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Abstract: Cryptocurrencies have recently captured the interest of the econometric literature,
with several works trying to address the existence of bubbles in the price dynamics of Bitcoins
and other cryptoassets. Extremely rapid price accelerations, often referred to as explosive behaviors,
followed by drastic drops pose high risks to investors. From a risk management perspective,
testing the explosiveness of individual cryptocurrency time series is not the only crucial issue.
Investigating co-explosivity in the cryptoassets, i.e., whether explosivity in one cryptocurrency
leads to explosivity in other cryptocurrencies, allows indeed to take into account possible shock
propagation channels and improve the prediction of market collapses. To this aim, our paper
investigates the relationships between the explosive behaviors of cryptocurrencies through a unit
root testing approach.

Keywords: cryptocurrencies; Bitcoin; financial bubbles; co-explosivity

1. Introduction

Cryptocurrencies are digital financial assets, which are increasingly attracting the attention of
investors. The lack of an intrinsic value and the substantial changes in their price gave rise to a
debate in the financial literature. As Giudici et al. (2019b) pointed out, part of the on-going discussion
focuses on the unclear way in which cryptocurrencies may be classified: if as commodities, money or
derivatives; some attention is also brought to legal and political issues.

The absence of a fundamental approach to evaluate cryptocurrencies is another open problem.
The unclear fundamental value leads indeed to a higher degree of uncertainty among investors,
encouraging herding behavior (Devenow and Welch 1996; Trueman 1994). Figà-Talamanca and
Patacca (2019) focused on the role of information to reduce uncertainty, showing that the intensity of
the internet search for cryptocurrency-related keywords significantly affects volatility.

From an econometric point of view, one of the main research questions related to cryptocurrencies
concerns the possible presence of bubbles in their price.
An asset bubble is defined in literature as an extreme price acceleration that cannot be driven by the
underlying fundamental economic variables (Case and Shiller 2003; Dreger and Zhang 2013). The end
of this phase, often referred to as bubble burst, leads to drastic price drops, causing severe losses to
investors. For example, the Bitcoin price, after one year of sharp increases, crashed at the end of 2017
with a loss of nearly 65% with respect to the peak on 5 February 2018.

Several recent works provided empirical evidence of the presence of bubbles in the cryptocurrency
prices (Cheung at al. 2015; Corbet et al. 2018b; Fry and Cheah 2016). From a methodological viewpoint,
most of them resorted to the right-tailed unit root testing approach of Phillips et al. (2011) and its
extensions. Indeed, the extremely rapid price increase, to which the definition of financial bubble
refers to, can be described by an exponential growth, whose occurrence can be detected through the
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cited tests. Using quite common terminology (see, e.g., Steenkamp (2018) and Bouri et al. (2019)) we
employ the term “explosiveness”, or “explosivity”, to indicate an exponential growth of asset prices.

As (Hassani et al. 2019) pointed out, the integration of cryptocurrencies and blockchain technology
could reduce the risk of bubbling, with advantages for investors and market operators. This technology
allows real-time big data sharing and analytics in a secured network, supporting the creation of a
safe and efficient environment for both risk management and strategic decision making. Thus, big
data analytics can improve the operational efficiency and the profitability for investors, and prevent
significant losses arising from price volatility. Concerning this issue, (Li and Wang 2017) suggested that
relevant information based on transaction records on blockchain, together with real-time monitoring
of users, activities, prices and computational power, will provide better predictions of market volatility
over time. Again, the key is to use big data analytics to perform statistically reliable forecasts that
support the decision making of investors and the assessment of potential risks. The implementation of
these statistical techniques may also help retail investors.

Another recent and relevant stream of the literature has investigated interconnectedness in the
cryptocurrency market. In particular, Corbet et al. (2018a) applied the Diebold and Yilmaz (2014)
methodology to study volatility transmission between cryptoassets, finding high correlations and
evidence of a spillover between Bitcoin and Ripple, and Yi et al. (2018) studied co-movements in a set
of cryptocurrencies using a LASSO-VAR approach. The VAR methodology was also applied by Giudici
and Pagnottoni (2019a) and Giudici and Pagnottoni (2019b) to study spillovers in the Bitcoin exchanges,
while Giudici and Abu Hashish (2019) used a network VAR model to investigate interconnectedness in
the cryptocurrency market. The network methodology to study correlation between cryptocurrencies
was also recently applied by Giudici and Polinesi (2019) and Chen et al. (2020).

The interdependence between cryptoassets also affects financial risk at the portfolio level.
In particular, Brière et al. (2015) investigated whether Bitcoins are able to offer any diversification
benefits. By considering the exchange rates of Bitcoin against USD for the period from 23 July 2010 to
27 December 2013, the authors showed that the inclusion of even a small proportion of cryptocurrency
may notably improve the risk–return trade-off of well-diversified portfolios. Eisl et al. (2015) provided
very similar results in a conditional value-at-risk framework. They found that despite the fact that “an
investment in Bitcoin increases the CVaR of a portfolio, this additional risk is overcompensated by high
returns leading to better risk–return ratios”. These findings encourage the analysis of correlation effects
not only between cryptocurrencies and other financial instruments, but also inside the cryptocurrency
market, to highlight possible diversification benefits.

In this work, we combined bubble identification with the analysis of the co-movements of
cryptocurrencies. To our knowledge, addressing the issue of co-explosivity in the cryptocurrency
market based on bubble tests is still nearly unexplored. Recently, Bouri et al. (2019) applied the
Phillips et al. (2015) testing methodology to a set of cryptocurrencies and modeled the probability of
a bubble occurrence in each of them as explained by the presence of bubbles in the others through
logistic regression.

We contributed to the existing literature by investigating interdependencies in the price behavior
of different cryptoassets, showing how the relationships change depending on the price phases
(from stationary to explosive).

Furthermore, we investigated whether bubble bursts, which pose high risks to investors, tend
to occur together. In particular, we modeled the probability of a bubble burst of each cryptocurrency,
conditional on the occurrence of bubble collapses in other cryptocurrencies on the market.

This article is organized as follows. In Section 2, we describe the methodology implemented to
identify price explosivity and to investigate the correlation between cryptoassets. In Section 3, we show
our empirical application, presenting data and results. Section 4 concludes the article.
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2. Methodology

2.1. Testing for Bubbles

Phillips et al. (2011) proposed a recursive test to verify the null hypothesis of unit root against the
alternative hypothesis of explosive behavior.

Specifically, they defined the supremum augmented Dickey–Fuller (SADF) test, based on the
following recursive regression:

yt = µ + φyt−1 +
J

∑
j=1

ψj∆yt−j + εt, εt ∼ N (0, σ2) (1)

where yt is the asset price, µ, φ and ψ are estimated through ordinary least squares (OLS) and J
is the maximum number of lags, which is chosen based on some model selection procedure or
information criterion.

When φ > 1, the price grows exponentially. The SADF test statistic, used to test the null hypothesis
of unit root (H0 : φ = 1) against the presence of a bubble (H1 : φ > 1), is calculated by the repeating
regression of Equation (1) on a rolling window expanding from r0 to r2:

SADF(r0) = Supr2∈(r0,1)ADFr2
0 (2)

where r0 is a given fraction of the total sample.
The hypothesis of no explosive behavior is then rejected if the SADF value overcomes the

right-side critical value corresponding to the considered significance level; see (Phillips et al. 2011) for
details about the asymptotic distribution of the SADF statistic.

This testing procedure itself does not provide any information about the starting and ending date
of the bubble, which is often of interest in operational research.

To this aim, the same authors proposed a methodology called the backward supremum augmented
Dickey–Fuller (BSADF), which performs a SADF test on a backward expanding window where the
end point of each window is fixed by r2 and the starting point varies from 0 to r2 − r0:

BSADFr2(r0) = Supr1∈(0,r2−r0)
ADFr2

r1 (3)

This method (Phillips et al. 2015) was shown to improve the identification accuracy in time series
including one or more collapsing bubbles.

Following this approach, the start and the end of explosive phases are determined as follows:

r̂s = in fr2∈(r0,1){r2 : BSADFr2(r0) > cvα
r2
} (4)

r̂e = in fr2∈(r̂s+δ,1){r2 : BSADFr2(r0) < cvα
r2
} (5)

where cvα
r2

is the critical value of the SADF statistic at the α level of significance, while δ is a time
threshold, expressed as a fraction of the total sample size, below which an explosive behavior is not
defined as a bubble (for example, one could decide that explosive periods lasting less than three days
are not considered as bubbles).

In our empirical study (see Section 3 for detailed results), we applied the BSADF test to several
cryptocurrency time series1. In particular, we detected the presence of a bubble in t when the
corresponding value for the BSADF statistic exceeds the critical value. The time series of critical
values were obtained through a Monte Carlo simulation exercise based on 1000 replications.

1 The BSADF statistic was calculated using the MultipleBubbles R package. The number of lags in the recursive ADF
regression was selected through the Bayesian information criteria (BIC).
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2.2. Co-Explosivity

After identifying price explosivity in each cryptocurrency time series through the methodology
described in Section 2.1, we investigated the correlation of cryptoassets during bubble periods.

In particular, we aimed at verifying whether interdependence among cryptocurrencies increases
during financial bubbles, and whether the found correlation is positive. This latter aspect is indeed
relevant for investment decisions, as a negative correlation would offer diversification benefits, while
a positive correlation would increase portfolio risk.

Our approach is based on a regression analysis on the calculated BSADF statistic. This way,
we can assess the extent to which the explosivity of a cryptoasset is influenced by explosive behaviors
of the others.

Specifically, to take into account both the presence of potential bubbles and co-explosivity, for each
of the considered cryptocurrencies we calculated the time series of ratios between the BSADF statistic
and the corresponding critical value at a 5% significance level:

BSADFRit :=
BSADFit

cv0.05
it

(6)

for each i = 1, . . . , 5 cryptoasset.
We then estimate a quantile regression model:

QBSADFRit(τ|X) = X′β (7)

where QBSADFRit(τ) is the τ-th quantile of the sample distribution of BSADFRit, X is a 4× 1 vector
containing QBSADFRjt(τ) for j 6= i and β is the 4× 1 vector of coefficients to be estimated.

Thus, we are able to assess dependency of the i-th asset on the other four for different levels of
explosivity, from stationarity (lowest quantiles) to bubble evidence (highest quantiles). In particular,
quantiles for which the calculated ratio exceeds 1 correspond to price explosivity phases.

2.3. Probability of Bubble Burst

The purpose of the methodology described in Section 2.2 was to analyze whether the prices of
different cryptoassets tend to explode simultaneously.

Though, the risks related to bubbles spread during their bursts—that is when the exponential
growth phase ends and a rapid drop in the price starts, causing severe losses. We then performed further
analysis to investigate whether bubble bursts in the cryptocurrency market occur contemporaneously.

Specifically, we estimated a series of logistic regressions to model the probability of having a
bubble burst in the considered cryptocurrencies as a function of the occurrence of bubble bursts in
others. Thus, in each regression, the dependent variable is a binary variable taking value 1 if a bubble
burst is observed in that trading day, 0 otherwise, and the explanatory variables are the correspondent
binary variables for the other four cryptoassets. In our modeling framework, a bubble burst is observed
when the value of the BSADF statistic was above the critical value cvα

r2
at the previous day, indicating

that the null hypothesis of unit root was refused in favor of the alternative of an explosive behavior,
and the current value of the BSADF statistic is below the critical value again.

Specifically, we estimate the following model:

log
(

πit
1− πit

)
= δ0 + ∑

j 6=i
δjDjt (8)

for i = 1, . . . , 5, where πit is the probability that a bubble in the price of the i-th asset bursts in t, δ0 is a
constant term and each Djt is a dummy variable taking value 1 if BSADFjt is below the critical value
in t and was above the critical value in t− 1, that is a bubble burst in the price of asset j occurs in t.
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Note that this analysis is similar to the one performed by Bouri et al. (2019), who studied the
probability of bubble occurrence through a logistic approach. We instead investigated the probability
that a bubble bursts, conditional on the behavior of the other cryptocurrencies.

3. Application

3.1. Data

We focused on five cryptocurrencies ouf ot the 10 largest capitalization cryptocurrencies at
the writing date, for which a daily price time series of two years starting from 2017 is available:
Bitcoin, Ethereum, Ripple, Litecoin and Stellar. Indeed, many potential bubbles were observed in the
cryptocurrency market in the period 2017–2018. The data were downloaded from CoinMarketCap2.

It can be seen in Figure 1 that the price of all the considered assets exhibited a rapid increase
in mid-2017. Further, 2018 is characterized by multiple potential bubbles, with a high peak at the
beginning of the year.

3.2. Results

By applying the right-tailed unit root test described in Section 2.1, we found evidence of bubbles
in all the five cryptocurrencies.

Figure 2 plots the time series of the BSADF statistic and the corresponding critical values3.
It can be seen that in several cases the null hypothesis of unit root was rejected in favor of the

alternative of explosive behavior. In particular, the middle and the end of 2017 and early 2018 were the
three sub-periods characterized by the strongest evidence of bubbles.

Specifically, during the considered time period, Ethereum and Ripple were the first to show
explosivity in March 2017, while later in the year, from April to June, all the five cryptoassets showed
explosive dynamics. The creation of the Enterprise Ethereum Alliance (EEA) in March 2017, announced
by blockchain startups, research labs and global companies, is one of the factors that can explain this
trend. Furthermore, since the beginning of 2017, the total amount raised by ICOs passed $300 million,
which means an increase of nearly 200% in less than six months. Many ICOs initiatives are based on the
Ethereum Blockchain due to its smart contracts capabilities, and this contributed to the large growth
of Ethereum price. Bitcoin explosivity emerged again in August and September 2017, when bubble
episodes also appeared in Litecoin. This period coincides with the hard fork of Bitcoin, which forked
into two derivative digital currencies, the Bitcoin chain (BTC) and the Bitcoin Cash (BCH). Another
bubble phase emerged in Bitcoin in late October toward the end of December 2017. In particular,
the Bitcoin price reached the level of $10,000 on 28 November 2017, and $20,000 on 17 December 2017.
In the last quarter of 2017, also the other cryptoassets showed explosivity. A lower number of bubble
episodes was observed in the following year, 2018, which started with a sharp drop of prices in the
cryptocurrency market. An explosive behavior of Ethereum, apparently not followed by the other
cryptoassets, can be noticed between August and September. A sharp peak in the price of Ethereum
was indeed observed on 13 September 2018, with a daily return close to 14%. Bitcoin came back to an
explosive phase in December 2018, with a rapid growth which followed the negative performance
of the first half of the month. Litecoin also showed a short bubble period at the end of 2018, rapidly
recovering from the drop in price observed in the first part of December.

It can also be noticed that, for all the five cryptocurrencies, the most extreme negative returns (gray
lines in Figure 2) took place right after the end of the detected bubble periods, encouraging the study
of the explosive price dynamics in order to mitigate market risk. In particular, all the cryptocurrencies
showed multiple extreme losses at the beginning of 2018, after the end of the bubble period occurred

2 www.coinmarketcap.com.
3 Note that the first available value refers to 24 February 2017, that is the end of a 55 day time window, starting from the first

observation in the dataset.

www.coinmarketcap.com
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in late 2017, except for Stellar, for which only one tail return was observed in January 2018. Highly
negative returns of Stellar, as well as Ripple and Litecoin, can instead be seen in May and June 2017,
following the bubble periods that occurred in March and April 2017. Other severe losses in all the
cryptocurrencies followed the bubble period of August–September 2017, probably triggered by the
fork of Bitcoin.

(a) Bitcoin (b) Ethereum

(c) Ripple (d) Litecoin

(e) Stellar

Figure 1. Daily price time series of the five analyzed cryptocurrencies in the period from January 2017
to December 2018.
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(a) Bitcoin (b) Ethereum

(c) Ripple (d) Litecoin

(e) Stellar

Figure 2. Backward supremum augmented Dickey–Fuller (BSADF) statistic (black) and corresponding
critical values (red) for each of the five analyzed cryptocurrencies in the 2017–2018 period; the gray
lines mark the dates in which the return was lower than the first percentile of the sample distribution
of returns.

Table 1 reports the count of days per quarter in which the BSADF statistic overcomes the critical
value, supporting evidence of an explosive price behavior, for each cryptocurrency. In general,
the second and the fourth quarter of 2017 were the periods characterized by the largest number
of bubble episodes in the cryptocurrency market. It can be noticed that, among the considered
cryptoassets, Bitcoin is the one showing the highest number of explosivity days (136), closely followed
by Ethereum (131). However, the distribution of bubble episodes of the two assets over the period was
not so similar: for Bitcoin, the last quarter of 2017 was the sub-period showing the highest number
of explosivity days, which was instead the second quarter of the same year for Ethereum. The latter
shows a quite large number of explosivity days (31) in the first quarter of 2017, when only six bubble
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episodes were identified in the Bitcoin dynamics. During the 2017–2018 period, 96 bubble times were
reported for Litecoin, with a high concentration in the second quarter of 2017. Over the 49 explosivity
days of Ripple, 22 were observed in the second quarter of 2017, while the last quarter of 2017 was the
period showing the highest number of explosivity episodes in the price dynamics of Stellar.

Table 1. Number of days per quarter characterized by explosive price behavior according to the
BSADF test for the five analyzed cryptocurrencies (BTC = Bitcoin; ETH = Ethereum; XRP = Ripple;
LTC = Litecoin; XLM = Stellar).

Period BTC ETH XRP LTC XLM Total

2017 Q1 6 31 4 1 0 36
2017 Q2 35 44 22 45 15 161
2017 Q3 24 0 0 13 0 37
2017 Q4 58 18 15 27 33 151
2018 Q1 2 23 8 0 10 43
2018 Q2 0 6 0 0 0 6
2018 Q3 0 8 0 1 0 9
2018 Q4 11 1 0 9 0 21

Total 136 131 49 96 58 470

Figure 3 plots the estimated β coefficients of the quantile model (seen in Equation (7)) for each
cryptocurrency.

In each regression, the dependent variable is the ratio between the BSADF statistic and its critical
value for a given asset, and the predictors are the same ratio for the other four. Thus, each plot
depicts how the relationships between cryptoassets change depending on the phases of price behavior
(from stationary or unit root to explosive). It can be noticed that during bubble periods (in all the plots,
the red line marks the quantile from which the BSADF statistic indicates an explosive phase), Ethereum
has an increasing positive impact on Ripple and Litecoin, whereas its effect on Bitcoin decreases after
the 0.8 quantile. Another positive relationship is found between Ripple and Stellar, whose mutual
effects increase during explosive phases. Some negative dependencies can also be noticed. In particular,
Ripple has a negative impact on Bitcoin over all the price distribution and its effect on Ethereum and
Litecoin becomes negative during explosive periods. Furthermore, not all the estimated effects increase
in magnitude during bubbles. Indeed, the coefficients expressing dependence on Bitcoin and Litecoin
decrease during explosive phases.

Tables 2–6, reporting the parameter estimates for each regression, confirm these findings and
show that most effects between cryptoassets are statistically significant. In particular, the coefficients
associated to the effect of Ethereum on all other cryptos, except for Stellar, decisively increase, moving
from 50th to 90th percentile. Both the positive impact of Ripple on Stellar and the negative (and mutual)
one of Ripple on Bitcoin show a sensitive increase in magnitude when considering the tail of the price
explosivity distribution.

Table 2. Bitcoin: results of quantile regression on the BSADF statistic (ETH = Ethereum; XRP = Ripple;
LTC = Litecoin; XLM = Stellar). In all tables, *, ** and *** denote 10%, 5% and 1% significance, respectively.

τ = 0.10 τ = 0.50 τ = 0.90
Estimate Std. Error Estimate Std. Error Estimate Std. Error

(Intercept) −1.111 *** 0.019 −0.004 0.051 1.656 *** 0.065
ETH −0.027 *** 0.011 0.130 *** 0.029 0.365 *** 0.037
XRP −0.005 0.014 −0.155 *** 0.037 −0.272 *** 0.048
LTC −0.057 *** 0.013 0.391 *** 0.035 0.331 *** 0.045
XLM 0.217 *** 0.013 0.495 *** 0.034 0.323 *** 0.044
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(a) Bitcoin (b) Ethereum

(c) Ripple (d) Litecoin

(e) Stellar

Figure 3. Estimated interdependencies in the cryptocurrency market: each subplot depicts the
estimated coefficients of a quantile regression model where the dependent variable is the ratio
between the BSADF statistic and the corresponding critical values for a given cryptocurrency, and
the independent variables are the same ratio for the other four (BTC = Bitcoin; ETH = Ethereum;
XRP = Ripple; LTC = Litecoin; XLM = Stellar). The red line marks the quantile from which the BSADF
statistic indicates the presence of a bubble.
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Table 3. Ethereum: results of quantile regression on the BSADF statistic (BTC = Bitcoin; XRP = Ripple;
LTC = Litecoin; XLM = Stellar).

τ = 0.10 τ = 0.50 τ = 0.90
Estimate Std. Error Estimate Std. Error Estimate Std. Error

(Intercept) −0.674 *** 0.017 0.010 0.024 1.921 *** 0.180
BTC −0.055 *** 0.013 0.033 * 0.019 0.685 *** 0.136
XRP 0.193 *** 0.013 0.248 *** 0.018 0.138 0.133
LTC 0.128 *** 0.013 0.230 *** 0.018 −0.369 *** 0.129
XLM 0.019 0.012 0.023 0.017 0.023 0.127

Table 4. Ripple: results of quantile regression on the BSADF statistic (BTC = Bitcoin; ETH = Ethereum;
LTC = Litecoin; XLM = Stellar).

τ = 0.10 τ = 0.50 τ = 0.90
Estimate Std. Error Estimate Std. Error Estimate Std. Error

(Intercept) −1.149 *** 0.036 −0.472 *** 0.012 0.868 *** 0.031
BTC −0.051 * 0.028 −0.092 *** 0.009 −0.147 *** 0.024
ETH −0.115 *** 0.021 0.144 *** 0.007 0.329 *** 0.018
LTC 0.048 * 0.027 0.109 *** 0.009 0.068 *** 0.022
XLM 0.265 *** 0.022 0.408 *** 0.007 1.173 *** 0.018

Table 5. Litecoin: results of quantile regression on the BSADF statistic (BTC = Bitcoin; ETH = Ethereum;
XRP = Ripple; XLM = Stellar).

τ = 0.10 τ = 0.50 τ = 0.90
Estimate Std. Error Estimate Std. Error Estimate Std. Error

(Intercept) −1.198 *** 0.040 0.069 *** 0.033 1.225 *** 0.084
BTC 0.116 *** 0.029 0.171 *** 0.024 0.263 *** 0.062
ETH −0.358 *** 0.023 −0.019 0.019 0.149 *** 0.048
XRP 0.122 *** 0.029 0.119 *** 0.024 0.088 0.062
XLM 0.012 0.027 0.208 *** 0.022 0.228 *** 0.057

Table 6. Stellar: results of quantile regression on the BSADF statistic (BTC = Bitcoin; ETH = Ethereum;
XRP = Ripple; LTC = Litecoin).

τ = 0.10 τ = 0.50 τ = 0.90
Estimate Std. Error Estimate Std. Error Estimate Std. Error

(Intercept) −1.006 0.018 −0.403 0.030 0.777 0.034
BTC 0.143 0.013 0.111 0.023 0.434 0.026
ETH −0.056 *** 0.010 −0.018 0.018 0.078 0.020
XRP 0.390 0.011 0.500 *** 0.019 0.813 *** 0.021
LTC 0.060 *** 0.013 0.035 * 0.021 0.169 *** 0.024

The performed quantile regression analysis does not give any indication about how co-explosivity
on the cryptocurrency market changed during the analyzed period.

To take this aspect into account, we performed a rolling regression exercise. Specifically, for each
rolling window (with a size of 30 days) starting from 24 February 2017 (the first date in which the
BSADF statistic is available) we estimated the following regression model:

BSADFRit = γ0 + ∑
j 6=i

γjBSADFRjt + εit εit ∼ N(0, σ2) (9)

for i = 1, . . . , 5, where BSADFRit is the ratio between the BSADF statistic and the corresponding
critical value for the i-th cryptocurrency, each BSADFRjt is the analogous ratio for the asset j, γ0 is a
constant term and εit is a normally distributed error component.
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Figure 4 shows the estimated rolling coefficients.

(a) Bitcoin (b) Ethereum

(c) Ripple (d) Litecoin

(e) Stellar

Figure 4. Estimated coefficients of linear regressions where the dependent variable is the ratio between
the BSADF statistic and its critical value for a given cryptocurrency, and the explanatory variables are
the same ratio for the other four; the analysis was performed using rolling windows with a size of
30 days. (BTC = Bitcoin; ETH = Ethereum; XRP = Ripple; LTC = Litecoin; XLM = Stellar).

Looking at Figure 4, the first consideration is that the estimated co-explosivity effects show high
increases in magnitude during the detected bubble phases, but they are not all positive. The third
and the last quarter of 2017 are the periods characterized by highest interdependence. Bitcoin is
largely influenced by the other cryptocurrencies’ explosivity, especially by Litecoin and Ripple, in
the last months of 2017, while the effect of Ethereum on Bitcoin is unstable, with negative peaks in
November 2017 and November 2018. The negative dependence of Bitcoin on Ripple seems isolated to
the end of 2017. In converse, dependence of the other cryptoassets on Bitcoin does not show a drastic
increase during the explosive phase of late 2017. An increasing impact of Bitcoin on Ethereum and
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Litecoin is instead observed in the period August–September 2017, when a bubble phase in Bitcoin
occurred following the cited hard fork. The high influence of Ethereum on the other assets’ explosivity,
found in the previous analysis, is confirmed, and increases during the explosive phase of late 2017.
The coefficients expressing dependence on Ripple are unstable and show sharp peaks in September
2017 (Bitcoin and Litecoin) and May–July 2018 (Ethereum). Some negative rolling coefficients can also
be seen. Indeed, the estimated impact of Bitcoin and Litecoin on Ethereum becomes negative when the
latter shows a short bubble period in spring 2018. Other negative coefficients during bubble periods
are associated to the impact of Bitcoin on Stellar, and of Stellar on Litecoin.

To get a further insight of the extent to which co-explosivity in cryptocurrencies affects the risk of
financial losses, we show the results obtained by estimating the model defined in Equation (8), where
the dependent variable is a dummy taking value 1 when a bubble bursts in a given cryptocurrency
and the predictors are analogous dummy variables based on the occurrence of bubble bursts in the
other cryptoassets. The coefficients of the estimated logistic regressions are reported in Table 7.

Table 7. Estimated coefficients of logistic regressions where the dependent variable (rows) is a binary
variable that takes the value of 1 when a bubble bursts, and 0 otherwise; each regressor (columns) is a
binary variables taking value 1 if a bubble burst is observed in another cryptocurrency (BTC = Bitcoin;
ETH = Ethereum; XRP = Ripple; LTC = Litecoin; XLM = Stellar).

BTC ETH XRP LTC XLM

BTC - 2.320 ** −1.397 2.687 *** −1.496
ETH 2.337 ** - 1.121 0.169 2.426 *
XRP −1.437 1.113 - −1.408 3.543 ***
LTC 2.687 *** 0.162 −1.308 - −1.330
XLM −1.532 2.407 * 3.543 *** −1.446 -

It can be seen from Table 7 that in several cases the impact, always positive signed, of a bubble
burst on the other cryptocurrencies’ probability of bubble burst is significant. In particular, the
probability of bubble burst in Bitcoin increases with the occurrence of a bubble burst in Ethereum, and
this relationship is found to be mutual, as the one with Litecoin. The positive dependence between
Ripple and Stellar is significant, confirming the previous findings. The probability of bubble burst of
Stellar also increases with the presence of a bubble burst in Ethereum, which is in converse affected by
the collapse of bubbles in Stellar.

Overall, these results show that in several cases a bubble burst in an asset increases the probability
of bubble burst in other assets in the cryptocurrency market, while no negative effects of a bubble
burst on the probability of bubble burst of other cryptocurrencies are found.

4. Discussion

In this work, we tested the presence of bubbles in the five cryptocurrencies with largest
capitalization and studied their co-movements in different phases of their price behavior, to verify
possible co-explosivity effects.

First of all, our results show that several explosive periods occurred not only in Bitcoin, but also
in other cryptoassets, reaching a similar conclusion to Bouri et al. (2019).

Our empirical study also confirms the presence of high interdependence in the cryptocurrency
market found in other recent works, such as Corbet et al. (2018a) and Yi et al. (2018). While these
studies focus on volatility spillover effects, we found significant relationships between the explosive
behaviors of cryptocurrencies.

Based on our findings, the cryptocurrency that influences the others the most is Ethereum, whose
positive-signed effects rapidly increase during bubble periods. Bitcoin is significant in explaining the
other cryptocurrency price dynamics, but we found no strong evidence of an increase of its effect during
explosive phases. Partly in contrast with what was found by Bouri et al. (2019), Bitcoin was found to be
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quite highly affected by other cryptoassets, and shows a negative link with Ripple. The negative mutual
effect of Bitcoin on Ripple increases in magnitude during bubble periods. A possible explanation of
these results is related to the different nature of the analyzed cryptocurrencies. While Bitcoin and
Litecoin are actually pure financial assets, i.e., objects of speculative activity, Ethereum is the main
technology for the creation of smart contracts, and this explains its centrality among service-based
crypto instruments. Ripple and Stellar, which turned out to be strongly positive correlated, share the
feature of being services platforms.

Overall, our findings show that the price dynamics of cryptocurrencies are highly interdependent,
although the correlation is not always positive and not always increases during bubble periods. From
a portfolio diversification perspective, a high interdependence may lead to an increasing risk exposure.

Furthermore, we performed a rolling regression analysis, showing that not all bubble periods in
the cryptocurrency market were characterized by the same evidence of co-explosivity. In particular,
the impact on Bitcoin on the other cryptoassets is not homogeneous over the analyzed sample and
shows a peak following the fork of 1 August 2017, while in the bubble period of late 2017 the most
central cryptoassets are Ethereum and Ripple.

Finally, we modeled the probability of a bubble burst of each cryptocurrency, using the occurrence
of bubble bursts in the remaining cryptocurrencies as explanatory variables. We found that in several
cases a bubble burst in an asset increases the probability of bubble burst in other assets in the
cryptocurrency market. In particular, the interdependence between Ripple and Stellar is confirmed,
as well as the fact that Bitcoin seems not more central than the other cryptoassets in bubble burst
propagation. We did not find any significant negative effect on the probability of bubble burst, meaning
that, in the analyzed sample, there is no evidence of potential advantages from diversification during
the periods of bubble collapses, as they tend to occur simultaneously.

It is worth mentioning that our study is based on a unit root testing methodology which is known
to be sensitive to misclassification of the data generating process in the null hypothesis, due to changes
in trend and in the shock persistence. Further robustness checks should go in this direction.

Future research could investigate lagged effects in the cryptocurrency dynamics and the role
of exogenous variables, such as volume and prices on other markets, in explaining explosive
price behaviors.
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