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Abstract: Broken-heart syndrome is the most common form of short-term dependence, inducing
a temporary increase in an individual’s force of mortality upon the occurrence of extreme
events, such as the loss of a spouse. Socioeconomic influences on bereavement processes allow
for suggestion of variability in the significance of short-term dependence between couples in
countries of differing levels of economic development. Motivated by analysis of a Ghanaian
data set, we propose a stochastic mortality model of the joint mortality of paired lives and the
causal relation between their death times, in a less economically developed country than those
considered in existing studies. The paired mortality intensities are assumed to be non-mean-reverting
Cox–Ingersoll–Ross processes, reflecting the reduced concentration of the initial loss impact apparent
in the data set. The effect of the death on the mortality intensity of the surviving spouse is given by
a mean-reverting Ornstein–Uhlenbeck process which captures the subsiding nature of the mortality
increase characteristic of broken-heart syndrome. Inclusion of a population wide volatility parameter
in the Ornstein–Uhlenbeck bereavement process gives rise to a significant non-diversifiable risk,
heightening the importance of the dependence assumption in this case. Applying the model proposed
to an insurance pricing problem, we obtain the appropriate premium under consideration of
dependence between coupled lives through application of the indifference pricing principle.

Keywords: joint mortality; stochastic mortality; broken-heart syndrome; non-mean-reverting
Cox–Ingersoll–Ross process; Ornstein–Uhleneck process; bereavement effect; socioeconomic effect;
developing societies

1. Introduction

1.1. Review of Existing Literature

Two lives involved in the pricing of an insurance contract are conventionally regarded as
being mutually independent, inferring there exists no relationship between their remaining lifetimes.
Although this assumption induces greater simplicity in pricing calculations through reduction of
the joint life estimation problem to the estimation problem of a single life, it does not reflect reality.
Addressing the existence of dependence between the lifetimes of two individuals holding a joint
insurance contract is therefore important in improving the accuracy of insurance product pricing.
Survival probabilities of two members of a married couple whose remaining lifetimes are considered
to be dependent at the initiation of the policy may vary in line with the status of their partner’s life.
Mortality laws determined at the time of the policy’s valuation dictate the calculation of prospective
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provisions; however, a change in circumstance in regard to the survival of two dependent lives during
the contract may alter the value of the agreement, due to a change in the bereaved spouse’s probability
of survival.

Approaches to modelling dependence between the times of death of paired lives vary across the
literature. One method frequently applied in dependence structure modelling is to use copulas to
express the joint survival functions of interest. Many papers including those by Frees et al. (1996);
Youn and Shemyakin (1999); Carriere (2000); Denuit et al. (2001) and Shemyakin and Youn (2006)
implement copulas in modelling the dependence structures of joint lives. Under the assumption
dependence between lifetimes is induced by a mutually experienced external event affecting both
members of a couple, common shock models are an alternative to the copula approach introduced
by Marshall and Olkin (1967) and discussed by Frees et al. (1996) when testing the robustness of their
selection of the Frank copula with Gompertz marginals. The proportional hazards survival model
implemented by Hougaard et al. (1992) when investigating the relationship between mortality rates of
twins across generations incorporates time dependent explanatory variables into the analysis whilst
accounting for common shared frailties.

Markov chain methods are implemented in various works as a basis for joint mortality models.
Subsequent to the loss of a spouse, it is likely that the bereaved will experience adaptations in their
living conditions due to factors inclusive of grief and stress. Martikainen and Valkonen (1996) propose
such changes contribute to the interdependence of the lifetimes of paired lives. Norberg (1989) models
the progression of the marital status of two coupled lives over time using a continuous time four state
Markov chain, allowing for the incorporation of such a dependence structure by setting marital status
as a determining factor of the force of mortality, in addition to age and sex. Spreeuw and Wang (2008)
expand Norberg’s model to a six state Markov chain, introducing an intermediate time period
for each spouse within which the bereaved may remain for at most some specified time, prior to
transitioning to the following surviving state. This modification enables investigation of the short-term
dependence structures commonly associated with coupled lives, of which broken-heart syndrome is
the most common.

One limitation of the model proposed by Spreeuw and Wang (2008) is that in moving between
time periods the bereaved spouse experiences a sudden jump in mortality intensity, when in reality
this change would be smooth. Semi-Markov chain models have superior flexibility in comparison
to the standard Markov chain model, and time since previous transition is a determining factor in
calculation of transition probabilities in addition to current time and state occupied. Ji et al. (2011)
define broken-heart syndrome as a smooth parametric function of the time since bereavement through
implementation of a semi-Markov model, enabling greater information gain in regard to how the
broken-heart syndrome effect changes with time. It is clear that model selection influences the pricing
and valuation of insurance products. The Markov chain model proposed by Norberg (1989) suggests
the mortality intensity of the bereaved spouse increases permanently; however, the semi-Markov
model described by Ji et al. (2011) allows for the bereaved spouse to recover following the initial death,
thus facilitating duration dependence.

Financial risk, alongside systematic and unsystematic mortality risk, are the fundamental
risk factors insurers are exposed to (Dahl 2004). Milevsky and Promislow (2001) present a more
realistic modelling approach compared to prior assumption of constant interest in previous studies.
Implementation of a Cox–Ingersoll–Ross interest rate process with stochastic force of mortality specified
by a mean-reverting Brownian Gompertz process, enables incorporation of both interest rate and
systematic mortality risk in their model.

Deterministic mortality intensities defined as functions of the age of the policy holder
have traditionally been used by actuaries in the pricing and valuation of insurance products.
Stochastic modelling of mortality forms an alternative class of mortality models; however, much of
the literature focuses only on single cohort mortality. The use of stochastic processes in modelling
mortality intensity allows for incorporation of the uncertainty of future mortality development and
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time dependence in the mortality model, enabling improvements in the accuracy and likelihood
of realistic calculations, in addition to allowing for quantification of the mortality risk faced by
insurance companies.

Paralleling mathematical approaches to modelling time to default discussed in credit risk literature,
Dahl (2004), Biffis (2005), Luciano and Vigna (2005), Schrager (2006) and Luciano and Vigna (2008)
model the remaining lifetime of an individual as a doubly stochastic stopping time of a Cox process,
with stochastic intensity given by the force of mortality. Suggestion of a link between credit-sensitive
securities and insurance contracts was initially proposed by Artzner and Delbaen (1995), enabling
exploitation of similarities between both time to default and remaining lifetime and short-term interest
rate and force of mortality.

Credit risk models can generally be classified into two distinct model categories
(see Jarrow and Protter (2004) for comparison). Originating from the approaches of
Black and Scholes (1973) and Merton (1974), structural models focus on the structural characteristics
of an institution when considering default risk, comparing the market value of a company’s assets to
their liabilities with complete knowledge of a comprehensive information set. The approach of the
aforementioned literature falls into the class of reduced form models, implemented without the need
to account for company specific factors underlying the occurrence of a default due to assumption of
an exogenous cause (Saunders and Allen 2002).

In the case of the joint mortality experience of coupled lives, Luciano et al. (2008) again adopt
the reduced form credit risk methodology, implementing a continuous time cohort model of affine
type. The paper creates the first link between stochastic and copula based approaches through
application of an Archimedean copula for the modelling of dependence between survival times of
coupled lives. Archimedean copulas are popular in the modelling of joint lifetimes since bivariate
distributions generated by frailty models are a subclass of this particular copula family (Oakes 1989).
Luciano et al. (2016) find two parameter extensions of Archimedean copulas to be more suitable for
representing coupled dependence when investigating the dependence of spouses across generations.

Frequent assumption of symmetric mortality reactions and the staticity of dependence over time
are two of the drawbacks of copula use, with the continuous density assumption common to this
approach implying no jump in mortality occurs on the loss of a spouse. Spreeuw (2006) investigates
the nature of dependence and time-dependent association between lifetimes through implementation
of a number of single parameter Archimedean type copula models. Almost all copulas selected exhibit
long-term dependence, with just one family presenting short-term dependence for only young ages
or short durations. Pure short-term dependence was not recognised in any of the copulas studied;
however, a limitation of single parameter models in capturing all dependence classes was proposed,
in line with Luciano et al. (2016). Allowing for asymmetric mortality reactions to the occurrence of
a death, Gourieroux and Lu (2015) introduce jumps in mortality intensity through combination
of a Freund model with an unobservable common static frailty representing the socioeconomic
conditions shared by coupled lives. Additional dependence between lifetimes further to the contagion
effects resulting directly from the loss is therefore generated through implementation of their model.
Although dependence due to unobserved risk factors is not considered by Dufresne et al. (2018),
incorporation of age difference and sex of the elder spouse in definition of the level of association
between coupled lifetimes in a copula model, supports suggestion of asymmetric dependence.

Jevtić and Hurd (2017) introduce an alternative to copula dependence in the credit risk
environment through definition of a probabilistic mechanism describing the influence the primary
death has on the bereaved spouse. A stochastic mortality model of affine type is implemented for
mortality experience, assuming correlated non-mean-reverting Ornstein–Uhlenbeck diffusions for
the mortality intensities of coupled lives. This selection satisfies the requirements discussed by
Cairns et al. (2006) detailing criteria for a good stochastic mortality model. Strong mean-reversion
should rule out the selection of a model, even if the target level is time dependent and incorporates
mortality improvements. Inclusion of mean-reversion in the modelling of mortality intensities
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requires a diminishing likelihood of future mortality improvements in the event that recent mortality
developments occur at a faster rate than anticipated. Uncertainties surrounding medical advances
and improvements in the healthcare and pharmaceutical industry highlight the unsuitability of
a mortality model with such constraints. In line with this, existing research suggests time-homogeneous
mean-reverting affine processes do not fit observed mortality tables, whilst forces of mortality appear
to behave exponentially rather than in a mean-reverting fashion (Luciano and Vigna 2005).

In relation to credit risk, however, default intensities are generally modelled as mean-reverting
processes. As such, implementation of the classical Cox–Ingersoll–Ross model is popular within credit
risk literature. The Feller process is a non-mean-reverting adaptation of the classical Cox–Ingersoll–Ross
model. In contrast to Ornstein–Uhlenbeck-type processes, the non-negativity constraint of mortality
intensity is not violated through implementation of this model, conditional on the non-negativity of the
initial starting point. Following calibration of a Feller model carried out by Luciano and Vigna (2008),
survival probability was found to decrease at every age, an additional advantage of the selection, whilst
inclusion of a rooted mortality intensity tempers the volatility of the process. We combine the non-mean
reverting Cox–Ingersoll–Ross and Ornstein–Uhlenbeck stochastic processes to form the joint mortality
model proposed. Many applications of these processes appear in the financial and insurance mathematics
literature, and the interested reader may refer to Liang et al. (2011), Nowak and Romaniuk (2018) and
Dassios et al. (2019) for examples of such applications.

1.2. Broken-Heart Syndrome and Shared Frailty Dependence

Broken-heart syndrome is a medically recognised condition triggered by severe negative events
such as the loss of a spouse. The death induces a jump in the mortality rate of the bereaved spouse
experienced at the moment of the primary death. Mortality elevation is generally greatest during
the first period of bereavement after which a significant reduction occurs. Historical research
into the prevelance of broken-heart syndrome suggests the elevated mortality of the surviving
spouse diminishes significantly following an approximate period of between six and twelve months
(Rees and Lutkins 1967), (Parkes et al. 1969), (Ward 1976), falling to the commonly lower mortality
of the comparative non-widowed population in some cases. Factors influencing the impact of
broken-heart syndrome include the cause of death of the deceased spouse (Elwert and Christakis 2008),
the age of the bereaved spouse and the location of the first death (Rees and Lutkins 1967),
with widowers experiencing a greater change in mortality when compared to that of widows.

Allowing for the existence of dependence between two lives involved in an insurance contract,
Frees et al. (1996) and Carriere (2000) provide indications of strong positive correlation between death
times of coupled lives. The presence of dependence suggests joint life annuities making payments until
the first loss of life are underpriced, whilst last survivor annuities providing benefits until the final
death are overpriced (Spreeuw and Wang 2008). Considering dependent lives Frees et al. (1996)
identify a reduction in value of a joint-life annuity of approximately 5% compared to standard
models under the assumption of independence. Spreeuw and Wang (2008) compare models with
and without dependence of mortality on time elapsed since death of the spouse to the independence
case, observing the need for higher premiums for a contingent insurance contract with dependent
lives. When time is factored into the dependence, however, lower premiums were noted, with the
mortality drop characteristic of broken-heart syndrome outweighing the initial mortality elevation.
Similar trends in regard to the impact of the mortality pattern were found when pricing a reversionary
annuity; however, independence yields increased premiums in this case due to the shorter period of
payments associated with an increased degree of dependence.

Dependence duration should be established to determine the full extent of pricing implications.
Hougaard (2000) discusses the classification of dependence across three time frames, with time elapsed
since the death of the deceased allowing for differentiation between the three classes. Characterised by
an elevated force of mortality which is a decreasing function of time since death, broken-heart
syndrome is the most recognised form of short-term dependence. Long-term and instantaneous
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dependence, also referred to as the common shock effect, constitute the remaining classifications
which should be considered by insurers in the pricing of products involving mortality assumptions.
For further details on the definition of each dependence structure, see Hougaard (2000).

The true nature of the impact of spousal bereavement is a consideration of significant importance
to insurers in regard to both pricing and the exploitation of opportunities for diversification,
with relations between the remaining lifetimes of paired lives found to exist prior to death through
unobserved couple-level frailties (Klein 1992). Spurious risk dependence refers to dependence due
to unobserved heterogeneities associated with each member of a couple. In contrast to broken-heart
syndrome which is causal by definition, spurious risk dependence between lifetimes is solely
attributable to the sharing of correlated risk factors or frailties. Living conditions, healthcare access,
diet habits and mutual emotional stresses are amongst some of the lifestyle features which may
act as determinants of both health and mortality, with suggestion of selectivity in the formation of
couples implying the pairing of individuals with equivalent levels of risk, heightening the prevalence
of such correlation. Improvements in underwriting processes within an insurance company and
diversification of insurance portfolios would allow for minimisation of this dependence risk in the
event correlated unobserved heterogeneities are the main component of spousal mortality dependence.
Identification of a marked causal effect of spousal bereavement would however require addressing,
since assumption of coupled mortality dependence would be needed across all insured populations
regardless of their characteristics.

Implementing a mixed proportional hazards model with flexible semi-parametric distribution
for the unobserved heterogeneities, Lu (2017) separates the two dependence factors whilst allowing
for both positive and negative spurious risk dependence. Comparison of models with and without
consideration of spurious correlation using French joint annuity data reveals 92.4% and 81% of the
mortality jump observed in bereaved males and females, respectively, is accounted for by broken-heart
syndrome, whilst the remainder reflects the impact of the unobserved heterogeneity. Despite the
dominance of broken-heart syndrome over spurious correlation, disregarding either effect was found
to produce significant pricing errors. van den Berg et al. (2011) provide evidence for the causal effect of
conjugal bereavement on mortality and health, reporting a reduction in residual life expectancy of 12%
on average following the loss of a spouse. In line with Lu (2017), the model proposed acknowledges
the error in assuming the life status of an individual’s spouse to be an exogenous determinant of
mortality. Allowing for correlated unobserved heterogeneities and applying joint models of survival
van den Berg et al. (2011) capture both causal and spurious dependence, reporting an increased
mortality of greatest significance during the first two and a half years of bereavement which then
decreases up to five years post loss, at which point the effect is no longer present. Applications of
shared frailty models can also be seen in relation to both twin mortality and chronic disease incidence,
with inclusion of a common risk factor accounting for the unobserved heterogeneities; for further
details, refer to Clayton (1978) and Hougaard et al. (1992).

Although the negative implications of the loss of a spouse on the remaining lifetime of the
bereaved partner are widely accepted, there exists a suggestion of differences in cultural patterns
of bereavement reactions (Osterwers and Solomon 1984), (Parkes et al. 2015). Factors recognised
by psychologists as determinants of cultural differences among populations (Laungani 1996),
environmental features and sociological ideas such as those linking periods of economic, social,
or political change to the absence of recognised norms and the associated influence on mental health
(Durkheim 1897) are supportive of this hypothesis. In carrying out this study, we are particularly
interested in the identification of sociological influences on joint mortalities and of variation in
dependence structures between coupled lives in differing cultural settings.

Knowledge of the importance of insurance in sustaining economic growth has a history
of significant length (United Nations 1964); however, penetration in low and lower-middle
income countries remains reduced in comparison to higher-middle and high income countries
(Outreville 2013), with determinants of consumption ranging from income per capita, inflation and
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banking sector development to religious inclination (Beck and Webb 2003). As a long-term savings
instrument and measure of risk mitigation providing protection against the financial consequences of
death, the need for increased life insurance penetration rates in such economies is highlighted by its
connection with financial development levels (Outreville 1996). The importance of acknowledging
dependence between coupled lives particularly in low and lower-middle income countries and
consequently alleviating the insurance risk associated with inaccurate pricing mechanisms is therefore
heightened by this connection, due to the instability of the associated economies.

1.3. Novelty of the Approach

Considering for the first time to the best of our knowledge the existence of socioeconomic
influences on dependence between coupled lives and the bereavement process of surviving spouses
in less economically developed populations, we utilise analysis of a Ghanaian dataset within which
a lesser initial concentration of broken-heart syndome is observed to inform the proposal of a joint
mortality model. In line with our observations which fit the nature of a reduced volatility and
following the results of Luciano and Vigna (2008), we introduce correlated non-mean-reverting
Cox–Ingersoll–Ross diffusions as paired mortality intensities, defining a model of the joint mortality
of a couple assumed to share the same socioeconomic environment based on the stochastic mortality
model proposed by Jevtić and Hurd (2017). A mean-reverting Ornstein–Uhlenbeck process is selected
to represent the influence the loss of a spouse has on the remaining lifetime of the surviving partner.
In moving from deterministic to stochastic bereavement, we facilitate a potential non-diversifiable
risk requiring a premium which accounts for the change in mortality observed in the data, unlike the
diversifiable nature of risks associated with a deterministic bereavement process.

Observation of an increased mortality during the first period of bereavement paired with the
findings of Lu (2017) suggests dependence between lives within the sample is mostly causal in nature.
Existence of a cause-and-effect relationship between the remaining lifetimes of paired individuals is
therefore captured in the proposed model through definition of the bereavement effect, whilst couple
specific unobserved heterogeneities are accounted for through inclusion of correlated Brownian
motions in the paired mortality processes.

An outline of the paper is as follows, in Section 2, we discuss data supporting the modification of
mortality processes before introducing the mortality model proposed in Section 3. One example of
pricing a life insurance product incorporating the dependence model is provided in Section 4 alongside
a numerical pricing example. Concluding remarks are given in Section 5.

2. Data Set

Evaluation of the existence of the broken-heart syndrome effect requires data which details the
time of death of both members of a couple. Survey data collected at the University of Ghana is used
to motivate the model proposed in this paper. Questions relating to the grandparents of a sample of
students at the university include their number of children, living situation and the circumstances of
their death in addition to the date at which they died.

Data processing revealed the full data set comprises 246 couples, 38 couples failing to have
experienced at least one death were removed from the sample since the waiting time between deaths
is the variable of interest. Couples corresponding to errors within the data collection were removed,
in addition to outliers and those with incomplete data in regard to time of death. This leaves a total
of 145 couples consisting of 61 double deaths and 84 single deaths, with 37 and 52 male first deaths,
respectively. Since a number of bereaved spouses survived the observation period determined by the
survey completion date, the data are said to be right-censored. The survival curve for the sample is
displayed in Figure 1, with censored data points indicated.
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Figure 1. Kaplan–Meier curve for probability of death in a widowed population.

Figure 2a,b show the distribution of male and female death times within a couple, whilst Figure 2c
illustrates the number of deaths per year of bereavement. A total of eight bereaved spouses died
within the first year of bereavement, corresponding to 13.1% of bereaved individuals in the sample.
Although the death rate decreased to 5 out of the 61 bereaved spouses in the second year of
bereavement, eight deaths were again observed in year five. Couples along the red line in Figure 2b are
those exhibiting the classical features of broken-heart syndrome, with survival time less than one year.
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Figure 2. Male versus female year of death plot (a), female year of death vs interarrival time of deaths
(b) and number of deaths per year of bereavement (c).

The Pearson correlation between male and female deaths is 0.362773 when considering the whole
sample; however, since year of birth range for the male spouse subset is approximately 55 years, the data
were split into two cohorts to test for existence of a generational effect. Figures 3 and 4 correspond to
the cohorts of paired lives such that male year of birth falls in the intervals 1899–1926 and 1927–1954,
respectively. After removal of outliers and couples with incomplete date of birth, 29 couples remained in
cohort one and 28 couples in cohort two.
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Figure 3. Male vs female year of death plot (a), female year of death vs interarrival time of deaths
(b) and number of deaths per year of bereavement (c), for cohort of couples with male spouse born
between 1899 and 1926.
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Figure 4. Male vs female year of death plot (a), female year of death vs interarrival time of deaths
(b) and number of deaths per year of bereavement (c), for cohort of couples with male spouse born
between 1927 and 1954.

During the first year of bereavement, five surviving spouses died in cohort one, representing
17.2% of the bereaved sample. Following a drop in the number of deaths upon survival of the first
year, a second peak of four deaths was observed in year four. The proportion of bereaved deaths
experienced in the second cohort was 10.7% during the first year of bereavement with the deaths of
three bereaved spouses, and reached a maximum of 21.4% with six deaths in year five. In addition to
the differing patterns of bereaved deaths observed in Figures 3 and 4, with the older cohort achieving
its peak frequency much later, the Pearson correlation between male and female deaths within the
sub-samples varies significantly. Correlation coefficients are −0.008397 and 0.4188 in the first and
second cohorts respectively, suggesting the existence of a potential change in reactions to bereavement
across generations.

A second data set was collected at the African Institute for Mathematical Sciences in Rwanda.
Following exclusion of couples within which either one or both spouses were alive, the sample
consisted of 38 couples from a total of 12 African countries. Due to construction of the survey in
this case, the data collected reveals only intervals within which the survival time corresponding to
each couple lies, although the maximum number of deaths once more occurs within the first period
of bereavement.

Taking interval extremes and considering the upper bound of survival time, 23.7% of the bereaved
sample died in the third year of bereavement with a second peak of 15.8% in year six, whilst 26.3% of
the bereaved sample died in the first year when assuming the lower bound of survival time followed
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by 18.4% in year two, with no further peaks. The Pearson correlation between male and female deaths
was fairly low with values of −0.2250 and −0.06755 for the upper and lower bounds, respectively,
initiating consideration of the existence of country specific trends. Within this analysis, couples of
Cameroonian and Ghanaian origin appear to behave in a similar fashion, whilst paired death times
corresponding to Rwandese couples are widely distributed. The occurrence of mass death events such
as the Rwandan genocide in 1994 may be proposed as potential causes of disruption in the general
mortality pattern. Although the results perhaps imply the impact of broken-heart syndrome differs
across developing countries, further analysis is required in relation to this hypothesis since it is difficult
to draw such a conclusion from a data set of this size.

Previous investigations into the impacts of the effect have to the best of our knowledge regarded
a group originating from a developed country as their sample population. Rees and Lutkins (1967)
discuss their findings following an investigation into the mortality of bereaved close relatives.
The number of deaths documented vary significantly from the control group in the first year of
bereavement, with 11.6% of deaths followed by the death of a close relative in comparison to just 1.6%
in the control. Subsequent to this, the percentage of total deaths in the bereaved group falls to a rate of
1.99%, not differing significantly from the comparative non-bereaved rate.

Focusing specifically on the effect of a death within a married couple, Rees and Lutkins (1967)
found that fitting with the general trend of the data the severity of increases in mortality were
greatest during the first year of bereavement, after which the magnitude of rate elevation diminishes.
The mortality rate of widowers within the year following the loss of the deceased was 19.6%, a value
sizeably greater than the same rate for widows (8.5%). In the case of widowers, the pattern of changing
mortality differs slightly from the general findings of the investigation, 13.7% of widowers at risk died
within the first six months following the bereavement whilst just 5.9% died in the second, a difference
in mortality found to be significant at the 1% level.

Frees et al. (1996), Carriere (2000), Youn and Shemyakin (1999), Shemyakin and Youn (2006),
Spreeuw and Wang (2008), Luciano et al. (2016) and Dufresne et al. (2018) are amongst a number of
studies making use of data from a large Canadian insurer. Observations include increased mortality
for widows and widowers in comparison to non-widowed lives, maximum mortality rates among
individuals having lost their partner less than one year ago and the implication of a greater influence
of broken-heart syndrome on men rather than women.

Although Ghanaian survey data supports the suggestion that broken-heart syndrome exists
in countries of all levels of development, comparison with existing literature prompts the proposal
behaviour under broken-heart syndrome may differ. The significant decrease in mortality following
survival of the first year of bereavement is a characteristic prevalent in much of the research in this
area; however, the decreasing trend of mortality with increasing year since bereavement, although
apparent, cannot be identified with such high initial concentration and decay rate in the Ghanaian
data. Such dissimilarities lead us to define a mortality model representing the impact of a dependence
with less immediate significance. In the following section, we introduce the model proposed before
considering the impact of assumption of dependence on the pricing of joint-life insurance products
in Section 4.

3. Model Description

Inclusion of the probabilistic framework in the stochastic mortality model proposed by
Jevtić and Hurd (2017) prompted the decision to implement a similar model within our investigation.
Whilst multiple state models such as the semi-Markov chain model applied by Ji et al. (2011) offer
transparency and the ability to observe whether the level of risk changes following a death event,
the probabilistic mechanism also enables incorporation of the health of both members of a couple prior
to the primary death. This feature increases the accuracy of the dependence model by permitting varied
responses to the initial death, where dependence may be irregular across the population, determined
by the health circumstances of each couple under consideration. Although we focus on the short-term
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dependence of coupled lives, the model proposed is capable of addressing both short- and long-term
structures, with the ability to encompass any existence of dependence between two lifetimes before the
death of one spouse. In this section, we propose an adaptation of the stochastic mortality model with
probabilistic framework described by Jevtić and Hurd (2017), first defining a number of important
concepts for survival analysis.

Fundamental in modelling mortality risk, the survival function of an individual aged x, referred
to as (x), specifies the probability the individual survives for at least t years and is defined by

Sx(t) = P(τx > t),

where τx is the remaining lifetime of (x). Manipulation of this function allows for calculation of the
force of mortality, such that

λx+t = −
d
dt

log Sx(t),

where λx+t is the force of mortality of (x + t) for t > 0, describing the instantaneous rate at which the
individual experiences death. The force of mortality of an individual (x) at time 0 is given by

λx = − d
dx

log S0(x).

Analagous to the pricing at time t of a default-free zero-coupon bond with maturity s > t,
under the assumption of a credit risk setting, the conditional probability of a stopping time τ exceeding
some arbitrary time s ≥ t, where τ is doubly stochastic with intensity λ(t), can be shown to satisfy

P(τ > s | Gt) = E[e−
∫ s

t λ(u)du | Gt],

where Gt represents the information at time t. When implemented in mortality modelling, the stopping
time τ often represents the remaining lifetime of an individual.

3.1. Probabilistic Mechanism

Let (Ω,F ,P) be a complete probability space where {Ft}t∈[0,T] is a filtration satisfying the
usual conditions of right continuity and completeness, large enough to carry a d-dimensional
Brownian motion W, two exponentially distributed random variables E1 and E2, and a single
uniformly distributed random variable U. Within this space, the set {W, E1, E2, U} is fully independent,
with a realisation of the time of death of each partner following from every realisation of the randomly
generated elements. Allowing T to represent a finite time horizon of suitable length, the Brownian
filtration is defined over the interval t ∈ [0, T] and is given by Gt = σ(Ws) for s ≤ t, where Gt is
a sub-filtration of Ft. When applying the model to a sizeable population, an index n ∈ {1, ..., N},
where N is the number of couples in the sample, should be added to every element whose properties
are specific to a particular pair.

Consider two coupled lives aged x and y at time 0 with future lifetimes τx and τy, respectively.
The instantaneous forces of mortality at time t given by λi(t) for i ∈ {x, y}, are predictable Gt-adapted
processes driven by the Brownian motion W. The spouse whose death occurs first is identified as the
deceased partner and denoted p ∈ {x, y}. Equivalently, the spouse who survives the first death is
denoted q and labelled the bereaved partner. The remaining lifetime of spouse p, conditional on the
information set F0 ∩ Gt, is the first jump-time of a nonexplosive inhomogeneous Poisson counting
process N with parameter

∫ t
0 λx(u) + λy(u)du, where Nt counts the number of deaths at time t,

for t ≥ 0. The remaining lifetime of spouse q is defined in an analogous manner, with both doubly
stochastic stopping times representing τp and τq driven by the sub-filtration Gt.
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The first time of death τp is therefore given by

τp := inf
{

t ≥ 0
∣∣∣ ∫ t

0
λx(u) + λy(u)du ≥ E1

}
, (1)

whilst the uniform random variable U allows for identification of the deceased spouse through
comparison with a function of the forces of mortality at the instant of the primary death. Recalling that
p is the label given to the partner who dies first, we have

{x = p} = {τx = τp} =
{

U ≤
λx(τp)

λx(τp) + λy(τp)

}
, (2)

{y = p} = {τy = τp} =
{

U >
λx(τp)

λx(τp) + λy(τp)

}
. (3)

In line with the belief the loss of a spouse has an impact on the mortality of the surviving spouse,
λ̃q(t) is defined for t ≥ τp as the mortality intensity of the bereaved partner following the initial death.
This force of mortality is an adjustment of the original λq(t) and the association between the two rates
reflects the influence losing a partner has on the bereaved spouse’s health and hence their remaining
lifetime. The bereavement effect is described by

rq(t) := λ̃q(t)− λq(t), (4)

the change in mortality process, where the modified process λ̃q(t) is inclusive of a structural break at τp

representing the instant effect on the bereaved spouse’s mortality. The instantaneous rise at the first death
time is given by a linear combination of the mortality of each spouse at time τ−p directly before the death,
such that

rq(τp) := λ̃q(τp)− λq(τ
−
p ) = δq + εqλq(τ

−
p ) + ζqλp(τ

−
p ), (5)

where coefficients δq, εq and ζq are assumed to be non-negative. Intuitively, the mortality jump reflects
the short-term dependence structure of broken-heart syndrome and modification of λq the adaptations
in the mortality intensity of the surviving spouse due to adjustments in the life circumstances of the
bereaved. Inclusion of the mortality intensity of both spouses in the estimation of the bereavement
jump given in Equation (5) allows for incorporation of unobserved shared frailties.

Determined using a similar approach to the first time of death τp, the second time of death τq is given by

τq := inf
{

t > τp

∣∣∣ ∫ t

τp
λ̃q(u)du ≥ E2

}
. (6)

The model proposed is a variation of the reduced form modelling approach frequently used
in the study of credit risk to model default as a stopping time whose occurrence is unexpected.
Implementation of this method in regard to dependencies of bereaved partners suggests a change in the
remaining lifetime of the bereaved spouse does not occur following the primary death, since random
variables used in the determination of the time of death of each spouse {E1, E2, U}, are required to be
independent across the index. Inclusion of the modified intensity λ̃q(t) resolves this limitation.

Determination of the structure of dependence across a population may be of interest in addition
to dependence between a particular couple. To model the dependence relationship amongst a whole
population, risk factors experienced commonly by all individuals and risks specific to each member
of the population should be considered. These factors are labelled systematic and idiosyncratic risks,
respectively, and are an independent collection of factors by construction, with correlation between
individuals induced by the risks shared among those under consideration.

The objective of the probabilistic mechanism is to determine the joint probability density function
for the times of death of two coupled lives (τx, τy). Theorem 1 provides an expression for the joint
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density proposed with proof in Jevtić and Hurd (2017), where expectations are taken under the
probability measure P and it is assumed the death events do not occur simultaneously.

Theorem 1 (Jevtić and Hurd (2017)).

1. The joint probability density function ρ(tx, ty) for the time of death of two coupled lives (τx, τy) is given
by the reduced form expression

ρ(tx, ty) =


E
[
λp(tx)e−

∫ tx
0 λx(u)+λy(u)duE

[
λ̃q(ty)e−

∫ ty
tx λ̃q(u)du | GT

]]
, tx < ty (7a)

E
[
λp(ty)e−

∫ ty
0 λx(u)+λy(u)duE

[
λ̃q(tx)e

−
∫ tx

ty λ̃q(u)du | GT

]]
, tx > ty (7b)

2. The marginal probability density function ρp(t) for the time of the first occurring death τp is

ρp(t) = E
[
λp(t)e−

∫ t
0 λx(u)+λy(u)du

]
, (8)

for p ∈ {x, y}.

3.2. Stochastic Mortality Model with Non-Mean-Reverting Cox–Ingersoll–Ross Mortality Processes

It is common practice in financial modelling to assume the stochastic mortality intensity λ(t) to
be an affine process, due to their analytical tractability. Under sufficient technical conditions, the affine
assumption gives rise to the expression

E[e−
∫ T

t λ(u)du | Gt] = eA(T−t)+B(T−t)λ(t),

where A(t) and B(t) are unique functions satisfying generalised Riccati ordinary differential equations.
Owing to the convenience of affine jump-diffusions, we propose a stochastic mortality model under
the assumption of affine mortality intensities, assuming a cohort of single-life mortality models in
continuous time with correlated, non-mean-reverting Cox–Ingersoll–Ross (CIR) processes representing
the paired mortality intensities λx(t) and λy(t). For further discussion and treatment of affine processes,
see Duffie et al. (2003).

The adapted CIR processes are defined by

dλp(t) = µpλp(t)dt + σp
√

λp(t)dWp(t) for p ∈ {x, y}, (9)

where the parameters λp(0), µp, and σp are positive. Let B = (Bx, By, Bz) be a three-dimensional
Brownian motion; each Brownian motion Wx(t) and Wy(t) can then be considered as a linear
combination of two independent Brownian motions such that

Wx(t) = γxBx(t) + γ̄xBz(t)

Wy(t) = γyBy(t) + γ̄yBz(t),

which gives

dλp(t) = µpλp(t)dt + σp
√

λp(t)d(γpBp(t) + γ̄pBz(t)) for p ∈ {x, y}.

Here, Bx(t) and By(t) represent the random idiosyncratic risk factors specific to each member of
the couple and Bz(t) reflects the random couple specific risk factors commonly experienced by both
members of the pair, an example of which is the mutual living environment often shared by coupled
lives. Weights γp ∈ [−1, 1] and γ̄p are selected in order to satisfy ρ = γ̄xγ̄y, where γ̄p :=

√
1− (γp)2

and ρ ∈ [−1, 1] is the Pearson correlation between Wx(t) and Wy(t). Introducing correlation between



Risks 2020, 8, 17 13 of 28

the two Brownian motions in this way allows for dependence prior to the initial death and enables the
capturing of unobserved heterogeneities assumed to be shared between coupled lives.

Remark 1. Selection of population specific risk factors for representation in the Bz(t) component of the Brownian
motions Wx(t) and Wy(t) rather than the couple specific risks assumed in this paper initiates a non-diversifiable
risk to insurers, creating with certainty, a long-term effect for companies which should be considered in the
pricing and valuation of insurance products.

The final step in establishing the model is to define the bereavement effect explicitly,
since determination of the second death time requires inclusion of the modified process λ̃q(t), for t≥τp.
With correlation between coupled lives reflected in the paired Brownian motions, the bereavement
model explains the causal relation between remaining lifetimes and the true contagion effect of the loss
of a spouse. Specification of the bereavement process determines the dependence structure assumed
to exist between the lives of interest, such flexibility in the model allows for consideration of all
dependence classifications as required. Jevtić and Hurd (2017) define rq(t) as a deterministic function
with dynamics given by

drq(t) = −κqrq(t)dt with rq(τp) = εqλq(τ
−
p ), (10)

for values of t greater than the initial time of death τp. In the deterministic case, the law of
large numbers implies diversification of the risk associated with the loss of a spouse, we therefore
propose an alternative approach to modelling the bereavement jump facilitating the existence of
a non-diversifiable bereavement risk such that the associated premium must account for the change
in mortality experienced after the first death. We fix coefficients δq and ζq of Equation (5) at zero for
computational simplicity; however, selection of positive values for δq and ζq allows for incorporation
of the mortality intensities of both lives prior to the first death in the initial value of the bereavement
effect at time τp.

Definition 1. The change in mortality process rq(t) has dynamics given by an Ornstein–Uhlenbeck process
such that

drq(t) = −κqrq(t)dt + σ
q
r dW(t) with rq(τp) = εqλq(τ

−
p ), (11)

where W(t) is an independent d-dimensional Brownian motion, εq, κq, σ
q
r ≥ 0 and q ∈ {x, y}.The explicit

solution of the bereavement process for t ≥ τp is

rq(t) = εqλq(τ
−
p )e−κq(t−τp) + σ

q
r e−κqt

∫ t

τp
eκqsdW(s). (12)

We assume the bereavement process defined in Definition 1 to be of affine type to allow for
computation of the joint probability density function.

Remark 2. The volatility of the bereavement process driven by the Brownian motion dW(t) in Equation (12) is
a determining feature of the nature of dependence. Fixing σ

q
r across the whole population infers the occurrence of

an event experienced individually by all bereaved spouses at some future point in time. Such an event induces
a non-diversifiable risk, posing a significant threat to the insurance industry in practice and creating the need
for premiums which account for the observed change in mortality. On the other hand, assumption of a couple
specific value for σ

q
r means the future event risk is diversifiable, through the insuring of a large and varied sample

of couples.
Selection of σ

q
r as either fixed or varying should be determined through observation of data. Establishing

a more detailed underwriting process would help in the identification of unobserved heterogeneities, reducing
the dependence risk associated with this component of the bereavement process. Estimation of the volatility in
Equations (9) and (11) may also be facilitated through increased data collection; however, since the existence
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of a future event common to all lives is not apparent in the data set analysed, we assume σ
q
r to be couple

specific, acknowledging the possibility that a more populated data set may support the need for a change in
this assumption.

When pricing a reversionary annuity in Section 4, the volatility coefficient σ
q
r does not appear in

the indifference price. Since the risks associated with the correlated Brownian motions are diversifiable
through inclusion of only couple specific risk factors, this independence of σ

q
r is of no concern in our case.

In the non-diversifiable case discussed in Remark 1, however, the initial value of the bereavement effect given
in Equation (11) should be redefined in order to incorporate both σ

q
r and the causal dependence between the

members of each couple, to ensure the price of the insurance product covers the risk associated with a spousal loss.

Remark 3. The Brownian motion of the bereavement process is assumed to be independent of the paired
Brownian motions associated with mortality intensity. If the Brownian motion in Equation (11) is instead given
by Wq(t), the change in mortality of the surviving spouse upon the death of their partner is assumed to be
correlated with their mortality before the primary death. The independence assumption adopted in this paper
increases the importance of random risks, such as environmental factors, in determination of the impact of the
loss, rather than historical mortality. The existence of dependence between the bereavement process and the
mortality of the surviving spouse before the death at time τp, although an interesting concept, is not considered
in this paper.

In the Ornstein-Uhleneck model of bereavement proposed, the mean reversion parameter is
fixed at zero due to the decreasing significance of the mortality gap over time associated with the
subsiding nature of the mortality elevation, characteristic of broken-heart syndrome. In contrast to the
exponential model of bereavement assumed in Jevtić and Hurd (2017), mean reversion allows for the
process to take both positive and negative values, accounting for instances when the mortality of the
bereaved improves in comparison to a non-widowed mortality.

After establishing the structure of the bereavement effect, expectations required for the joint probability
density and survival function calculations can be computed through application of the affine framework
with term structure equation determined by the Feynman–Kac formula. The conditional formula whose
specific form is used in the calculation of bond prices (see, for example, Grasselli and Hurd (2015)),
is given by

E[e−c1
∫ T

t λ(u)du−c2λ(T) | Gt] = eA(T−t;θ,c1,c2)+B(T−t;θ,c1,c2)λ(t), (13)

where c1 and c2 are constant and θp = (λp(0), µp, σp) for p ∈ {x, y}.

Proposition 1. Application of the Feynman–Kac Formula to Equation (13) for non-mean-reverting
Cox–Ingersoll–Ross processes gives

A(T − t; θ, c1, c2) = 0 (14)

and

B(T − t; θ, c1, c2) =
−4c2

1(1− eγ(t−T))− 2c1c2(γ− µ)(1 + eγ(t−T))− 4c1c2µ

(γ− µ)(2c1 + c2(γ + µ)) + (γ + µ)(2c1 − c2(γ− µ))eγ(t−T)
, (15)

where γ =
√

µ2 + 2c1σ2. The derivative of Equation (13) with respect to c2 is then

E[λ(T)e−c1
∫ T

t λ(u)du−c2λ(T) | Gt] =− [Ã(T − t; θ, c1, c2) + B̃(T − t; θ, c1, c2)λ(t)]

× eA(T−t;θ,c1,c2)+B(T−t;θ,c1,c2)λ(t), (16)

where Ã(t) and B̃(t) are given by ∂A(t)
∂c2

and ∂B(t)
∂c2

, respectively, such that

Ã(T − t; θ, c1, c2) = 0 (17)
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and

B̃(T − t; θ, c1, c2) = −
16c2

1γ2eγ(t−T)

(γ− µ)(2c1 + c2(γ + µ)) + (γ + µ)(2c1 − c2(γ− µ))eγ(t−T)
. (18)

Three corollaries follow Proposition 1 whose proof is detailed in Appendix A. The explicit form
of the expectations of interest under conditions appropriate in the mortality context are given in
Corollary 1, whilst Corollaries 2 and 3 provide expressions for the joint probability density and
survival functions, respectively. For proof of Corollary 2, see Appendix B.

Corollary 1. The specific form of the conditional formula required for calculation of both the probability density
and survival functions occurs when constants c1 and c2 are fixed at 1 and 0, respectively, which gives

E[e−
∫ T

t λ(u)du | Gt] = eB(T−t;θ,1,0)λ(t) (19)

and
E[λ(T)e−

∫ T
t λ(u)du | Gt] = −B̃(T − t; θ, 1, 0)λ(t)× eB(T−t;θ,1,0)λ(t), (20)

where

B(T − t; θ, 1, 0) = − 2(1− eγ(t−T))

(γ− µ) + (γ + µ)eγ(t−T)
(21)

and

B̃(T − t; θ, 1, 0) = − 8γ2eγ(t−T)

(γ− µ) + (γ + µ)eγ(t−T)
. (22)

Throughout the remainder of the paper, we will refer to functions A(T − t; θ, 1, 0) and B(T − t; θ, 1, 0) as
A(T − t; θ) and B(T − t; θ), respectively.

Corollary 2. The joint probability density function for death times τx and τy with bereavement process of
Ornstein–Uhlenbeck type is given by the expression

ρ(tx, ty) = [Ãr(ty − tx; θr
q) + B̃r(ty − tx; θr

q)rq(tx) + B̃(ty − tx; θq)λq(tx)]B̃(tx; θx)λx(0)
×eAr(ty−tx ;θr

q)+Br(ty−tx ;θr
q)rq(tx)+B(ty−tx ;θq)λq(tx)+B(tx ;θy)λy(0)+B(tx ;θx)λx(0),

(23)

for tx < ty, where θr
q = (rq(0), κq, σ

q
r ), B(t) and B̃(t) are as defined in Corollary 1, and Ar(t) and Br(t) are

unique functions satisfying the generalised Riccati ordinary differential equations for the Ornstein–Uhlenbeck
bereavement process rq(t), such that

Ar(T − t; θ) =
σ2

2κ2 ((T − t) +
2
κ
(e−κ(T−t) − 1)− 1

2κ
(e−2κ(T−t) − 1)) (24)

and
Br(T − t; θ) =

1
κ
(e−κ(T−t) − 1). (25)

Evaluating the derivatives of Ar(T − t; θ, c1, c2) and Br(T − t; θ, c1, c2) with respect to c2 in line with
Proposition 1 and Corollary 2, gives

Ãr(T − t; θ) = − σ2

2κ2 (2(e
−κ(T−t) − 1)− (e−2κ(T−t) − 1)) (26)

and
B̃r(T − t; θ) = −e−κ(T−t). (27)
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For further details on calculation of the joint probability density function, refer to Appendix B. Ar(t) and
Br(t) are as computed in Jevtić and Hurd (2017).

Remark 4. The joint probability density function for the case tx > ty is analogous to Corollary 2, with indices
i ∈ {x, y} interchanged.

Under the assumption of independent coupled lives, the convenience of the affine environment
allows for the survival probability of an individual aged x to be given by

Sx(t) = P(τx > t | G0) = E[e−
∫ t

0 λx(u)du | G0] = eA(t)+B(t)λx(0). (28)

Due to the changing mortality of the bereaved spouse upon the initial death at time τp,
consideration of dependent lives requires the redefinition of the survival function in Equation (28).
We instead regard the survival function for t ≥ τp to be the product of two survival functions, split at
the first jump time τp such that

Sx(t) = Sx(τp)Sx+τp(t− τp).

Therefore, in accordance with the affine process selection for mortality intensity, the expression

Sx(t) = Sx(τp)×E[e−
∫ t

τp λ̃x+τp (u)du | Gτp ] (29)

holds for t ≥ τp, whilst the survival probability for t < τp is determined through application of the
law of total probability, which leads to Corollary 3.

Corollary 3. The survival probability of an individual (x) assuming a mortality intensity of non-mean reverting
Cox–Ingersoll–Ross type is given by

Sx(t) =


E[e−

∫ t
0 λx(u)+λy(u)du | G0]

λx(τp)

λx(τp) + λy(τp)
+

λy(τp)

λx(τp) + λy(τp)
, t < τp (30a)

λy(τp)

λx(τp) + λy(τp)
eB(t−τp)λ̃x+τp (τp), t ≥ τp (30b)

where B(t) is defined by Equation (21).

Remark 5. The survival probability of spouse (y) is analogous to the survival probability of spouse (x) detailed
in Corollary 3, with indices i ∈ {x, y} interchanged.

One example of incorporating the model proposed in the pricing of a joint-life insurance contract
using the indifference pricing principle approach is given in the following section.

4. Indifference Price Calculation for a Joint-Life Insurance Product

When pricing in the incomplete financial market setting, the utility indifference principle is
an approach introduced by Hodges and Neuberger (1989) which compares the maximal expected
utilities of an investor with and without taking a risk. Initially implemented in the pricing of
European options and motivated by the unrealistic assumption of no transaction costs in the pure
Black–Scholes model, extensions of the method have since been developed by Davis et al. (1993) and
Ludkovski and Young (2008) among others, with the latter considering mortality contingent claims in
a fully stochastic setting. In relation to life insurance, such an approach involves equating the expected
utility of an insurer when a certain number of insurance policies are written to the expected utility
when such policies are not written. The indifference premium of interest to our research is the change
in premium which should be charged when dependence of coupled lives is assumed.
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Various articles detail application of the indifference principle to pricing in the life insurance
sector. Young and Zariphopoulou (2002) implement the approach in the valuation of insurance risks
in the dynamic financial market setting. Extensions of their results are presented by Delong (2009)
and Liang and Lu (2017) who follow similar procedures in order to determine indifference premiums.
Liang and Lu (2017) apply a jump-diffusion model of Black–Scholes type to model the stochastic
price of a risky asset with jumps given by a shot-noise process, whilst Delong (2009) makes use of
a Lévy process in order to drive price dynamics. In both cases, the mortality intensity is assumed
to be a stochastic process of diffusion type. Further distinction between the two papers appears in
the definition of the policyholder benefits, with Delong (2009) defining benefits as fixed rates and
Liang and Lu (2017) proposing the indifference premium for an equity-linked life insurance contract
with benefits dependent on the value of the underlying asset.

Choi (2016) adapts further work by Young (2003) in line with Liang and Lu (2017) through
implementation of the equivalent utility principle for valuation of equity-linked life insurance in order
to obtain the indifference price of an insurance contract in both the deterministic and stochastic
mortality cases. Solution of a stochastic optimisation problem determined through solving the
associated Hamilton–Jacobi–Bellman equation enables calculation of the indifference premium in
each of Delong (2009), Choi (2016) and Liang and Lu (2017). Explicit solutions of the optimisation are
then found under the assumption of an exponential utility function.

Blanchet-Scalliet et al. (2019) consider the indifference principle in pricing life insurance portfolios
under the assumption of contingent lives, with dependence introduced through correlation of
policyholders’ lifetimes with a Farlie–Gumbel–Morgenstern copula. Medical breakthroughs and
environmental features are suggested factors associated with dependence structures between the lifetimes
of individuals within a population. When restricting the model by Blanchet-Scalliet et al. (2019) to consider
just two policyholders, the surviving policyholder is said to experience a jump in mortality intensity when
the other dies, in line with the assumption of the model proposed in this paper.

We now give one example of the pricing of a life insurance product under the assumption of
dependence between coupled lives involved in a contract, implementing the indifference principle in
order to obtain the result. To illustrate how dependence between coupled lives influences the pricing
and valuation of insurance products involving mortality assumptions, consider a reversionary annuity
which insures the life of an individual (x). The annuity pays a value of 1 to individual (y) at the end
of each year with the initial payment due at the end of the year of (x)’s death, where the beneficiary
(y) is the surviving spouse of (x). The contract terminates on the final payment at the end of the
year preceding (y)’s death. If the individual (y) dies before (x), the contract terminates before any
payment is made.

In order to compute the price of such an annuity we first introduce the classical model by Merton (1969),
which optimises the investment strategies of an individual seeking to maximise their expected utility of
terminal wealth given some value of initial wealth. The insurer may trade between a risky asset and
a risk-free asset. A geometric Brownian motion is used to model the price of the risky asset such that

{ dSs = µSsds + σ SsdBs

St = S > 0,
(31)

for some s > t, where t is fixed and Ss gives the price of the risky asset at time s. The mean rate of
return µ and volatility σ are positive constants and the process Bs is a standard Brownian motion
on a probability space (Ω,F ,P) with probability measure P and filtration F containing information
about the financial market. The price of the risk-free asset Rs with rate of return r at some time s > t is
modelled such that

dRs = rRsds, (32)

where it is assumed µ > r > 0.
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Suppose the insurer trades dynamically between the risky asset and the risk-free asset given
initial wealth w ≥ 0 at time t > 0. Defining Ws as the wealth of the insurer for s ∈ [t, T], where T > 0
is the terminal time, the insurer invests π

r f
s in the risk-free asset and πs in the risky asset such that

Ws = π
r f
s + πs at time s. The wealth process then satisfies the dynamics

{
dWs = (rWs + (µ− r)πs)ds + σπsdBs, t ≤ s ≤ T (33)

Wt = w.

Under the assumption of an absence of any additional insurance risk, the investor wishes to
maximise the expected utility of terminal wealth such that the value function V(w, t) satisfies

V(w, t) = sup
πt∈A

E[u(WT) |Wt = w], (34)

whereA is the set of admissible policies and u : R→ R is the utility function assumed to be increasing,
concave and smooth. The value function without insurance risk has been shown by Björk (2009) to
satisfy the Hamilton–Jacobi–Bellman (HJB) equation

 Vt(w, t) + max
πt

[(µ− r)πtVw(w, t) +
1
2

σ2π2
t Vww(w, t)] + rwVw(w, t) = 0 (35)

V(w, T) = u(w),

which has optimal investment process given by

π∗(w, t) = − (µ− r)
σ2

Vw(w, t)
Vww(w, t)

. (36)

The maximum of the HJB equation exists due to the linearity of the wealth process dynamics
with respect to the wealth and portfolio process and the concavity of the utility function u, which is
inherited by the value function.

Assumption of an exponential utility function reduces technical difficulties associated with
general utility functions and so enables determination of the indifference price. We therefore consider
an exponential utility function of the form u(w) = − 1

a exp[−aw], where w ∈ R and a > 0 is the
coefficient of risk aversion, giving the closed form solution

V(w, t) = −1
a

exp
[
−awer(T−t) − (µ− r)2

2σ2 (T − t)
]

. (37)

Suppose the insurer has the opportunity to insure an individual aged x. If the insured individual
(x+ t) dies in the interval [t, t+ h], the insurer pays the expected present value (EPV) of the reversionary
annuity to the surviving spouse (y + t) at the end of the year of the primary death at time T = τp,
where τp is the first death time within the couple as defined in the model proposed in Section 3.
The expected present value of the annuity is given by

EPV =
τq−τp−1

∑
s=0

(
s py+τp qy+τp+s

s+1

∑
i=1

e−r((s+1)−i)
)

, (38)

where τq is the death time of the surviving spouse under the assumption of dependent coupled lives.
The expectation of the expected present value given τx represents the remaining lifetime of (x) is then

E[EPV] =
( τq−τp−1

∑
s=0

s py+τp qy+τp+s

s+1

∑
i=1

e−r((s+1)−i)
)
× P(τx = τp), (39)
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since the insurance contract terminates if the beneficiary dies before the insured. Using the survival
functions derived in Section 3, we can express the expectation of the expected present value of the
reversionary annuity such that

E[EPV] =
τq−τp−1

∑
s=0

((
eB(s;θy)λ̃y+τp (τp) − eB(s+1;θy)λ̃y+τp (τp)

) s+1

∑
i=1

e−r((s+1)−i)
)
× P(τx = τp), (40)

where by (2)

P(τx = τp) = P
(

U ≤
λx(τp)

λx(τp) + λy(τp)

)
=

λx(τp)

λx(τp) + λy(τp)

and the value charged at time t to cover this payout is

E[EPV]× e−r(τp−t).

Since the insurance contract remains standing if the individual (x + t) survives until time t + h
and continues under the value function without the claim if (x + t) dies between time t and t + h,
the insurer’s optimisation problem is defined by

U(w, t) ≥E[V(W∗t+h − e−r(τp−(t+h))E[EPV], t + h) |Wt = w]hqx+t

+E[U(W∗t+h, t + h) |Wt = w]h px+t, (41)

where W∗s is the wealth of the insurer under the optimal strategy π∗s for t ≤ s ≤ t + h.
Under assumption of the appropriate conditions of regularity and integrability on the value functions
discussed by Björk (2009), we obtain the corresponding HJB equation given by the expression:


Ut(w, t) + rwUw(w, t) + [V(w− e−r(τp−(t+h))E[EPV], t)−U(w, t)]λx(t)

+max
πt
{(µ− r)πt +

1
2

σ2π2
t Uww(w, t)} = 0 (42)

U(w, T) = u(w),

where the investment process is optimal in the interval [t, t + h] if and only if the optimisation problem
has an equality. Details of the derivation of the HJB in Equation (42) are given in Appendix C.

Supposing we again assume the exponential utility u(w) = − 1
a exp[−aw] for some a > 0,

we consider the solution of the HJB equation to be of the form U(w, t) = V(w, t)φ(t) as in
Young and Zariphopoulou (2002), where φ(τp) = 1. By substitution, we then obtain

Vt(w, t)φ(t) + V(w, t)φt(t) + rwVw(w, t)φ(t)− (µ− r)2

2σ2
V2

w(w, t)
Vww(w, t)

+ [V(w− e−r(τp−t)E[EPV], t)−V(w, t)φ(t)]λx(t) = 0, (43)

which reduces to

V(w, t)φt(t) + [V(w− e−r(τp−t)E[EPV], t)−V(w, t)φ(t)]λx(t) = 0 (44)

as V(w, t) satisfies the HJB equation for the value function under no additional insurance risk given by
Equation (35). Since it is possible to show

V(w− e−r(τp−t)E[EPV], t) = V(w, t)× eaE[EPV], (45)
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further simplification gives a first order ordinary differential equation with respect to φ(t), which can
be solved explicitly under application of the boundary condition φ(τp) = 1 such that

φ(t) = eaE[EPV](1− e−
∫ τp

t λx(s)ds) + e−
∫ τp

t λx(s)ds, (46)

where

e−
∫ τp

t λx(s)ds =
Sx(τp)

Sx(t)

and Sx(t) is the survival function of the insured individual (x) given by Equation (30)a and (30)b.
The minimum premium the insurer should charge in order to insure the individual (x + t) at time

t, for a reversionary annuity which pays in arrears from the moment of death of (x + t) until the death
of (y + t), is the indifference price P(w, t) which satisfies

V(w, t) = U(w + P(w, t), t), (47)

where U(w + P(w, t), t) = V(w + P(w, t), t)φ(t) by substitution. Then,

P(w, t) =
1
a

e−r(τp−t) · ln φ(t)

=
1
a

e−r(τp−t) ln
(

eaE[EPV](1− e−
∫ τp

t λx(s)ds) + e−
∫ τp

t λx(s)ds
)

, (48)

where the EPV is given by Equation (38). Observe that the indifference price is independent of the
wealth of the insurer. Specification of an exponential utility enables this desirable property due to
the constant absolute risk aversion incorporated in the optimal investment process. Dependence on
risk aversion, however, cannot be eliminated when applying the indifference principle approach,
unlike with Black–Scholes pricing. Intuitively, this makes sense as it is impossible to completely hedge
the risks priced due to the inexistence of a relationship between tradable assets and the associated
uncertainties in relation to mortality.

Remark 6. Note that, in the indifference pricing setting, the maximum premium the buyer of insurance (x + t)
should be willing to pay is given by solution of the expression

V(w− PB(w, t), t) = U(w, t) (49)

with respect to PB(w, t), the indifference price of the insurance buyer. Although unrealistic, in the event
of an equality of the risk aversion of insurer and buyer, the indifference prices P(w, t) and PB(w, t) will be
equivalent in this case, with price increasing with increasing risk aversion.

Under the assumption of independent lifetimes, the minimum premium to be charged by
an insurer is again in the form of Equation (48); however, the mortality process incorporated in
the expected present value is unadapted and independent of the mortality intensity of the deceased
spouse such that

EPVI =

τ I
q−τ I

p−1

∑
s=0

((
e

B(s;θy)λI
y+τ I

p
(τ I

p)
− e

B(s+1;θy)λI
y+τ I

p
(τ I

p)) s+1

∑
i=1

e−r((s+1)−i)
)

, (50)

where τ I
p and τ I

q are the remaining lifetimes of individuals (x) and (y), respectively, and λI
y is the

mortality intensity of (y), given the independence of coupled lives. The difference in premium the
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insurer should charge when incorporating dependence between coupled lives and thus covering the
risk of unexpected claim rates during the first period of bereavement is therefore given by

P∗(w, t) =
1
a

e−r(τp−t)(ln φ(t)− e−r(τ I
p−τp) ln φI(t)), (51)

where

φI(t) = eaE[EPVI ](1− e−
∫ τ I

p
t λI

x(s)ds) + e−
∫ τ I

p
t λI

x(s)ds, (52)

and the premium P∗(w, t) is the difference between the indifference price for dependent and
independent coupled lives assuming constant risk aversion.

4.1. Numerical Simulation Results

Having obtained an expression for the indifference price of a reversionnary annuity, we now present
numerical results to illustrate the significance of the dependence assumption. Luciano and Vigna (2008)
calibrate a non-mean reverting Cox–Ingersoll–Ross or Feller process to a number of generations in the UK
population. Comparison of historical Ghanaian life expectancies with those of the UK populations considered
by Luciano and Vigna (2008) in addition to observing the parameter choices of Jevtić and Hurd (2017),
allows for selection of the parameters of the paired mortality processes. Parameters κ and ε determining
the nature of the bereavement effect were chosen through sensitivity analysis, utilising observations in the
Ghanaian dataset to inform the selection. Table 1 presents numerical results for the indifference price of the
insurance product discussed for three levels of risk aversion.

Table 1. Comparison of indifference price with and without dependence assumption.

Dependent Price Independent Price

a = 2.0 0.8199 1.2005

a = 1.0 0.6953 0.9291

a = 0.1 0.5376 0.5764

For each level of risk aversion in Table 1, we observe a reduced indifference price under the
assumption of dependent coupled lives. Increasing the risk aversion coefficient to compare the risk
neutral and risk averse insurance standpoints reveals increasing variation in the two prices. This should
be expected since a risk averse insurer would consider the impact of dependence on mortality more
significantly than a risk neutral insurer, hence charging at a more extreme rate.

During the simulation process, we also observed cases which priced higher under the dependence
assumption. Due to the size of the sample, it is possible the difference between death interarrival times
of a number of couples is larger in the dependent case, with not all bereaved spouses experiencing such
a significant mortality jump in relation to the causal nature of broken-heart syndrome. Consideration of
potential improvements in mortality following the loss of a spouse due to factors such as the
stress associated with caring for an ill partner supports the occurrence of such findings in reality.
Although limitation on the accurate estimation of parameters due to the size of the dataset may have
an influence on the results obtained, observation of the need for a change in price under the assumption
of dependent lives was consistent throughout all simulations.

5. Conclusions

We considered for the first time the existence of short-term dependence between coupled lives in
a lower middle income country and thus propose a stochastic mortality model with non-mean-reverting
Cox–Ingersoll–Ross (CIR) mortality processes of affine type to represent the mortality experience of
such lives. Observation of a differing pattern of deaths in a widowed sample in comparison to findings
of existing literature prompts suggestion of the existence of socioeconomic influences on the structure
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of dependence. Proposal of a CIR type model which includes a rooted process fits the nature of the
Ghanaian data set analysed during the investigation. The tempered volatility induced by the process
appears to be more appropriate for such a sample than the non-mean-reverting Ornstein Uhlenbeck
mortality processes implemented in previous research.

Reflecting the influence the loss of a spouse has on the remaining lifetime of the surviving spouse,
we define the bereavement effect to be an Ornstein–Uhlenbeck process with a zero mean-reversion
parameter. The mean-reverting nature of the process captures the classical features of short-term
dependence and allows for improvements in the mortality intensity of the surviving spouse to rates
above a non-widowed population, perhaps more realistic than assumption of a positive bereavement
effect throughout the remaining bereaved lifetime. Although we assume a couple specific volatility
within the bereavement process, it is important to note that when the volatility is common across
a population, the assumption of dependence carries a non-diversifiable risk which should be considered
by insurers.

Through application of the indifference pricing principle, we obtained the price at which
an insurer is indifferent between taking on the risk of insuring an individual and not taking the
risk for a reversionary annuity. We provide an expression for the appropriate price change under the
assumption of dependent coupled lives, in comparison to the traditional assumption of independence.
Although an Ornstein–Uhlenbeck bereavement process appears to fit the pattern of observed data well,
when pricing in the indifference principle setting, an equivalent result is obtained under assumption
of a simpler exponential bereavement, with only the adjusted mortality intensity at the moment of the
initial death incorporated in the survival function. Increasing the sophistication of the bereavement
process model is therefore not essential when applying this pricing method under assumption of couple
specific volatility parameters. If volatility parameters are population specific, however, redefinition
of the initial adjusted mortality intensity is required in order to obtain a price which accounts for the
non-diversifiable risk.
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Appendix A. Proof of Proposition 1

Proof. The existence of a function f (t, x) for t ∈ [0, T], where T > 0 and x ∈ R, is implied by the
Markov property for any functions F(x), G(t, x) and Φ(t, x) that are sufficiently integrable, such that

f (t, Xt) = E[F(XT)e
∫ T

t Φ(s,Xs)ds +
∫ T

t
e
∫ u

t Φ(s,Xs)dsG(u, Xu)du | Ft]. (A1)
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The Feynman–Kac formula then states that the solution of the non-homogeneous parabolic partial
differential equation

{ ∂t f (t, x) + L[ f ](t, x) + Φ(t, x) f (t, x) + G(t, x) = 0, t < T
f (T, x) = F(x)

(A2)

is given by f (see for example Grasselli and Hurd (2015)). In the Cox–Ingersoll–Ross case of interest,
the general form of f (t, x) is given by

f (t, λ(t)) = E[e−c1
∫ T

t λ(u)du−c2λ(T) | Gt], (A3)

where c1 and c2 are real-valued constants. We therefore have F(λ(T)) = exp[−c2λ(T)], Φ(t, λ(t)) =
−c1λ(t) and G(t, λ(t)) = 0 such that

∂t f (t, λ(t)) + µλ(t)∂λ(t) f (t, λ(t)) +
1
2

σ2λ(t)∂λ(t)λ(t) f (t, λ(t))− c1λ(t) f (t, λ(t)) = 0, (A4)

where f (t, λ(t)) = exp[A(T − t; θ, c1, c2) + B(T − t; θ, c1, c2)λ(t)]. Substitution of f (t, λ(t)) into the
partial differential Equation (A4) gives

A′(T − t; θ, c1, c2) = 0, (A5)

and
B′(T − t; θ, c1, c2) = −µB(T − t; θ, c1, c2)−

1
2

σ2B2(T − t; θ, c1, c2) + c1. (A6)

Solution of the first order ordinary differential equation for B(T− t; θ, c1, c2) involves a calculation
of length; however, after a number of algebraic steps, we obtain

B(T − t; θ, c1, c2) =
−4c2

1(1− eγ(t−T))− 2c1c2(γ− µ)(1 + eγ(t−T))− 4c1c2µ

(γ− µ)(2c1 + c2(γ + µ)) + (γ + µ)eγ(t−T)(2c1 − c2(γ− µ))
, (A7)

under application of the initial conditions of the Feynman–Kac formula, f (T, λ(t)) = F(λ(t)). Then,

B̃(T − t; θ, c1, c2) =
∂B(T − t; θ, c1, c2)

∂c2
(A8)

simplifies to

−
16c2

1γ2eγ(t−T)

(γ− µ)(2c1 + c2(γ + µ)) + (γ + µ)eγ(t−T)(2c1 − c2(γ− µ))
. (A9)

Since A(t) = 0, we also have that Ã(t) = 0.

Appendix B. Proof of Corollary 2

Proof. Considering the case tx < ty, we have

ρ(tx, ty) = E[λp(tx)e−
∫ tx

0 λx(u)+λy(u)duE[λ̃q(ty)e−
∫ ty

tx λ̃q(u)du | GT ]] (A10)

= E[λp(tx)e−
∫ tx

0 λx(u)du]×E[e−
∫ tx

0 λy(u)duE[λ̃q(ty)e−
∫ ty

tx λ̃q(u)du | GT ]], (A11)

which holds true since the mortality intensities λx and λy are independent under tx < ty when
conditioning on the information set GT . Proposition 1 implies the first component of the joint probability
density function is given by

E[λp(tx)e−
∫ tx

0 λx(u)du] = −B̃(tx; θx, 1, 0)λx(0)× eB(tx ;θx ,1,0)λx(0), (A12)
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where B(t) and B̃(t) are as defined in Proposition 1. For the second component of the
joint probability density function, consider λ̃q(u) = λq(u) + εqλq(tx) exp[−κq(u− tx)] +

σ
q
r exp[−κqu]

∫ u
tx

exp[κqs]dW(s) = λq(u) + rq(u), where u ≥ tx, then

E[λ̃q(ty)e−
∫ ty

tx λ̃q(u)du | GT ] = E[(λq(ty) + rq(ty))e−
∫ ty

tx λq(u)due−
∫ ty

tx rq(u) | GT ] (A13)

= E[λq(ty)e−
∫ ty

tx λq(u)du | GT ]E[e−
∫ ty

tx rq(u)du | GT ]

+E[rq(ty)e−
∫ ty

tx rq(u)du | GT ]E[e−
∫ ty

tx λq(u)du | GT ] (A14)

which holds due to the independence of λq and rq, determined by their independent Brownian
motions. Since we also assume the bereavement process to be of affine type, functions Ar(t) and Br(t)
satisfying generalised Riccati ordinary differential equations can be obtained such that a closed form
solution of the required conditional expectation and its derivative with respect to c2 can be found for
θ = (r(0), κ, σ):

E[e−c1
∫ T

t r(u)du−c2r(T) | Gt] = eAr(T−t;θ,c1,c2)+Br(T−t;θ,c1,c2)r(t), (A15)

where
Br(T − t; θ, c1, c2) =

1
κ
((c1 − κc2)e−κ(T−t) − c1) (A16)

and

Ar(T − t; θ, c1, c2) =
σ2

2κ2 [c2
1(T − t) + 2c1

κ (c1 − κc2)(e−κ(T−t) − 1)− 1
2κ (c1 − κc2)

2(e−2κ(T−t) − 1)] (A17)

(see Jevtić and Hurd (2017)). Application of the affine framework therefore allows for Equation (A15)
to be expressed as

−[Ãr(ty − tx; θr
q, 1, 0) + B̃r(ty − tx; θr

q, 1, 0)rq(tx) + B̃(ty − tx; θq, 1, 0)λq(tx)]

× eAr(ty−tx ;θr
q ,1,0)+Br(ty−tx ;θr

q ,1,0)rq(tx)+B(ty−tx ;θq ,1,0)λq(tx), (A18)

where B(t) and B̃(t) are defined in Corollary 1. As in the Cox–Ingersoll–Ross case in Proposition 1,
functions Ãr(t) and B̃r(t) are given by ∂Ar(t)

∂c2
and ∂Br(t)

∂c2
, respectively. The second component of the

joint probability density function is then

E[e−
∫ tx

0 λy(u)du ×−[Ãr(ty − tx; θr
q, 1, 0) + B̃r(ty − tx; θr

q, 1, 0)rq(tx) + B̃(ty − tx; θq, 1, 0)λq(tx)]

× eAr(ty−tx ;θr
q ,1,0)+Br(ty−tx ;θr

q ,1,0)rq(tx)+B(ty−tx ;θq ,1,0)λq(tx)] (A19)

=− [Ãr(ty − tx; θr
q, 1, 0) + B̃r(ty − tx; θr

q, 1, 0)rq(tx) + B̃(ty − tx; θq, 1, 0)λq(tx)]

× eAr(ty−tx ;θr
q ,1,0)+Br(ty−tx ;θr

q ,1,0)rq(tx)+B(ty−tx ;θq ,1,0)λq(tx)+B(tx ;θy ,1,0)λy(0), (A20)

where θr
q = (rq(0), κq, σ

q
r ). The joint probability density function for death times tx and ty is therefore

ρ(tx, ty) = [Ãr(ty − tx; θr
q, 1, 0) + B̃r(ty − tx; θr

q, 1, 0)rq(tx) + B̃(ty − tx; θq, 1, 0)λq(tx)]B̃(tx; θx, 1, 0)λx(0)
×eAr(ty−tx ;θr

q ,1,0)+Br(ty−tx ;θr
q ,1,0)rq(tx)+B(ty−tx ;θq ,1,0)λq(tx)+B(tx ;θy ,1,0)λy(0)+B(tx ;θx ,1,0)λx(0).

(A21)

Appendix C. Derivation of the Hamilton–Jacobi–Bellman Equation for U(w, t)

Here, we provide the derivation of the Hamilton–Jacobi–Bellman (HJB) equation for U(w, t) used
to obtain the indifference price of the insurer. Assume the insurer follows the optimal investment
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strategy π∗s for t ≤ s ≤ t + h, such that W∗s is the wealth of the insurer under π∗s . From Equation (41),
we know that the insurer’s optimisation problem given an insured individual aged x + t is given by

U(w, t) ≥ E[V(W∗t+h − e−r(τp−(t+h))E[EPV], t + h) |Wt = w]hqx+t +E[U(W∗t+h, t + h) |Wt = w]h px+t. (A22)

Under the assumption functions U(w, t) and V(w, t) are sufficiently smooth,

U(Wt+h, t + h) = U(Wt, t) +
∫ t+h

t
dU, (A23)

where
dU = (Us + Uw(rWs + (µ− r)πs) +

1
2

σ2π2
s Uww)ds + σπsUwdB, (A24)

through application of Itô’s formula. Then,

U(W∗t+h, t + h) = U(Wt, t) +
∫ t+h

t Ut(W∗s , s) + Uw(W∗s , s)(rW∗s + (µ− r)π∗s ) +
1
2 σ2π∗

2
s Uww(W∗s , s)ds

+
∫ t+h

t σπsUw(W∗s , s)dB
(A25)

and so

E[U(W∗t+h, t + h) |Wt = w] = E[U(w, t) +
∫ t+h

t Ut(W∗s , s) + Uw(W∗s , s)(rW∗s + (µ− r)π∗s )
+ 1

2 σ2π∗
2

s Uww(W∗s , s)ds |Wt = w].
(A26)

Carrying out a similar computation for E[V(W∗t+h − e−r(τp−(t+h))E[EPV], t + h) |Wt = w] gives
the following expression for the insurer’s optimisation problem:

U(w, t) ≥ E[U(w, t) +
∫ t+h

t Ut(W∗s , s) + Uw(W∗s , s)(rW∗s + (µ− r)π∗s )
+ 1

2 σ2π∗
2

s Uww(W∗s , s)ds |Wt = w] h px+t

+E[V(w− e−r(τp−(t+h))E[EPV], t) +
∫ t+h

t Vt(W∗s − e−r(τp−(s+h))E[EPV], s)
+Vw(W∗s − e−r(τp−(s+h))E[EPV], s)(rW∗s + (µ− r)π∗s )
+ 1

2 σ2π∗
2

s Vww(W∗s − e−r(τp−(s+h))E[EPV], s)ds |Wt = w] hqx+t,

(A27)

which gives

U(w, t) hqx+t
h ≥ V(w− e−r(τp−(t+h))E[EPV], t) hqx+t

h
+ 1

hE[
∫ t+h

t Ut(W∗s , s) + Uw(W∗s , s)(rW∗s + (µ− r)π∗s )
+ 1

2 σ2π2
s Uww(W∗s , s)ds |Wt = w] h px+t +

1
hE[
∫ t+h

t Vt(W∗s − e−r(τp−(s+h))E[EPV], s)
+Vw(W∗s − e−r(τp−(s+h))E[EPV], s)(rW∗s + (µ− r)π∗s )
+ 1

2 σ2π∗
2

s Vww(W∗s − e−r(τp−(s+h))E[EPV], s)ds |Wt = w] hqx+t

(A28)

when we subtract U(w, t)h px+t and divide by h. Taking the limit h→ 0, we get

U(w, t)λx(t) ≥ V(w− e−r(τp−(t+h))E[EPV], t)λx(t)
+Ut(w, t) + Uw(w, t)(rw + (µ− r)πt) +

1
2 σ2π2

t Uww(w, t)
(A29)

since limh→0
hqx+t

h = λx(t), where λx(t) is the force of mortality of an individual aged x at time t and
limh→0 hqx+t = 0. The investment is optimal only if there exists an equality and so the corresponding
HJB equation is

Ut(w, t) + rwUw(w, t) + [V(w− e−r(τp−(t+h))E[EPV], t)−U(w, t)]λx(t)

+max
πt
{(µ− r)πt +

1
2

σ2π2
t Uww(w, t)} = 0, (A30)

U(w, T) = u(w).
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