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Abstract: In this paper, we discuss a generalization of the collective risk model and of Panjer’s
recursion. The model we consider consists of several business lines with dependent claim numbers.
The distributions of the claim numbers are assumed to be Poisson mixture distributions. We let the
claim causes have certain dependence structures and prove that Panjer’s recursion is also applicable by
finding an appropriate equivalent representation of the claim numbers. These dependence structures
are of a stochastic non-negative linear nature and may also produce negative correlations between
the claim causes. The consideration of risk groups also includes dependence between claim sizes.
Compounding the claim causes by common distributions also keeps Panjer’s recursion applicable.

Keywords: extended CreditRisk+; Poisson mixture distribution; dependence modelling; compound
distribution; Panjer recursion

1. Introduction

The aggregation of risks in a portfolio is an important component in both insurance mathematics
and financial risk management such as credit risk, operational risk, and insurance risk. In the banking
industry, risk management becomes more and more important with the introduction of the Basel II
and Basel III accords. For this purpose, there are several portfolio risk models, the CreditRisk+ model
(introduced by Credit Suisse First Boston (1997)) being a particular example with a lot of practical
features. It does not require many assumptions and enables the recursive and exact computation of the
loss distribution, i.e., it is not necessary to apply Monte Carlo methods that introduce a stochastic error.
The collected contributions in Gundlach and Lehrbass (2004) offer a wide overview of CreditRisk+

and related results. However, a shortcoming of CreditRisk+ is the assumed independence of the
default causes. Deshpande and Iyer (2009) also consider a dependence model for default causes in the
usual CreditRisk+ model that comprises linear combinations of risk factors and is a generalization
of Giese (2004). However, both models do not introduce negative correlation. Instead, we consider a
more general linear dependence structure in an extension of the CreditRisk+ model that allows us to
model negative correlation between default numbers and we can also comprise a stochastic component
in the linear dependence. Moreover, we consider risk groups that model joint defaults (for both claim
numbers and claim sizes).

Insurance companies have to comply with Solvency II requirements, and the model we consider
is capable of aggregating and quantifying risks and can thus be used to determine the minimal capital
requirements, which is the first pillar of Solvency II. There is also an increasing demand to reflect
dependencies between the risks. Our model can be also used to aggregate operational risk.

In the (extended) CreditRisk+ model as in the collective risk model, it is necessary to calculate the
distribution of a random sum. In risk management, the collective risk model is diversified into several
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risk clusters or lines of business and thus random sums where each claim number is driven by a claim
cause. Thus, we consider a sum of several collective risk models. We should note that the term claim
is used in an insurance context, whereas the term default is used in the credit risk context. We will
use both notions interchangeably. Since we model claim numbers by Poisson mixture distributions,
it is meaningful to speak of claim cause intensities as the claim causes are modelled by the mixing
distributions (and accordingly default causes). Hence, we consider the random sum

∑
g∈G

Ng

∑
h=1

Xg,h, (1)

where {Xg,h}h∈N are independent sequences of independent and identically distributed random
variables for each g ∈ G and (Ng)g∈G are N0-valued random variables independent of {(Xg,h)g∈G}h∈N.

For independent (Ng)g∈G and independent {(Xg,h)g∈G}h∈N that are independent of (Ng)g∈G,
Panjer’s recursion is the main mathematical tool to evaluate the distribution of the random sum in
Equation (1). For the rest of this paper, we assume that N0 are the natural numbers including zero,
i.e., N0 = {0, 1, 2, 3, . . . }. The distribution of an N0-valued random variable N, denoted by {qn}n∈N0 ,
belongs to a Panjer(a, b, k) class with a, b ∈ R and k ∈ N0 if q0 = q1 = · · · = qk−1 = 0 and

qn =
(

a +
b
n

)
qn−1 for all n ∈ N with n ≥ k + 1. (2)

Let {Xh}h∈N be a sequence of N0-valued random variables. If fn = P[X1 = n] and a f0 6= 1, then,
according to (Hess et al. 2002, Corollary 4.3), the distribution pn = P[X1 + · · ·+ XN = n] is given by
the recursion

pn =
1

1− a f0

(
P[X1 + · · ·+ Xk = n] qk +

n

∑
j=1

(
a +

bj
n

)
f j pn−j

)
(3)

for all n ∈ N with initial condition

p0 =

{
q0 if f0 = 0,

∑k≥0 qk f k
0 otherwise,

(4)

which is the probability-generating function of the distribution of N at f0. The recursive evaluation
of such compound distributions was introduced to actuarial science by Panjer (1981) and extended
by Willmot and Panjer (1987). The distributions belonging to a Panjer(a, b, k) class were identified by
Sundt and Jewell (1981), Willmot (1988), and Hess et al. (2002). Gerhold et al. (2010) treat questions of
numerical stability of Panjer’s recursion. Sundt and Vernic (2009) contributed extensively to this topic.

Note also that Panjer’s recursion can be generalized to multivariate claim sizes, cf. Sundt (1999),
and the assumptions on the claim sizes can be weakened to exchangeability, cf. Hashorva (2011).
Further details can be found in Rudolph (2014). For simplicity of the presentation, we concentrate on
the dependence between the claim numbers and allow dependence between the individual losses only
within risk groups, cf. Definition 2 below.

There are further approaches analyzing portfolio risk. The paper of Soltes and Danko (2017)
proposes to create a portfolio with minimal risk. In Zoričák et al. (2019), we find an interesting approach
to predict bankruptcy for imbalanced datasets by one-class classification methods. A general paper is
proposed by Jajuga (2016) to introduce model risk in finance from an investor’s perspective, this is a
complement to the modeling of risk in this paper. An analysis of real data with respect to dependencies
and predictability of stock market returns is given in Fabiánová and Glova (2015).

The remainder of this paper is organized as follows: in Section 2, we introduce a non-negative
linear dependence structure with a stochastic component of the claim cause intensities between risk
factors and prove alternative representations of the claim numbers with the same joint distribution
allowing for the application of Panjer’s recursion. It should be pointed out that this structure also
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allows for negative dependence, see Example 1. In addition, many models comprise dependence
structures, but then the question arises how to calculate the distribution.

In Section 3, we consider a different dependence structure: we mix the default cause intensities
with common mixture distributions by letting a parameter of the distribution be random. Then, we
prove that an alternative representation with the same joint distribution exists that also allows for an
application of Panjer’s recursion.

Finally, in Section 4, we conclude with some interesting examples that show that the choice of
correlation and of the mixing distribution has an impact on the distribution of the total portfolio loss.

In the Appendix A, we recall some definitions and present a few useful results on compound
and mixture distributions and the corresponding probability-generating functions. These results are
important for the presentation of our results.

2. Construction of Dependent Claim Numbers by Linear Combinations

In this section, we present one of our major results. The starting point is the following. In an
extension of the CreditRisk+ model to be found in Gerhold et al. (2010), the authors consider a random
claim number N = N1 + · · ·+ Nm, where, for each i ∈ {1, . . . , m}, the claim number Ni has a Poisson
mixture distribution and the mixing random variable is a gamma-distributed claim cause intensity
Λi. They only stipulate that the claim numbers are conditionally independent given Λ1, . . . , Λm.
The conditional distribution of the random claim numbers given Λ1, . . . , Λm is assumed to satisfy

L(Ni |Λ1, . . . , Λm)
a.s.
= L(Ni |Λi)

a.s.
= Poisson(λiΛi), i ∈ {1, . . . , m},

where λi ≥ 0. The claim cause intensities are assumed to be independent.
In contrast, we develop a generalization of this model by admitting dependence between risk

group specific claim cause intensities. Dependent claim cause intensities provide the dependence
structure. We construct dependence structures by linear combinations of several non-negative risk
factors. These dependence structures are chosen stochastically allowing for risk groups. This means
that risk clusters (or lines of business) within one risk group default together, i.e., the default of one
risk cluster will immediately imply the default of all the other risks in this risk group. In this setting,
we can also relax the assumption of gamma-distributed risk factors and consider τ-tempered α-stable
distributions too.

In the course of our considerations, we need the following definition of a multivariate
Poisson distribution which is motivated in Lindskog and McNeil (2003) and can be also found in
(Sundt and Vernic 2009, Chp. 20.1) with a different notation.

Definition 1. Let m ∈ N, G ⊂ P({1, . . . , m}) a collection of subsets of {1, . . . , m} with ∅ /∈ G, and λ =

(λg)g∈G ∈ [0, ∞)G Poisson parameters. For each g ∈ G, define the vector cg = (c1,g, . . . , cm,g)> ∈ {0, 1}m by

ci,g = 1g(i). (5)

Let (Ng)g∈G be independent random variables with Ng ∼ Poisson(λg) for every g ∈ G. Then, the
distribution of the Nm

0 -valued random vector

N = (N1, . . . , Nm)
> = ∑

g∈G
cgNg (6)

is called the m-variate Poisson distribution, we use the notation MPoisson(G, λ, m).

This notation allows us to consider risk groups. In the credit risk interpretation, the obligors
in a non-empty group g ⊂ {1, . . . , m} default together with intensity λg, but independently of the
other groups. An additional form of dependence of the claim numbers can come from the linear and
stochastic dependence of the intensities, see Assumption 1 below.
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Remark 1. If G = {{1}, . . . , {m}} or, more generally, if λg = 0 for all g ∈ G with |G| ≥ 2, then N1, . . . , Nm

in Equation (6) are independent.

We consider individual claim sizes to take values in a vector space V. Throughout the paper, the
reader may assume that V equals R or a finite-dimensional Euclidean space and that V? = V. Figure 1
below is a numerical illustration with V = R2. However, unless specified otherwise, all theoretical
results hold for a separable real Banach space V with topological dual V∗.

Remark 2. Multi-variate claim sizes have numerous applications, let us mention some examples:

(a) A two-component model is of interest for budgeting purposes: The first component represents the loss
payments in the current budget period, the second one the actuarial reserves for later claim payments.

(b) In an insurance context, the components can represent different types of claim payments. For a portfolio
of health insurance contracts, this can be costs of medical treatments and allowances for missing income
of the insured. For a portfolio of personal liability or automobile collision insurances, these can be claims
for bodily injuries and property damages.

(c) For liquidity considerations, the components can refer to the time period when a claim occurs or a
counterparty defaults. Furthermore, the size of the loss given default can depend on the time of the default,
in particular when a loan or a mortgage is amortized during its life span and not at maturity.

(d) In the context of stochastic claims reserving (see Wüthrich and Merz (2008) for a textbook presentation),
the components can represent the development years. Here, the default probability (or intensity) refers
to the claims originating from the initial insured period; the claims may be reported at a later year and
payments may be spread out during the remaining years of the model.

Corresponding to Definition 1, we generalize the compound Poisson distribution (see
Definition A1(b)) to the m-variate case.

Definition 2. Suppose the random variable N has an m-variate Poisson distribution MPoisson(G, λ, m) with
representation (6). Let V be a vector space, and X = (Xg)g∈G, where each Xg is a probability distribution on
Vm such that Xg(U1,g × · · · ×Um,g) = 1 for all g ∈ G where

Ui,g =

{
{0} if i /∈ g,

V if i ∈ g.

Let (Xg,h)h∈N be independent i.i.d. sequences of Vm-valued random variables with Xg,1 ∼ Xg for all
g ∈ G independent of (Ng)g∈G. Then, the distribution of

S = (S1, . . . , Sm)
> = ∑

g∈G

Ng

∑
h=1

Xg,h (7)

is called compound m-variate Poisson distribution CMPoi(G, λ, m,X ).

Remark 3. If V = R and X = δcg , i.e., the distribution concentrated in cg given by Equation (5),
then CMPoi(G, λ, m,X ) = MPoisson(G, λ, m). The distribution Xg describes the random losses vector
of the obligors in g defaulting together.

As a direct consequence of the stochastic representation in Equation (7), the independence of
(∑Ng

h=1 Xg,h)g∈G and the characteristic function for compound Poisson distributions, we obtain the
following lemma.
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Lemma 1. The characteristic function of a random vector S with the compound m-variate Poisson distribution
CMPoi(G, λ, m,X ) is given by

ϕS(y) = E
[

ei〈y,S〉] = ∏
g∈G

exp
(
−λg(1− ϕXg(y))

)
, y ∈ (V∗)m. (8)

Remark 4. For notational convenience, we write ϕS for ϕL(S) and analogously for other distributions in
the following.

To state the additivity of compound m-variate Poisson distributions in Lemma 2 below,
the following notation is useful:

Definition 3. Let X1, . . . ,Xn be probability distributions on Vm. Then, their convex combination with relative
weights α1, . . . , αn ≥ 0 is a probability distribution on Vm defined in terms of α := α1 + · · ·+ αn by

Convex
(
(αi,Xi)i∈{1,...,n}

)
=

{
1
α ∑n

i=1 αiXi if α > 0,

δ0 if α = 0.

Remark 5. If α > 0 and if the joined support of the distributions X1, . . . ,Xn is a finite or countably infinite set
like Nd

0, then Convex
(
(αi,Xi)i∈{1,...,n}

)
can be computed in a numerically stable way by calculating, for each

atom in the support, the convex combination of the corresponding probabilities of the atom.

Lemma 2. Let m, n ∈ N and let Si ∼ CMPoi(Gi, λi, m,Xi) for i ∈ {1, . . . , n} be independent random
vectors with compound m-variate Poisson distributions according to Definition 2, where λi = (λg,i)g∈Gi

and Xi = (Xg,i)g∈Gi . Then, S1 + · · ·+ Sn ∼ CMPoi(G, λ, m,X ) with set of groups G = G1 ∪ · · · ∪ Gn,
intensities λ = (λg)g∈G and group claim size distributions X = (Xg)g∈G given by

λg = ∑
i∈Ig

λg,i and Xg = Convex
(
(λg,i,Xg,i)i∈Ig

)
, (9)

respectively, where Ig := {i ∈ {1, . . . , n} | g ∈ Gi} for g ∈ G.

Proof. Using the independence of S1, . . . , Sn and Lemma 1, it follows with some rearrangement that

ϕS(y) =
n

∏
i=1

ϕSi (y) = ∏
g∈G

exp
(
− ∑

i∈Ig

λg,i + ∑
i∈Ig

λg,i ϕXg,i(y)
)

, y ∈ (V∗)m.

Using Definition 3, Equations (9) and Remark A1, the result follows.

Remark 6. Note that Lemma 2 implies the infinite divisibility of the compound m-variate Poisson distribution.

We now provide the conditional characteristic function of the distribution of a compound
m-variate Poisson random vector that is mixed with a random vector of dependent intensities,
whose components naturally have to be non-negative. For simplicity, we first introduce an assumption
on the dependence scenario.

Assumption 1. Let J 6= ∅ be an arbitrary finite set, m ∈ N, and assume G ⊂ P({1, . . . , m}) with G 6= ∅
and ∅ /∈ G. Let Aj = (aj

g,l)g∈G,l∈{0,...,n} ∈ [0, ∞)G×{0,...,n} for j ∈ J and let J be a random variable with
values in J . Define the random matrix AJ = ∑j∈J 1{J=j}Aj. Let (R1, . . . , Rn) be non-negative random

variables and let R0 be a non-negative constant. Define Λg = ∑n
l=0 aJ

g,l Rl for g ∈ G.
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Remark 7. The random variable J can be interpreted as selecting a dependence scenario for claim cause
intensities (Λg)g∈G. Accordingly, the random variables R1, . . . , Rn can be interpreted as non-idiosyncratic risk
factors, the constant R0 as idiosyncratic “risk factor” or idiosyncratic component.

Lemma 3. Let Assumption 1 be satisfied, let λg,j ≥ 0 for g ∈ G and j ∈ J , and

L(S | J, R1, . . . , Rn)
a.s.
= CMPoi

(
G, (λg,JΛg)g∈G, m,X

)
. (10)

Then, the characteristic function of the conditional distribution of the random vector S given (J, R) = (J,
R1, . . . , Rn) satisfies

ϕS|(J,R)(y)
a.s.
= ∏

g∈G
exp

(
−λg,J(1− ϕXg(y))

n

∑
l=0

aJ
g,l Rl

)
, y ∈ (V?)m. (11)

Proof. As a consequence of Equation (10), the representation Λg = ∑n
l=0 aJ

g,l Rl for g ∈ G in
Assumption 1 and the characteristic function given in Lemma 1 the result follows.

Remark 8. To give a stochastic representation of the conditional distribution of S in Equation (10), consider
random variables (Ng)g∈G conditionally independent given J, R1, . . . , Rn such that

L(Ng | J, R1, . . . , Rn)
a.s.
= L(Ng | J, Λg)

a.s.
= Poisson

(
λg,JΛg

)
, (12)

where λg,j ≥ 0 for g ∈ G and j ∈ J . With sequences {Xg,h}h∈N for g ∈ G as in Definition 2, independent of
J, R1, . . . , Rn, define S by Equation (7).

Remark 9. In Lemma 3, the non-negative parameters λg,j with g ∈ G and j ∈ J might look like redundant
notation. However, when taking this framework as an extension of the CreditRisk+ model, these parameters are
useful to control the expected value E

[
Ng
]

for g ∈ G since in the CreditRisk+ we have E
[
Λg
]
= 1 that only

models the structure of dependence. The dependence of λg,j of j ∈ J is sustained to also have the possibility to
model characteristics of scenarios.

Remark 10. This model can be also considered over a time-horizon. Thus, it can be also used to model
the impacts of one risk gradually spreading onto other risks. Therefore, we need to introduce sequences of
(Xg,h,1, . . . , Xg,h,d)h∈N independent i.i.d. sequences of Vm-valued random variables with Xg,1,r ∼ Xg,r for all
g ∈ Gr with r ∈ {1, . . . , d} and Gr a risk group with respect to time. For each time step, we need to define
corresponding risk groups to model a gradual spread. These risk groups need to be constructed according
to potential distribution. A further result on such a multi-period model can be found in (Rudolph 2014,
Lemma 6.21).

2.1. Alternative Representation

If we allow for dependent claim cause intensities and risk groups, the independence between the
random sums Si = ∑Ni

h=1 Xi,h for i ∈ {1, . . . , m} is lost, hence a convolution is not applicable. While the
independence is also lost in our setting, it is nevertheless possible to find an adequate representation of
the claim numbers with the same distribution such that a variant of Panjer’s recursion can be applied,
as will be seen later. These claim cause intensities may be also considered as a multivariate gamma
distribution. There are several approaches to construct multivariate gamma distributions, and one
of them includes a linear dependence between the marginal distributions, cf. (Johnson et al. 2000,
Chp. 48.3.4).

Based on Lemma 3, we derive a theorem that provides us with a general structure of a
stochastically chosen non-negative linear dependence scenario:
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Theorem 1. Let the assumptions of Lemma 3 be satisfied. On the other hand, for every j ∈ J , consider n + 1
independent sequences of i.i.d. random variables {Bj,l,h}h∈N, independent of {J = j}, R1, . . . , Rn, such that,
for all g ∈ G,

P[Bj,l,1 = g] = pg,j,l (13)

where pg,j,l ∈ [0, 1] with ∑g∈G pg,j,l = 1 satisfies the condition

pg,j,l ∑
k∈G

λk,j aj
k,l = λg,j aj

g,l (14)

for each j ∈ J , g ∈ G, and l ∈ {0, . . . , n}. Let {Qj,l}l∈{0,...,n} be random variables conditionally independent
given {J = j}, R1, . . . , Rn which satisfy

L(Qj,l |1{J=j}, R1, . . . , Rn)
a.s.
= L(Qj,l |Rl)

a.s.
= Poisson

(
Rl ∑

g∈G
λg,j aj

g,l

)
. (15)

Assume further that (Qj,0, . . . , Qj,n) and {Bj,l,h}h∈N with l ∈ {0, . . . , n} are independent.
Let {Xl,g,h}h∈N be independent sequences for l ∈ {0, . . . , n} with identical distribution as Xg for g ∈ G
independent of all previous random variables. Finally, define the Vm-valued random vector M by

M = ∑
j∈J

1{J=j}
n

∑
l=0

Qj,l

∑
h=1

Xl,Bj,l,h ,h. (16)

Then, (M, R1, . . . , Rn) and (S, R1, . . . , Rn) have the same distribution.

Proof. For the proof, we apply Remark A1. By Lemma 3, the characteristic function of the distribution
of (S, R) = (S, R1, . . . , Rn) is given by Equation (11).

Now consider the characteristic function of the distribution of the random vector (M, R) =

(M1, . . . , Mm, R1, . . . , Rn). By partitioning J, we get for all y ∈ (V?)m, z ∈ Rn

ϕ(M,R)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,R〉 exp
(

i
n

∑
l=0

Qj,l

∑
h=1
〈y, Xl,Bj,l,h ,h〉

)]
.

Using the fact that the sequences {Xl,g,h}h∈N and {Bj,l,h}h∈N are i.i.d. and for l ∈ {0, . . . , n}
independent of {J = j}, R1, . . . , Rn and (Qj,0, . . . , Qj,n) for each j ∈ J and that {Bj,l,h}h∈N has the
distribution given in Equation (13) and thus applying the law of total probability, we observe that

ϕ(M,R)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,R〉
n

∏
l=0

(
∑

g∈G
pg,j,l ϕXg(y)

)Qj,l
]

.

Using the conditional independence of the random variables Qj,0, . . . , Qj,n given {J = j}, R1, . . . ,
Rn for j ∈ J and Equation (15),

ϕ(M,R)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,R〉
n

∏
l=0

E
[(

∑
g∈G

pg,j,l ϕXg(y)
)Qj,l

∣∣∣∣Rl

]]

= ∑
j∈J

E
[

1{J=j} ei〈z,R〉
n

∏
l=0

exp
(
−
(

Rl ∑
g∈G

λg,j aj
g,l

)(
1− ∑

g∈G
pg,j,l ϕXg(y)

))]
.
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Noting Equation (14) and the distributive law

Rl ∑
g∈G

λg,j aj
g,l ∗ ∑

k∈G
pk,j,l ϕXg(y) = ∑

k∈G

(
Rl ∑

g∈G
λg,j aj

g,l

)
pk,j,l ϕXg(y)

yields

ϕ(M,R)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,R〉
n

∏
l=0

exp
(
−Rl ∑

g∈G
λg,j aj

g,l
(
1− ϕXg(y)

))]
,

and rearranging yields Equation (11), which completes the proof.

Remark 11. The random sums Mi for i ∈ {1, . . . , m} do not in general have a counting distribution in a
Panjer(a, b, k) class because the distributions of the random variables Qj,l for j ∈ J and l ∈ {0, . . . , n} are not
generally in a Panjer(a, b, k) class.

Remark 12. In the above theorem, the case ∑g∈G λg,ja
j
g,l = 0 for a j ∈ J and an l ∈ {0, . . . , n} has not been

considered separately. If such a sum is zero, then it follows that L(Qj,l |Rl)
a.s.
= Poisson(0) = δ0. Hence, the

corresponding term in the sum (16) can be omitted. Thus, the distribution of Bj,l,1 may be chosen arbitrarily.

Remark 13. Of course, there are also other methods to construct dependence between claim cause intensities:
Luo and Shevchenko (2010) propose in a bivariate set-up to model the dependence by a t-copula. They further
use simulation and calibration methods. However, in such a case, recursion methods do not seem to be possible.
In contrast, this is possible with our approach.

Remark 14. Using this random and non-negative linear dependence and the concept of risk groups, we are able
to compute the expectations and covariances for the claim cause intensities and hence claim numbers. Recall that
Λg = ∑n

l=0 aJ
g,l Rl for g ∈ G. Let J and (R1, . . . , Rn) be independent. We observe for g, k ∈ G

E
[
Λg | J

]
=

n

∑
l=0

aJ
g,l E[Rl ]

and, if the risk factors R1, . . . , Rn are in L2 and uncorrelated,

cov
(
Λg, Λk|J

)
=

n

∑
l,p=1

aJ
g,l aJ

k,p cov
(

Rl , Rp
)
=

n

∑
l=1

aJ
g,la

J
k,l Var(Rl) .

Thus, we compute the covariance between Λg and Λk for g, k ∈ G

cov
(
Λg, Λk

)
= E

[
cov
(
Λg, Λk|J

) ]
+ cov

(
E
[
Λg | J

]
, E[Λk | J ]

)
=

n

∑
l=1

E
[
aJ

g,l aJ
k,l
]

Var(Rl) +
n

∑
l,p=0

cov
(
aJ

g,l , aJ
k,p
)
E[Rl ] E

[
Rp
]

.
(17)

By the Poisson mixture distribution of the claim numbers (Ng)g∈G given in Equation (12), the expectation
of Ng for g ∈ G is

E
[
Ng
]
= E

[
E[Ng | J, Λg]

]
= E

[
λg,JΛg

]
=

n

∑
l=0

E
[
λg,J aJ

g,l
]
E[Rl ] .
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For Λg in L2, the variance of Ng for g ∈ G is given by

Var
(

Ng
)
= E

[
Var
(

Ng | J, Λg
)]

+ Var
(
E[Ng | J, Λg]

)
= E

[
λg,JΛg

]
+ Var

(
λg,JΛg

)
,

(18)

and the covariance between Ng and Nk for g, k ∈ G with g 6= k is

cov
(

Ng, Nk
)
= E

[
cov
(

Ng, Nk | J, R1, . . . , Rn
) ]

+ cov
(
E[Ng | J, Λg], E[Nk | J, Λg]

)
= cov

(
λg,JΛg, λk,JΛk

)
(19)

due to the conditional independence of the (Ng)g∈G given J, R1, . . . , Rn and the conditional distribution of
(Ng)g∈G.

It might not be obvious from this remark how this construction may also provide negative
dependence. This is different from other dependence modelling, since it usually only comprises
positive dependence. We give the following example (see also Section 4.1 below).

Example 1. Let Assumption 1 be satisfied and assume G = {{1}, {2}}. Let R1 and R2 be two non-negative
and non-degenerate risk factors, possibly dependent with unbounded support. Then, let N = 2 and J = {0, 1}
and λg,j ≥ 0 for g = 1, 2 and j = 0, 1. Consider a J -valued random variable J independent of (R1, R2) and

Aj =

(
0 j 0
0 0 1− j

)
for j = 0, 1.

Then, the claim cause intensities are given by Λ1 = JR1 and Λ2 = (1− J)R2. Thus,

cov(Λ1, Λ2) = E[JR1(1− J)R2] − E[JR1] E[(1− J)R2]

= − E[R1] P[J = 1] E[R2] P[J = 0]

because J(1− J) = 0 and J and (R1, R2) are independent. Therefore, with this antithetic choice, we obtain
negative correlation between the claim cause intensities since the expected values are positive. Let {Xl,g,h}h∈N
with g, l = 1, 2 be independent of Qj,l and {Bj,l,h}h∈N with Xl,g,h = (X1,l,g,h, X2,l,g,h). Consequently,
the equivalent representations are given by Equation (16) with Bj,l,h = (B1,j,l,h, B2,j,l,h)

M1 = 1{J=1}

Q1,1

∑
h=1

X1,1,B1,1,1,h ,h and M2 = 1{J=0}

Q0,2

∑
h=1

X2,2,B2,0,2,h ,h

because Poisson(0) and Ber(0) are δ0-degenerate distributions. Hence, the total loss is Ŝ = M1 + M2. If we
assume Rl to be gamma-distributed for l = 1, 2, then we can apply a simplified version of Calculation Method 1
given below.

If we choose Λ1 = JR1/E[J] and Λ2 = (1− J)R2/E[1− J] for gamma-distributed R1 and R2, it is
possible to obtain every value in [−1, 0) as correlation by an appropriate choice of the corresponding variances,
see also (Schmock 2020, Example 6.38, Version March 25th 2020). In order to obtain perfect negative correlation,
the risk factors need to have variance equal to zero, i.e., they have to be degenerate.

2.2. Evaluation of the Loss Distribution

In this section, we give an algorithm that shows how Panjer’s recursion is applicable in our model
with the dependence structure given in this section. It might be suggested that the calculation of the
distribution of the total loss Ŝ = S1 + · · ·+ Sm arising from S = (S1, . . . , Sm)> given in Equation (7)
with conditional representation specified in Lemma 3 requires at least n convolutions (one for each risk
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factor). However, our algorithm, based on the ideas of (Gerhold et al. 2010, sct. 5.5), circumvents these
convolutions by an iterated application of Panjer’s recursion (cf. Equations (23) and (26) below) and a
convex combination (cf. Equation (24) below). In applications of the algorithm to gamma-distributed
risk factors, we use the well-known fact that a negative binomial distribution is a compound Poisson
distribution where the severity distribution is a logarithmic distribution, cf. also Ammeter (1948).
The convex combination uses the fact that the convolution of compound Poisson distributions is again
a compound Poisson distribution.

We now adapt the algorithm in (Gerhold et al. 2010, sct. 5.5) to the evaluation of the total loss
Ŝ = S1 + · · ·+ Sm in Equation (7).

Calculation Method 1. Consider the setting of Theorem 1 and assume in addition that R1, . . . , Rn are
independent and have infinitely divisible distributions. Then, Qj,0, . . . , Qj,n are independent for each j ∈ J .
An application of Theorem 1 yields for the total loss Ŝ given as the sum of the m components in Equation (7):

Ŝ = S1 + · · ·+ Sm =
m

∑
i=1

∑
g∈G

Ng

∑
h=1

Xi,g,h
d
= ∑

j∈J
1{J=j}

n

∑
l=0

Qj,l

∑
h=1

m

∑
i=1

Xi,l,Bj,l,h ,h, (20)

where {(X1,g,h, . . . , Xm,g,h)}h∈N with g ∈ G as well as {(X1,l,g,h, . . . , Xm,l,g,h)}h∈N with g ∈ G and l ∈
{0, . . . , n} are independent sequences of i.i.d. Vm-valued random vectors with corresponding distribution Xg.
To calculate the distribution of the right-hand side of Equation (20), we start with the inner sum and define the
distributions of the group losses by

X s
g = L

( m

∑
i=1

Xi,g

)
, g ∈ G, (21)

where (X1,g, . . . , Xm,g) ∼ Xg. If the components of (X1,g, . . . , Xm,g) are independent, then X s
g can be computed

by convolution. For certain classes of multivariate distributions (like the multivariate logarithmic or negative
multinomial distribution), the distribution of the sum of its components is known in closed form. In any case, we
assume that X s

g is known or can be computed for every g ∈ G. Since the risk group g in the inner sum of the
right-hand side of Equation (20) is selected with probability pg,j,l determined by Equation (14), we obtain the
discrete mixture distribution

Xj,l := L
( m

∑
i=1

Xi,l,Bj,l,1,1

)
= Convex

(
(λg,ja

j
g,l ,X

s
g )g∈G

)
(22)

for each j ∈ J and l ∈ {0, . . . , n}, see Definition 3.
By (Sundt and Vernic 2009, Corollary 4.1) and the infinite divisibility of the distributions of R1, . . . , Rn,

the random variable Qj,l with conditional distribution specified in Equation (15) has a compound Poisson
distribution, cf. Definition A1(b), hence there exist a Poisson intensity νj,l ≥ 0 and a distribution Kj,l on N
such that Qj,l ∼ CPoi(νj,l ,Kj,l) for every j ∈ J and l ∈ {1, . . . , n}; see Section 2.3 below for more details and
examples. Define the compound distribution

X c
j,l = Compound(Kj,l ,Xj,l), j ∈ J , l ∈ {1, . . . , n}, (23)

see Definition A1(a). If Kj,l is a Panjer(a, b, k) distribution and Xj,l is concentrated on Nd
0, then X c

j,k can
be evaluated with Panjer’s recursion, which is numerically stable in many cases, cf. (Gerhold et al. 2010,
Theorem 4.5). For each j ∈ J , define the discrete mixture distribution

Xj = Convex
(
(R0λg,ja

j
g,0,X s

g )g∈G, (νj,l ,X c
j,l)l∈{1,...,n}

)
, (24)
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and the Poisson intensity

µj = R0 ∑
g∈G

λg,ja
j
g,0 +

n

∑
l=1

νj,l . (25)

Then,

X c
j := L

( n

∑
l=0

Qj,l

∑
h=1

m

∑
i=1

Xi,l,Bj,l,h ,h

)
= CPoi

(
µj,Xj

)
, j ∈ J . (26)

The final step is to calculate the discrete mixture distribution

L(Ŝ) = Convex
(
(P[J = j],X c

j )j∈J
)
. (27)

2.3. Examples for Distributions of the Risk Factors

2.3.1. Gamma Distribution

Remark 15. As a specific case in Calculation Method 1, fix a risk factor l ∈ {1, . . . , n} and assume that Rl
has a gamma distribution, so Rl ∼ Gamma(αl , βl) with shape parameter αl > 0 and rate parameter βl > 0.
Define, for j ∈ J ,

qj,l = ∑
g∈G

qg,j,l with qg,j,l =
λg,j aj

g,l

βl + ∑k∈G λk,j aj
k,l

. (28)

By Lemma A1 (with m = 1 and T ≡ 1 in that framework) and comparison of Equations (15) and (A3),
it follows that L(Qj,l) = NegBin(αl , qj,l) for each j ∈ J . According to Lemma A2 (with m = 1 and T ≡ 1 in
that framework, see also Definitions A1–A3), we have the representation

NegBin(αl , qj,l) = CPoi
(
−αl ln(1− qj,l), Log(qj,l)

)
. (29)

Hence, νj,l = −αl ln(1− qj,l) in Equations (24) and (25) and Kj,l = Log(qj,l) in Equation (23), which
for qj,l > 0 is the Panjer(qj,l ,−qj,l , 1)-distribution and makes Panjer’s algorithm applicable for the calculation
of X c

j,l .

2.3.2. Generalized Tempered Stable Distribution

We consider another and more general case as usual in the CreditRisk+ model that has already
been considered in Gerhold et al. (2010). We allow one or several of the risk factors to have a τ-tempered
α-stable distribution instead of a gamma distribution. This is a very flexible family of distributions
and also allows for modelling of heavy tails. Stable distributions are denoted by Sα(σ, β, µ) with
α ∈ (0, 2], scale parameter σ > 0, skewness parameter β ∈ [−1, 1] and shift parameter µ ∈ R, cf. e.g.,
(Samorodnitsky and Taqqu 1994, p. 9). If α ∈ (0, 1), β = 1, and µ = 0, then the support of Sα(σ, β, µ) is
on the non-negative real line (cf. (Samorodnitsky and Taqqu 1994, p. 15)). We can generalize such a
distribution by a change of measure of Y ∼ Sα(σ, 1, 0) as in (Gerhold et al. 2010, sct. 5.3) by introducing
additionally a tempering parameter τ ≥ 0 and r ∈ N0 and to obtain the distribution function

Fα,σ,τ,r(y) =
E
[
Y−r e−τY 1{Y≤y}

]
E[Y−r e−τY]

, y ∈ R. (30)

In case r = 0, this is a τ-tempered α-stable distribution (cf. (Rosiński 2007, Theorem 4.1)).
In this context, it is interesting to introduce the notation of the extended negative binomial

distribution, cf. (Hess et al. 2002, p. 287):
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Definition 4. Let k ∈ N, 0 < p ≤ 1, and α ∈ (−k,−k + 1). A random variable N has the extended negative
binomial distribution ExtNegBin(α, k, p) if P[N = n] = 0 for n ∈ {0, 1, . . . , k− 1} and

P[N = n] =
(n+α−1

n )pn

(1− p)−α −∑k−1
j=0 (j+α−1

j )pj
for n ∈ N with n ≥ k,

where the generalized binomial coefficient is given by(
n + α− 1

n

)
=

n

∏
l=1

α + l − 1
l

= (−1)n
(
−α

n

)
.

The probability-generating function of this distribution for the important case k = 1 is given by

GN(z) =
1− (1− pz)−α

1− (1− p)−α
for z ∈ C with |z| ≤ 1

p
,

cf. e.g., (Gerhold et al. 2010, eq. (2.3)) with an adjustment to our notation.

Remark 16. As another case in Calculation Method 1, fix a risk factor l ∈ {1, . . . , n} and assume that Rl
has a τ-tempered α-stable distribution, i.e., Rl ∼ Fαl ,σl ,τl ,0. Then, the distribution of the random variables
Qj,l for j ∈ J in Equation (15) can be written as a compound Poisson distribution and the application of
(Gerhold et al. 2010, Lemma 5.10) provides a means of converting this distribution into a random sum with
distributions in a Panjer(a, b, k) class, namely

Qj,l ∼ CPoi(δj,l ,Kj,l), j ∈ J

where

Kj,l =

{
ExtNegBin(−αl , 1, qj,l) if qj,l > 0,

δ0 if qj,l = 0,

with parameters

δj,l = γαl ,σl

((
τl + ∑

g∈G
λg,j aj

g,l

)αl

− τ
αl
l

)
, γαl ,σl =

σ
αl
l

cos(αlπ/2)
(31)

and

qj,l =


∑g∈G λg,j aj

g,l

τl+∑g∈G λg,j aj
g,l

if τl + ∑g∈G λg,j aj
g,l > 0,

0 otherwise.
(32)

Then, Panjer’s recursion can be applied using (Gerhold et al. 2010, Theorem 4.5 and Algorithm 5.12) to
this random sum. Altogether, Calculation Method 1 can be applied.

Remark 17. In case the distribution of the risk factors is given in Equation (30) with r ∈ N, it is possible to
apply (Gerhold et al. 2010, Algorithm 5.18).

3. Dependent Claim Numbers by Continuous Mixtures

In Section 2, we constructed dependence between the group-specific claim cause intensities
(Λg)g∈G by random non-negative linear combinations of the risk factors R1, . . . , Rn and by joint claims
within risk groups. Now, we construct dependence between the risk factors by continuous mixture
distributions. By choosing |J | = 1 and A the identity matrix, we can have this type of dependence
directly. We turn one parameter of the distributions of the risk factors into a random variable, and, if
it appears in several risk factors, we obtain dependence. As in Section 2, the independence between
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the components of the sum S given in Equation (7) is lost and there is also a need for an alternative
to convolutions. Hence, we establish an alternative representation of the claim numbers with equal
joint distribution if the claim cause intensities have either a gamma distribution or a τ-tempered
α-stable distribution.

3.1. Continuous Compounding

In this subsection, we mix the risk factors R1, . . . , Rn with random variables T1, . . . , Tn that do not
themselves have a mixture distribution. We consider a rather general result on mixture distributions to
construct dependent claim numbers. As in the previous section, we let the group-specific claim cause
intensities be random and non-negatively linearly dependent.

Theorem 2. Let Assumption 1 be satisfied. Let T1, . . . , Tn be strictly positive random variables. Let αl , βl > 0
for all l ∈ {1, . . . , n} and λg,j ≥ 0 for all g ∈ G and j ∈ J . Then, we define two Vm-valued random vectors S
and M as follows:

(a) Let R1, . . . , Rn be random variables with conditional gamma distributions, conditionally independent
given J, T1, . . . , Tn and let their shape parameters be randomized, i.e., for each l ∈ {1, . . . , n}

L(Rl | J, T1, . . . , Tn)
a.s.
= L(Rl |Tl)

a.s.
= Gamma(αlTl , βl). (33)

Then, let
L(S | J, R1, . . . , Rn, T1, . . . , Tn)

a.s.
= CMPoi

(
G, (λg,JΛg)g∈G, m,X

)
.

(b) For each j ∈ J , consider random variables Pj,1, . . . , Pj,n, which are conditionally independent given
{J = j}, T1, . . . , Tn, such that for each l ∈ {1, . . . , n}

L
(

Pj,l
∣∣ 1{J=j}, T1, . . . , Tn

) a.s.
= L(Pj,l |Tl)

a.s.
= Poisson

(
−αl ln(1− qj,l)Tl

)
(34)

with qj,l given by Equation (28) and a random variable Pj,0 independent of {J = j}, T1, . . . , Tn,
Pj,1, . . . , Pj,n such that

L(Pj,0) = Poisson
(

R0 ∑
g∈G

λg,j aj
g,0

)
. (35)

Let {Bj,l,h,k}h,k∈N with l ∈ {0, . . . , n} be independent double-indexed sequences independent of {J =
j}, Pj,0, . . . , Pj,n, T1, . . . , Tn, consisting of i.i.d. random vectors such that for l ∈ {0, . . . , n}

P[Bj,l,1,1 = g] = pg,j,l for g ∈ G, (36)

with pg,j,l as in Theorem 1. Let further {Yj,l,h}h∈N with l ∈ {0, . . . , n} be independent sequences,
independent of {J = j}, T1, . . . , Tn, Pj,0, . . . , Pj,n, consisting of i.i.d. random variables such that

L(Yj,l,1) =

{
Log(qj,l) for l ∈ {1, . . . , n},
δ1 for l = 0,

(37)

cf. Definition A3. Let {Xl,g,h,k}h,k∈N be independent double-indexed sequences for l ∈ {0, . . . , n} with
identical distribution given by Xg for g ∈ G independent of all previous random variables. Define the
random vector M by

M = ∑
j∈J

1{J=j}
n

∑
l=0

Pj,l

∑
h=1

Yj,l,h

∑
k=1

Xl,Bj,l,h,k ,h,k. (38)

Then, (M, T1, . . . , Tn) and (S, T1, . . . , Tn) have the same distribution.



Risks 2020, 8, 43 14 of 31

Remark 18. We consider the same stochastic representation as in Remark 8 except for the conditional
distribution of (Ng)g∈G, which is given by

L(Ng | J, R1, . . . , Rn, T1, . . . , Tn)
a.s.
= L(Ng | J, Λg)

a.s.
= Poisson(λg,JΛg) (39)

with (Λg)g∈G as in Assumption 1.

Remark 19. In setting (b) of Theorem 2, note that by Lemma A2 with m = 1 and T ≡ 1 in that framework

L
( Pj,l

∑
h=1

Yj,l,h

∣∣∣∣ Tl

)
a.s.
= NegBin

(
αlTl , qj,l

)
, j ∈ J , l ∈ {1, . . . , n},

but the representation (38) is more convenient for Algorithm 2 below.

Proof. We apply Remark A1. Fix y ∈ (V?)m, z ∈ Rn. Let T = (T1, . . . , Tn). First, we compute the
characteristic function at (y, z) of the distribution of (S, T). By an analogous argumentation as in the
proof of Lemma 3, we obtain

ϕ(S,T)(y, z) = E
[

ei〈z,T〉 ∏
g∈G

exp
(
−λg,J(1− ϕXg(y))

n

∑
l=0

Rl aJ
g,l

)]
.

Conditioning on J, T1, . . . , Tn, using the conditional independence of R1, . . . , Rn given J, T1, . . . , Tn

and using Equation (33) and the Laplace transform of the gamma distribution yields

ϕ(S,T)(y, z) = E
[

ei〈z,T〉 exp
(
−R0 ∑

g∈G
λg,J aJ

g,0 (1− ϕXg(y))
)

×
n

∏
l=1

(
βl

βl + ∑g∈G λg,J aJ
g,l(1− ϕXg(y))

)αl Tl
]

.
(40)

Now, consider the characteristic function at (y, z) of the distribution of the random vector
(M, T) = (M1, . . . , Mm, T1, . . . , Tn). Using the definition of M and partitioning J, we obtain

ϕ(M,T)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,T〉 exp
(

i
n

∑
l=0

Pj,l

∑
h=1

Yj,l,h

∑
k=1
〈y, Xl,Bj,l,h,k ,h,k〉

)]
.

For each j ∈ J , using the fact that {Bj,l,h,k}h,k∈N, {Yj,l,h}h∈N, and {Xl,g,h,k}h,k∈N for l ∈ {0, . . . , n}
are i.i.d., independent, and independent of {J = j}, Pj,0, . . . , Pj,n, T1, . . . , Tn and that {Bj,l,h,k}h,k∈N and
{Xl,g,h,k}h,k∈N are independent of {Yj,l,h}h∈N gives

ϕ(M,T)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,T〉
n

∏
l=0

(
E
[(
E
[
exp

(
i〈y, Xl,Bj,l,1,1,1,1〉

)])Yj,l,1
])Pj,l

]
.

Conditioning on {J = j}, T1, . . . , Tn, using the conditional independence of Pj,1, . . . , Pj,n given
{J = j}, T1, . . . , Tn, the independence of Pj,0 of {J = j}, Pj,1, . . . , Pj,n, T1, . . . , Tn for each j ∈ J , and using
Equations (34) and (35) provides

ϕ(M,T)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,T〉 GPj,0(y)
n

∏
l=1

GPj,l (y)
]
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with

GPj,0(y) = exp
(
−R0

(
1− GYj,0,1(ϕXBj,0,1,1

(y))
)

∑
g∈G

λg,j aj
g,0

)
and for l ∈ {1, . . . , n}

GPj,l (y) = exp
(
αl ln(1− qj,l)Tl

(
1− GYj,l,1(ϕXBj,l,1,1

(y))
))

,

where GYj,l,1 is the probability-generating function of the distribution of Yj,l,1. By Equation (36) and the
law of total probability, we obtain for l ∈ {0, . . . , n}

ϕXBj,l,1,1
(y) = ∑

g∈G
pg,j,l ϕXg(y)

and by Equation (37) for l = 0

GPj,0(y) = exp
(
−R0

(
1− ∑

k∈G
pk,j,0 ϕXk (y)

)
∑

g∈G
λg,j aj

g,0

)
and for l ∈ {1, . . . , n}

GPj,l (y) = exp
(

αl ln(1− qj,l)Tl

(
1−

ln
(
1− qj,l ∑g∈G pg,j,l ϕXg(y)

)
ln(1− qj,l)

))
.

In case qj,l = 0 for some j, l with l ∈ {1, . . . , n}, it follows that ln(1− qj,l) = 0, and we have

exp
(
αl ln(1− qj,l)Tl

(
1− GYj,l,1(ϕXBj,l,1,1

(y))
))

= 1.

If qj,0 = 0, this implies ∑g∈G λg,j aj
g,0 = 0, and we have

exp
(
−R0

(
1− GYj,0,1(ϕXBj,0,1,1

(y))
)

∑
g∈G

λg,j aj
g,0

)
= 1.

If qj,l > 0 for l ∈ {1, . . . , n}, then a simplification yields

exp
(

αl ln(1− qj,l)Tl

(
1−

ln
(
1− qj,l ∑g∈G pg,j,l ϕXg(y)

)
ln(1− qj,l)

))
= exp

(
αlTl

(
ln(1− qj,l)− ln

(
1− ∑

g∈G
pg,j,l ϕXg(y)

)))

and if qj,0 > 0, we observe by Equation (36)

exp
(
−R0

(
1− ∑

k∈G
pk,j,0 ϕXk (y)

)
∑

g∈G
λg,j aj

g,0

)
= exp

(
−R0 ∑

g∈G
λg,j aj

g,0(1− ϕXg(y))
)

.

Altogether, we obtain

ϕ(M,T)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,T〉 exp
(
−R0 ∑

g∈G
λg,j aj

g,0(1− ϕXg(y))
)

×
n

∏
l=1

(
βl

βl + ∑g∈G λg,j aj
g,l(1− ϕXg(y))

)αl Tl
]

,

which completes the proof.



Risks 2020, 8, 43 16 of 31

Remark 20. If Tl for l ∈ {1, . . . , n} has a beta distribution, then the distribution of Pj,l for l ∈ {1, . . . , n} and
j ∈ J is a Poisson-beta distribution, also known as a general Waring distribution. (Hesselager 1996, Theorem 1,
Example 3) provides a recursive algorithm for a compound distribution with such a counting distribution.
Finally, an n-fold convolution becomes necessary. In this case, T1, . . . , Tn should be independent.

Now, we formulate a similar but different result to Theorem 2. Here, we consider τ-tempered
α-stable distributions as distributions for the claim cause intensities.

Lemma 4. Let Assumption 1 be satisfied. Let T1, . . . , Tn be non-negative random variables and T0 a
non-negative constant and σl > 0, τl ≥ 0 and αl ∈ (0, 1) for each l ∈ {1, . . . , n} and λg,j ≥ 0 for
each g ∈ G and j ∈ J . Then, we define the two Vm-valued random vectors S and M as follows:

(a) Let R?
0 be a non-negative constant and let R?

1 , . . . , R?
n be random variables with conditional τ-tempered

α-stable distributions, conditionally independent given J, T1, . . . , Tn and let their parameters be random,
i.e., for each l ∈ {1, . . . , n}

L(R?
l | J, T1, . . . , Tn)

a.s.
= L(R?

l |Tl)
a.s.
= Fαl ,σl ,τl Tl ,0. (41)

Let Rl = R?
l Tl for l ∈ {0, . . . , n}. Then, let

L(S | J, R?
1 , . . . , R?

n, T1, . . . , Tn)
a.s.
= CMPoi

(
G, (λg,JΛg)g∈G, m,X

)
(b) For each j ∈ J , consider random variables Pj,1, . . . , Pj,n which are conditionally independent given

{J = j}, T1, . . . , Tn such that for each l ∈ {1, . . . , n}

L(Pj,l |1{J=j}, T1, . . . , Tn)
a.s.
= L(Pj,l |Tl)

a.s.
= Poisson

(
δj,lT

αl
l
)
, (42)

where δj,l is given by Equation (31), and for each j ∈ J a random variable Pj,0, which is independent of
{J = j}, T1, . . . , Tn, Pj,1, . . . , Pj,n such that

L
(

Pj,0
)
= Poisson

(
R?

0 T0 ∑
g∈G

λg,j aj
g,0

)
. (43)

Let further {Yj,l,h}h∈N with l ∈ {0, . . . , n} be independent sequences independent of {J = j}, T1, . . . ,
Tn, Pj,0, . . . , Pj,n, consisting of i.i.d. random variables such that

L
(
Yj,l,1

)
=

{
ExtNegBin

(
−αl , 1, qj,l

)
if qj,l > 0,

δ0 if qj,l = 0,
(44)

for l ∈ {1, . . . , n} where qj,l is given by Equation (32), and let Yj,0,1 ∼ δ1. Let {Bj,l,h,k}h,k∈N with
l ∈ {0, . . . , n} be independent double-indexed sequences independent of {(Yj,0,h, . . . , Yj,n,h)}h∈N and
{J = j}, T1, . . . , Tn, Pj,0, . . . , Pj,n for j ∈ J , consisting of i.i.d. random variables such that

P[Bj,l,1,1 = g] = pg,j,l for g ∈ G, (45)

with pg,j,l ∈ [0, 1] and ∑g∈G pg,j,l = 1 satisfies pg,j,l ∑k∈G λk,j aj
k,l = λg,j aj

g,l . Let {Xl,g,h,k}h,k∈N be
independent double-indexed sequences for l ∈ {0, . . . , n} with identical distribution given by Xg for
g ∈ G independent of all previous random variables. Define the random vector M by

M = ∑
j∈J

1{J=j}
n

∑
l=0

Pj,l

∑
h=1

Yj,l,h

∑
k=1

Xl,Bj,l,h,k ,h,k.

Then, (M, T1, . . . , Tn) and (S, T1, . . . , Tn) have the same distribution.
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Remark 21. We consider the same stochastic representation as in Remark 8 except for the conditional
distribution of (Ng)g∈G, which is given by

L(Ng | J, R?
1 , . . . , R?

n, T1, . . . , Tn)
a.s.
= L(Ng | J, Λg)

a.s.
= Poisson(λg,JΛg) (46)

with (Λg)g∈G as in Assumption 1.

Proof. We apply Remark A1. Fix y ∈ (V?)m, z ∈ Rn. Let T = (T1, . . . , Tn). First, we compute the
characteristic function at (y, z) of the distribution of (S, T). By an analogous argumentation as in the
proof of Lemma 3, we obtain

ϕ(S,T)(y, z) = E
[

ei〈z,T〉 ∏
g∈G

exp
(
−λg,J (1− ϕXg(y))

n

∑
l=0

R?
l Tla

J
g,l

)]
.

Conditioning on J, T1, . . . , Tn, using the conditional independence of R?
1 , . . . , R?

n given J, T1, . . . , Tn

and Equation (41) (and hence (Gerhold et al. 2010, eq. (5.25))) provides

ϕ(S,T)(y, z) = E
[

ei〈z,T〉 exp
(
−R?

0 T0 ∑
g∈G

λg,J aJ
g,0(1− ϕXg(y))

)

×
n

∏
l=1

exp
(
−γαl ,σl

(
Tαl

l

(
τl + ∑

g∈G
λg,J aJ

g,l(1− ϕXg(y))
)αl

− (Tlτl)
αl

))]
.

Now consider the characteristic function at (y, z) of the distribution of the random vector (M, T) =
(M1, . . . , Mm, T1, . . . , Tn). Using the definition of M and partitioning J yields

ϕ(M,T)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,T〉 exp
(

i
n

∑
l=0

Pj,l

∑
h=1

Yj,l,h

∑
k=1
〈y, Xl,Bj,l,h,k ,h,k〉

)]
.

For each j ∈ J , using that {Yj,l,h}h∈N, {Bj,l,h,k}h,k∈N, and {Xl,g,h,k}h,k∈N are i.i.d. and independent
of the random variables (Pj,0, . . . , Pj,n) and l ∈ {0, . . . , n} and that {Yj,l,h}h∈N are independent of
{Bj,l,h,k}h,k∈N and {Xl,g,h,k}h,k∈N, we observe

ϕ(M,T)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,T〉
n

∏
l=0

(
E
[(
E
[
exp

(
i〈y, Xl,Bj,l,1,1,1,1〉

)])Yj,l,1
])Pj,l

]
.

By Equation (45) and due to the law of total probability, we obtain

ϕ(M,T)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,T〉
n

∏
l=0

(
E
[(

∑
g∈G

pg,j,l ϕXg(y)
)Yj,l,1

])Pj,l
]

.

Conditioning on {J = j}, T1, . . . , Tn, using the conditional independence of the random variables
Pj,1, . . . , Pj,n given {J = j}, T1, . . . , Tn and the independence of Pj,0 of {J = j}, T1, . . . , Tn for each j ∈ J
and using Equations (42) and (43) yields

ϕ(M,T)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,T〉 GPj,0(y)
n

∏
l=1

GPj,l (y)
]

with

GPj,0(y) = exp
(
−R?

0 T0 ∑
g∈G

λg,j aj
g,0 (1− ϕXg(y))

)
,
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where we have used already Equation (44) for l = 0 and simplified the term, and for l ∈ {1, . . . , n}

GPj,l (y) = exp
(
−δj,lT

αl
l

(
1− GYj,l,1

(
∑

g∈G
pg,j,l ϕXg(y)

)))
,

where GYj,l,1 denotes the probability-generating function of the distribution of Yj,l,1. If qj,l = 0 for some
j, l, then, by Equation (44), GYj,l,1(z) = 1 and hence

exp
(
−δj,lT

αl
l

(
1− GYj,l,1

(
∑

g∈G
pg,j,l ϕXg(y)

)))
= 1.

If qj,l > 0, by Equation (44) and qj,l ∑g∈G pg,j,l ϕXg(y) =
∑g∈G λg,j aj

g,l ϕXg (y)

τl+∑g∈G λg,j aj
g,l

, we have

exp
(
−δj,lT

αl
l

(1−
(

τl

τl+∑g∈G λg,j aj
g,l

)αl
− 1 +

(
1−

∑g∈G λg,j aj
g,l ϕXg (y)

τl+∑g∈G λg,j aj
g,l

)αl

1−
(

τl

τl+∑g∈G λg,j aj
g,l

)αl

))

= exp
(
−γαl ,σl T

αl
l

((
τl + ∑

g∈G
λg,j aj

g,l

)αl

− τ
αl
l

)

×
−τ

αl
l + (τl + ∑g∈G λg,j aj

g,l(1− ϕXg(y)))
αl

(τl + ∑g∈G λg,j aj
g,l)

αl − τ
αl
l

)
,

hence, since qj,l = 0 implies ∑g∈G λg,j aj
g,l = 0,

ϕ(M,T)(y, z) = ∑
j∈J

E
[

1{J=j} ei〈z,T〉 exp
(
−R?

0 T0 ∑
g∈G

λg,j aj
g,0 (1− ϕXg(y))

)

×
n

∏
l=0

exp
(
−γαl ,σl T

αl
l

((
τl + ∑

g∈G
λg,j aj

g,l(1− ϕXg(y))
)αl

− τ
αl
l

))]
.

Unfortunately, due to the parameter αl ∈ (0, 1) for l ∈ {1, . . . , n}, it is not possible to
choose, as before, the random variables Tl with a gamma distribution or a τ-tempered α-stable
distribution. By (Steutel and van Harn 2004, Example VI.12.8), Tαl

l is not even infinitely divisible
if Tl is gamma-distributed. It is only known that powers of τ-tempered α-stable distributed
random variables Tαl

l (then the distribution of Tl is by (Steutel and van Harn 2004, Proposition VI.5.7)
and (Steutel and van Harn 2004, Proposition VI.5.26) a generalized gamma convolution)
are infinitely divisible if αl > 1, cf. (Steutel and van Harn 2004, Theorem VI.5.18) and
(Steutel and van Harn 2004, Proposition VI.5.19(i)). If αl ∈ (0, 1), then Tαl

l is only infinitely divisible if
the corresponding characteristic function has no zeros (cf. (Lukacs 1970, Theorem 8.4.1)). Hence, we
need to assume that Tαl

l has a gamma distribution or a τ-tempered α-stable distribution.

3.2. Evaluation of the Loss Distribution

In a constellation such as in Theorem 2, the evaluation of the distribution of the random sum S is
an adaptation of the algorithm in (Gerhold et al. 2010, sct. 5.5) under certain assumptions and slighty
different from the other dependence scenario.

Calculation Method 2. Consider the setting of Theorem 2. In addition, assume that the random variables
T1, . . . , Tn are independent. Furthermore, similar to the approach of (Giese 2004, sct. 10.2), assume that
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Tl ∼ Gamma(σl , νl) with shape parameter σl > 0 and rate parameter νl > 0 for every l ∈ {1, . . . , n}.
We apply Theorem 2 and obtain for the total loss Ŝ = S1 + · · ·+ Sm given as in Equation (7):

Ŝ =
m

∑
i=1

∑
g∈G

Ng

∑
h=1

Xi,g,h
d
= ∑

j∈J
1{J=j}

n

∑
l=0

Pj,l

∑
h=1

Yj,l,h

∑
k=1

m

∑
i=1

Xi,l,Bj,l,h,k ,h,k, (47)

where {(X1,g,h, . . . , Xm,g,h)}h∈N with g ∈ G and {(X1,l,g,h,k, . . . , Xm,l,g,h,k)}h,k∈N with g ∈ G and i ∈
{1, . . . , m} are independent sequences of i.i.d. Vm-valued random vectors with corresponding distribution Xg.
To calculate the distribution of the right-hand side of Equation (47), first define the group loss distribution X s

g by
Equation (21) and then the discrete mixture distributions Xj,l by the right-hand side of Equation (22) for each
j ∈ J and l ∈ {0, . . . , n}.

In contrast to Calculation Method 1, the next step is to compute, for each j ∈ J , the compound logarithmic
distribution

X cl
j,l = L

( Yj,l,1

∑
k=1

m

∑
i=1

Xi,l,Bj,l,1,k ,1,k

)
=

{
CLog(qj,l ,Xj,l) for l ∈ {1, . . . , n},
Xj,l for l = 0.

If the support of Xj,l is contained in Nd
0, then Panjer’s algorithm is applicable and numerically stable

because Log(qj,l) = Panjer(qj,l ,−qj,l , 1) for the case qj,l > 0.
Let

sj,l =
−αl ln(1− qj,l)

νl − αl ln(1− qj,l)
, j ∈ J , l ∈ {1, . . . , n}.

Since T1, . . . , Tn have gamma distributions, it follows from Lemma A1 (with m = 1 and T ≡ 1 in that
framework) that

L(Pj,l) = NegBin(σl , sj,l), j ∈ J , l ∈ {1, . . . , n}.

According to Lemma A2 (with m = 1 and T ≡ 1 in that framework), cf. Equation (29),

Pj,l ∼ CPoi(νj,l ,Kj,l) with νj,l = −σl ln(1− sj,l) and Kj,l = Log(sj,l).

Hence, we can proceed as in Calculation Method 1, where we have to replace Equation (23) by

X c
j,l = CLog(sj,l ,X cl

j,l), j ∈ J , l ∈ {1, . . . , n},

and then use Equations (24)–(27).

Remark 22. It should be pointed out that the random variables T1, . . . , Tn need not be independent. This is
crucial for the construction of dependence. For instance, we could let T̃1, . . . , T̃p be independent random
variables and T̃0 a non-negative constant. Define another random matrix BK = ∑k∈K 1{K=k}Bk with K 6= ∅
an arbitrary finite set and Bk ∈ [0, ∞)n×(p+1) for k ∈ K and K a K-valued random variable. Then, let
(T1, . . . , Tn)> = BK(T̃0, . . . , T̃p)>. Then, an application of Theorem 1 should be inserted because Pj,0, . . . , Pj,n
are not independent.

Remark 23. The algorithms do not only work this way if R1, . . . , Rn and T1, . . . , Tn, respectively, are
gamma-distributed. They also work if R1, . . . , Rn or T1, . . . , Tn have a τ-tempered α-stable distribution.
By an application of (Gerhold et al. 2010, Lemma 5.10), the severity distribution of the corresponding compound
Poisson distribution of CPoi(δj,l ,Kj,l) with parameters given in 16 is an extended negative binomial distribution.
Thus, apply (Gerhold et al. 2010, Algorithm 5.12). A special case of this class of distributions is e.g., the inverse
Gaussian distribution, which has also been described in (Sundt and Vernic 2009, p. 91). (Gerhold et al. 2010,
Example 5.21) also present how to evaluate such a distribution.

Remark 24. Using the convex combination for the evaluation of the portfolio distribution provides a claim
size with a logarithmic distribution that might require high computational effort in the evaluation of Panjer’s



Risks 2020, 8, 43 20 of 31

recursion. This convex combination also requires a high computational effort in the evaluation of Panjer’s
recursion with the Poisson distribution. However, this approach is preferable since the evaluation of Panjer’s
recursion for a negative binomial distribution followed by several convolutions clearly demands more resources.

4. Numerical Illustration

In this section, we give examples of the impacts of different dependence structures in our model
on the distribution of the portfolio loss. More precisely, this means we consider the impacts of different
correlations. We will see that, given certain constraints originating from the extended CreditRisk+

model, the resulting distributions differ significantly.

4.1. Dependence Modelling with Two Gamma-Distributed Risk Factors

We give an example of the application of Calculation Method 1 that implements the dependence
structures given in Theorem 1. We consider four cases of dependence structures, and we use
the following assumptions and parameters: in each case, we consider two independent and
gamma-distributed risk factors, i.e., Ri ∼ Gamma(αi, βi) with αi, βi > 0, hence E[Ri] = αi/βi and
Var(Ri) = αi/β2

i for i = 1, 2. We consider two lines of business, meaning that G = {{1}, {2}}, and
we simplify notation by writing g = 1 and g = 2 instead of g = {1} and g = {2}. A further constraint
of our example is that the claim cause intensities satisfy E[Λi] = E[Ri] for i = 1, 2 in each case of
correlation. In each of these four cases, the distribution of the random sum Ŝ from Equation (20) can
be determined explicitly by computing the characteristic functions.

(a) Positively correlated claim cause intensities: Take |J | = 1, omit the index j, let λ1, λ2 ≥ 0, take
any a ∈ [0, 1], and define

A =

(
0 1 0
0 ã 1− a

)
with ã = a

E[R2]

E[R1]
= a

α2β1

α1β2
.

By Equation (17),

Var(Λ1) = Var(R1), Var(Λ2) = ã2 Var(R1) + (1− a)2 Var(R2), (48)

and cov(Λ1, Λ2) = ã Var(R1). Hence, depending on a ∈ [0, 1], the correlation

corr(Λ1, Λ2) =
ã
√

Var(R1)√
ã2 Var(R1) + (1− a)2 Var(R2)

(49)

can take every value in [0, 1]. Similar to Equation (11) using Equation (21), we obtain for every
y ∈ V∗

ϕŜ(y) = E
[
exp

(
−λ1R1(1− ϕX s

1
(y))− ãλ2R1(1− ϕX s

2
(y))

)]
×E

[
exp

(
−(1− a)λ2R2(1− ϕX s

2
(y))

)]
=
( β1

β1 + (λ1 + ãλ2)(1− ϕX ′1
(y))

)α1
( β2

β2 + (1− a)λ2(1− ϕX s
2
(y))

)α2

with claim size distribution X ′1 := Convex
(
(λ1,X s

1 ), (ãλ2,X s
2 )
)
, see Definition 3. Using

Definition A1(d) and Equation (A2), we see that L(Ŝ) is the convolution of the two compound
negative binomial distributions

CNegBin
(

α1,
λ1+ ãλ2

β1+ λ1+ ãλ2
,X ′1

)
and CNegBin

(
α2,

(1− a)λ2

β2 + (1− a)λ2
,X s

2

)
.

(b) Independent claim cause intensities: Take a = 0 in Case (a), hence X ′1 = X1.
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(c) Comonotone claim cause intensities: Take a = 1 in Case (a). Then, the convolution is not
necessary and L(Ŝ) is a compound negative binomial distribution.

(d) Negatively correlated claim cause intensities (cf. Example 1): We choose two dependence
scenarios, i.e., J = {1, 2}, and let J be a random variable independent of (R1, R2) such that
p1 := P[J = 1] ∈ (0, 1) and p2 = P[J = 2] = 1− p1. Let λi,j ≥ 0 for i, j = 1, 2. With b, c ≥ 0
define ci := cE[Ri] for i = 1, 2 as well as

A1 =

(
0 b 0
c2 0 0

)
and A2 =

(
c1 0 0
0 0 b

)
. (50)

Similar to Equation (11) using Equation (21), we observe that for every y ∈ V∗

ϕŜ(y) = p1 E
[
exp

(
−c2λ2,1R0(1− ϕX s

2
(y))− bλ1,1R1(1− ϕX s

1
(y))

)]
+ p2 E

[
exp

(
−c1λ1,2R0(1− ϕX s

1
(y))− bλ2,2R2(1− ϕX s

2
(y))

)]
= p1 exp

(
−c2λ2,1R0(1− ϕX s

2
(y))

)( β1

β1 + bλ1,1(1− ϕX s
1
(y))

)α1

+ p2 exp
(
−c1λ1,2R0(1− ϕX s

1
(y))

)( β2

β2 + bλ2,2(1− ϕX s
2
(y))

)α2
.

Hence, L(Ŝ) is a mixture of

CPoi(c2λ2,1R0,X s
2 ) ∗CNegBin

(
α1, bλ1,1

β1+bλ1,1
,X s

1

)
and

CPoi(c1λ1,2R0,X s
1 ) ∗CNegBin

(
α2, bλ2,2

β2+bλ2,2
,X s

2

)
,

each of which is a convolution of a compound Poisson distribution with a compound negative
binomial distributions. Note that, for i = 1, 2

Λi = cR0 E[Ri] + 1{J=i}(bRi − cR0 E[Ri]),

E[Λi | J ] =
(
cR0 + 1{J=i}(b− cR0)

)
E[Ri] ,

E[Λi] =
(
cR0(1− pi) + bpi

)
E[Ri] , (51)

cov(Λi, Λj | J) = b2 cov
(

Ri, Rj
)

1{J=i}1{J=j},

cov(Λi, Λj) = E
[
cov(Λi, Λj | J)

]
+ cov

(
E[Λi | J ] ,E

[
Λj | J

])
,

hence

Var(Λi) = b2 pi Var(Ri) + p1 p2(b− cR0)
2(E[Ri])

2, (52)

cov(Λ1, Λ2) = −p1 p2(b− cR0)
2 E[R1]E[R2] , (53)

where the last two equations can also be derived from Equation (17). To get cR0(1− pi) + bpi =

1 for i = 1, 2 such that Λ1 and Λ2 according to Equation (51) have the same expectations as in
the previous cases, we can can take any b ∈ [0, 2] and R0 > 0 and define p1 = p2 = 1/2 and
c = (2− b)/R0, or we can take any R0 > 0 and p1 ∈ (0, 1) and define b = 1, p2 = 1− p1 and
c = 1/R0.

Remark 25. In the case of independent, identically gamma-distributed risk factors R1 and R2, meaning that
α1 = α2, β1 = β2 (we will drop these indices), we can not only have the same expectation but also the same
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variance of Λ1 and Λ2 in Cases (b), (c) and (d): Due to Equation (48), Var(Λi) = α/β2 in Cases (b) and (c).
Due to Equation (52) with the choice b ∈ (0, 2), p1 = p2 = 1/2 and R0c = 2− b as discussed above,

Var(Λi) =
α

2β2 (b
2 + 2α(b− 1)2), i ∈ {1, 2},

in Case (d). The quadratic equation b2 + 2α(b− 1)2 = 2 has the solutions

b± =
2α±

√
2 + 2α

1 + 2α
.

If α ∈ (0, 1), then b− < 0 and the solution cannot be used. If α ≥ 1, then b− ∈ [0, 1). However,
b+ ∈ (0, 2) for all α > 0, hence b+ always works. Thus, given α, R0 > 0, one or two choices for the matrices A1

and A2 in Equation (50) are determined.

For the numerical example in the setting of Remark 25, see Figures 1 and 2, we specify the
remaining parameters as follows: we choose the risk factors such that E[R1] = E[R2] = 1 and
Var(R1) = Var(R2) = 1/2, e.g., α = β = 2. In addition, we take R0 = 1. Thus, the two sets of
parameters for the matrices A1 and A2 in Equation (50) are given by

b± =
4±
√

6
5

and c± = 2− b± =
6∓
√

6
5

. (54)

Figure 1. Highly smoothed probability mass functions of the N2
0-valued portfolio loss Ŝ corresponding

to Figure 2 for the Poisson case (central truncated graph), the comonotone case (with a hump along the
diagonal) and the case of corr(Λ1, Λ2) ≈ −0.9519 (two symmetric humps near the corners). We take
V = R2. The (group) claim sizes equal (1, 0) and (0, 1) in these cases, i.e., X s

1 = δ(1,0) and X s
2 = δ(0,1).
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ò independent intensities
ì comonotone intensities
à correlation -0.1681
æ correlation -0.9519
ô constant Poisson intensity
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Figure 2. Probability mass functions of the N0-valued portfolio loss Ŝ for different dependence
structures for the two claim cause intensities Λ1 and Λ2 satisfying E[Λ1] = E[Λ2] = 1 and
Var(Λ1) = Var(Λ2) = 1/2 as discussed in Section 4.1. We take V = R. The claim size equals 1
in all cases, i.e., X s

1 = X s
2 = δ1. For comparison, also the case Λ1 = Λ2 ≡ 1, yielding a Poisson

distribution with expectation 40, is shown.

As a sanity check, Equation (48) for ã = a ∈ {0, 1} as well as Equation (52) for the above
parameter sets give Var(Λi) = 1/2 for i = 1, 2. Equation (49) for a ∈ {0, 1} gives corr(Λ1, Λ2) = a,
and by Equations (52) and (53) for the above parameters,

corr(Λ1, Λ2) = −
14∓ 4

√
6

25
≈
{
−0.1681 for b+ ≈ 1.2899,

−0.9519 for b− ≈ 0.3101 .
(55)

As Poisson parameters for Figures 1 and 2, we choose λi = λi,j = 20 for i, j = 1, 2; for the
distribution of the (group) claim sizes, cf. Equation (21), we take X s

1 = δ(1,0) and X s
2 = δ(0,1) in Figure 1,

and X s
1 = X s

2 = δ1 in Figure 2.
An application of Theorem 1 gives us an equivalent representation such that we can apply

Algorithm 1. For a better comparison, we put the probability mass functions into one graph, see
Figure 2 with the first 120 values. We see interesting differences between the probability mass
functions. Taking the probability mass function with independent claim cause intensities as an initial
point of comparison, we observe that the probability mass function for negatively correlated claim
cause intensities is a bit less, and, much less, respectively, light-tailed with a (much) taller maximum,
whereas the probability mass function for comonotone, i.e., positively correlated claim cause intensities
has a mass with a smaller maximum. We also observe that the probability mass function for the claim
cause intensities with positive correlation has a heavier tail than the other probability mass functions.

While the probability mass functions for the Poisson case and the case with corr(Λ1, Λ2) ≈
−0.9519 look quite similar in Figure 2, the two-dimensional plot in Figure 1, which makes a difference
between the losses of the two business lines, illustrates the tremendous difference between them.

4.2. Dependence Modelling with Two τ-Tempered α-stable-Distributed Risk Factors

For an illustration of Calculation Method 1 that implements the dependence structures given in
Theorem 1, here with respect to Remark 16, we consider two risk factors meaning n = 2. This implies
that the considered risk factors have a τ-tempered α-stable distribution, i.e., Rl ∼ Fαl ,σl ,τl ,0 with
l = 1, . . . , n. Following the notation of Remark 16, we need to compute a Panjer’s recursion for an
extended negative binomial distribution, followed by a computation of Panjer’s recursion for a Poisson
distribution and finally the distribution of a discrete mixture distribution.
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We consider three different dependence structures: independent risk factors, positively correlated
risk factors, and negatively correlated risk factors. We use the following assumptions and parameters:
in each case, we consider two independent and τ-tempered α-stable-distributed risk factors, i.e.,
Rl ∼ Fαl ,σl ,τl ,0 with αl ∈ (0, 1), σl > 0 and τl > 0. We consider two lines of business, meaning that
G = {{1}, {2}}, and we simplify notation by writing g = 1 and g = 2 instead of g = {1} and g = {2}.
The remaining parameters are chosen as follows: λg,l = 20, αl = 0.5, σl = 5 and τl = 10 for g ∈ G and
l = 1, 2. Furthermore, we let R0 = 0.

For the case of independent risk factors we take |J | = 1 and

A =

(
0 1 0
0 0 1

)
,

and for the case of positive correlation, also with |J | = 1, we choose

A =

(
0 1 0
0 1 0

)
.

In the case of negative correlation, we need two matrices:

A1 =

(
0 1 0
0 0 0

)

and

A2 =

(
0 0 0
0 0 1

)
.

The distribution of the required random variable J is P[J = 1] = P[J = 2] = 1/2. For simplicity,
we choose a degenerate distribution of the claim sizes X s

{1} = X
s
{2} = δ1. The result of the computation

is depicted in Figure 3.

Figure 3. Probability mass functions of the N0-valued portfolio loss Ŝ for different dependence
structures for the two claim cause intensities Λ1 and Λ2. We take V = R. The claim size equals
1 in all cases, i.e., X s

1 = X s
2 = δ1.
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4.3. Dependence Modeling with Three Gamma-Distributed Risk Factors

In this example, we extend the setting of the previous subsection and also apply Calculation
Method 1. We want to study the impacts of the comonotone and two negative correlation structures
between the claim cause intensities and compare with the case of independence. In each one of
the four dependence structures, we consider three independent, gamma-distributed risk factors, i.e.,
Ri ∼ Gamma(αi, βi) with αi, βi > 0, hence E[Ri] = αi/βi and Var(Ri) = αi/β2

i for i = 1, 2, 3. We again
consider m = 2 lines of business, but we allow for simultaneous claims in both of them, meaning that
G = {{1}, {2}, {1, 2}}. For comparison of the different dependence cases in our example, we impose
the constraint that the claim cause intensities always satisfy

E[Λ{i}] = E[Ri] for i = 1, 2 and E[Λ{1,2}] = E[R3] . (56)

(a) Three positively correlated claim cause intensities: Take |J | = 1, omit the index j, let
λ{1}, λ{2}, λ{1,2} ≥ 0, take any a, b, c ∈ [0, 1] with b + c ≤ 1, and define

A =

0 1 0 0
0 ã 1− a 0
0 b̃ c̃ 1− b− c

 with ã = a
E[R2]

E[R1]
, b̃ = b

E[R3]

E[R1]
and c̃ = c

E[R3]

E[R2]
,

with the convention that (Λ{1}, Λ{2}, Λ{1,2})
> = A(R0, R1, R2, R3)

>.
(b) Independent claim cause intensities: Take a = b = c = 0 in Case (a).
(c) Comonotone claim cause intensities: Take a = b = 1 and c = 0 in Case (a).
(d) Positive correlation between the individual claim cause intensities Λ{1} and Λ{2}, and both of

them negatively correlated to the joined claim cause intensity Λ{1,2}: We take two dependence
scenarios, i.e., J = {1, 2}, and let J be a random variable independent of (R1, R2, R3) such
that p1 := P[J = 1] ∈ (0, 1) and p2 = P[J = 2] = 1− p1. Let λg,j ≥ 0 for g ∈ G and j ∈ J .
With b, c ≥ 0, we define b̃ = bE[R2] /E[R1], ci = cE[Ri] for i = 1, 2, 3 as well as

A1 =

 0 b 0 0
0 b̃ 0 0
c3 0 0 0

 and A2 =

c1 0 0 0
c2 0 0 0
0 0 0 b

 .

Then, Λ{i} = cR0 E[Ri] + 1{J=1}(bR1/E[R1]− cR0)E[Ri] for i = 1, 2 and Λ{1,2} = cR0 E[R3] +

1{J=2}(bR3 − cR0 E[R3]). To satisfy the conditions in Equation (56), we need again that cR0(1−
pi) + bpi = 1 for i = 1, 2 as in Case (d) of Section 4.1.

In the case of independent, identically gamma-distributed risk factors R1, R2, R3 we can, in
addition to the same expectations, also have the same variances of Λ{1}, Λ{2} and Λ{1,2} in Cases (b),
(c) and (d) above; for details, see Remark 25.

For the numerical illustration in Figure 4 and the comparison with Figure 2, we take R0 = 1
and independent R1, R2, R3 ∼ Gamma(α, β) with α = β = 2. Furthermore, we take λg = λg,j = 10
for g ∈ G and j = 1, 2. For g = {1, 2}, we get claims in both business lines simultaneously, hence
each business line gets 20 claims in expectation, which corresponds to the numerical example of the
previous subsection. In Case (d), we take p1 = p2 = 1/2 and b±, c± as in (54), hence the correlation
corr(Λ{i}, Λ{1,2}) for i = 1, 2 is given by the right-hand side of Equation (55).
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Figure 4. Probability mass functions of the portfolio loss Ŝ for four different dependence structures for
the three claim cause intensities Λ{1}, Λ{2} and Λ{1,2} satisfying E

[
Λg
]
= 1 and Var

(
Λg
)
= 1/2 for all

g ∈ G = {{1}, {2}, {1, 2}} as discussed in Section 4.3. The group claim size, cf. Equation (21), equals
1 for g = {1}, {2} and 2 for g = {1, 2}, i.e., X s

{1} = X
s
{2} = δ1 and X s

{1,2} = δ2. The given correlation
refers to corr(Λ{i}, Λ{1,2}) for i = 1, 2, see the right-hand side of Equation (55). For comparison with
Section 4.1, the corresponding probability mass functions from Figure 2 are indicated as solid lines.

4.4. Dependence Modelling with Two Risk Factors and Mixture

For an illustration of Calculation Method 2, we choose the following contraints. Consider the
conditions of Theorem 2. We assume two risk factors and a gamma-distributed random variable T
with L(T) a.s.

= Gamma(σ, µ) with σ > 0 and µ > 0. Since such a single mixture distribution introduces
a very strong measure of dependence, it is not useful to consider also negative correlation. For negative
correlation, refer to (Rudolph 2014, Remark 4.11). For instance, an antithetic choice would suffice.
Thus, it is sufficient to let J = {1} and we define G = {{1}, {2}}. The distribution of the conditionally
independent risk factors is given by

L
(

Rg | J, T
) a.s.
= L

(
Rg |T

) a.s.
= Gamma

(
αgT, βg

)
, g = 1, 2.

We consider two dependence matrices: For a case, we call independent (since we do not impose
further dependence)

A =

(
0 1 0
0 0 1

)
and another case that imposes further (very strong) dependence

A =

(
0 1 1
0 1 1

)
.

For simplicity, we choose a degenerate distribution of the claim sizes X s
{1} = X

s
{2} = δ1. We let

λg = 20, αg = 7 and βg = 2 for g = 1, 2. Furthermore, we choose σ = 0.3 and µ = 1 and R0 = 0.
The result of the computation is shown in Figure 5.
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Figure 5. Probability mass functions of the N0-valued portfolio loss Ŝ for different dependence
structures for the two claim cause intensities Λ1 and Λ2 satisfying E[Λ1] = E[Λ2] = 1.05. We take
V = R. The claim size equals 1 in all cases, i.e., X s

1 = X s
2 = δ1.
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Appendix A

In this appendix, we provide for further reference some general representations of distributions
when compounded or mixed that we needed in the preceding sections. Additionally, we introduce
a dependence scenario between claim cause intensities and prove a corresponding formula for the
probability-generating function of the distributions of Poisson mixture vectors.

Remark A1. A probability-generating function uniquely determines a distribution, cf. (Kallenberg 2002,
Theorem 5.3). The result is proven for characteristic functions but carries over to probability-generating
functions. If V is a separable Banach space, see (Ledoux and Talagrand 1991, p. 39).

Definition A1 (Notation for compound distributions). Let N be an N0-valued random variable and
{Xh}h∈N an i.i.d. sequence of random variables, independent of N. Let K and F denote the distributions of N
and X1, respectively.

(a) Let the distribution of the random sum S = ∑N
h=1 Xh be Compound(K, F).

http://www.cdg.ac.at/
http://www.bankaustria.at/
http://www.oebfa.at/
http://www.oebfa.at/
http://www.msg-life.com/
http://www.oekb.at/de
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(b) If N has a Poisson distribution with expectation µ ≥ 0, then S has a compound Poisson distribution and
we write S ∼ CPoi(µ, F).

(c) If N has a logarithmic distribution with parameter p ∈ [0, 1), cf. Definition A3, then S has a compound
logarithmic distribution and we write S ∼ CLog(p, F).

(d) If N has a negative binomial distribution NegBin(α, p) with parameters α > 0 and p ∈ [0, 1),
cf. Definition A2, then S has a compound negative binomial distribution and we write S ∼
CNegBin(α, p, F).

Results pointing out the relation between a compound Poisson distribution and a Poisson mixture
distribution are already well known. It is interesting to consider compound distributions with negative
binomial distributions instead. For this purpose, we give a definition of the negative multinomial
distribution, cf. (Sibuya et al. 1964, sct. 2), which is a multivariate generalization of the negative
binomial distribution.

Definition A2. A random vector N = (N1, . . . , Nm) has an m-variate negative multinomial distribution with
parameters α > 0 and p1, . . . , pm ≥ 0 with p0 := 1− p1 − · · · − pm > 0 if

P[N1 = n1, . . . , Nm = nm] =
Γ
(
α + ∑m

i=1 ni
)

Γ(α)∏m
i=1 ni!

pα
0

m

∏
i=1

pni
i (A1)

for all n1, . . . , nm ∈ N0. Denote this distribution on Nm
0 by NegMult(α; p1, . . . , pm). In the case m = 1, we

write NegBin(α, p1). Note that NegBin(α, 0) = δ0.

According to (Wishart 1949, eq. (2.1)), the corresponding probability-generating function is

GN(z1, . . . , zm) =
( p0

1−∑m
i=1 pizi

)α
, (A2)

defined for all (z1, . . . , zm) ∈ Cm with ∑m
i=1 pi |zi| < 1. For further reading on the negative

multinomial distribution, we refer to Sibuya et al. (1964), Wishart (1949), or (Johnson et al. 1997,
Chp. 36). This negative multinomial distribution can be also seen as a generalization in the sense of a
generalization of the geometric distribution, see also Mai et al. (2013).

The following lemma generalizes the fact that a Poisson-gamma mixture is a negative binomial
distribution and will be useful for further applications. It also generalizes (Sibuya et al. 1964, sct. 3.b)
by allowing T to be random.

Lemma A1. Let α, β > 0 and λ1, . . . , λm ≥ 0. Let T be a strictly positive random variable and let Λ be
a random variable such that L(Λ |T) a.s.

= Gamma(αT, β). Let N = (N1, . . . , Nm) be a random vector with
conditionally independent components given (Λ, T) such that

L(Ni |Λ, T) a.s.
= Poisson(λiΛ), i ∈ {1, . . . , m}. (A3)

Then, L(N |T) a.s.
= NegMult(αT; p1, . . . , pm) with pi = λi/(β + ∑m

d=1 λd) for every i ∈ {1, . . . , m}.

Proof. Apply Remark A1 and compute the probability-generating function of the conditional
distribution of N given T. Conditioning on (Λ, T) and using the conditional independence of
N1, . . . , Nm given (Λ, T) and the conditional distribution of N given (Λ, T) yields for z ∈ [0, 1]m

GN |T(z)
a.s.
= E

[ m

∏
i=1

zNi
i

∣∣∣∣T] a.s.
= E

[ m

∏
i=1

E
[
zNi

i

∣∣Λ, T
] ∣∣∣∣T]

a.s.
= E

[ m

∏
i=1

e−λiΛ(1−zi)

∣∣∣∣T].
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Using the conditional distribution of Λ given T, we observe that

GN |T(z)
a.s.
=

(
β + ∑m

i=1 λi(1− zi)

β

)−αT

=
( p0

1−∑m
i=1 pizi

)αT

with p0 = β/(β + ∑m
d=1 λd), see also Equation (A2).

A further result also exists on mixtures of the negative multinomial distribution. It is a
generalization of a result that can be found in (Sibuya et al. 1964, sct. 3.d). Let us first introduce
a generalization of the logarithmic distribution to multivariate dimensions taken from (Sibuya et al.
1964, sct. 3.d).

Definition A3. Let p1, . . . , pm ≥ 0 with 0 < p0 := 1− p1 − · · · − pm < 1. A random vector (L1, . . . , Lm)

has a multivariate logarithmic distribution if

P[L1 = l1, . . . , Lm = lm] =
(l − 1)!
− ln p0

m

∏
i=1

pli
i

li!
, (l1, . . . , lm) ∈ Nm

0 \ {0},

where l = ∑m
i=1 li. We denote this distribution by MultLog(p1, . . . , pm). In the case m = 1, we just write

Log(p) and define Log(0) = δ1.

According to (Sibuya et al. 1964, eq. (3.2)), its probability-generating function is given by

GL(z) =
ln(1−∑m

i=1 pizi)

ln p0
, z ∈ [0, 1]m. (A4)

Then, the aforementioned generalization is the following. It is a generalization of (Schröter 1995,
p. 95/96) and a special case of it with m = 1 and T ≡ 1 can be also found in Ammeter (1948).

Lemma A2. Let λ > 0, p0 ∈ (0, 1) and p1, . . . , pm ≥ 0 with p0 + · · ·+ pm = 1. Let T be a strictly positive
random variable and let N be a random variable such that

L(N |T) a.s.
= Poisson(−λT ln p0). (A5)

Let {Lh}h∈N be a sequence independent of (N, T), consisting of i.i.d. m-dimensional random vectors with
L1 ∼ MultLog(p1, . . . , pm). Define S = ∑N

h=1 Lh. Then,

L(S |T) a.s.
= NegMult(λT; p1, . . . , pm) .

Proof. Using Remark A1, we prove the claim by considering the probability-generating function GS |T
of the conditional distribution of S given T for z ∈ (0, 1]m with Lh = (L1,h, . . . , Lm,h)

GS |T(z)
a.s.
= E

[ m

∏
i=1

z∑N
h=1 Li,h

i

∣∣∣∣T] a.s.
= E

[
exp

( N

∑
h=1

m

∑
i=1

Li,h ln zi

)∣∣∣∣T].

The sequence {Lh}h∈N is i.i.d. and independent of (N, T). Hence, using also Equation (A4),
we observe

GS |T(z)
a.s.
= E

[(
E
[

exp
( m

∑
i=1

Li,1 ln zi

)])N ∣∣∣∣T] a.s.
= E

[(
ln(1−∑m

i=1 pizi)

ln p0

)N ∣∣∣∣T].
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Using Equation (A5) and a simplification provide

GS |T(z)
a.s.
= exp

(
λT
(

ln p0 − ln
(

1−
m

∑
i=1

pizi

)))
a.s.
=
(1−∑m

i=1 pizi

p0

)−λT
,

which completes the proof.
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Zoričák, Martin, Peter Gnip, Peter Drotár, and Vladimír Gazda. 2019. Bankruptcy prediction for small- and

medium-sized companies using severely imbalanced datasets. Economic Modelling 84: 165–76. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/BF02868583
http://dx.doi.org/10.21511/imfi.14(2).2017.10
http://dx.doi.org/10.2143/AST.29.1.504605
http://dx.doi.org/10.1017/S0515036100006802
http://dx.doi.org/10.2143/AST.18.1.2014957
http://dx.doi.org/10.1016/0167-6687(87)90006-0
http://dx.doi.org/10.1093/biomet/36.1-2.47
http://dx.doi.org/10.1016/j.econmod.2019.04.003
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Dependent Claim Numbers by Linear Combinations
	Alternative Representation
	Evaluation of the Loss Distribution
	Examples for Distributions of the Risk Factors
	Gamma Distribution
	Generalized Tempered Stable Distribution


	Dependent Claim Numbers by Continuous Mixtures
	Continuous Compounding
	Evaluation of the Loss Distribution

	Numerical Illustration
	Dependence Modelling with Two Gamma-Distributed Risk Factors
	Dependence Modelling with Two tau-Tempered alpha-stable-Distributed Risk Factors
	Dependence Modeling with Three Gamma-Distributed Risk Factors
	Dependence Modelling with Two Risk Factors and Mixture

	 
	References

