution u(t) ∈ C 0+α/2,0+α(Ω̄) ∩ C 1+α/2,2+α
loc (Ω), where

β̃(t) = β(T − t), f̃ (t, x) = f (x)− β(t)g2(x).



Risks 2020, 8, 60 26 of 31

Theorem 5 (Smooth fit principle). Under (2) and (5), the value function V(t, x) is a unique W(1,2),p
loc (R× (0, T))

viscosity solution to the QVI (27) for any 1 < p < +∞. Furthermore, for any t ∈ [0, T), V(t, ·) ∈ C
1,γ
loc (R) for

any 0 < γ < 1.

Proof. Using the cost function
B(K) .

= K + κ, ∀ K > 0,

which is independent of time and satisfies the subadditivity property, i.e.,

B(K1 + K2) + κ = B(K1) + B(K2), ∀ K1, K2 > 0, (49)

so that the claim follows from Guo and Chen (2013) together with (7).

Structure of the Value Function

In this subsection, we study the general property of the value function V(t, x) under further
assumptions of σ(t, x), β(t), µ(t, x), f̃ (t, x) and g1(x).

Hypothesis 6. f̃ (t, x) and g1(x) are monotonically increasing with

lim
x→−∞

f̃ (t, x) = lim
x→−∞

g1(x) = −∞, lim
x→+∞

f̃ (t, x) = U(t) > 0, lim
x→+∞

g1(x) = Ug < ∞.

Lemma 8. Under (6), for any t > 0 the value function V(t, x) satisfies

V(t, x1) ≤ V(t, x2) ∀ x1 ≤ x2.

Furthermore, there exists L ∈ [−∞,+∞), such that

[0, T]× (L,+∞) ⊂ C .

Proof. First, we show the monotonicity of V(t, x) with respect to x. By applying the same adapted control
u ∈ U [t, T] with different initial values x1 ≤ x2, the solution satisfies Xu

t,x1
≤ Xu

t,x2
a.s. Since f̃ (t, x) is

increasing with respect to x, one has Ju(t, x1) ≤ Ju(t, x2) for all u ∈ U [t, T], and thus V(t, x1) ≤ V(t, x2)

for any x1 ≤ x2.
It remains to be shown that there exists L ∈ [−∞,+∞), such that for any fixed t > 0 and any x0 > L,

(t, x0) ∈ C . Fix any t ∈ (0, T), suppose that there exists a sequence x1 < x2 < ... < xk < ... such that

lim
k→+∞

xk = +∞ and (t, xk) ∈ A , ∀ k > 0,

and for any k > 0 there exists ξk ∈ Θ(t, xk), such that

V(t, xk) = V(t, xk + ξk)− ξk − κ. (50)

However, since V(t, x) is monotone, uniformly Lipschitz continuous in x and upper bounded by C1

according to (2) and (3), for any ε > 0 one can choose L large enough such that

V(t, x + ξ)−V(t, x) ≤ ε, ∀ x > L, ∀ ξ > 0,

in contradiction to (50). Notice that since such a choice of L is independent of t, we conclude that there
exists L ∈ [−∞,+∞), such that [0, T]× (L,+∞) ⊆ C .
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Lemma 9. For any (t0, x0) ∈ A , the set Θ(t0, x0) is nonempty and (t0, x0 + ξ0) ∈ C for any ξ0 ∈ Θ(t0, x0).

Proof. Since V is uniformly bounded, one has

lim
ξ→+∞

V(t0, x + ξ)− B(ξ) = −∞, lim
ξ→0+

V(t0, x + ξ)− B(ξ) = V(t0, x0)− κ.

Then the condition V(t0, x0) = I V(t0, x0) implies that the supremum in I V(t0, x0) is achieved in the
interior and thus Θ(t0, x0) is nonempty.

By property (49), for any ξ0 ∈ Θ(t0, x0) one has

I V(t0, x0) = supξ∈R+ {V(t0, x0 + ξ)− B(ξ)}

≥ supξ∈R+ {V(t0, x0 + ξ0 + ξ)− B(ξ0 + ξ)}

= supξ∈R+ {V(t0, x0 + ξ0 + ξ)− B(ξ)} − B(ξ0) + κ

= I V(t0, x0 + ξ0)− B(ξ0) + κ.

On the other hand, since I V(t0, x0) + B(ξ0) = V(t0, x0 + ξ0), we have

V(t0, x0 + ξ0) ≥ I V(t0, x0 + ξ0) + κ,

which implies that x + ξ0 ∈ C .

Lemma 10. Fix any (t0, x0) ∈ A and for any ξ0 ∈ Θ(t0, x0) , one has

Vx(t0, x0) = Vx(t0, x0 + ξ0) = 1.

Proof. By the definition of Θ(t, x), ξ0 is a global maximum of the function ξ 7→ V(t0, x0 + ξ) − B(ξ).
Thus the first-order condition yields that

Vx(t0, x0 + ξ0) = B′(ξ0) = 1.

On the other hand, for any δ 6= 0, we have

V(t0, x0 + δ) ≥ I V(t0, x0 + δ) ≥ V(t0, x0 + δ + ξ0)− B(ξ0).

So one has
V(t0, x0 + δ)−V(t0, x0)

δ
≥ V(t0, x0 + δ + ξ0)−V(t0, x0 + ξ0)

δ
, δ > 0

V(t0, x0 + δ)−V(t0, x0)

δ
≤ V(t0, x0 + δ + ξ0)−V(t0, x0 + ξ0)

δ
. δ < 0.

By (5), Vx(t, x) is well defined for all (t, x) ∈ (0, T)×R. Taking δ→ 0+ and δ→ 0−, one achieves that

Vx(t0, x0) = Vx(t0, x0 + ξ0) = 1.
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6. Conclusions

In the present work we have introduced a concrete financial setting in which a regulator can lend
money to a player, typically represented by a bank, so as to avoid its default. The financial regulator
is assumed to intervene in the system with an impulse-type control, representing the aforementioned
money injection.

We have shown that the value function related to the associated stochastic optimal control type
problems is represented by the unique viscosity solution of a quasi-variational inequality (QVI). Moreover,
we have derived suitable conditions of regularity both in time and space for the solution to the QVI.
We underline that, provided properly stated regularity requirements, our method allows to prove the
smooth-fit property, which turns out to be fundamental when aiming at finding an explicit optimal
solution.

Future research will be focused on extensions of both the setting and the provided results introduced
in the current paper.

In particular, we aim at including the treatment of a hybrid type of control, namely combining the
impulsive part with a classical continuous one. Additionally, an investigation regarding less stringent
assumptions on the regularity of the coefficients will be carried out.

Finally, it is worth mentioning that machine and deep learning techniques have proven to provide
effective algorithms able to efficiently solve several stochastic optimal control problems; see, e.g., Bachouch
et al. (2018); Deschatre and Mikael (2020); Huré et al. (2018). Therefore, our future investigations will
be extensively carried out so as to consider the impulse type optimal control tasks proposed here while
exploiting innovative neural networks solutions.
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