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Abstract: In this paper, a flexible count regression model based on a bivariate compound Poisson
distribution is introduced in order to distinguish between different types of claims according to the
claim size. Furthermore, it allows us to analyse the factors that affect the number of claims above
and below a given claim size threshold in an automobile insurance portfolio. Relevant properties of
this model are given. Next, a mixed regression model is derived to compute credibility bonus-malus
premiums based on the individual claim size and other risk factors such as gender, type of vehicle,
driving area, or age of the vehicle. Results are illustrated by using a well-known automobile insurance
portfolio dataset.

Keywords: aggregate claims; auto insurance; Bayesian; bonus-malus; compound distribution
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1. Introduction

In a recent work, a modification in the bonus-malus systems was proposed Gómez-Déniz (2016),
which are commonly applied in automobile insurance, that differentiated between two different types
of claims by including a bivariate model based on the assumption of dependence. The aforementioned
work studied the impact on the bonus-malus premium in a general setting without involving
individual’s risk factors, such as gender, type of vehicle, area of circulation, etc.

It is well known that under the traditional bonus-malus system, the premium charged to each
insured is based solely on the number of claims made. Therefore, an insured who has had an accident
that causes a relatively small loss amount is penalised to the same extent as one who has experienced
a more expensive accident. This event would seem to be unfair by the insureds. In the mentioned
work a bivariate prior model, conjugated with respect to the likelihood, was also proposed, and as a
result of this, simple credibility bonus-malus premiums that satisfy appropriate transition rules were
obtained. These expressions were used to compute credibility bonus-malus premiums by considering
two different types of claims: those ones above and below a threshold claim size, say ψ > 0.

Similar related works have been proposed in the actuarial literature. In this sense, the work
in Pinquet (1998) computed bonus-malus rates in a multi-equation Poisson model with random effects.
The work in Ragulina (2011) introduced a bonus-malus system with different claim types and varying
deductibles. The work in Walhin and Paris (2001) showed how to set up a practical bonus-malus
system with a finite number of classes using both the actual claim amount and claim frequency
distribution. The work in Bonsdorff (2005) also incorporated the claim number and the severity in
the bonus-malus system literature by using Markov chains. The work in Bermúdez (2009) examined,
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in automobile insurance claims, an a priori ratemaking procedure that included two different types of
claim, i.e., with and without bodily injuries. See also Bermúdez and Karlis (2017).

The main objective of this work is to develop a reparametrization of the bivariate distribution
proposed in the previous work with the purpose of incorporating individual information in the model
to adjust the premiums charged to each policyholder. Additionally, some statistical properties of the
proposed parametrization that were not addressed in the previous work will be shown. Furthermore,
an extensive set of a priori classification variables such as age, gender, type and age of car, etc., will be
used to incorporate, depending on the heterogeneity of the insured’s behaviour, prior distributions
assigned to the parameters of the model to build up a posteriori credibility, bonus-malus premiums.

The rest of this paper is organised as follows. The main model and some of its properties are
presented in Section 2. In Section 3, the regression model is introduced, and maximum likelihood
estimation methods are illustrated. We will show that the estimation procedure is simply derived,
and Fisher’s information matrix associated with this regression model is obtained in closed-form.
Credibility premiums related to the regression models are provided in Section 4. Numerical illustrations
and results connected with the compound model are shown in Section 5, and finally, Section 6 concludes
the work.

2. The Model

As pointed out by Dionne and Vanasse (1989), the classical Poisson distribution is generally
employed for the characterization of random and independent events such as automobile accidents.
Thus, we assume that the number of claims in an automobile insurance portfolio follows a Poisson
distribution with parameter µ1 > 0. When an insured declares a claim, it might be for an amount
exceeding ψ monetary units. In order to accommodate this characteristic into the model, we incorporate
a second random variable, thus giving rise to the consideration of two separate sub-events (claims
worth more or less than ψ), in the following way. Let Zi be the variable that takes the value one if the
ith claim corresponds to a claim size larger than ψ and the value zero otherwise. Thus, the Z′i s variables
are modelled as independent and identically distributed with the following Bernoulli probability
density function:

f (zi|p) =
{

µ2/µ1, if zi = 1,
1− µ2/µ1, if zi = 0,

where p = µ2/µ1 is the probability of declaring a claim larger than ψ with 0 < µ2 < µ1.
Let us now assume that X2 = ∑X1

i=1 Zi is the total claim number with a claim amount larger than ψ.
Thus, if the Zi (i = 1, . . . , x1) are assumed to be mutually independent, then the conditional probability
function of X2, given that X1 = x1, is binomial with parameters x1 and µ2/µ1. Therefore, the joint
distribution of the total claim number (X1) and the corresponding claim number with claim amount
exceeding ψ, X2, has this probability function:

Pr(X1 = x1, X2 = x2) =
µx2

2 (µ1 − µ2)
x1−x2 exp(−µ1)

(x1 − x2)!x2!
, (1)

for x1 = 0, 1, . . . , x2 = 0, 1, . . . , x1, µ1 > 0, and 0 < µ2 < µ1.
Observe that the probability function (1) can be written as:

Pr(X1 = x1, X2 = x2) = h(xxx) exp

[
2

∑
i=1

xiRi(ΘΘΘ)−Q(ΘΘΘ)

]
,

where xxx = (x1, x2), ΘΘΘ = (µ1, µ2)
′, R1(ΘΘΘ) = log(µ1 − µ2), R2(ΘΘΘ) = log(µ2/(µ1 − µ2)), Q(ΘΘΘ) = µ1,

and h(xxx) = [(x1 − x2)!x2!]−1. Thus, (1) belongs to the multivariate exponential family of distributions
provided in Khatri (1983a). See also Khatri (1983b) and Johnson et al. (1997, chp. 34). This family
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includes also the multivariate Lagrangian distributions and the multivariate power series distributions;
(see Khatri 1983b).

Properties of the Distribution

The marginal means are given by E(Xi) = µi, i = 1, 2. The cross moment, the covariance, and the
correlation are given by:

E(X1X2|µ1, µ2) = µ2(1 + µ1), (2)

cov(X1, X2|µ1, µ2) = µ2,

ρ(X1, X2|µ1, µ2) =
√

µ2/µ1,

respectively. Thus, the model admits only positive correlation.
The probabilities for different values of (x1, x2) were calculated, and graphs were plotted for

different values of these two parameters. They are shown in Figure 1. It is observable that for
larger values of µ1 and µ2, the modal value increases in x1 and x2, illustrating that the new model is
very versatile.
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Figure 1. Joint probability mass functions of the bivariate discrete distribution proposed for selected
values of the parameters. From top to bottom and left to right, we have: (µ1, µ2) = (0.5, 0.25),
(µ1, µ2) = (5, 0.5), (µ1, µ2) = (5, 2), and (µ1, µ2) = (10, 8).

The expression provided in (1) can also be obtained differently as follows: Let us consider an
automobile insurance portfolio in which X1 is a random variable that represents the number of claims
in a given period and X2 yields the number of claims with a size above a threshold ψ > 0 over the
same period of time. If each policyholder has a probability µ2/µ1 of having a claim with a claim size
above ψ, then Pr(X2 = x2) and Pr(X1 = x1) are related as follows:

Pr(X2 = x2) =
∞

∑
x1=x2

(
x1

x2

)(
µ2

µ1

)x2
(

1− µ2

µ1

)x1−x2

Pr(X1 = x1). (3)
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Obviously, (3) represents a map from the probability function to the probability function. That is,
∑∞

x2=0 Pr(X2 = x2) = 1 with Pr(X2 = x2) ≥ 0, x2 = 0, 1, . . .
Although other distributions, i.e., negative binomial, could be chosen to model count data, for the

sake of simplicity, let us suppose that X1 follows a Poisson distribution with parameter µ1 > 0. Then,
we have:

Pr(X2 = x2) =
∞

∑
x1=x2

(
x1

x2

)(
µ2

µ1

)x2
(

1− µ2

µ1

)x1−x2 µx1
1 exp(−µ1)

x1!

=
exp(−µ1)

x2!

(
µ2

µ1 − µ2

)x2 ∞

∑
x1=x2

(µ1 − µ2)
x1

(x1 − x2)!

=
µx2

2 exp(−µ1)

x2!

∞

∑
j=0

(µ1 − µ2)
j

j!

=
µx2

2
x2!

exp(−µ2), x2 = 0, 1, . . .

Expression (3) can be viewed as a weighted sum of binomial probabilities where the weights are
given by the probability that the policyholder declares a certain number of claims. More specifically,
it is the mean of the total number of claims with a threshold conditional on the fact that X1 = x1 claims
and assuming the existence of a heterogeneity factor that causes different claims of different amounts.
Hence, Expression (3) can be viewed as a mixture distribution. From this standpoint, the model
provides a framework in which random effects are incorporated into the Poisson assumption. In this
case, the bivariate distribution provided in (1) can be obtained by multiplying the conditional and the
marginal distributions in the usual way.

Numerical simulation of the bivariate distribution can be simply obtained by following the
approach explained in Kocherlakota and Kocherlakota (1992, chp. 1). In this regard, both the marginal
distribution f (x1) and the conditional distribution f (x2|x1) will be used. The former is a Poisson
distribution with parameter µ1 and the latter a binomial distribution with parameters x and µ2/µ1.
Thus, for specific values of x1, a realization of x2 from f (x2|x1) can be generated, and therefore,
the pairs (x1, x2) are observations from the joint distribution given in (1). This procedure can be
repeated n times in order to obtain a random sample of size n.

The joint probability generating function is given by:

GX1,X2(s1, s2) = exp[µ1(s1 − 1) + µ2(s2 − 1)s1], |s1| ≤ 1, |s2| ≤ 1. (4)

Note that (4) is the limiting case of the bivariate Poisson distribution with parameters θ1 =

µ1 − µ2, θ2 → 0, and θ12 = µ2 (see for instance this expression in (Johnson et al. 1997, chp. 37)
and also Hesselager (1996) for more details of recursions for bivariate discrete distributions). Thus,
the following recursions are valid:

px1,x2 =
µ1 − µ2

x1
px1−1,x2 +

µ2

x1
px1−1,x2−1,

px1,x2 =
µ2

x2
px1−1,x2−1,

with:

p0,0 = exp(−µ1),

px1,0 =
(µ1 − µ2)

x1 exp(−µ1)

x1!
,

and zero otherwise.
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3. The Role of the Covariates

Clearly, the number of claims below and above ψ may be influenced by different characteristics
and factors; likewise, explanatory variables may be useful to explain the individual premium to
be charged. As (1) satisfies that the marginal means are given by E(X1) = µ1 and E(X2) = µ2,
then covariates can be simply implemented in the model.

We now investigate the effect of including covariates to account for the total number of claims and
the claims above the threshold ψ. Obviously, some factors are crucial when explaining the endogenous
variables (X1i, X2i). Two appropriate links are needed to connect the explanatory variables with the
marginal means. A natural way to proceed is to assume that (X1i, X2i) for i = 1, . . . , n follows the
probability function (1) and:

log µ1i = ω1iβ1,

µ2i =
µ1i exp (η2iβ2)

1 + exp (η2iβ2)
,

where ω1i and η2i denote vectors of m explanatory variables for the ith observation,
i.e., with components ωji and ηji, (j = 1, . . . , m), used to model µ1i and µ2i, respectively, and where
βk = (βk1, . . . , βkm)

>, (k = 1, 2) designates the corresponding vector of regression coefficients.
The log-linear specification for µ1i is widely used, while the link function for µ2i was chosen in
this way to ensure that the latter one would not be larger than µ1i, and thus, it would be compatible
with X2 ≤ X1.

These mean values may be influenced by several characteristics and variables, and the explanatory
variables that are used to model each parameter µ1i and µ2i may not be the same in practice.
In this respect, the work in Cameron and Trivedi (1998) provided good insight into standard count
regression models.

The marginal effect reflects the variation of the conditional mean of X1 and X2 due to a one-unit
change in the jth covariate, and it is calculated as:

∂µ1i
∂β1j

= ωji exp(ω1iβ1) = ωjiµ1i,

∂µ2i
∂β2j

= ηjiµ2i

(
1− µ2i

µ1i

)
, (5)

for i = 1, . . . , n and j = 1, . . . , m. Thus, the marginal effect indicates that a one-unit change in the jth

regressor increases or decreases the expectation of the total number of claims and the number of claims
above the given threshold depending on the sign, positive or negative, of the regressor for each mean.
For indicator variables such as ωik, which takes only the value zero or one, the marginal effect in terms
of the odds-ratio is exp(β1j) for µi1 and exp(β2j) for µi2. Therefore, for µi1, the conditional mean is
exp(β1j) times larger if the indicator is one rather than zero. A similar conclusion is drawn for µi2.
Certainly, if µ1i and µ2i share the same covariates, then (5) does not correspond to the marginal effect
of the jth covariate since µ1i may also change in response to the changes of this covariate.

3.1. Estimation

In this section, we derive estimators based on the maximum likelihood for the model with and
without covariates, and we also provide closed-form expressions for Fisher’s information matrix.
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3.1.1. Model without Covariates

Let ΘΘΘ = (µ1, µ2) and a random sample consisting of n observations xxx =

{(x11, x21), . . . , (x1n, x2n)}, taken from the probability function (1). The log-likelihood is
proportional to:

`(ΘΘΘ; xxx) ∝ nx̄2 log µ2 + n(x̄1 − x̄2) log(µ1 − µ2)− nµ1,

where x̄1 and x̄2 are the sample means of X1 and X2, respectively. The normal equations to be
solved are:

∂`(ΘΘΘ; xxx)
∂µ1

=
n(x̄1 − x̄2)

µ1 − µ2
− n = 0,

∂`(ΘΘΘ; xxx)
∂µ2

=
nx̄2

µ2
+

n(x̄2 − x̄1)

µ1 − µ2
= 0,

from which it is easy to obtain the solution to obtain the maximum likelihood estimators µ̂1 = x̄1 and
µ̂2 = x̄2 which coincide with the moment estimators. The second partial derivatives are:

∂2`(ΘΘΘ; xxx)
∂µ2

1
= −n(x̄1 − x̄2)

(µ1 − µ2)2 ,

∂2`(ΘΘΘ; xxx)
∂µ2

2
= −nx̄2

µ2
2
+

n(x̄2 − x̄)
(µ1 − µ2)2 ,

∂2`(ΘΘΘ; xxx)
∂µ1∂µ2

=
n(x̄1 − x̄2)

(µ1 − µ2)2 .

The expectation of the negative of the second partial derivative yields Fisher’s information matrix:

J (Θ̂̂Θ̂Θ) =

 n
µ̂1−µ̂2

nµ̂1
µ̂2(µ̂1−µ̂2)

nµ̂1
µ̂2(µ̂1−µ̂2)

n
µ̂2−µ̂1

 .

The asymptotic variance-covariance matrix of (µ̂1, µ̂2) is obtained by inverting this information matrix.

3.1.2. Model with Covariates

When covariates are considered, the log-likelihood is proportional to:

`(βββ; xxx) ∝
n

∑
i=1

[x2i log µ2i + (x1i − x2i) log(µ1i − µ2i)− µ1i] , (6)

where βββ = (β1, β2).
Observe now that µ1i = µ1i(β1) and µ2i = µ2i(β1, β2), to emphasize that the first expression

depends only on β1 and the second on both β1 and β2. Thus,

∂µ1i
∂β1j

= ωjiµ1i,
∂µ2i
∂β1j

= ωjiµ2i,
∂µ2i
∂β2j

=
µ2iηji

1 + exp(η2i)
,

for i = 1, . . . , n and j = 1, . . . , m.
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Then, after some algebra, we obtain the normal equations,

∂`(βββ; xxx)
∂β1j

=
n

∑
i=1

ωji(x1i − µ1i) = 0, j = 1, . . . , m,

∂`(βββ; xxx)
∂β2j

=
n

∑
i=1

ηjiφ(µ1i, µ2i, x1i, x2i)

1 + exp(η2iβ2)
= 0, j = 1, . . . , m,

where:

φ(µ1i, µ2i, x1i, x2i) =
x2iµ1i − x1iµ2i

µ1i − µ2i
.

These equations provide the maximum likelihood estimates for the vector of parameters β̂1 =

(β̂11, . . . , β̂1m)
> and β̂2 = (β̂21, . . . , β̂2m)

>. Similarly to the previous case, Fisher’s information matrix
can be obtained in closed-form. See the details in Appendix A.

The normal equations illustrated above can be used to estimate model parameters with and
without covariates. The Newton–Raphson method provides solutions in a non-prohibitive time,
obviously depending on the number of regressors used.

4. Credibility Regression Premiums

Briefly speaking, a bonus-malus system is an experience rating system that is based on the
insured’s claim experience frequency rather than the claim size. Let us now assume some kind
of heterogeneity between policyholders, by allowing that the parameters µi, i = 1, 2 follow some
probability functions. For µ1, a gamma prior distribution will be assumed π1(µ1) with a shape
hyperparameter α1 > 0 and a scale hyperparameter γ1 > 0, whereas a type beta prior distribution will
be considered for µ2 with the probability density function given by:

π2(µ2) =
µα2−1

2 (µ1 − µ2)
γ2−1

µ
α2+γ2−1
1 B(α2, γ2)

, 0 < µ2 < µ1.

Here, α2 > 0, γ2 > 0, and B(a, b) is the beta function given by B(a, b) = Γ(a)Γ(b)/Γ(a + b) where
Γ(·) is the Euler gamma function.

The main benefit of selecting these prior distributions is that they are conjugate with respect to the
likelihoods, and for that reason, they are common choices in Bayesian and actuarial statistics; see for
instance Heilmann (1989), Denuit et al. (2009), and Klugman et al. (2008), among others.

Since µ1 and µ2 are dependent, we can choose the prior distribution given by:

π(µ1, µ2) = π1(µ1)π2(µ2)[1 + ωφ1(µ1)φ2(µ2)], (7)

which corresponds to the copula proposed by Lee (1996). Here, φi(µi), i = 1, 2, are bounded
non-constant functions such that

∫
πi(µi)φi(µi) dµi = 0, and ω a real number, which satisfies that

1 + ωφi(µi) ≥ 0, i = 1, 2. Now, given a sample xxx = (x̃1, x̃2) = {(x11, x21), . . . , (x1t, x2t)}, where t is the
sample size, the posterior distribution of (µ1, µ2) given the sample information is computed according
to Bayes’ theorem, and it is proportional to the product of the likelihood and the prior distribution.
Thus, the posterior distribution is almost conjugated with respect to the likelihood and similar to the
product of a gamma and a beta distribution and where the updated parameters are given by:

α∗1 = α1 + tx̄1, (8)

α∗2 = α2 + tx̄2, (9)

γ∗1 = γ1 + t, (10)

γ∗2 = γ2 + t(x̄1 − x̄2). (11)
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In practise, it is shown that µ2 is near zero, then in this case, ω → 0, and the prior distribution
reduces to π(µ1, µ2) = π1(µ1)π2(µ2), which is the case considered here.

Now, the unconditional means and cross moment are given by:

E(X1) =
α1

γ1
,

E(X2) =
α1

γ1

α2

α2 + γ2
,

E(X1X2) =
α1α2(α1 + γ1 + 1)

γ2
1(α2 + γ2)

.

Finally, the unconditional bivariate distribution is:

Pr(X1 = x1, X2 = x2) =
γα1

1
(1 + γ1)x1+α1

× Γ(x1 + α1)Γ(x2 + α2)Γ(x1 − x2 + γ2)

(x1 − x2)!x2!B(α2, γ2)Γ(α1)Γ(α2 + γ2 + x1)
. (12)

For computational reasons, sometimes, it is more convenient to work with the parametrization
α1 = γ1µ1 and α2 = γ2µ2/(µ1 − µ2).

The maximum likelihood estimates for this mixture regression model can be simply obtained by
means of the EM algorithm. This method is a powerful technique that provides an iterative procedure
to compute maximum likelihood estimation when data contain missing information. Details on the
derivation of the EM algorithm can be found in Appendix B. The standard errors of the estimates
Ω̂ = (β̂1, β̂2, γ̂1, γ̂2) can be computed by using the method given by Louis (1982). Here, we use
Fisher’s information matrix found in Appendix A and replace the missing values by the corresponding
pseudo-values calculated in the last iteration of the EM algorithm. Direct maximization of the likelihood
surface is also possible to compute the maximum likelihood estimates of the mixture regression model.

By following the same arguments as those ones provided in Gómez-Déniz (2016) and also based
on the ideas in Heilmann (1989) (see also Gerber 1979, Rolski et al. 1999, Bühlmann and Gisler 2005,
and Gómez-Déniz 2008; among others), a premium calculation principle assigns to each risk vector
of parameters ΘΘΘ a premium within the set P ∈ R, the action space. Let L(ΘΘΘ, P) = (ΘΘΘ− P)2 be the
squared-error loss function sustained by a decision-maker who takes the action P and is faced with
the outcome ΘΘΘ of a random experience. The premium must be determined in a way such that the
expected loss is minimised. The unknown premium P(ΘΘΘ), called the risk premium, can be obtained by
minimising (g(x1, x2)− P)2, where g(x1, x2) is an appropriate function of the number of claims with a
claim size below ψ and above ψ, respectively. It seems reasonable to take g(x1, x2) as:

g(x1, x2) = pl x2 + ps(x1 − x2), (13)

where ps, pl are appropriate weights assigned to the number of claims for claim sizes above and below
the critical value, respectively, with ps < pl . Now, simple algebra provides the risk premium given by,

P(ΘΘΘ) = E[g(x1, x2)] = (pl + ps)µ1 − psµ2, (14)

where the expectation is taken on (1). By taking pl = ps = 1 in (14), this reduces to P(ΘΘΘ) = µ1, that is
the risk premium depends only on the number of claims, irrespective of their size.

In the absence of experience, the actuary computes the collective premium,

P = Eπ(ΘΘΘ)[P(ΘΘΘ)] =
α1(psγ2 + pl(α2 + γ2))

γ1(α2 + γ2)
. (15)
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Again, by inserting pl = ps = 1 into (15), we obtain the collective premium computed under the
traditional model, P = α1/γ1. On the other hand, if experience is available, the actuary takes a sample
(x̃1, x̃2) from the random variables (X1, X2) and uses this information to estimate the unknown risk
premium P(ΘΘΘ), through the Bayes premium P∗(x̃1, x̃2) = Eπ(ΘΘΘ|(x̃1,x̃2))

[P(ΘΘΘ)]. Due to the fact that the
posterior distribution is conjugated with the prior, the Bayes premium can be derived from (15) by
simply switching the parameters αi and γi (i = 1, 2) with the updated parameters by using (8)–(11).
Furthermore, the Bayesian premium can be rewritten as a credibility expression, i.e., a linear function
of the data and the collective premium.

Obviously, the Bayesian premium based on (15) does not depend on the individual’s risk factors,
and it is only based on the accumulated past claims. Individual’s risk factors can be incorporated
into the premium by computing P∗i (x̃1, x̃2, β1i, β2i), for i = 1, . . . , n. This general pricing formula is a
function of the number of accumulated claims and the individual’s significant characteristics in the
regression component.

Finally, the Bayesian bonus-malus premium is computed as the ratio between the Bayesian
premium and the collective premium. This bonus-malus premium is usually normalised by multiplying
this ratio by 100.

5. Empirical Results

We will now analyse a dataset that includes information based on one-year vehicle insurance
policies taken out in 2004 or 2005. This dataset is available on the website of the Faculty of Business
and Economics, Macquarie University (Sydney, Australia) (see also de Jong and Heller 2008). The total
portfolio contained 67,856 policies, of which 4624 have at least one claim. With respect to the
number of claims, the minimum and maximum were zero and four, respectively. The mean was
0.072, and standard deviation was 0.278. On the other hand, regarding the claim size, the minimum
and maximum were zero and 55,922.10, respectively. The mean was 137.27, and the standard deviation
was 1056.30. This value was very large for the severity of claims, which meant that a premium based
only on the mean claim size was not adequate for computing the bonus-malus premiums. As this
portfolio only included the aggregate value of the claims’ severity, we followed the approach provided
in Gómez-Déniz (2016) to determine the exact value of all claims randomly. Since this portfolio only
included the aggregate value of the claim amount for all of the claims in the portfolio, a simulation was
performed to determine the exact amount corresponding to each claim. This simulation was carried out
by using the Mathematica commands Permute, RandomChoice, IntegerPartitions, IntegerPart
and RandomPermutation, as shown in the Appendix provided in Gómez-Déniz (2016). It is convenient
to note that the partition obtained only provided the integer part, and this did not seem very relevant
in the analysis. Furthermore, due to the RandomChoice command, the partition was different every
time the program was run. The results obtained for the claim amounts via simulation are not shown in
this work, but they are available from the authors upon request.

Below in Table 1, the observed (in bold) and expected frequencies with the threshold value for
the claims assumed to be ψ = $1000 are shown. For each entry, observed frequencies (top row in
bold), expected frequency under the basic model (given by using (1) in the middle row), and mixture
model (bottom row), obtained by using (12), are illustrated. Furthermore, the marginal observed and
expected frequencies are in the far right column and in the bottom row for X1 and X2, respectively.
The cells in this table are grouped to comply with the rule of five when applying the χ2 test.

Similarly, Table 2 exhibits the observed and expected frequencies when the threshold amount
was ψ = $3000. Again, the cells are combined to comply with the rule of five. As can be seen,
the fitting values obtained by using the mixture model were much more flexible since it incorporated
heterogeneity among policyholders via the prior distributions, and it also provided a better fit to the
data than those ones computed under the basic model for both thresholds.
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Table 1. Observed (in bold) and expected frequencies for threshold value ψ = $1000.

X1

X2 0 1 2 3 4 Total

0 63,232 63,232
63,098.00 63,098.00
63,279.50 63,279.50

1 2551 1782 4333
2713.21 1874.01 4587.22
2518.34 1768.19 4286.53

2 109 114 48 271
58.33 80.58 27.83 166.74

101.75 116.10 54.15 272
3 5 6 6 1 18

0.83 1.73 1.20 0.27 4.03
4.26 6.14 4.66 1.81 16.87

4 1 0 0 1 0 2
0.01 0.02 0.01 0.02 0.01 0.07
0.18 0.31 0.29 0.18 0.06 1.02

Total 65,110 1902 54 2 0 67,856
65,870.38 1956.34 29.04 0.29 0.01 67,856.06
65,904.03 1890.74 59.10 1.99 0.06 67,856.00

Table 2. Observed (in bold) and expected frequencies for threshold value ψ = $3000.

X1

X2 0 1 2 3 4 Total

0 63,232 63,232
63,098.00 63,098.00
63,279.50 63,279.50

1 3576 757 4333
3817.42 769.79 4587.21
3554.25 732.28 4286.53

2 216 44 11 271
115.48 46.57 4.69 166.74
198.16 54.75 19.09 272

3 12 4 2 0 18
2.33 1.41 0.28 0.01 4.03
11.13 3.47 1.62 0.64 16.86

4 2 0 0 0 0 2
0.03 0.03 0.01 0.00 0.00 0.07
0.63 0.21 0.11 0.06 0.02 1.03

Total 67038 805 13 0 0 67,856
67,033.26 815.80 4.98 0.01 0.00 67,856.05
67,043.67 790.71 20.82 0.70 0.02 67,856.00

Maximum likelihood estimation was used in both cases. It is convenient to point out that in the
case of the mixture model, it was proven that directly maximizing the logarithm of the log-likelihood
function provided, as expected, the same results as using the EM algorithm shown in Appendix B of
this work. Mathematica and WinRaTs were the two packages used in this case.

Parameter estimates, standard errors (in brackets), the maximum of the log-likelihood function,
figures of the chi-squared test statistics, degrees of freedom (d.f.), and the p-value are exhibited in
Table 3 for the basic and mixture models. Results under the threshold value first ψ = $1000 are shown
in the second and third columns and ψ = $3000 in the last two columns. Virtually, the same estimates
were obtained for parameters µ1 and µ2 under the basic and mixture models. Similarly, no changes
were discernible in the estimates between the estimates for the two thresholds with the exemption
of the estimate of parameter γ2. In this case, it was observable that the estimate decreased when the
threshold increased. By incrementing the threshold value, the fit to the data improved. The mixture
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model provided the best fit to the data in terms of the χ2 test statistic and the negative of the maximum
of the likelihood function `max. Note that the mixture model was not rejected at the 5% significance
level for the two thresholds previously considered. It is important to note that, although the gain in
terms of maximum of the log-likelihood function did not seem significant, the mixture model was
preferable in terms of the χ2 test statistics since, unlike the basic one, it was not rejected at the 5%
significance level (see the corresponding p-values) in either of the two thresholds mentioned above.

Table 3. Parameter estimates (in brackets) and measures of model selection for the basic and mixture
models without covariates.

ψ = $1000 ψ = $3000
Basic Model Mixture Model Basic Model Mixture Model

µ̂1 0.0727 0.0727 0.0727 0.0727
(0.001) (0.000) (0.001) (0.000)

µ̂2 0.0297 0.0297 0.0122 0.0123
(0.000) (0.000) (0.000) (0.000)

γ̂1 15.900 15.900
(0.000) (0.000)

γ̂2 4.334 2.035
(0.000) (0.000)

`max −21,346.561 −21,292.395 −20,301.926 −20,242.391
χ2 >100 5.16 >100 2.09
d.f. 4 2 3 1

p-value 0.00% 7.58% 0.00 % 14.83%

We now implement explanatory variables in our analysis. The following covariates were
considered: gender of driver, vehicle body, driver’s area of residence, age of vehicle, and driver’s age
category. In addition, an intercept was also included in the study. Details about the codification of
these variables can be found on the same website. Moreover, an offset variable (exposure, log of the
time exposed to risk) was included in the linear predictor associated with the first variable.

Table 4 illustrates the estimates of the regressors for the mixture model associated with the
random variables X1 and X2 again for a threshold of ψ = $1000 and ψ = $3000. In the first case,
the explanatory variables hardtop (HDTOP), motorized caravan (MCARA), driver’s area of residence
C (AREAC), age of Vehicles 1 and 2 (VAGE1 and VAGE2), and driver’s Age Category 1 (AGE 1)
were statistically significant at the 5% significance level for the random variable total number of
claims given that the claim size exceeded ψ = $1000. Among these variables, only HDTOP, MCARA,
VAGE1, VAGE2, and AGE1 were significant for both response variables. However, it is important
to note that all these variables except for the regressors associated with AGE1 and AGE2, the sign
of the estimates changed from positive to negative for claims above the threshold. Furthermore,
the estimate of parameter γ1 was statistically significant at the same nominal level. When the threshold
value was increased up to ψ = $3000, the number of significative variables above the threshold
considerably grew since now, the intercept (CONSTANT), gender of driver (GENDER), HDTOP,
SEDAN, station wagon (STNWG), TRUCK, AREAA, AREAB, AREAC, AREAD, VAGE1, VAGE2,
and AGE1, were relevant. However, only CONSTANT, HDTOP, STNWG, AREAD, VAGE1, VAGE2,
and AGE1 were significant for both dependent variables at the same nominal level. The regressors
associated with the explanatory variables CONSTANT, AREAD, and the AGE1 had the same sign
for claims below and above ψ = $3000. The first two regressors were negatively correlated and
the latter one positively correlated to the response variables, respectively. For the other regressors,
once again, the sign of the estimates changed from positive to negative for claims above the threshold.
Among the common statistically significant estimates for both threshold values, i.e., HDTOP, VAGE1,
VAGE2, and AGE1, the same sign of the estimates in the variables X1 and X2 was observable. For the
non-significant estimates, different signs were observed in the regressors. Furthermore, the estimates
of parameters γ1 and γ2 were statistically significant at the same nominal level.
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Table 4. Parameter estimates and p-values associated with the Wald test for the mixture model
including covariates.

ψ = 1000 ψ = 3000

Variable X1 Variable X2 Variable X1 Variable X2

Parameter Estimate p-Value Estimate p-Value Estimate p-Value Estimate p-Value

GENDER −0.015 0.613 0.105 0.090 −0.022 0.467 0.220 0.007
BUS 0.244 0.610 −0.384 0.558 1.005 0.002 −1.386 0.208
CONVT −0.562 0.342 −0.406 0.738 −0.525 0.364 0.890 0.461
COUPE 0.503 0.000 0.204 0.401 0.489 0.000 0.007 0.982
HDTOP 0.208 0.024 −0.427 0.026 0.181 0.049 −0.682 0.011
MCARA 0.766 0.003 −1.291 0.050 0.668 0.011 −1.495 0.152
MIBUS 0.098 0.514 0.292 0.342 0.018 0.905 −0.501 0.234
PANVN 0.124 0.335 −0.286 0.272 0.132 0.299 −0.415 0.223
RDSTR 0.131 0.856 −0.278 0.823 0.318 0.624 −1.143 0.672
SEDAN 0.063 0.098 −0.148 0.055 0.058 0.128 −0.348 0.001
STNWG 0.124 0.002 −0.150 0.076 0.107 0.010 −0.471 0.000
TRUCK 0.055 0.570 −0.040 0.835 0.056 0.560 −0.506 0.050
UTE −0.100 0.152 −0.054 0.699 −0.111 0.110 −0.271 0.126
AREAA −0.010 0.885 −0.194 0.152 −0.064 0.343 −0.108 0.001
AREAB 0.050 0.472 −0.207 0.132 −0.005 0.938 −0.571 0.004
AREAC 0.007 0.920 −0.293 0.027 −0.053 0.421 −0.496 0.035
AREAD −0.110 0.144 −0.139 0.352 −0.171 0.021 −0.345 0.003
AREAE −0.037 0.641 −0.125 0.420 −0.093 0.228 −0.572 0.293
VAGE1 0.187 0.000 −0.388 0.000 0.168 0.000 −0.271 0.000
VAGE2 0.219 0.000 −0.259 0.001 0.207 0.000 −0.619 0.009
VAGE3 0.098 0.013 −0.010 0.208 0.083 0.035 −0.275 0.283
AGE1 0.512 0.000 0.291 0.034 0.464 0.000 0.746 0.000
AGE2 0.328 0.000 0.032 0.795 0.286 0.000 0.274 0.118
AGE3 0.275 0.000 0.039 0.746 0.229 0.000 0.273 0.111
AGE4 0.243 0.000 −0.043 0.723 0.202 0.001 0.196 0.253
AGE5 0.030 0.656 −0.044 0.740 −0.013 0.843 −0.002 0.990
CONSTANT −2.273 0.000 0.027 0.880 −2.156 0.000 −1.045 0.000
γ̂1 21.602 0.000 30.718 0.000
γ̂2 5.903 0.185 2.205 0.014

Similarly to the case previously considered, the fit to the data improved when covariates were
incorporated in the model and when the threshold value enlarged. Table 5 exhibits the negative of
the maximum of the likelihood function (−`max), Akaike’s information criterion (AIC), the Bayesian
information criterion (BIC), and the consistent Akaike’s information criterion (CAIC) for the basic and
mixture regression models. A lower value of these measures of model selection was desirable. It was
observable that the latter model was preferable to the former one.

Table 5. Parameter estimates (in brackets) and measures of model selection for the basic and mixture
models with covariates.

ψ = $1000 ψ = $3000
Basic Model Mixture Model Basic Model Mixture Model

−`max 20,604.355 20,588.936 19,545.212 19,511.783
AIC 41,312.710 41,289.872 39,198.422 39,135.565
BIC 41,809.468 41,800.880 39,691.180 39,646.573

CAIC 41,863.468 41,856.880 39,745.180 39,702.573

We plot the QQ-plots of the randomized quantile residuals to check for normality in Figure 2.
The residuals for the basic regression models are shown in the top row and for the mixture regression
model in the bottom row. Furthermore, models that use ψ = $1000 as the threshold value are exhibited
in the left column and ψ = $3000 in the right-hand column. A perfect alignment with the 45◦ line
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implies that the residuals are normally distributed. It was observable that the residuals for the larger
threshold values adhered a little bit closer to the line, but these differences were not significant.
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Figure 2. QQ-plots of the randomized quantile residuals for the basic (top) and mixture (bottom)
regression models for ψ = $1000 (left) and ψ = $3000 (right) threshold values.

Figure 3 exhibits the bonus-malus premiums (BMP) for the mixture model without covariates.
Here, x1 is the total number of claims when x2 claims out of x1 have a size larger than ψ. In each chart,
the thick line represents ψ = $1000, and the thin line denotes ψ = $3000. It was noticeable that the
BMP decreased with the time period when the observed pair x1 and x2 was fixed for the two thresholds
considered. The BMP was consistently lower when the threshold ψ decreased. Although for both
values of ψ, the premium charged increased when x1 and x2 grew, the premium paid also increased
with x2 when x1 was fixed.
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Figure 3. Bayesian bonus-malus premiums under the mixture model without covariates for x1 claims
when there are x2 claims with a claim size larger than ψ. The thick line represents ψ = $1000, and the
thin line represents ψ = $3000. BMP, bonus-malus premiums.

Figure 4 illustrates the bonus-malus premiums (BMP) to be charged to the subgroup of
policyholders with SEDAN and AREAA. In this case, we used the mixture regression model including
the rest of the explanatory variables and the exposure. Similar conclusions could be drawn from this
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set of graphs. Again, the BMP was persistently lower when the threshold ψ decreased. The premium
charged increased when x1 and x2 grew for either value of ψ; moreover, the premium paid rose with
x2 when x1 was held fixed. As compared to the premiums obtained under this regression model
were way higher than those ones derived before, this could be surely explained by the small sample
size used to estimate regressors and also for the incorporation of the offset variable that without any
doubt affected the individual average number of claims and the probability of making a claim higher
than the threshold. Other different subgroups of policyholders could also be used for tarification
purposes; however, for some of these classes, non-reliable estimates were obtained due to the very low
sample size.
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Figure 4. Bayesian bonus-malus premiums under the mixture model with covariates for x1 claims
when there are x2 claims with a claim size larger than ψ. The thick line represents ψ = $1000, and the
thin line represents ψ = $3000. This chart corresponds to the the subgroup of policyholders with
SEDAN and AREAA.

Computations in the Compound Model

Although it is customary to calculate the bonus-malus premium based on the variable number of
claims (it is usually considered that once a loss has occurred, the company does not have the ability
to model the amount corresponding to the loss), some attempts have been made to implement the
severity in the calculation of the premium. Some works related to this topic are Frangos and Vrontos
(2001), Pinquet (1998), and Gómez-Déniz et al. (2014), among others. As the practitioner wishes to
calculate the premium using both variables, it is useful to rely on the composite collective model.
Similarly to the univariate case, the bivariate compound distributions for the aggregate claim size
random variable can be simply derived as follows:

g(y1, y2) =
∞

∑
x1,x2=0

px1,x2 f ∗ x1
1 (y1) f ∗ x2

2 (y2), (16)

and this is the the joint probability density function of (Y1, Y2) = (S1, S2, ), where S1 = ∑X1
i=0 Y1i,

S2 = ∑X2
i=0 Y2i are the aggregate severities, Y1 and Y2 being mutually independent and also independent

of (X1, X2) with probability functions (discrete or continuous) f1(y1), f2(y2), respectively, with x1 and
x2-fold convolutions f ∗ x1

1 (y1) and f ∗ x2
2 (y2), respectively. General expressions for E(S), var(S) and

cov(S1, S2), where S = S1 + S2, were provided in Partrat (1994).
Recursion for bivariate count distributions and their compound distributions given in the form

(16) have been previously considered in the actuarial literature; see Theorem 2.1. in Hesselager (1996).
Other similar recursions can be found in Vernic (1997), Walhin and Paris (2000), Walhin and Paris
(2001), Sundt (2002), and Sundt and Vernic (2009), among others. Moreover, bivariate recursions are
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useful in prediction problems involving the conditional g(y|x) of Y, given X = x; see Hesselager (1996)
for more details.

Let us now assume that the random variables X1 and X2 represent two kinds of claims, for instance
bodily injury and material damage, or as in our study, claims below and above a threshold ψ.

The fact that the probability generating function of (1) is analytically obtained helps us to derive
the probability generating function of the joint random variable (X1(d1), X2(d2)) for di, which can
be deduced in type i (i = 1, 2) claim amounts. Here, Xi(di) is the random variable corresponding to
the yearly frequency of type i claims exceeding di. The work in Partrat (1994) then showed that the
probability generating function of the random variable (X1(d1), X2(d2)) is given by:

GX1(d1),X2(d2)
(s1, s2) = GX1,X2((1− F1(d1))s1

+F1(d1), (1− F2(d2))s2 + F2(d2)),

where F1 and F2 are the cumulative distribution functions of the random variables Y1 and Y2,
respectively; while the probability generating function of the random variable X(d1, d2), with X =

X1 + X2, is given by:

GX(d1,d2)
(s1, s2) = GX1,X2((1− F1(d1))s1 + F1(d1), (1− F2(d2))s2 + F2(d2)).

6. Final Comments

In this paper, a flexible bivariate count data regression model that let us distinguish between
different types of claims according to the claim size was introduced. Besides, it allowed us to examine
the factors that affect the number of claims above and below a given claim size threshold. By means of
a mixture regression model, the individual claim size and other risk factors such as gender, type of
vehicle, driving area, or age of the vehicle could be used to compute credibility bonus-malus premiums.
Extensions of this work includes a simple modification of this model to differentiate between more
than two claims in the line of the work provided in Gómez-Déniz and Calderín-Ojeda (2018). Besides,
a similar model can be simply implemented when the number of claims is distributed according to a
negative binomial distribution. A study of this nature would be a possible extension of this work.
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Appendix A

The second partial derivatives are provided by:

∂2`(β1, β2; xxx)
∂β2

1j
= −

n

∑
i=1

ω2
jiµ1i, j = 1, . . . , m,

∂2`(β1, β2; xxx)
∂β1j∂β1k

= −
n

∑
i=1

ωjiωkiµ1i, j 6= k,

∂2`(β1, β2; xxx)
∂β1jβ2j

= 0, j = 1, . . . , m,
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∂2`(β1, β2; xxx)
∂β2

2j
= −

n

∑
i=1

(
ηji

1 + exp(η2iβ2)

)2

[φ(µ1i, µ2i, x1i, x2i) exp(η2iβ2)

+
(x1i − φ(µ1i, µ2i, x1i, x2i))µ2i

µ1i − µ2i

]
, j = 1, . . . , m.

∂2`(β1, β2; xxx)
∂β2j∂β2k

= −
n

∑
i=1

ηjiηki

(1 + exp(η2iβ2))2 [φ(µ1i, µ2i, x1i, x2i) exp(η2iβ2)

+
(xi − φ(µ1i, µ2i, x1i, x2i))µ2i

µ1i − µ2i

]
, j = 1, . . . , m.

Now, the entries of Fisher’s information matrix (with dimension m×m) are given by:

E

−∂`(β̂1, β̂2; xxx)
∂β̂2

1j

 =
n

∑
i=1

ω2
jiµ̂1i,

E

(
−∂2`(β̂1, β̂2; xxx)

∂β̂1j∂β̂1k

)
=

n

∑
i=1

ωjiωkiµ̂1i, j 6= k,

E

(
−∂`(β̂1, β̂2; xxx)

∂β̂1j∂β̂2j

)
= 0,

E

(
−∂`(β̂1, β̂2; xxx)

∂β2
2j

)
=

n

∑
i=1

µ̂1iµ̂2i
µ̂1i − µ̂2i

(
ηji

1 + exp(η2i β̂2)

)2

,

E

(
−∂`(β̂1, β̂2; xxx)

∂β2j∂β2k

)
=

n

∑
i=1

µ̂1iµ̂2i
µ̂1i − µ̂2i

ηjiηki

(1 + exp(η2i β̂2))2
, j 6= k,

for j = 1, . . . , m, where we have taken into account that E(φ(µ1i, µ2i, x1i, x2i)) = 0. Again,
the asymptotic variance-covariance matrix of (β̂1, β̂2) is obtained by inverting this information matrix.

Appendix B

Given the vector of complete data xxx and the vector of missing observations (δ̃1, δ̃2) =

{(δ̃11, δ̃21), . . . , (δ̃1n, δ̃2n)}, then the complete data log-likelihood takes the form:

`(β1, β2, γ1, γ2) ∝
n

∑
i=1

x2i log δ2iµ2i − (x1i − x2i) log(δ1iµ1i − δ2iµ2i)− δ1iµ1i

+ nγ1 log γ1 + (γ1 − 1)
n

∑
i=1

log δ1i − γ1

n

∑
i=1

δ1i

+ (γ2 − 1)
n

∑
i=1

log δ2i + (γ2 − 1)
n

∑
i=1

log(δ1i − δ2i)

− (2γ2 − 1)
n

∑
i=1

log δ1i − n log B(γ2, γ2). (A1)

Expression (A1) can be divided into two parts; the regressors are included in the first part, and the
mixing distributions appear only in the second part (i.e., parameters γ1 and γ1). Furthermore, we
assume, without loss of generality, that to make the model identifiable, Eπ1(δ1) = 1 and Eπ2(δ2) = 1/2.
The EM algorithm is based on two steps. The E-step, i.e., expectation, fills in the missing data. Once the
missing data are built-in, the parameters are estimated in the M-step, i.e., maximization. The regressors
are estimated using the pseudo-values, E(δ1i|x̃1, x̃2) and E(δ2i|x̃1, x̃2) as offset variables and then
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fitting the regression model given in (6). Then, to estimate the parameters γ1 and γ2, we maximize the
log-likelihood of the mixing distributions, replacing the missing observations with their expectations.
Next, if some terminating condition is achieved, then stop iterating, otherwise move back to the E-step
for more iterations.

From the current estimates after the kth iteration, the new estimates (β̂1
(k)

, β̂2
(k)

, γ̂
(k)
1 , γ̂

(k)
2 ) are

obtained as follows:

E-step: Consider:

n(δ1i, δ2i, µ1i, µ2i) =
m(δ1i, δ2i, µ1i, µ2i)∫ ∞

0

∫ δ1i
0 m(δ1i, δ2i, x1i, x2i) dδ2i dδ1i

,

where:

m(δ1i, δ2i, µ1i, µ2i) = (δ2iµ2i)
x2i (δ1iµ1i − δ2iµ2i)

x1i−x2i exp(−δ1iµ1i)π1(δ1i)π2(δ2i).

For all i = 1, 2, . . . , n, we calculate:

ci = E(δ1i|xxx) =
∫ ∞

0

∫ δ1i

0
δ1i n(δ1i, δ2i, µ1i, µ2i) dδ2i dδ1i,

di = E(log δ1i|xxx) =
∫ ∞

0

∫ δ1i

0
log(δ1i) n(δ1i, δ2i, µ1i, µ2i) dδ2i dδ1i,

mi = E(δ2i|xxx) =
∫ ∞

0

∫ δ1i

0
δ2i n(δ1i, δ2i, µ1i, µ2i) dδ2i dδ1i,

ni = E(log δ2i|xxx) =
∫ ∞

0

∫ δ1i

0
log(δ2i) n(δ1i, δ2i, µ1i, µ2i) dδ2i dδ1i,

si = E(log(δ1i − δ2i)|xxx) =
∫ ∞

0

∫ δ1i

0
log(δ1i − δ2i) n(δ1i, δ2i, µ1i, µ2i) dδ2i dδ1i.

M-step: This step works as follows:

• Update the regressors β̂
(k+1)
j , j = 1, 2, using the pseudo-values ci and mi as offset variables

by fitting a the regression model given in (6), and then,

• Update the estimate of the parameters γ̂
(k+1)
1 and γ̂

(k+1)
2 by using:

γ̂
(k+1)
1 = exp

(
1
n

n

∑
i=1

ci + ψ
(

γ̂
(k)
1

)
− 1− 1

n

n

∑
i=1

di

)

γ̂
(k+1)
2 =

1
2

ψ−1

(
1
n

n

∑
i=1

ni +
1
n

n

∑
i=1

si − 2
1
n

n

∑
i=1

di

)
,

where ψ(·) is the digamma function.

Stop iterating if some terminating condition is satisfied.

The following result concerns the concept of multivariate log-concavity, which was introduced
by Bapat (1988). See also Johnson et al. (1997).

Proposition A1. The probability function given in (1) is generalized log-concave.

Proof. To see this, observe that (1) can be rewritten as:

Pr(X1 = x1, X2 = x2) = m(xxx, ΘΘΘ)
2

∏
i=1

fi(xi),
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where:

m(xxx, ΘΘΘ) =
x1!(µ1 − µ2)

x1−x2 exp(−µ1)

µx1
1 (x1 − x2)!

,

fi(xi) =
µ

xi
i

xi!
.

Since fi(xi) are log-concave functions ( fi(xi)
2 ≥ fi(xi − 1) fi(xi + 1), i = 1, 2, xi = 1, 2, . . . ), then

the result follows by applying Theorem 3 in Bapat (1988).

The next result shows that the proposed distribution is strongly unimodal (see Barndorff-Nielsen
1973 and Pedersen 1975).

Proposition A2. The probability function given in (1) is strongly unimodal.

Proof. Taking into account that for x1 = 1, 2, . . . ,, x2 = 1, . . . , x1, it is verified that:

px1,x2 px1−1,x2−1

px1−1,x2 px1,x2−1
= 1 +

1
x1 − x2

≥ 1,

px1,x2 px1−1,x2

px1,x2+1 px1−1,x2−1
= 1 +

1
x2
≥ 1,

px1,x2 px1,x2−1

px1+1,x2 px1−1,x2−1
= 1 +

1
x1 − x2

≥ 1,

being px1,x2 = Pr(X1 = x1, X2 = x2), and we get the result after applying Condition (b) in Theorem 1
in Pedersen (1975).
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